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Abstract

We establish global convergence results for stochastic fictitious play
for four classes of games:  games with an interior ESS, zero sum games,
potential games, and supermodular games.  We do so by appealing to
techniques from stochastic approximation theory, which relate the
limit behavior of a stochastic process to the limit behavior of a
differential equation defined by the expected motion of the process.
The key result in our analysis of supermodular games is that the
relevant differential equation defines a strongly monotone dynamical
system.  Our analyses of the other cases combine Lyapunov function
arguments with a discrete choice theory result:  that the choice
probabilities generated by any additive random utility model can be
derived from a deterministic model based on payoff perturbations that
depend nonlinearly on the vector of choice probabilities.
 Keywords:  learning in games, stochastic fictitious play,
supermodular games, discrete choice theory, chain recurrence,
stochastic approximation theory
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1.  INTRODUCTION

Of the many existing models of learning and evolution in games, the oldest and best
known is fictitious play, introduced by Brown (1951).  In fictitious play, each player
chooses best responses to his beliefs about his opponents, which are given by the
time average of past play.  Convergence of beliefs to Nash equilibrium has been
established for two player zero sum games (Robinson (1951)), 2 x 2 games (Miyasawa
(1961)), potential games (Monderer and Shapley (1996a)), games with an interior ESS
(Hofbauer (1995b)), and certain classes of supermodular games (Milgrom and
Roberts (1991), Krishna (1992), Hahn (1999)).
   Since best responses are generically pure, a player's choices under fictitious play
are quite sensitive to the exact value of his beliefs; small changes in beliefs can lead
to discrete changes in behavior.  Even when beliefs converge to Nash equilibrium,
actual behavior may not; in particular, behavior can never converge to the mixed
equilibrium of a game.  For these reasons, the appropriateness of fictitious play as a
model of learning has been called into question.
 To contend with these issues, Fudenberg and Kreps (1993) introduced stochastic

fictitious play.  In this model, each player's payoffs are perturbed in each period by
random shocks a la Harsanyi (1973a).  As a consequence, each player's anticipated
behavior in each period is a genuine mixed strategy.  Fudenberg and Kreps (1993),
Kaniovski and Young (1995), and Benaïm and Hirsch (1999a) are therefore able to
extend Miyasawa's (1961) result for 2 x 2 games to stochastic fictitious play, proving
not only convergence of beliefs to equilibrium, but also convergence of behavior.
Benaïm and Hirsch (1999a) also establish convergence in certain p player, two
strategy games.  However, because of the complications created by the random payoff
perturbations, results for other classes of games have proved difficult to obtain.  In
particular, nothing is known about convergence in games with more than two
strategies per player.

In this paper, we establish convergence results for stochastic fictitious play for the
remaining classes of games noted above in which standard fictitious play is known
to converge:  namely, games with an interior ESS, zero sum games, potential games,
and supermodular games.
 Our results should not be interpreted as suggesting that stochastic fictitious play
converges in all games.  Indeed, Benaïm and Hirsch (1999a) show that stochastic
fictitious play fails to converge to equilibrium in Jordan's (1993) three player
matching pennies game.  Shapley (1964) and Gaunersdorfer and Hofbauer (1995)
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provide examples in which versions of standard fictitious play fail to converge, and
it is clear that stochastic fictitious play can fail to converge in these examples as well.
Nevertheless, the classes of games we consider are of economic interest, and for
these games we can obtain global convergence results.
 To establish these results, we rely on techniques from stochastic approximation
theory (see, e.g., Benaïm (1999)).  These techniques show that one can characterize
the limit behavior of stochastic fictitious play in terms of the perturbed best response

dynamic, a differential equation defined by the expected motion of the stochastic
process.  More precisely, all limit points of stochastic fictitious play must be
contained in the chain recurrent set (Conley (1978)) of the perturbed best response
dynamic.  The chain recurrent set contains those states which can arise in the long
run if the deterministic dynamic is subjected to small shocks occurring at isolated
moments in time.
 The perturbed best response dynamic is defined in terms of perturbed best

response functions.  These functions are perturbed versions of the underlying best
response correspondences; the differences between the two are due to the random
payoff disturbances.  To understand behavior under the perturbed dynamic, we
must characterize these functions.
 In the case of supermodular games, we are able to show that the perturbed best
response functions are monotone, where monotonicity is defined in terms of a
stochastic dominance order on mixed strategies.  This property enables us to show
that the perturbed best response dynamic defines a strongly monotone dynamical
system (Hirsch (1988)), which in turn allows us to describe the chain recurrent set.
In particular, strong monotonicity implies that almost all solution trajectories of the
perturbed dynamic converge to rest points, which themselves can be viewed as
approximate Nash equilibria of the underlying game.  Unlike the analyses
mentioned above for settings without perturbations, our analysis provides general
convergence results for supermodular games without appealing to assumptions
beyond supermodularity.
 The perturbed best response function can be expressed as the composition of a
map from mixed strategy profiles to payoffs, and a map from payoffs to choice
probabilities.  The latter map is actually the standard choice probability function
from the additive random utility model of discrete choice theory (see, e.g.,
McFadden (1981) or Anderson, de Palma, and Thisse (1992)).  To analyze the
remaining three classes of games, we prove a characterization theorem for this
discrete choice model.
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  In the additive random utility model, an agent chooses from a set of n

alternatives.  The payoff to each alternative is the sum of a base utility and a random
utility term; the probability with which an alternative is chosen is the probability
that its overall utility is highest.  We show that these choice probabilities can be
derived from an alternative model in which the agent optimally chooses a
probability distribution over the n  alternatives; his overall payoff in this model is
the sum of the expected base payoff and some nonlinear, deterministic function of
the probability vector he selects.1  By combining known results with an analysis
based on Legendre transforms, we construct a deterministic representation of the
random utility model which is valid regardless of the distribution of the random
utility terms.
 In the context of learning in games, this result is of interest because it allows us
to express perturbed best response dynamics in terms of deterministic payoff
perturbations. Hofbauer (2000) and Hofbauer and Hopkins (2000) have recently
shown that these deterministically perturbed dynamics are susceptible to analysis
via Lyapunov functions.  By combining such an analysis with our discrete choice
result, we are able to characterize the chain recurrent set of the stochastically
perturbed best response dynamic in the remaining three classes of games.
 Since the discrete choice theorem described above may be of interest outside
game theory, we begin our analysis by presenting this result without reference to
game theoretic concepts.  Such concepts are introduced in Section 3, which defines
stochastic fictitious play and derives the perturbed best response dynamic.  Section 4
shows how the discrete choice result can be used to find Lyapunov functions for the
perturbed best response dynamic in games with an interior ESS, zero sum games,
and potential games, and uses these functions to characterize the chain recurrent set.
Section 5 characterizes this set for supermodular games by showing that the
perturbed dynamics form a strongly monotone dynamical system.  Finally, Section 6
combines the analyses from the previous two sections with techniques from
stochastic approximation theory to prove global convergence results for stochastic
fictitious play.  Proofs omitted from the text are provided in the Appendix.

                                                
1  This dual description of choice probabilities is well known in the case of logit choice model – see
Section 2.
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2.  A DISCRETE CHOICE THEOREM

 We consider the standard additive random utility model as described, for
example, by Anderson, de Palma, and Thisse (1992).  In this model, an agent must
choose from a set of alternatives A = {1, … , n} offering base payoffs of π1, … , πn.  But
when choosing alternative i, the agent also obtains a stochastic payoff of εi.  The
random vector ε = (ε1, … , εn) takes values in     R

n  according to some strictly positive
density f:     R

n→ R; the distribution of ε does not depend on the base payoffs π.  When
the stochastic terms are realized, the agent chooses the alternative whose total payoff
is highest.  Hence, the probability that the agent chooses alternative i is given by the
choice probability function

(1) Ci(π) = P(argmaxj πj + εj = i).

 The best known example of a choice probability function which can be generated
from a random utility model is the logit choice function,

 Li(π) = 

    

exp( )
exp( )

η π
η π

−

−∑
1

1
i

j
j

.

