Complexity of policy Iteration and Related Issues

Eyal Even-Dar

1Introduction

2Definitions

2General policy iteration

2Known Results

3On the complexity of policy iteration

3Lemmas And Theorems

5Combining it all together

5A random Policy Iteration

6A Sub exponential Randomized Algorithm For the Simple Stochastic Game Problem

6Introduction

6Definitions and Preliminary results:

8The Algorithm:

8Algorithm Analysis

9My attempts

10Summary

Introduction

I have tried to improve the upper bound in policy iteration. Since I have failed in this task. I will give here a brief view of this subject. I will show two related papers and explain each one of them. At the beginning I will give the definition of the problem and explain the importance of the problem. Both papers deal with similar problem, while one deals exactly in our problem, which will be defined later, and the second one deals with similar problems. Both give non-trivial upper bound for the problem (MDP and Stochastic game). Therefore, I will give the definition related to MDP here, while the definition related to stochastic game will be given in the paper summary.

After having both results I will describe briefly what I have tried to do and compare between the results.

Definitions

Decision making problems in a stochastic environment is often described by an MDP (Markov decision Problem). An MDP is a tuple (S,A,P,R). S is a finite set of states. A is a finite set of actions. P is the table of transformation probabilities, which depends on S and A(P(s’|s,a))reward function where are R is the function of S,A (R(s,a)). The agent’s return (policy return) is defined to be the discounted sum of rewards over infinite horizon,
[image: image1.wmf]r

t

t

t

å

g

, or as
[image: image2.wmf]lim

¥

®

m

 EMBED Equation.3 [image: image3.wmf]å

=

m

i

t

m

r

1

/

)

(

in the undiscounted case.

Where the discount factor should be in the interval [0,1].

Many algorithms, such as policy iteration and value iteration, try to maximize agent’s return.

Policy Iteration is a method of finding a policy that achieves the optimal agent’s return by searching over the policy space. I will give here more definitions in order to define well the policy iteration method.

[image: image4.wmf])

(

s

V

p

is defined to be the expected return of policy
[image: image5.wmf]p

 starting from state s, and
[image: image6.wmf])

,

(

a

s

Q

p

 to be the expected return if the start state is s and the agent perform action a to begin and then follow policy
[image: image7.wmf]p

. The agent’s goal is to find the best policy
[image: image8.wmf]p

*

, which satisfies
[image: image9.wmf]V

p

p

p

max

arg

*

=

. The optimal value is given by
[image: image10.wmf]V

*

and associated Q value is
[image: image11.wmf]Q

*

.

A policy
[image: image12.wmf]p

 is said to better than a policy
[image: image13.wmf]p

’ (
[image: image14.wmf]'

p

p

f

)if and only if for every state s
[image: image15.wmf])

(

)

(

'

s

s

V

V

p

p

³

and for some states s
[image: image16.wmf])

(

)

(

'

s

s

V

V

p

p

>

. If for every state s
[image: image17.wmf])

(

)

(

'

s

s

V

V

p

p

=

we say that
[image: image18.wmf]'

p

p

»

General policy iteration

At each iteration, we consider changing the policy at each state while keeping the actions for all others states fixed to the current policy, some such single state will improve the current policy. Different policy iterations differ in the way which they accept single state changes. For instance, sequential PI accepts only one change state in each iteration. Using the function
[image: image19.wmf])

,

(

a

s

Q

p

, we can find all the single states that improve the current policy
[image: image20.wmf]p

. A policy general iteration chooses some of this single states and change the policy in them.

Known Results

A polynomial upper bound in number of states and in the discount factor is known to value iteration. Therefore, Policy iteration, which performs always better than value iteration, is also polynomial in the number of states and the discount factor.(I will not prove it because Value Iteration is hardly mentioned here).

For a certain policy iteration a sequential policy iteration, which only improves one state in each iteration, there is a lower bound of O(
[image: image21.wmf]2

n

). For a genral policy iteration there was no upper bound except the trivial one O(
[image: image22.wmf]2

n

) before the following paper came out.

Description of both pares will be now given

On the complexity of policy iteration

Yishay Mansour and Stainder Singh

(http://www.math.tau.ac.il/~mansour/cv.htm)

Decision making problems in a stochastic environment is often described by an MDP (Markov decision Problem). The paper tries to give an upper bound for Policy Iteration, which is an algorithm for searching the best policy over the policy-space.

The paper makes some restrictions without loss of generality such as |A| = 2. Thus, the total number of policies is
[image: image23.wmf]2

n

 (n = |S|). While describing the paper, I will use the definitions, given in the introduction.

