next up previous
Next: Uniqueness of Up: The Solution of the Previous: Existence of a limit

   
$ \vec{v^*}$ is a fixed point


\begin{eqnarray*}0 & \leq & \Vert T\vec{v^*}-\vec{v}^{\ *}\Vert\\ & \leq &
\Ver...
... \ \Vert\underbrace{\vec{v}^{n}-\vec{v^*}}_{\rightarrow 0}\Vert
\end{eqnarray*}


Since $ \vec{v^*}$ is a limit of $\vec{v}_n$,

\begin{eqnarray*}\lim_{n\rightarrow\infty}\Vert\vec{v}_n-\vec{v^*}\Vert = 0
\end{eqnarray*}


hence

\begin{eqnarray*}\Vert T\vec{v^*}-\vec{v^*}\Vert = 0
\end{eqnarray*}


thus $ \vec{v^*}$ is a fixed point of the operator L.

Yishay Mansour
1999-11-24