We call the parameter η ∈  (0, ∞) the noise level .  When η approaches zero, logit
choice approaches unperturbed maximization; when η approaches infinity, it
approaches uniform randomization.  It is well known that the logit choice function
is generated by a random utility model whose random utility terms εi are i.i.d. with
the extreme value distribution F(x) = exp(–exp(–  η

−1x – γ)), where γ is Euler's
constant.
 Interestingly, the logit choice function can also be derived using a quite different
model of payoff perturbations.  Consider an agent who directly chooses a probability
distribution y ∈  ∆A  = {x ∈      R+

n :  
  

xjj∑  = 1} over the elements in A.  If the agent

chooses distribution y, he obtains an expected base payoff of y · π, but must pay a cost
of V(y), where V  is a nonlinear, deterministic function of the probability vector he
chooses.  Suppose that the agent always chooses the vector y which maximizes the
combined payoff y · π – V(y).  It is well known (Rockafellar (1970), Anderson, de
Palma, and Thisse (1992), Fudenberg and Levine (1998)) and easily verified that if the
function V is the entropy function V(y) = 

    
η y yj jj

ln∑ , then this maximization yields

the choice probabilities from the logit choice function L.
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 The main result of this section, Theorem 2.1, shows that a deterministic
representation can be obtained for choice probabilities from the additive random
utility model regardless of the distribution of the random utility vector ε.  To state
our result, we introduce one additional definition:  following Fudenberg and Levine
(1998), we call the deterministic perturbation V: int(∆A) → R admissible if for all y,

    D
2V(y) is positive definite on       R0

n  = {z ∈      R
n :  

  
zjj∑  = 0}, the tangent space of ∆A, and

if     ∇V y( )  approaches infinity as y approaches the boundary of ∆A.

Theorem 2.1:  Let C:     R
n  →  ∆A be the choice probability function defined in equation

(1), where the random vector ε admits a strictly positive density on     R
n  and is such

that the function C is continuously differentiable.  Then there exists an admissible

deterministic perturbation V such that

(2) C(π) = 
    
arg max ( )

int( )y A
y V y

∈
⋅ −( )

∆
π .

The proof of this result proceeds as follows.  First, we establish that the
derivative matrix DC is symmetric and has negative off-diagonal terms. These
properties of DC imply that the vector field C admits a convex potential function,
which we call W .2  We show that the required disturbance function V  can be
obtained as the Legendre transform of W .  This choice of V  ensures that the
functions     ( )∇ −V 1  and   ∇W  ≡ C are identical (in a sense to be made precise below), so
that C satisfies the first order conditions for the maximization problem (2).

 Proof:  The probability that alternative i is chosen when the payoff vector is π  is
given by

(3) Ci(π) = P(πi + εi ≥ maxj(πj + εj))
= P(εj ≤ πi + εi – πj for all j)

 = 
    −∞

+ −

−∞

∞

−∞

+ −

−∞

+ −

+ −
−∞

+ −

∫∫ ∫ ∫ ∫
− +π π π π π π π πi i i i i i i i i i nx x x

n i i i

x

f x dx dx dx dx dx
1 1 1

1 1 1... ... ( ) ... ... .

If we consider another alternative j > i and perform the change of variable     ̂xj  = πi +

                                                
2 These facts are well known.  Indeed, the potential function W  is known to describe the expected
perturbed payoff resulting from an optimal choice among the n alternatives – see McFadden (1981) or
Anderson, de Palma, and Thisse (1992).  However, the remainder of our argument appears to be new.



–6–

xi – πj, we find that

 (4)
  

∂
∂π

Ci

j

(π) = –
    −∞

+ −

−∞

∞

−∞

+ −

−∞

+ −

−∞

+ −

−∞

+ −

−∞

+ −

∫∫ ∫ ∫ ∫ ∫ ∫
− + − +π π π π π π π π π π π πi i i i i i i i i i j i i j i i nx x x x x x1 1 1 1 1

... ... ...

         f x x x x x dx dx dx dx dx dx dxj i i j j n n j j i i i( ,..., , , ,..., ) ... ... ...1 1 1 1 1 1 1 1− + + − + −+ −π π

   = –
    −∞

+ −

−∞

∞

−∞

+ −

−∞

+ −

−∞

+ −

−∞

+ −

−∞

+ −

∫∫ ∫ ∫ ∫ ∫ ∫
− + − +π π π π π π π π π π π πj j j j i j j i j j j j j j j j nx x x x x xˆ ˆ ˆ ˆ ˆ ˆ

... ... ...
1 1 1 1 1

         f x x x x x dx dx dx dx dx dx dxi j j i i n n j j i i j( ,..., , ˆ , ,..., ) ... ... ... ˆ1 1 1 1 1 1 1 1− + + − + −+ −π π

  = 
  

∂
∂π

Cj

i

(π).

This equality shows that the derivative matrix DC(π) ∈      R
n n×  is symmetric.

Moreover, DC(π) is positive definite on       R0
n .  To see this, note that by equation (4),

the off-diagonal terms of DC(π) are strictly negative.  Since 
    

Cjj
( )π∑  = 1 by definition,

it follows that 
    

∂
∂ π πC

j

j

i
( )∑  = 0 for each i, and so that

(5)  
  

∂
∂π

Ci

i

(π) = 
    
−

≠
∑

∂
∂π

π
Cj

ij i

( ).

Hence, equations (4) and (5) imply that DC(π) 1 = 0, where 1 ∈      R
n  denotes the vector

of ones.  Moreover, if z is not proportional to 1, then if we let dij = 
    
∂
∂ π πCi

j
( ) , equations

(5) and (4) imply that

(6) z · DC(π) z = 
  

d z zij i j
ji

∑∑  = 
  

d z zij i j
i jj ≠
∑∑  – 

    
( )d zij j

i jj

2

≠
∑∑  = 

    
d z z zij i j j

i jj

( )−
≠
∑∑ 2

  = 
    

d z z z zij i j i j
i jj

( )2 2 2− −
<
∑∑  = 

    
− −

<
∑∑ d z zij i j
i jj

( )2  > 0.

These observations imply that C is one-to-one on       R0
n  and satisfies C(π + c1) = C(π) for

all c ∈  R:  shifting payoffs by a constant vector does not affect choice probabilities.
Finally, we make an observation about the range of the function C:  if

components πj, j ∈  J ⊂ A  stay bounded while the remaining components approach
infinity, then Cj(π) → 0 for all j ∈  J:  that is, C(π) converges to a subface of the simplex
∆A.  It follows that there are points in the range of C arbitrarily close to each corner
of the simplex.
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Since the derivative matrix DC(π) is symmetric, the vector field C admits a
potential function W:     R

n  → R (that is, a function which satisfies   ∇W  ≡ C).  Equation

(6) implies that W is strictly convex on       R0
n .

Now consider the restrictions of W  and C ≡   ∇W  to       R0
n , and let V: int(∆A) → R

denote the Legendre transform of W:

(7) V(y) = y·    C
−1(y) – W(    C

−1(y)).

Since W :       R0
n  → R is strictly convex and C:       R0

n  → int(∆A) takes values at points

arbitrarily close to each corner of the simplex, Theorem 26.5 of Rockafellar (1970)
implies that the following statements are true.  First, the domain of V  is convex and
equals the range of C, which therefore must be all of int(∆A).  Second, V  and W

solve the dual optimization problems

(8) V(y) = 
      
max ( )
π

π π
∈

⋅ −( )
R 0

n
y W  and

(9) W(π) = 
    

max ( )
int( )y A

y V y
∈

⋅ −( )
∆

π .

Third,   ∇V : int(∆A) →       R0
n  is invertible, with     ( )∇ −V 1  ≡   ∇W  ≡ C  on       R0

n .3

  We conclude by establishing the required properties of V.  First, since     ( )∇ −V 1  ≡ C,
the observation three paragraphs above shows that     ∇V y( )  approaches infinity as y

approaches the boundary of ∆A.  Furthermore, since C(  ∇V (y)) = y, differentiating
yields DC(  ∇V (y))     D

2V(y) = I, where all expressions are interpreted as linear
operators on       R0

n .  Since DC(  ∇V (y)) is symmetric and positive definite on       R0
n  and

inverts     D
2V(y) on       R0

n , it follows that     D
2V(y) is also positive definite on       R0

n .