While dealing with general policy iteration, the following notation will be very important. Given a policy
[image: image24.wmf]p

, let
[image: image25.wmf]A

S

T

´

Í

p

 to be the set of all pairs (s,a) such that changing the action of
[image: image26.wmf]p

 in s to a improves the return of the policy,
[image: image27.wmf])

,

(

a

s

Q

p

 >
[image: image28.wmf])

(

s

V

p

. We define states(
[image: image29.wmf]T

p

) to be the states that appear in
[image: image30.wmf]T

p

.

For a given policy
[image: image31.wmf]p

and a set U
[image: image32.wmf]Ì

 EMBED Equation.3 [image: image33.wmf]T

p

. Them modify(U,
[image: image34.wmf]p

) define a policy
[image: image35.wmf]p

’ whose actions are the same as those of
[image: image36.wmf]p

, except the ones in U.

Lemmas And Theorems

Theorem 1:

For any U
[image: image37.wmf]Ì

 EMBED Equation.3 [image: image38.wmf]T

p

 , let
[image: image39.wmf]p

’ = modify(U,
[image: image40.wmf]p

). If U is not empty, then
[image: image41.wmf]p

p

f

'

Proof idea

One way of proving it will be evaluating the agent’s return by running the new policy infinitely when the initial state is the reward vector achieved by the former policy. Therefore, the new reward vector will be better than the initial vector (by induction).

Theorem 2:

For any sub optimal policy
[image: image42.wmf]p

,
[image: image43.wmf]T

p

is not empty.

Proof idea

One can look again on the relation between value iteration and policy iteration to achieve the desired result.

Those two theorems ensure us that each iteration of PI strictly improves the current policy. Furthermore, it ensures that the algorithm will stop only upon finding the best policy (Second theorem). It also gives us the trivial upper bound of
[image: image44.wmf]2

n

, because each step rules out at least one policy, itself. In the following steps the paper shows how we can rule out more policies at each step.

The following lemmas will help us proving that we rule out more policies at each iteration:

Lemma 3:

Let
[image: image45.wmf]p

 and
[image: image46.wmf]p

’ be two policies, which differ in their actions only in state. Then either

[image: image47.wmf]p

 EMBED Equation.3 [image: image48.wmf]f

 EMBED Equation.3 [image: image49.wmf]p

’,
[image: image50.wmf]p

 EMBED Equation.3 [image: image51.wmf]p

 EMBED Equation.3 [image: image52.wmf]p

’or
[image: image53.wmf]p

 EMBED Equation.3 [image: image54.wmf]»

 EMBED Equation.3 [image: image55.wmf]p

’.

Proof

If
[image: image56.wmf])

,

(

a

s

Q

p

 >
[image: image57.wmf])

(

s

V

p

, then
[image: image58.wmf]p

 EMBED Equation.3 [image: image59.wmf]p

 EMBED Equation.3 [image: image60.wmf]p

’. If
[image: image61.wmf])

,

(

a

s

Q

p

 <
[image: image62.wmf])

(

s

V

p

 then
[image: image63.wmf]p

 EMBED Equation.3 [image: image64.wmf]f

 EMBED Equation.3 [image: image65.wmf]p

’. Otherwise
[image: image66.wmf]p

 EMBED Equation.3 [image: image67.wmf]»

 EMBED Equation.3 [image: image68.wmf]p

’.

Lemma 4:

During a run of general policy iteration, there are no i < j such that
[image: image69.wmf]T

i

p

 EMBED Equation.3 [image: image70.wmf]Í

 EMBED Equation.3 [image: image71.wmf]T

j

p

.

Proof

The paper first proves the following property, For any policy
[image: image72.wmf]p

 and any policy
[image: image73.wmf]p

’ that is identical to
[image: image74.wmf]p

 in every state in
[image: image75.wmf]T

p

, either
[image: image76.wmf]p

 EMBED Equation.3 [image: image77.wmf]f

 EMBED Equation.3 [image: image78.wmf]p

’ or
[image: image79.wmf]p

 EMBED Equation.3 [image: image80.wmf]»

 EMBED Equation.3 [image: image81.wmf]p

’.For a proof, we will look at an MDP, M’, which has the same actions as those in M except the ones in
[image: image82.wmf]T

p

that are restricted to the actions of policy
[image: image83.wmf]p

. In M’
[image: image84.wmf]p

is an optimal policy since
[image: image85.wmf]T

M

p

'

 is empty. By theorem 2 we have either
[image: image86.wmf]p

 EMBED Equation.3 [image: image87.wmf]f

 EMBED Equation.3 [image: image88.wmf]p

’ or
[image: image89.wmf]p

 EMBED Equation.3 [image: image90.wmf]»

 EMBED Equation.3 [image: image91.wmf]p

’.