  Finally, solving for the maximizer

 y* = 
    
arg max ( )

int( )y A
y V y

∈
⋅ −( )

∆
π ,

we find that π =   ∇V (y*), and hence that y* = C(π).  This completes the proof of the
theorem.  ■

                                                
3  Since the domain of V is int(∆A), the partial derivatives of V are not well defined.  Consequently,

  ∇V (y) is defined to be the unique vector in       R0
n  such that V(y +hz) = V(y) + (  ∇V (y)·z)h  + o(h) for a l l

unit length vectors z in       R0
n .
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 The requirement that the function C be continuously differentiable is essentially
a smoothness requirement on the distribution of the random vector ε.  For example,
if the components of ε are independent, standard results on convolutions imply that
C is continuously differentiable as long as each component of ε admits a bounded
density function.

It is natural to ask whether the converse of Theorem 2.1 also holds:  that is,
whether the choice function derived from any admissible deterministic
perturbation can be derived from an appropriate stochastic perturbation.
Proposition 2.2, which considers a logarithmic perturbation studied by Harsanyi
(1973b), shows that such a reconstruction is not always possible.

Proposition 2.2:  When n ≥ 4, there is no stochastic perturbation of payoffs w h i c h

yields the same choice probabilities as the admissible deterministic perturbation V(y)
= –

    
ln yjj∑ .

 More generally, we have the following characterizations of the two types of
choice functions.  The Legendre transform argument in the proof of Theorem 2.1
shows that a surjective choice function C:     R

n  → int(∆A) can be derived from an
admissible deterministic payoff perturbation V  if and only if DC(π) is symmetric,
positive definite on       R0

n , and satisfies DC(π) 1 = 0.  On the other hand, the Williams-

Daly-Zachary Theorem of McFadden (1981) implies that the choice functions C

which can be derived from some stochastic payoff perturbation ε with a strictly
positive density on     R

n  are characterized by these requirements, plus the additional
requirement that the partial derivatives of C satisfy

 
    
(– )

...
1 0

1

k
k

i

i i

C

k

∂
∂π ∂π

 > 0

for each k = 1, … , n – 1 and each set of k + 1 distinct indices {i0, i1, … , ik}.
 In order to model boundedly rational choice in a simple fashion, Chen,
Friedman, and Thisse (1997) consider choice functions of the form

(10) Ci(π) = 

    

w
w

i

j
j

( )
( )
π

π∑
,
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where the weighting function w: R → (0, ∞) is some increasing and differentiable
function of payoffs.  We conclude this section by noting that the only choice
function of this form which can be derived from either stochastic or deterministic
perturbations of payoffs is the logit choice function L.

Proposition 2.3:  Suppose that the choice function C satisfies condition (10) a n d

either condition (1) or condition (2).  Then C  ≡ L  for some noise level η  > 0.

3. STOCHASTIC FICTITIOUS PLAY AND PERTURBED BEST RESPONSE DYNAMICS

3.1  Preliminaries

 In this section, we define the process of stochastic fictitious play that is our
central interest in this paper.  Before doing so, we introduce notation to describe
normal form games.  A p player normal form game G is defined by a collection of
finite strategy sets     S

1, … ,   S
p  and a collection of utility functions     u

1 , … ,   u
p.  Player α 's

strategy set is   S
α  = {1, … ,   n

α }, with typical elements   s
α , i, and j.  Player α 's utility

function   u
α  is a map from the set of strategy profiles S = 

  
Sβ

β∏  to the real line.

Finally,   S
−α  = 

  
Sβ

β α≠∏  denotes the set of strategy profiles of player α 's opponents.

It will prove useful to define vector-valued functions which describe the payoffs
to each of a player's pure strategies given the mixed strategies chosen by his
opponents.  Let ∆  S

α  = {  x
α  ∈      R+

nα

:   xii

α∑  = 1} denote the set of player α 's mixed

strategies.  Also, let Σ = 
  

∆Sβ
β∏ , with typical element x = (    x

1 , … ,   x
p), denote the set

of mixed strategy profiles, and let Σ −α  = 
  

∆Sβ
β α≠∏ .  Then player α 's payoff vector is

denoted   U
α : Σ −α  →     R

nα

, and is defined by

   Usα
α (  x

−α ) = 
    

u s s x
s

s S

α α α β

β α
β

α α

( , )−

≠∈
∏∑






− −

.

 Using this definition, we can define player α 's best response correspondence   B
α :

Σ −α  ⇒    ∆Sα  by

   B
α (  x

−α ) = 
    
arg max ( )

y S

y U x
∈

−⋅
∆ α

α α .
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If we let the random vector εα  represent a random perturbation of player α 's
payoffs, and let   C

α  denote the corresponding choice probability function, we can
define player α 's perturbed best response function     ̃B

α : Σ −α  →   ∆Sα  by

     B̃i
α (  x

−α ) = P(argmaxj   Uj
α (  x

−α ) +   ε
α
j  = i) =     C U xi

α α α( ( ))− .

When the random utility terms are "small", the continuous function     ̃B
α  is a

perturbed version of the discontinuous correspondence   B
α .

3.2  Stochastic Fictitious Play

 In unperturbed fictitious play, each player chooses a best response to his beliefs
about how his opponents will behave; these beliefs are determined by the time
average of past play.  In stochastic fictitious play, players make these choices after
their payoffs are subjected to random shocks.  
 In standard stochastic fictitious play, a group of p ≥ 2 players repeatedly plays a p
player normal form game.  The state variable is Zt ∈  Σ, whose components   Zt

α

describe the time averages of each player's past behavior.4  Formally,

(11)   Zt
α  = 

    
1

1
t u

u

t

ζ α

=
∑ ,

where   ζ
α
t  ∈    ∆Sα  represents the pure strategy played by player α at time t.  The initial

choices   ζ
α
1  are arbitrary pure strategies, while subsequent choices are best responses

to beliefs Zt.  Best responses are determined after payoffs have been subjected to
disturbances   ε

α
t  which are independent over time t and across players α.  Player α 's

disturbance vectors are distributed according to a fixed density function   f
α :     R

nα

 → R

which satisfies the conditions of Theorem 2.1.  Since the mixed strategy
representation of player α 's pure strategy i ∈    S

α  is the standard basis vector ei ∈    ∆Sα

⊂     R
nα

, player α 's choice probabilities are described by

(12)     P e Z zt i tζ α
+ = =( )1  = P(argmaxk     U zk

α α( )−  +     ( )εα
t k  = i) =     B̃i

α (  z
−α ).

                                                
4  This specification is based on the idea that players assess the behavior of each of their opponents
separately.  When there are three or more players, one could instead start with the alternative
premise that each player tracks the time average of his opponents' past joint behavior, in which case
the relevant state space would be the set of correlated strategies.  For further discussion of  this
modeling issue, see Fudenberg and Levine (1998, Section 2.5).
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We also consider a formulation of stochastic fictitious play where in each period,
two players are chosen from a larger group to play a symmetric two player game.
This formulation corresponds to the single population framework commonly
studied in evolutionary game theory.  A two player game is symmetric if the two
players' strategy sets are the same and if a player's payoffs do not depend on whether
he is called player 1 or player 2:      S

1 =     S
2  and     u s s1 1 2( , ) =     u s s2 2 1( , ).  If each player's

payoffs are subject to random disturbances   ε 1 and   ε 2  drawn from the same
distribution, the resulting perturbed best response functions     ̃B

1 and     ̃B
2  are identical.

   In symmetric stochastic fictitious play, the state variable is the time average of all
past plays of the game:  if     ζ̂

α
t  represents the strategy chosen by the player assigned to

role α  at time t, then the state variable     Ẑt  ∈      ∆S1  is given by

     Ẑt  = 
    

1
2

1 2

1
t u u

u

t
ˆ ˆζ ζ+( )

=
∑ .

Players choose best responses after their payoffs have been subjected to the random
disturbances     εt

1 and     εt
2 , which are independently and identically distributed over

time and across players.  Choice probabilities are therefore described by

 
    
P e Z zt i t

ˆ ˆζ α
+ = =( )1  = P(argmaxk     U zk

α ( ) +     ( )εα
t k  = i) =     B̃i

1(  z).

3.3  Perturbed Best Response Dynamics

 The first step in analyzing stochastic fictitious play is to determine its expected
motion.  In the case of standard stochastic fictitious play, we do so by first
rearranging equation (11) in order to obtain a recursive definition of   Zt

α :

    Zt+1
α  =     

1
1 1t t tt Z+ ++( )α αζ .

We can then use equation (12) to compute the expected increments of   Zt
α :

    E Z Z Z zt t t+ − =( )1
α α  = 

    
1

1 1t t tE Z z z+ + =( ) −[ ]ζ α  =     
1

1t+ (    B̃
α (  z

−α ) –   z
α ).

Thus, we see that after a reparameterization of time, expected changes in the time
average Zt are governed by the perturbed best response dynamic

(P)     ̇x
α  =     B̃

α (  x
−α ) –   x

α .
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This dynamic is defined on the space of mixed strategy profiles Σ.  Similarly, the
expected motion of symmetric fictitious play is governed by a symmetric version of
the perturbed best response dynamic, defined on the set of mixed strategies     ∆S1 :

(SP)     ̇x  =     ̃B
1(x) – x.

 The dynamics (P) and (SP) can be viewed as perturbed versions of the
multipopulation and single population best response dynamics (Gilboa and Matsui
(1991), Matsui (1992)):

(BR)     ̇x
α  ∈    B

α (  x
−α ) –   x

α ;

(SBR)     ̇x  ∈      B
1(x) – x.

The latter dynamics can be used to approximate the time average of behavior under
unperturbed fictitious play.  However, since the best response correspondences Bα

are set valued, the dynamics (BR) and (SBR) can exhibit complicated solution
trajectories, and in fact may admit multiple solution trajectories from a single initial
condition – see Matsui (1992) and Hofbauer (1995b).  In contrast, since the perturbed
best response functions     ̃B

α  are single-valued and smooth, the perturbed dynamics
(P) and (SP) are well behaved, and in particular possess unique solution trajectories.

We begin our analysis of stochastic fictitious play by studying its expected motion
in four classes of games (Sections 4 and 5).  Once this is accomplished, we can use
techniques from stochastic approximation theory to characterize the original
stochastic processes (Section 6).  Before beginning our analysis of equations (P) and
(SP), we take care of a few additional preliminaries.

3.4  ω-Limit Sets and Chain Recurrence

 Most analyses of evolutionary dynamics use the notion of an ω-limit set to
describe limit behavior.  However, understanding stochastic fictitious play requires
the more general notion of chain recurrence.  We now introduce and contrast these
two concepts.  Consider a dynamic

(D)     ̇x  = F(x)

which generates a semiflow φ: R+ × X → X on the compact set X ⊂     R
n .  The point φ(t,

x) ∈  X is the position at time t of the solution to (D) which begins at x ∈  X.  The set of
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rest points of (D) can be defined as RP(D) = {x ∈  X:  φ(t, x) = x for all t ≥ 0} = {x ∈  X:
F(x) = 0}.

The ω-limit set of the state x, ω(x) = {z ∈  X:  limk→∞φ(tk, x) = z for some tk → ∞}, is
the set of limit points of the solution trajectory starting at x.  We let Ω(D) = 

      ω( )x
x∈∆U

denote the union of the ω-limit sets.  Clearly, RP(D) ⊂ Ω(D).
Knowledge of Ω(D) is generally not sufficient to characterize limit behavior

under stochastic fictitious play.  To accomplish this, we require the more general
notion of chain recurrence (Conley (1978)), which allows for states which can arise
in the long run if the flow is subject to small shocks occurring at isolated moments
in time.  Call a sequence {x = x0, x1, … , xk = y} an ε-chain from x to y if for each i ∈  {1,
… , k}, there is a ti ≥ 1 such that     φ( , )t x xi i i− −1  < ε.  The ε-chain specifies k  + 1

segments of solution trajectories to (D).  The first begins at x, and the last is simply
the point y; the jumps between the ends and beginnings of consecutive segments are
never longer than ε.   We call the state x chain recurrent if there is an ε-chain from x

to itself for all ε > 0, and we let CR(D) denote the set of chain recurrent points.  The
set CR(D) contains all rest points, periodic orbits, quasiperiodic motions, and chaotic
orbits of the flow.  It can be shown that Ω(D) ⊂ CR(D), and that in general this
inclusion is strict.  For further discussion, see Conley (1978), Akin (1993), Robinson
(1995), or Benaïm (1999).
 To see why chain recurrence is needed here, consider a flow on a circle which
moves clockwise everywhere except at a single rest point.  This rest point is the
unique ω-limit point of the flow.  Now suppose that the flow represents the
expected motion of some underlying stochastic process.  If the stochastic process
reaches the rest point, its expected motion is nil.  Nevertheless, actual motions may
occur with positive probability, and in particular the process can jump past the rest
point and begin another circuit.  Therefore, in the long run all regions of the circle
are visited infinitely often.  Since the only ω-limit point of the flow is the rest point,
this notion of recurrence does not capture the long run behavior of the underlying
stochastic process.  However, this long run behavior is captured by chain recurrence,
as one can easily verify that all points on the circle are chain recurrent under the
flow.

3.5  Rest Points and Nash Equilibria

The rest points of the perturbed best response dynamics will ultimately
constitute our predictions of long run behavior under stochastic fictitious play.  For
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these predictions to accord with standard game theoretic analyses, these rest points
should approximate Nash equilibria of the underlying game.  The following result
ensures that this is true whenever the perturbations generating the dynamics are
sufficiently small.

Proposition 3.1:  Fix a game G.  For each k  ∈  Z+, let   ε k  = (    ε 1,k , … ,     ε p k, ) be a collection

of disturbance vectors, and let   x
k  ∈  Σ be a rest point of (P) under    ε k .  If the sequence

{  ε k } converges weakly to a mass point at the origin, and if the sequence {  x
k }

converges to x*, then x* is a Nash equilibrium of G.  If instead each   x
k  ∈      ∆S1  is a rest

point of (SP), then x* is a symmetric Nash equilibrium of G.

4.  DISCRETE CHOICE THEORY AND LYAPUNOV FUNCTIONS

 The perturbed best response dynamics (P) and (SP) are defined in terms of
stochastic payoff perturbations.  In this section, we use Theorem 2.1 to express these
dynamics in terms of deterministic payoff perturbations.  This transformation is
useful because in certain cases, one can characterize behavior under the
deterministically perturbed dynamics by introducing suitable Lyapunov functions.
Doing so enables us to characterize the chain recurrent sets of the original dynamics
(P) and (SP) in cases where the underlying game admits an interior ESS, is a zero
sum game, or is a potential game.
 If we write out the perturbed best response dynamic (P) explicitly in terms of the
stochastic perturbations   ε

α
t , we obtain

     ̇xi
α  = P(argmaxk     U xk

α α( )−  +     ( )εα
t k  = i) –   xi

α ,

Theorem 2.1 tells us that the choice probabilities induced by the random vectors   ε
α
t

can always be represented in terms of some deterministic perturbations   V
α .

Consequently, the dynamic (P) is equivalent to the dynamic

(PV)     ̇x
α  = 

    
arg max ( ) ( )

int( )y S

y U x V y
∈

−⋅ −( )
∆ α

α α α  – x.

for the appropriate choices of   V
α .  We can also use this transformation in the

symmetric case, obtaining the dynamic
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(SPV)     ̇x  = 
    
arg max ( ) ( )

int( )y S

y U x V y
∈

⋅ −( )
∆ 1

1 1  – x.