Using the property, the paper proves the lemma by contradiction. Assume that i < j such that
[image: image92.wmf]T

i

p

 EMBED Equation.3 [image: image93.wmf]Í

 EMBED Equation.3 [image: image94.wmf]T

j

p

exists. Let T =
[image: image95.wmf]T

i

p

 EMBED Equation.3 [image: image96.wmf]Í

 EMBED Equation.3 [image: image97.wmf]T

j

p

.

Let U’={(s,a): a =
[image: image98.wmf])

(

s

i

p

 and
[image: image99.wmf])

(

s

i

p

 EMBED Equation.3 [image: image100.wmf]¹

[image: image101.wmf])

(

s

j

p

 and
[image: image102.wmf]T

s

Î

}.

It is obvious that U’
[image: image103.wmf]Í

 EMBED Equation.3 [image: image104.wmf]T

j

p

 , since there are only two actions. Define
[image: image105.wmf]p

’ to be modify(
[image: image106.wmf])

'

,

U

j

p

.
[image: image107.wmf]p

’ is identical to with
[image: image108.wmf]p

i

on the states in T. Therefore, the property that we have proven before ensures us that
[image: image109.wmf]p

i

 EMBED Equation.3 [image: image110.wmf]f

 EMBED Equation.3 [image: image111.wmf]p

’. It contradicts the fact that

[image: image112.wmf]p

’
[image: image113.wmf]f

 EMBED Equation.3 [image: image114.wmf]p

p

i

j

f

.

The lemmas above only assure us that all subsets appear only one, but are not enough to give a better upper bound. Therefore, we will show that each modify on large subsets rules out many policies.

The paper define a special case of policy iteration greedy policy iteration, which is select(T) = T, choosing all possible single state action improvements.

The next lemma shows that at each iteration the algorithm rules out at least as |T|.

Lemma 5:

Let
[image: image115.wmf]p

be a policy and
[image: image116.wmf]p

’ = modify(
[image: image117.wmf]p

,
[image: image118.wmf]T

p

)Then there are at least |
[image: image119.wmf]T

p

| policies
[image: image120.wmf]p

i

such that
[image: image121.wmf]p

’
[image: image122.wmf]p

p

f

i

³

.

Proof

The proof is done by induction on |
[image: image123.wmf]T

p

|. For |
[image: image124.wmf]T

p

| = 1 the proof is given by theorem 1.

If we look at all single states improvement,
[image: image125.wmf]Z

j

 such that
[image: image126.wmf]Z

j

[image: image127.wmf]Í

 EMBED Equation.3 [image: image128.wmf]T

p

 and |
[image: image129.wmf]Z

j

| = 1.

 There is at least one
[image: image130.wmf]Z

j

, such that for every other
[image: image131.wmf]Z

i

 modify(
[image: image132.wmf]p

,
[image: image133.wmf]Z

j

) is not better than modify(
[image: image134.wmf]p

,
[image: image135.wmf]Z

i

) (
[image: image136.wmf]Z

j

 is not necessarily unique).

Let
[image: image137.wmf]U

1

 =
[image: image138.wmf]Z

1

 = {
[image: image139.wmf]a

s

1

1

,

}be such set and
[image: image140.wmf]p

1

= modify(
[image: image141.wmf]p

,
[image: image142.wmf]U

1

). We will show that any other
[image: image143.wmf]Z

i

 = {
[image: image144.wmf]a

s

i

i

,

}
[image: image145.wmf]T

p

1

Î

. Let
[image: image146.wmf]p

i

1

= modify(
[image: image147.wmf]p

1

,{
[image: image148.wmf]a

s

i

i

,

}). From Lemma 3, we know that either
[image: image149.wmf]p

i

1

 EMBED Equation.3 [image: image150.wmf]f

[image: image151.wmf]p

1

 or
[image: image152.wmf]p

i

1

 EMBED Equation.3 [image: image153.wmf]£

[image: image154.wmf]p

1

. We will prove that
[image: image155.wmf]p

i

1

 EMBED Equation.3 [image: image156.wmf]f

[image: image157.wmf]p

1

. For contradiction we assume that
[image: image158.wmf]p

i

1

 EMBED Equation.3 [image: image159.wmf]p

[image: image160.wmf]p

1

. Let
[image: image161.wmf]q

i

=modify(
[image: image162.wmf]p

,{
[image: image163.wmf]a

s

i

i

,

}). Since
[image: image164.wmf]q

i

 and
[image: image165.wmf]p

i

1

 differ in only one state by lemma 3, we know that either
[image: image166.wmf]q

i

 EMBED Equation.3 [image: image167.wmf]f

 EMBED Equation.3 [image: image168.wmf]p

i

1

 or
[image: image169.wmf]q

i

 EMBED Equation.3 [image: image170.wmf]£

 EMBED Equation.3 [image: image171.wmf]p

i

1

.