We call (PV) and (SPV) deterministically perturbed best response dynamics.
 We call a real valued function Λ a strict Lyapunov function for a dynamic if its
value increases strictly along every non-constant solution trajectory.  The existence
of a Lyapunov function for a dynamic ensures that limit behavior is very simple.  In
particular, if its state space is compact, all solution trajectories of the dynamic must
converge to connected sets of rest points.  While the original perturbed dynamics (P)
and (SP) do not seem especially conducive to admitting Lyapunov functions,
Hofbauer (2000) and Hofbauer and Hopkins (2000) have constructed Lyapunov
functions for the deterministically perturbed dynamics (PV) and (SPV) for certain
classes of games.  In the two subsections which follow we review and extend their
results.
 In addition to the games we explicitly consider in the coming sections, we can
also establish results for related games obtained through certain transformations of
payoffs.  As usual, any result which holds for the game G also holds for the game     ̂G ,
where     ̂ ( )u sα  =     u sα ( ) +     φ

α α( )s−  for some functions φα :   S
−α  → R.  This invariance holds

because shifting player α 's payoffs by a term which he cannot influence does not
alter his incentives.  More notably, our convergence results which hold for G also
hold for   G , where     u sα ( ) = κ α

    u sα ( ) +     ψ
α α( )s .  The constant κ α  > 0 rescales the payoffs

of the original game, while the function ψ α :   S
α  → R captures a shift in player α 's

payoffs which depends only on his own behavior.  To see why our convergence
results are not affected by these changes, note that the perturbed best response
function generated by the game   G  and the disturbance vector εα  is identical to the
perturbed best response function generated by the game G and the disturbance
vector   

1
κ α ( εα  + ψ α ).  In other words, the effect of the affine transformation   κ α αu  +

ψ α  on the payoffs of the underlying game can always be mimicked by a
corresponding transformation of the payoff disturbances.  Of course, such
transformations can alter Nash equilibria and rest points of the perturbed dynamics,
while shifts by φα  cannot.

4.1  Games with an Interior ESS and Zero Sum Games

 The notion of an evolutionarily stable strategy (Maynard Smith and Price (1973))
is the original solution concept of evolutionary game theory.  Consider a symmetric
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two player game G.  A mixed strategy x* ∈     ∆S1  is an ESS if x*·     U x1( ) > x ·     U x1( ) for all

mixed strategies x in a neighborhood of x*.  In other words, an ESS is a mixed
strategy with the property that after any invasion by a mutant mixed strategy, the
ESS performs better than the mutant in the post-entry population.
 We focus on games with an ESS in the interior of the state space     ∆S1 .5  Hofbauer

(2000) shows that if G admits an interior ESS, then the dynamic (SPV) admits a strict
Lyapunov function which is strictly concave.  In our notation, this function can be
expressed as

   ̂Λ (x) =  x ·     U x1( ) –     V x1( ) –     W U x1 1( ( )).

Because   ̂Λ  is strictly concave, the maximizer of   ̂Λ  is globally asymptotically stable
under (SPV), and indeed is the unique chain recurrent point of (SPV).
Consequently, Theorem 2.1 implies that this maximizer is also the unique chain
recurrent point of the original dynamic (SP).
 One can also find Lyapunov functions for two player zero sum games.  A two
player game is zero sum  if     u s1( ) = –    u s2( ) for every strategy profile s ∈  S.  In the
symmetric case, Hofbauer (2000) shows that the Lyapunov function   ̂Λ  defined above
is again a strict Lyapunov function for the dynamic (SPV).6  For cases where the
game is not necessarily symmetric, Hofbauer and Hopkins (2000) show that the
strictly concave function

     Λ( , )x x1 2  = –    V x1 1( )  –     W U x1 1 2( ( )) –     V x2 2( ) –     W U x2 2 1( ( ))

is a strict Lyapunov function for the dynamic (PV).  Theorem 2.1 again implies that
the maximizer of Λ is the unique chain recurrent point of (P).

4.2  Potential Games

 Potential games include pure coordination games and congestion games, and
also arise in applications of evolutionary techniques to implementation problems
(see Sandholm (2000)).  We call the game G a potential game if     u sα ( ) =     u sβ ( ) for all
players α  and β and all strategy profiles s ∈  S.  That is, G is a potential game if all

                                                
5 An interior ESS cannot exist outside of the current symmetric framework – see Selten (1980).
6  Note that in the zero-sum case, the first term of   ̂Λ  is identically zero.
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players always receive the same payoff.7  Hofbauer (1995a) and Sandholm (2001)
show that in games of this form, the aggregate payoff function serves as a Lyapunov
function for a broad class of evolutionary dynamics.  By adding an appropriate
perturbation, one can also obtain Lyapunov functions for the deterministically
perturbed best response dynamics.  In the case where G is a two player symmetric
potential game, Hofbauer (2000) shows that the function

   Π̂ (x) =   
1
2

    
u s s x x

s s
s s S

1 1 2
1 2

1 2

( , )
( , )∈
∑  –     V x1( )

is a strict Lyapunov function for the dynamic (SPV).  The first term in   Π̂ (x) equals
one half of the payoff to mixed strategy x when played against itself, while the
second term is the perturbation.
 By building on the previous result and on a result of Hofbauer and Hopkins
(2000) for two player games, we can construct Lyapunov functions for the dynamic
(PV) for any p player potential game.

Proposition 4.1:  If G is a potential game, then the function

    Π ( ,..., )x xp1  = 
    

u s x
s

s S

1( ) α
α

α
∏∑



∈

 – 
    

V xα α

α
( )∑

is a strict Lyapunov function for the dynamic (PV).

The Lyapunov functions above guarantee that the sets of ω-limit points for (PV)
and (SPV) are equal to the sets of rest points.  But remarkably, the existence of a strict
Lyapunov function is not enough to ensure that all chain recurrent points are rest
points.8  However, this equivalence can be established under slightly stronger
assumptions.  We now present results which establish this equivalence for the case
of the dynamic (PV).  Given the proofs of these results, analogues for the dynamic
(SPV) are easily obtained.  

                                                
7 Typically, the definition of potential games also includes games in which payoffs are common up to
shifts which do not affect the players' incentives – see Monderer and Shapley (1996b).  However, since
these shifts have no bearing on perturbed best responses (see the discussion preceding Section 4.1), it is
enough to consider games in which payoffs are identical.  More generally, the discussion preceding
Section 4.1 implies that our results for games with identical payoffs extend immediately to the
weighted potential games of Monderer and Shapley (1996b) and to the rescaled partnership games of
Hofbauer and Sigmund (1988).
8 For counterexamples, see Akin (1993, p. 25-26 and 55-56) and Benaïm (1999, p. 27).
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  One way to obtain the conclusion that all chain recurrent points are rest points is
to require that the potential function Π be sufficiently smooth.  This will be true so
long as the perturbations   V

α  are sufficiently smooth.

Proposition 4.2:  Suppose that G is a potential game and that each function   V
α  is     C

N ,
where N  =     ( )nα

α
−∑ 1  is the dimension of the state space Σ.  Then CR(PV) = RP(PV).

If we begin with the dynamic (P) based on the stochastic perturbations εα , the
deterministic perturbations   V

α  which correspond to the random vectors εα  will be

    C
N  if the distributions of the εα  are sufficiently smooth.  

 Alternatively, we can reach stronger conclusions by imposing a generic regularity
condition.9

Proposition 4.3:  If G is a potential game and all rest points of (PV) are hyperbolic,
then RP(PV) is finite and CR(PV) = RP(PV).

Again, Theorem 2.1 shows that these results also apply to the stochastically
perturbed dynamics (P) and (SP).

5.  SUPERMODULAR GAMES AND STRONGLY MONOTONE DYNAMICS

Supermodular games describe situations in which different players' actions are
strategic complements.  In these games, an order relation is placed on the strategy
sets; strategic complementarity means that the advantage of switching to a higher
strategy increases when opponents choose higher strategies.  Supermodular games
arise in many economic applications; for examples, see Topkis (1979), Milgrom and
Roberts (1990), Vives (1990), and Fudenberg and Tirole (1992).
 In this section, we show that when the underlying game is supermodular, the
perturbed dynamics (P) and (SP) form a strongly monotone dynamical system
(Hirsch (1988)).  This fact allows us to establish a number of important properties of
the dynamics, and in particular to describe the sets of chain recurrent states.
 We say that the game G is (strictly) supermodular  if for all distinct players α  and
β and all strategy profiles s and     ̂s  such that   s

α  >     ̂s
α  and   s

−α  =     ̂s
−α , the difference     u sα ( )

                                                
9  A rest point x* of the dynamic (D) is hyperbolic if all eigenvalues of the derivative matrix DF(x*)
corresponding to eigenvectors in the relevant tangent space have nonzero real part.
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–     u sα (ˆ) is strictly increasing in   s
β  =     ̂s

β .  In other words, a game is supermodular if
the advantage a player obtains from choosing a higher strategy is increasing in the
strategy choices of each of his opponents.10

A fundamental property of supermodular games is that they possess increasing
best response correspondences.  This property can be used to show that every
supermodular game admits a minimal and a maximal Nash equilibrium, and it is
also important for studying learning processes.11  A related monotonicity property is
fundamental for studying the perturbed best response dynamics.  For each player α ,
define the invertible linear operator   T

α :   ∆Sα  →       R
nα −1 by

 (  T xα α )i = 
    

xj
j i

n
α

α

= +
∑

1

.

If   x
α  ∈    ∆Sα  is a mixed strategy for player α, then the ith component of   T xα α  equals

the mass in   x
α  placed on pure strategies larger than i.  If we view points in the

simplex   ∆Sα  as probability distributions on the strategy set   S
α  = {1, 2, … ,   n

α }, then

  T yα α ≥   T xα α  if and only if   y
α  stochastically dominates   x

α .  To compare full mixed

strategy profiles, we define T: Σ →       Rnα

α
−∏ 1  by T(    x

1 , … ,   x
p) = (    T x1 1, … ,   T xp p );   T

−α :

Σ −α  → 
      

Rnβ

β α
−

≠∏ 1  is defined analogously.

 Theorem 5.1 shows that in supermodular games, each player's perturbed best
response function is monotone with respect to this stochastic dominance order.12

Theorem 5.1:  Suppose that G is supermodular.  If   T y− −α α  ≥   T x− −α α , then     T B yα α α˜ ( )−  ≥

    T B xα α α˜ ( )− .

The monotonicity of the perturbed best response functions allows us to
characterize the behavior of the perturbed dynamics (P) and (SP).  To avoid

                                                
10  Of course, it is enough for this property to hold after the names of the strategies have been
permuted in an appropriate way.
11 For the properties of pure strategy equilibria, see the aforementioned references.  Milgrom and
Roberts (1991) show that fictitious play converges in supermodular games with a unique Nash
equilibrium.  Krishna (1992) proves convergence in supermodular games satisfying a diminishing returns
condition; Hahn (1999) proves convergence in 3 x 3 and 3 x 2 supermodular games.  Finally, Kandori and
Rob (1995) use the monotonicity of best responses to characterize the stochastically stable states of the
Kandori, Mailath, and Rob (1993) model in certain supermodular games.
12  It is worth noting that while monotonicity holds for any perturbed best response function defined in
terms of stochastic perturbations, it does not extend to all perturbed best response functions defined in
terms of deterministic perturbations.  For an explanation of this point, see the Appendix.
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repetition, we state our next four results for the asymmetric dynamic (P); nearly
identical results can be established for the symmetric dynamic (SP).
 With the monotonicity of     ̃B

α  in hand, one can establish that the dynamic (P)
possesses a minimal and a maximal rest point.

Theorem 5.2:  If G is a supermodular game, there exist rest points   x ,   x  ∈  RP(P) such

that RP(P) ⊂ [  x ,  x ], where [  x ,  x ] = {x ∈  Σ: T  x  ≤ Tx ≤ T  x }.

To relate this result to our earlier remarks, recall (from Proposition 3.1) that the rest
points of (P) represent approximate Nash equilibria of G.

To obtain more precise information about behavior under (P), it is helpful to
study this dynamic after applying the change of coordinates T.  The next result
shows that this yields the dynamic

(T)     ̇v
α  =     T B T v vα α α α α˜ (( ) )− − − −1

on the set T(Σ) = {(  v
1, … ,   v

p) ∈       Rnα

α
−∏ 1 :  1 ≥     v1

α  ≥ … ≥     vnα
α

−1
 ≥ 0 for all α}.

Proposition 5.3:  The dynamic (P) and the dynamic (T) are linearly conjugate:  {xt}t≥0

solves (P) if and only if {Txt}t≥0 solves (T).

 A differential equation     ̇v  = g(v) on T(Σ) is called cooperative if 
  
∂
∂

α

β
g

v
i

j

(v) ≥ 0 for all v

∈  T(Σ) and all distinct pairs (α , i) and (β, j).  That is, an increase in any component of
the state increases the rates of change of all other components.  The equation is
irreducible if for each v  ∈  T(Σ) and each nonempty proper subset I of the

components of v, there is an (α , i) ∈  I and a (β, j) ∈    I
C  such that 

  
∂
∂

α

β
g

v
i

j

(v) ≠ 0 for all v ∈

T(Σ).  The transformed dynamics (T) are of interest because they possess both of
these properties.

Theorem 5.4:  If G is supermodular, the dynamic (T) is cooperative and irreducible.

Observe that if ι j is a standard basis vector in       R
nα −1, then ι j =   T

α (ej+1 – ej), where the
latter vectors are standard basis vectors in     R

nα

.  In light of this observation and
Proposition 5.3, the fact that (T) is cooperative has the following interpretation for
the perturbed best response dynamics (P):  if we shift mass in the strategy
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distribution   x
β  ∈    ∆Sβ  from strategy j to strategy j + 1, then for each player α  ≠ β, the

growth rate of every strategy i + 1 ∈    S
α  increases relative to that of strategy i.

 Theorem 5.4 is important because dynamics which are cooperative and
irreducible are strongly monotone, and so have desirable monotonicity and
convergence properties.  In the next result, we list a number of useful implications
of Theorem 5.4 for the perturbed best response dynamic (P).

Corollary 5.5:  If G is supermodular, then

(i)  The dynamic (P) is strongly monotone with respect to the stochastic

dominance order:  if {xt}t≥0 and {yt}t≥0 are two solutions to (P) with Ty0 ≥ Tx0 and y0 ≠
x0, then Tyt > Txt for all t > 0.
 (ii) The chain recurrent set lies between the minimal and maximal rest points

of (P):  CR(P) ⊂ [  x ,  x ].  In particular, if RP(P) = {x*}, then CR(P) = {x*} as well.
(iii) There is an open dense set of initial conditions from which solutions t o

(P) converge to unique limit points in RP(P).
 (iv) The remaining initial conditions are contained in a finite or countable
union 

    MiiU  of invariant manifolds of codimension 1, and hence have measure

zero.
 (v) Chain recurrent points are either rest points or are contained in these
invariant manifolds:  CR(P) ⊂ RP(P) 

    ∪ MiiU .

Proof:  In light of Proposition 5.3 and Theorem 5.4, part (i) follows from Theorem
4.1.1 of Smith (1995), part (iii) from Theorem 2.4.7 of Smith (1995), part (iv) (after a
reversal of time) from Theorem 1.1 of Hirsch (1988), and part (v) from Theorems 1.6
and 1.7 of Hirsch (1999) (also see Theorem 3.3 and Corollary 3.4 of Benaïm and
Hirsch (1999b)).  The proof of part (ii) is provided in the Appendix.  ■

Suppose we restrict attention to supermodular games with exactly two strategies
per player.  In this case, supermodularity requires only that the payoff advantage of
every player's second strategy is increasing in the mass that each of his opponents
places on her second strategy.  Benaïm and Hirsch (1999a) observe that games with
this property yield strongly monotone perturbed best response dynamics.  Because
there are only two strategies per player, there is no need to introduce the stochastic
dominance order to obtain this conclusion.  Our analysis shows that by introducing
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this order, one establish strong monotonicity of the dynamics for all supermodular
games.13

 Corollary 5.5 shows that solution trajectories from almost all initial conditions
converge to rest points of (P), but allows the possibility that convergence does not
occur from the remaining initial conditions.  We conclude this section with an
example in which convergence fails on a measure zero set.