If
[image: image172.wmf]p

i

1

 EMBED Equation.3 [image: image173.wmf]£

 EMBED Equation.3 [image: image174.wmf]q

i

 then
[image: image175.wmf]p

1

 EMBED Equation.3 [image: image176.wmf]f

 EMBED Equation.3 [image: image177.wmf]p

i

1

 EMBED Equation.3 [image: image178.wmf]³

 EMBED Equation.3 [image: image179.wmf]q

i

. Thus, it contradicts the fact that
[image: image180.wmf]p

1

 is inferior to the others ingle state improvements. We proved that
[image: image181.wmf]q

i

 EMBED Equation.3 [image: image182.wmf]f

 EMBED Equation.3 [image: image183.wmf]p

i

1

 and therefore {
[image: image184.wmf]a

s

1

1

,

}
[image: image185.wmf]T

p

1

Î

 . Since our assumption is
[image: image186.wmf]p

i

1

 EMBED Equation.3 [image: image187.wmf]p

[image: image188.wmf]p

1

 so {
[image: image189.wmf]a

s

i

i

,

}
[image: image190.wmf]T

p

1

Î

. Therefore we have
[image: image191.wmf]p

=modify(
[image: image192.wmf]p

i

1

 ,{
[image: image193.wmf]a

s

1

1

,

},{
[image: image194.wmf]a

s

i

i

,

})
[image: image195.wmf]f

[image: image196.wmf]p

i

1

 contradicting the fact that
[image: image197.wmf]p

i

1

 EMBED Equation.3 [image: image198.wmf]f

 EMBED Equation.3 [image: image199.wmf]p

.

It implies that {
[image: image200.wmf]a

s

i

i

,

}
[image: image201.wmf]T

p

1

Î

, for i< 1. Thus, |
[image: image202.wmf]T

p

1

| = |
[image: image203.wmf]T

p

| - 1. The lemma follows from the induction hypothesis.

Combining it all together

Using both results for large states and small sets we can derive an upper bound of O(
[image: image204.wmf]n

n

2

). The proof will divide the sets to two small sets, sets whose size is less then n/3 and large sets. The small sets will be bound by the fact that a set could not be repeated. The number of large sets will be bounded by the fact that each set rules out least policies as its size thus both could be bounded by O (
[image: image205.wmf]n

n

2

).

A random Policy Iteration

To improve this upper bound the paper uses a different type of policy iteration, the random policy iteration. The random policy iteration chooses subset of T while each subset has probability of
[image: image206.wmf]2

|

|

T

-

. It will enable us to rule out
[image: image207.wmf]2

1

|

|

-

T

p

 instead of |
[image: image208.wmf]T

p

| (in the greedy policy iteration) at each iteration.

The proof of it is based on the fact that each new improved policy
[image: image209.wmf]p

,

 rules out not only those polices
[image: image210.wmf]p

such as
[image: image211.wmf]p

,

[image: image212.wmf]f

 EMBED Equation.3 [image: image213.wmf]p

, but also polices
[image: image214.wmf]p

such as
[image: image215.wmf]p

,

[image: image216.wmf]¹

 EMBED Equation.3 [image: image217.wmf]p

. Therefore, in each step many policies
[image: image218.wmf]p

,

i

 = modify(
[image: image219.wmf]p

i

,U’) will be disregarded in each step If the step choose
[image: image220.wmf]p

1

+

i

= modify(
[image: image221.wmf]p

i

,U) (U
[image: image222.wmf]¹

U’) and either
[image: image223.wmf]p

1

+

i

 EMBED Equation.3 [image: image224.wmf]¹

 EMBED Equation.3 [image: image225.wmf]p

,

i

 or
[image: image226.wmf]p

1

+

i

 EMBED Equation.3 [image: image227.wmf]f

 EMBED Equation.3 [image: image228.wmf]p

,

i

.

To estimate the nuber of the “disqualified” polices the next lemma is given

Lemma 7:

Let
[image: image229.wmf]f

be a partial order over
[image: image230.wmf]P

. If we chose a random element r
[image: image231.wmf]P

Î

, with uniform probability, then the expected number of element s
[image: image232.wmf]P

Î

, such that s
[image: image233.wmf]f

r, is at most
[image: image234.wmf]2

/

P

.

Proof

For any element v
[image: image235.wmf]P

Î

 we associate two sets.
[image: image236.wmf]P

+

v

includes all the elements s such that s
[image: image237.wmf]f

v and
[image: image238.wmf]P

-

v

includes all the elements s such that s
[image: image239.wmf]p

v. For every pair of elements
[image: image240.wmf]v

1

[image: image241.wmf]f

 EMBED Equation.3 [image: image242.wmf]v

2

we have that
[image: image243.wmf]v

2

 EMBED Equation.3 [image: image244.wmf]Î

 EMBED Equation.3 [image: image245.wmf]P

-

v

1

and
[image: image246.wmf]v

1

 EMBED Equation.3 [image: image247.wmf]Î

 EMBED Equation.3 [image: image248.wmf]P

+

v

2

. It implies that
[image: image249.wmf]å

P

P

Î

+

v

v

|

|

=
[image: image250.wmf]å

P

P

Î

-

v

v

|

|

 EMBED Equation.3 [image: image251.wmf]2

|

|

2

P

£

. Therefore, the expected value of
[image: image252.wmf]P

+

v

 is at most
[image: image253.wmf].

2

/

|

|

P

From this lemma we can have the following notation. Let
[image: image254.wmf]p

i

be the policy at iteration I, then the expected number of polices
[image: image255.wmf]p

,

 such that
[image: image256.wmf]p

,

 EMBED Equation.3 [image: image257.wmf]p

f

and either
[image: image258.wmf]p

1

+

i

 EMBED Equation.3 [image: image259.wmf]f

 EMBED Equation.3 [image: image260.wmf]p

’ or
[image: image261.wmf]p

1

+

i

 EMBED Equation.3 [image: image262.wmf]¹

 EMBED Equation.3 [image: image263.wmf]p

’ is at least
[image: image264.wmf]2

1

|

|

-

T

i

p

.

To achieve the final results the group are again (as in the greedy policy iteration) divide into two groups, the “small set” and the “large set”. This time it is npt n/3 but a more complicated number. Thus, the fact that each large set contribute noewm more than in the greedy policy iteration enable us to achiever a better upper bound O(
[image: image265.wmf]2

78

.

0

n

).

The paper gives us to better upper bounds the former known upper bound for two special policy iteration, one greedy and one randomized. One can see that the power of randomization has lead us into sub exponential algorithm.

A Sub exponential Randomized Algorithm For the Simple Stochastic Game Problem

Walter Ludwig

Information and Computation 117, 151 – 155 (1995)

Introduction

The paper presents here an algorithm, which addresses the problem of finding an optimal strategy for a stochastic game in sub – exponential time. First we define the problem. A stochastic game is a directed graph that has three types of vertices max, min and average along with to sink vertices. One vertex is the start vertex.

The game is a contest between two players. One is playing while the token is on the max vertices and one while the token is on the min vertices. On average vertex the move is determined by a toss of a fair coin. A move is taking an outgoing edge from a vertex.

A brief look at the algorithm will be given here and it will be analyzed precisely later.

The algorithm will work as follows it will choose a random edge in a strategy fix it and find an optimal policy that contains it. Thus by a recursion the algorithm will eventually yield the optimal policy. If it were done deterministically, it would be exhaustive search with back tracking thus taking O(
[image: image266.wmf]2

n

).

Definitions and Preliminary results:

The algorithm presents some preliminary results, which are necessary for this proof. It also presents the definitions of the stochastic game.

Definition 1:

A simple stochastic game is a directed graph G = (V,E) with three sets of vertices X,N and A (max, min and average) with two special vertices 0 –sink and 1 –sink.

Definition 2:

A strategy
[image: image267.wmf])

,....

,

(

2

1

s

s

s

s

n

=

 for player 1 is a bit vector where
[image: image268.wmf]s

i

 is the label of the edge going from vertex i. The strategy for player 0 is similar.

Let
[image: image269.wmf]G

t

s

,

be the graph defined by both strategies
[image: image270.wmf]t

s

,

(i.e. the graph only consists the edges chosen by
[image: image271.wmf]t

s

,

).

Definition 3:

The value of vertex i,
[image: image272.wmf])

(

,

i

V

t

s

is the winning probability of player 1 to win from vertex i.

Definition 4:

A max vertex i with outgoing edge (i,j) and (i,k) is stable with respect to strategies
[image: image273.wmf]t

s

,

 if

[image: image274.wmf])

(

,

i

V

t

s

 = max(
[image: image275.wmf])

(

,

j

V

t

s

,
[image: image276.wmf])

(

,

k

V

t

s

) (similarly for a min vertex).

Definition 5:

Let
[image: image277.wmf]t

s

,

 be pair of strategies for players 1 and 0. The strategy
[image: image278.wmf]s

 is said to be optimal with respect to
[image: image279.wmf]t

if every min vertex is stable with respect to
[image: image280.wmf]t

s

,

Lemma 1(Derman):

Let H be a simple stochastic game with no max vertices that halts with probability 1. Then an optimal strategy for player 0 (with respect to trivial player1 strategy) can be found by linear programming, which is polynomial in the number of the vertices.

Definition 6:

Let
[image: image281.wmf]t

s

,

be pair of strategies. These strategies are said to be optimal if each one of them is optimal in respect to the other one.