Example 5.6:  Consider a p player game, p ≥ 5, with two strategies per player.  Each
player α  wishes to coordinate his behavior with player α  + 1 (with the convention
that p + 1 = 1).  More specifically,     u sα ( ) equals 1 if   s

α  =     s
α +1 and equals 0 otherwise.

This game is (weakly) supermodular.14  It has three Nash equilibria:  two strict
equilibria in which all players coordinate on the same strategy, and the mixed
equilibrium x* = ((  

1
2 ,  

1
2 ), … , (  

1
2 ,   

1
2 )).

 Suppose that player α 's payoffs are augmented by the random perturbation εα  =
(  ε

α
1 ,  ε

α
2 ).  Let g denote the common density function for the differences   ε

α
1  –   ε

α
2 , and

suppose that g is symmetric about zero, is decreasing on R+, and satisfies g(0) >   
1
2 .

We show in the Appendix that the resulting perturbed dynamic (P) possesses exactly
three rest points:  the mixed equilibrium x*, and two stable symmetric rest points
which approximate the two pure Nash equilibria.  We establish below that the rest
point x* is unstable.  Since Corollary 5.5 tells us that an open dense set of initial
conditions must converge to a rest point, it follows that the two stable rest points
attract almost all initial conditions in Σ, and that the basins of attraction for these
rest points are separated by a p – 1 dimensional invariant manifold M ⊂ Σ which
contains x*.
  Since there are two strategies per player, the transformed dynamic (T) tracks the
mass each player places on his second strategy.  It is easily verified that the
derivative matrix for (T) evaluated at Tx* is the p ×  p circulant matrix whose rows
are permutations of the vector (–1, 2g(0), 0, … , 0).  This matrix has an eigenvalue of
2g(0) – 1 > 0 corresponding to the unstable direction 1, and eigenvalues of 2g(0)
exp(2πik/p) – 1, k = 1, … , p – 1, corresponding to directions tangent to M (see

                                                
13  Furthermore, while in the two strategy case every reasonable evolutionary dynamic generates a
strongly monotone flow, with more strategies this property is particular to the perturbed best response
dynamics (P) and (SP).  Indeed, this property fails for the replicator dynamics, and it does not even
hold for all specifications of the deterministically perturbed best response dynamics (PV) and (SPV).
14  In our analysis above, strict supermodularity is only used to establish irreducibility; the full
strength of the strictness assumption is not needed for this conclusion.  In the present example, one can
easily versify that the dynamics (T) are irreducible, and hence strongly monotone.
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Hofbauer and Sigmund (1988, p. 66)).  Since p ≥ 5, at least two of the latter
eigenvalues will have positive real parts if g(0) is sufficiently large.  In this case, the
rest point x* is also unstable with respect to the restriction of (P) to the manifold M.
It follows that solutions to (P) from almost all initial conditions in M do not
converge to a rest point.  In fact, the theory of positive feedback loops (Mallet-Paret
and Smith (1990)) can be used to show that all solutions from these initial
conditions converge to a periodic orbit in M.

6.  CONVERGENCE OF STOCHASTIC FICTITIOUS PLAY

Using techniques from stochastic approximation theory, Fudenberg and Kreps
(1993), Kaniovski and Young (1995), and Benaïm and Hirsch (1999a) show how the
limit behavior of stochastic fictitious play can be characterized in terms of a
perturbed best response dynamic.  However, as the perturbations make this dynamic
difficult to analyze, Fudenberg and Kreps (1993) and Kaniovski and Young (1995)
only establish convergence in 2 x 2 games, while Benaïm and Hirsch (1999a) also
prove convergence in certain p player, two strategy games.
  By combining our analysis of the perturbed best response dynamics with results
of Pemantle (1990), Benaïm and Hirsch (1999a), and Benaïm (2000), we can establish
convergence of beliefs and choice probabilities in four important classes of games.
Our results are stated for beliefs Zt and     Ẑt ; however, since the perturbed best

response functions     ̃B
α  are continuous, corresponding results hold for choice

probabilities as well.  In particular, if beliefs Zt converge to some rest point x of (P),
then player α 's choice probabilities converge to     C U xα α α( ( ))−  =     ̃ ( )B xα α−  =   x

α  as well.
 To state our results, we let LS(D) ⊂ RP(D) denote the set of linearly stable rest
points of the dynamic (D), and let LU(D) ⊂ RP(D) denote the set of linearly unstable
rest points of (D).

Theorem 6.1:  Consider standard stochastic fictitious play Zt and symmetric
stochastic fictitious play     Ẑt  starting from arbitrary initial conditions.

 (i) Suppose that G is a two player symmetric game with an interior ESS.
Then P(limt→∞     Ẑt  = x*) = 1, where x* is the unique rest point of (SP).

 (ii) Suppose that G is a two player zero sum game . Then P(limt→∞ Zt = x*) = 1,
where x* is the unique rest point of (P).
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 (iii) Suppose that G is a p player potential game .  If the distributions of t h e

vectors εα  are sufficiently smooth, then P(ω(Zt) is a connected subset of RP(P)) = 1.  If

all rest points of (P) are hyperbolic and (P) is   C
2, then P(limt→∞ Zt ∈  LS(P)) = 1.

 (iv) Suppose that G is a p player supermodular game.  Then P(ω{Zt} ⊂ RP(P) or
ω{Zt} ⊂ Mi ∩  [    x    ,   x ] for some i) = 1.  In particular, if RP(P) = {x*}, then P(limt→∞ Zt = x*)
= 1.  If the state space of (P) is one- or two-dimensional and (P) is   C

2, then P(limt→∞ Zt

∈  RP(P) – LU(P)) = 1.
 Finally, if G is a two player symmetric game, then results (ii), (iii), and (iv) also
hold for symmetric stochastic fictitious play if Zt is replaced by     Ẑt  and (P) by (SP).

 Proof:  Theorem 3.3 of Benaïm and Hirsch (1999a) and Proposition 5.3 of Benaïm
(1999) imply that with probability one, stochastic fictitious play must converge to a
connected component of the chain recurrent set of the appropriate perturbed best
response dynamic, (P) or (SP).  Theorem 2.1 shows that these dynamics are
equivalent to the dynamics (PV) and (SPV) for appropriate choices of the
deterministic perturbations   V

α .  In the games considered in parts (i) and (ii),
Theorem 4.2 of Hofbauer (2000), Theorem 3.2 of Hofbauer and Hopkins (2000) and
Proposition 6.4 of Benaïm (1999) imply that latter dynamics admit unique rest points
which are also the unique chain recurrent points.  This proves parts (i) and (ii).  The
proofs of the parts (iii) and (iv), which rely on the analyses from Sections 2, 4.2, and
5 and on results of Pemantle (1990), Benaïm and Hirsch (1999a), and Benaïm (2000),
can be found in the Appendix.  ■

 Parts (i) and (ii) of the theorem guarantee convergence of stochastic fictitious play
to the unique rest point of the perturbed best response dynamics in games which are
zero sum or which admit an interior ESS.  Part (iii) shows that in potential games,
convergence to the set of rest points is ensured if the disturbance distribution is
sufficiently smooth; if all rest points are hyperbolic, convergence is always to a
unique limit point which is Lyapunov stable, and hence a local maximizer of the
relevant Lyapunov function, Π  or   Π̂ .
 Part (iv) of the theorem offers a global convergence result for supermodular
games, but it only guarantees convergence to rest points of the perturbed dynamics if
the rest point is unique or if the dimension of the state variable is 1 or 2.  Even i n
the symmetric case, the latter condition requires that there are at most three
strategies in the underlying game.  When there are more strategies, we cannot rule
out convergence to one of the unstable invariant manifolds Mi.  However, Benaïm
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(2000) conjectures (and proves under additional assumptions) that such manifolds
cannot be limits of stochastic approximation processes.  If this conjecture is correct,
convergence of stochastic fictitious play to rest points of (P) and (SP) can be
established in all supermodular games.
 In this paper, we combined an analysis of the perturbed best response dynamics
with results from stochastic approximation theory to prove global convergence
results for stochastic fictitious play.  Interestingly, these perturbed dynamics also
arise in other disturbance-based models of evolution and learning in games.  In the
stochastic evolutionary model of Blume (1993, 1997) and Young (1998), these
dynamics describe expected changes in the behavior of large populations of myopic
agents.  Similarly, in Ellison and Fudenberg's (2000) model of population fictitious
play, and in Ely and Sandholm's (2000) model of evolution in a diverse population,
the perturbed best response dynamics arise as descriptions of changes in aggregate
behavior.  By combining the analysis of the dynamics (P) and (SP) presented here
with other mathematical techniques, one can establish global convergence results
for these three models of evolution and learning in games.  For a presentation of
these results, we refer the reader to Hofbauer and Sandholm (2001).