Lemma 3:

Given a simple stochastic game G, we can construct a new game G’ in time polynomial in the size of G such that G’ has the same number of min and max vertices as G, the value of G’ is greater than ½ if and only if the value of G is greater than ½, and G’ halts with probability 1.

Definition 8:

Define the function
[image: image282.wmf])

(

s

h

=
[image: image283.wmf]å

=

n

i

i

V

1

)

(

,

)

(

s

t

s

.

We define a switch to be changing the strategy of player one in a single vertex.

A switch is profitable for player 1 if
[image: image284.wmf])

(

s

h

 >
[image: image285.wmf])

'

(

s

h

(Lemmas that concern our definition of optimal polices)

Lemma 4:

Let G=(V,E) be a simple stochastic game that halts with probability one, and let
[image: image286.wmf]s

be a strategy for player1 that is not optimal. Let i
[image: image287.wmf]Î

X be vertex that is unstable with respect to
[image: image288.wmf]s

,
[image: image289.wmf])

(

s

t

. Let
[image: image290.wmf]s

’ be the strategy that si obtained from
[image: image291.wmf]s

 by changing the startrey at vertex I, Then fro all j
[image: image292.wmf]Î

V,
[image: image293.wmf])

(

)

'

(

,

'

j

V

s

t

s

 EMBED Equation.3 [image: image294.wmf]³

 EMBED Equation.3 [image: image295.wmf])

(

)

(

,

j

V

s

t

s

, and for some j
[image: image296.wmf]Î

V
[image: image297.wmf])

(

)

'

(

,

'

j

V

s

t

s

>
[image: image298.wmf])

(

)

(

,

j

V

s

t

s

.

The Algorithm:

The input of the algorithm is a graph G = (V, E) that halts with probability 1 and some strategy
[image: image299.wmf]s

for player 1.

The output is pair of optimal strategies
[image: image300.wmf]t

s

,

 for both players.

1. Choose uniformly at random a vertex s
[image: image301.wmf]Î

X (max vertex).

2. Construct a new graph
[image: image302.wmf]G

~

 EMBED Equation.3 [image: image303.wmf])

,

(

~

~

E

V

=

 as follows:

Set

[image: image304.wmf]}.

{

~

s

V

V

-

=

[image: image305.wmf])

)

,

{(

~

E

k

j

E

E

Î

-

=

|| j =s or k =s})
[image: image306.wmf]È

{(j,k)|(j,s)
[image: image307.wmf]Î

 and l(s,k) =
[image: image308.wmf]s

s

}.

(deleting the vertex that we choose from the graph)

3.Recursievely apply the algorithm to the game
[image: image309.wmf]G

~

 and the player1 strategy
[image: image310.wmf])

...

,

,.,

,

(

1

1

2

1

s

s

s

s

s

s

n

s

s

+

-

=

to find an optimal strategy
[image: image311.wmf]s

~

’ fro player 1 for the game
[image: image312.wmf]G

~

. Extend
[image: image313.wmf]s

~

’ to a strategy
[image: image314.wmf]s

’ for G by setting
[image: image315.wmf]s

,

s

 =
[image: image316.wmf]s

~,

s

4.Find an optimal strategy
[image: image317.wmf]t

,

 fro player 0 with respect to
[image: image318.wmf]s

’. If the pair
[image: image319.wmf]s

’ ,
[image: image320.wmf]t

,

 is optimal return
[image: image321.wmf]s

’,
[image: image322.wmf]t

,

. Otherwise set
[image: image323.wmf]s

,

k

 =
[image: image324.wmf]s

~,

k

 for k different than s and for s

[image: image325.wmf]s

,

s

 = 1 -
[image: image326.wmf]s

~,

s

, and go back to step 1.

Algorithm Analysis

The proof of the validity of the algorithm is given by proving that every switch that the algorithm makes is profitable. The proof is done by induction on d (the number of max vertices). If d =1, then at most one switch is required moving from strategy that is not optimal to the strategy that is. If d > 1 and the strategy in the top level of the algorithm is
[image: image327.wmf]s

. By the induction hypothesis after choosing s,
[image: image328.wmf]s

’ is reached by some sequence of profitable switches, and it is the best strategy for player 1 that agrees with
[image: image329.wmf]s

 in vertex s. Therefore, all the vertices except s is stable, and if
[image: image330.wmf]s

’ is not optimal then vertex s is unstable. By lemma 4, changing the strategy at s is a profitable switch. Thus, proving that every switch the algorithm makes is profitable.

Therefore we have an upper bound of
[image: image331.wmf]2

d

 -1 switches, since no strategy can be repeated.

Analysis of the complexity of the algorithm

Theorem 1:
[image: image332.wmf]
The expected number of operations required by the algorithm is
[image: image333.wmf])

(

*

2

)

)

|,

min(|

(

n

POLY

n

X

o

.

Proof:

At the bottom level of recursion, the strategy
[image: image334.wmf]t

 for player 0 in step 4 is found by solving a linear program of size polynomial in n, as given by lemma 1. At higher levels
[image: image335.wmf]p

 can easily be constructed from the player 0 strategy returned by the recursive call in step 3. Therefore, only one such linear program is solved for each switch the algorithm makes. Thus the total number operations required per switch are polynomial in n. The following lemmas will give us the part of
[image: image336.wmf]2

)

)

|,

min(|

(

n

X

o

Lemma:

Let
[image: image337.wmf])

(

d

f

denote the expected number of switches required by the algorithm to find a pair of optimal strategies then

[image: image338.wmf]1

)

(

/

1

1

(

)

(

1

1

+

+

-

£

å

-

=

d

i

i

f

d

d

f

d

f

for d > 1

[image: image339.wmf]1

)

1

(

£

f

 for d =1

Proof.

Let
[image: image340.wmf]s

0

 be the initial strategy for player 1. Let
[image: image341.wmf]}

|

)

(

{

0

max

s

s

s

s

i

i

i

h

h

=

=

.

Let
[image: image342.wmf]}

,...,

{

1

i

i

d

 be a permutation of 1..d such that `
[image: image343.wmf]h

h

h

id

i

i

³

³

³

...

2

1

.

Now suppose that the algorithm choose at step 1 a vertex
[image: image344.wmf]i

r

. Then by solving the sub problem it will achieve the best strategy
[image: image345.wmf]s

’ satisfying h(
[image: image346.wmf]s

’) =
[image: image347.wmf]h

ir

 ..

Then since every switch the algorithm makes is profitable, it can no longer \make w\switch to a strategy that agrees with
[image: image348.wmf]s

0

 at vertex
[image: image349.wmf]i

j

for j > r. Therefore, the strategy for each vertex
[image: image350.wmf]i

j

 j > r is now fixed and after the last switch, which fixed the strategy in
[image: image351.wmf]i

r

 it is also fixed in
[image: image352.wmf]i

r

. Therefore, after one top level iteration requiring an expected number of switches not exceeding f(d-1) + 1. Since every index is equally likely we will have :

[image: image353.wmf]1

)

(

/

1

1

(

)

(

1

1

+

+

-

£

å

-

=

d

i

i

f

d

d

f

d

f

for d > 1

Lemma 2:

[image: image354.wmf]e

d

d

f

1

2

)

(

-

£

 for all d > 0.

The lemma is obtained by using the formula that we have found in the theorem therefore I will not give the detailed proof.

The second lemma ensures us directly the desired result.

My attempts

I have tried to improve the upper bound by few methods. The first try was to consider a different type of policy iteration, recursive policy iteration. A recursive policy iteration find the best subset U
[image: image355.wmf]T

p

Ì

 by recursive calls to policy iteration on the induced MDP which keeps the states outside of
[image: image356.wmf]T

p

fixed .If a big step in the recursive policy iteration was cheap enough it would have been better than the randomized policy iteration because in each step
[image: image357.wmf]2

|

|

T

i

p

 polices would disregarded. I have arrived to the following formula A(n,
[image: image358.wmf]2

n

) = A(k,
[image: image359.wmf]2

k

) + A(n,
[image: image360.wmf]2

n

-
[image: image361.wmf]2

k

)

The formula is satisfied by the trivial result of A(*,k) = k. I have not found a better solution to this formula. The second paper was supposed to help us in finding ways of having a smart recursion unfortunately it was useless in this recursion.

Another try was to exploit better the small sets in the randomized policy iteration. For instance, each set of one state fix one state (by lemma 4) and therefore the first one will rule out
[image: image362.wmf]2

1

-

n

. The problem with this kind of elimination that it begins with very big elimination but in few steps the amount of new steps that we rule out are becoming very small. On e should also notice that theoretically all set could be walked on (at least almost) if we start from the large sets and after covering all the sets that contain a smaller state this state is chosen (i.e 123456789, 123456780 and only then 12345678)

Summary

Since, there is no known upper bound worse than n, it can be expected that one can find an upper bound better than exponential. Unfortunately, I did not manage to do this. The similarity between the problem of MDP and a stochastic game is very big, although they are not the same problem. The main purpose of the second algorithm that it may give us an enlightening view of a recursion and how by a simple randomization we can reduce a factor in finding the best strategy, which might be also used in finding the best strategy. Although the randomization in the other paper has also given us a sub-exponential algorithm but inferior.

_1016098920.unknown

_1016103411.unknown

_1016103614.unknown

_1016212824.unknown

_1016214364.unknown

_1016216483.unknown

_1016219930.unknown

_1016632393.unknown

_1016634852.unknown

_1016636206.unknown

_1016636540.unknown

_1016652967.unknown

_1016697925.unknown

_1016699161.unknown

_1016699216.unknown

_1016699223.unknown

_1016699182.unknown

_1016699114.unknown

_1016697696.unknown

_1016697923.unknown

_1016697816.unknown

_1016697922.unknown

_1016697756.unknown

_1016697655.unknown

_1016653546.unknown

_1016637162.unknown

_1016652900.unknown

_1016652538.unknown

_1016637138.unknown

_1016636278.unknown

_1016636295.unknown

_1016636314.unknown

_1016636286.unknown

_1016636247.unknown

_1016636260.unknown

_1016636229.unknown

_1016635372.unknown

_1016635496.unknown

_1016636015.unknown

_1016635395.unknown

_1016635028.unknown

_1016635082.unknown

_1016634880.unknown

_1016634256.unknown

_1016634420.unknown

_1016634435.unknown

_1016634816.unknown

_1016634387.unknown

_1016634356.unknown

_1016633082.unknown

_1016634070.unknown

_1016634223.unknown

_1016634046.unknown

_1016633832.unknown

_1016633860.unknown

_1016632918.unknown

_1016633018.unknown

_1016632445.unknown

_1016632893.unknown

_1016632516.unknown

_1016632431.unknown

_1016621643.unknown

_1016632378.unknown

_1016632386.unknown

_1016626575.unknown

_1016632109.unknown

_1016632351.unknown

_1016621709.unknown

_1016221332.unknown

_1016221445.unknown

_1016220291.unknown

_1016216564.unknown

_1016216993.unknown

_1016219726.unknown

_1016219783.unknown

_1016219548.unknown

_1016219665.unknown

_1016217748.unknown

_1016216623.unknown

_1016216670.unknown

_1016216516.unknown

_1016216545.unknown

_1016216157.unknown

_1016216463.unknown

_1016216085.unknown

_1016214412.unknown

_1016213566.unknown

_1016214054.unknown

_1016214318.unknown

_1016214359.unknown

_1016214312.unknown

_1016214121.unknown

_1016213774.unknown

_1016213821.unknown

_1016212870.unknown

_1016212955.unknown

_1016212568.unknown

_1016212581.unknown

_1016212651.unknown

_1016212535.unknown

_1016212543.unknown

_1016212515.unknown

_1016103442.unknown

_1016103526.unknown

_1016103425.unknown

_1016099590.unknown

_1016099651.unknown

_1016099664.unknown

_1016099615.unknown

_1016099428.unknown

_1016099493.unknown

_1016099025.unknown

_1016048058.unknown

_1016097520.unknown

_1016097557.unknown

_1016098885.unknown

_1016097546.unknown

_1016095517.unknown

_1016096622.unknown

_1016048306.unknown

_1016093882.unknown

_1016094660.unknown

_1016094673.unknown

_1016094606.unknown

_1016093881.unknown

_1016091996.unknown

_1016093880.unknown

_1016048137.unknown

_1016014252.unknown

_1016045042.unknown

_1016046331.unknown

_1016047816.unknown

_1016048016.unknown

_1016047449.unknown

_1016046279.unknown

_1016046310.unknown

_1016046192.unknown

_1016046265.unknown

_1016021133.unknown

_1016044723.unknown

_1016044887.unknown

_1016045016.unknown

_1016044335.unknown

_1016044441.unknown

_1016044481.unknown

_1016044390.unknown

_1016021285.unknown

_1016043812.unknown

_1016022327.unknown

_1016021170.unknown

_1016017715.unknown

_1016019310.unknown

_1016019408.unknown

_1016019525.unknown

_1016019609.unknown

_1016018929.unknown

_1016018940.unknown

_1016018991.unknown

_1016017884.unknown

_1016017805.unknown

_1016015744.unknown

_1016016765.unknown

_1016014400.unknown

_1015690626.unknown

_1015795955.unknown

_1015796179.unknown

_1015796560.unknown

_1015796667.unknown

_1015796765.unknown

_1016014214.unknown

_1015796775.unknown

_1015796700.unknown

_1015796716.unknown

_1015796633.unknown

_1015796411.unknown

_1015796516.unknown

_1015796542.unknown

_1015796443.unknown

_1015796337.unknown

_1015796125.unknown

_1015796153.unknown

_1015796002.unknown

_1015690787.unknown

_1015795881.unknown

_1015795746.unknown

_1015795812.unknown

_1015690752.unknown

_1015530234.unknown

_1015690559.unknown

_1015690619.unknown

_1015530365.unknown

_1015530258.unknown

_1015530072.unknown

_1015530207.unknown

_1015530015.unknown