APPENDIX

The Proof of Proposition 2.2
 Substituting V(y) = –

    
ln yjj∑  into equation (2), we find that this selection of V

yields the choice probability function Ci(π) =     ( ( ) )c iπ π− −1, where c(π) is the unique
number satisfying c(π) > maxj πj and 

    
( ( ) )c ij

π π− −∑ 1  = 1.  Now suppose that n ≥ 4, and

let i, j, and k be distinct strategies.  A computation reveals that

    

∂
∂π ∂π

2Ci

j k

 = 

    

2 2 2 2

2 3
2 3C C C

C
C C C C Ci j k

ll

i j k ll ll∑
∑ ∑( )

+ +( ) −( ) .

This expression is negative whenever Ci, Cj, and Ck are all close enough to zero.
  Now suppose that the choice function     ̂C  is derived from a stochastic
perturbation of payoffs.  Then differentiating expression (4) with respect to πk reveals

that 
    

∂
∂π ∂π

2Ĉi

j k
 must always be strictly positive.  Hence, the choice function Ci(π) =

    ( ( ) )c iπ π− −1 cannot be derived from a stochastic perturbation of payoffs.  ■
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The Proof of Proposition 2.3

 Suppose that the choice function C satisfies equation (10) and equation (2) for
some admissible V.  (Theorem 2.1 implies that if C satisfies (1), it satisfies (2) as well.)
Then if we define W :       R0

n  → R via equation (9), Theorem 26.5 of Rockafellar (1970)
implies that   ∇W  ≡ C on       R0

n .  Moreover, it is clear from equation (2) that C(π + c1) =

C(π) for all c ∈  R.  Thus, if we define W on the remainder of     R
n  by W(π + c1) = W (π)

+ c for any π ∈       R0
n  and c ∈ R, it can be verified that   ∇W  ≡ C on all of     R

n .  It follows

that DC(π) is symmetric for all π ∈      R
n .

 Now, applying equation (10), we find that if i ≠ j, then

 
    

∂
∂π

πCi

j

( ) = 

    

−
′

( )∑
w w

w

i j

kk

( ) ( )

( )

π π

π
2 .

Thus, the symmetry of DC implies that     w wi j( ) ( )π π′  =     w wj i( ) ( )π π′  for all π.  Since w is

strictly positive, it follows that     ′w i( )π  = η w(πi) for some constant η, and hence that

w(πi) = K exp(η πi) for some constants η and K.  Since w  is strictly positive and
increasing, it must be that η  and K are strictly positive, and hence that C ≡  L.  ■

The Proof of Proposition 3.1

We only consider the case of the dynamic (P); the proof of the result for the
dynamic (SP) is similar.  Recall that the perturbed best response     ̃ ( )B xα α−  can be
written as     C U xα α α( ( ))− , where   C

α  is a perturbed version of the maximizer
correspondence   M

α (π) = 
    
arg max

y S∈∆ α  y·π.  For each disturbance vector     εα ,k , let     C
kα ,

denote the corresponding choice probability function:      Ci
kα , (π) = P(argmaxj πj +     ε

α
j

k,  =

i).
 We first prove a lemma.

Lemma A.1: Suppose that     εα ,k  ⇒  δ{0} and that   π k  → π*.  If i ∉ argmaxj πj*, t h e n

    Ci
kα , (  π k ) → 0.

Proof:  Let l ∈  argmaxj πj*, and let δ = πl* – πi* > 0.  Then for all large enough k,

     Ci
kα , (  π k ) = P(argmaxj   π j

k  +     ε
α
j

k,  = i)

  ≤ P(  π i
k  +     ε

α
i

k,  ≥   π l
k  +     ε

α
l

k, )
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  ≤ P(    ε
α
i

k,  –     ε
α
l

k,  ≥   
δ
2 ).

Since the random variables (    ε
α
i

k,  –     ε
α
l

k, ) converge in distribution to the constant 0 as
k approaches infinity, we conclude that     Ci

kα , (  π k ) → 0.  ❏

Now suppose that     x
kα ,  =     ̃ ( ),B x kα α−  =     C U xk kα α α, ,( ( ))−  for all α  and that   x

k  →     ̂x .  To
prove the result, it is enough to show that     ̂x

α  ∈     M U xα α α( ( ˆ ))− .  Clearly,     U x kα α( ),−  →

    U xα α( ˆ )− .  Hence, Lemma A.1 tells us that if i ∉ argmaxj     U xj
α α( ˆ )− , then     ̂xi

α  = limk→∞

    xi
kα ,  = limk→∞     C U xi

k kα α α, ,( ( ))−  = 0.  Consequently,     ̂x
α  ∈     M U xα α α( ( ˆ ))− .  This completes

the proof of the proposition.  ■

The Proof of Proposition 4.1

  The lemma preceding Theorem 4.2 of Hofbauer (2000) shows that (    U xα α( )−  –

    ∇V xα α( )) · (    B̃
α (  x

−α ) –   x
α ) ≥ 0, with equality only when     B̃

α (  x
−α ) –   x

α  = 0.

Furthermore, a calculation reveals that     ∇ ˆ ( )Π x  = (    U x1 1( )−  –     ∇V x1 1( ), … ,     U xp p( )−  –

    ∇V xp p( )).  Since     ̇x
α  =     B̃

α (  x
−α ) –   x

α , we can conclude that

     
d
dt txˆ ( )Π  = 

    
( ( ) ( )) ˙U x V x xt t t

α α α α α

α

− − ∇ ⋅∑  ≥ 0,

with equality only if     ̇x  = 0.  ■

The Proof of Proposition 4.2
 Let     ̂ ( )Cα π  = 

    
arg max ( ( ))

y S
y V y

∈
⋅ −

∆ α π α .  Then     ̂C
α (π) =     ( )∇ −Vα 1(π) for all π ∈        R0

n ,

and       ̂ ( )C cα απ + 1  =     ̂ ( )Cα π .  Since Π  is defined on Σ, x ∈  Σ is a critical point of Π if and
only if     U xα α( )−  –     ∇V xα α( ) =   c

α 1 for all players α, which is true if and only if

    ̂C
α (    U xα α( )− ) =     ̂C

α (    U xα α( )−  –   c
α 1)  =     ̂C

α (    ∇V xα α( )) =   x
α  for all α.  Thus, the critical

points of Π are precisely the rest points of (PV).
 Our assumption about the functions   V

α  implies that the Lyapunov function Π : Σ
→ ∆ is     C

N .  Since N  > max{0, N  – 1}, Sard's Theorem tells us that the set of critical
values of Π  has measure zero.  The previous paragraph shows that this set is equal
to {Π(x):  x ∈  RP}.  We therefore conclude from Propositions 5.3 and 6.4 of Benaïm
(1999) (also see Exercises 3.16 and 6.11 of Akin (1993)) that CR(PV) = RP(PV).  ■
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The Proof of Theorem 4.3

 The rest points of (PV) are hyperbolic by assumption, and therefore are isolated.
If RP(PV) ⊂ Σ were an infinite set, then as Σ is compact, RP(PV) would have an
accumulation point   x .  But since (PV) is continuous, this would imply that   x

∈ RP(PV), contradicting that all rest points are isolated.  We therefore conclude that
RP(PV), and hence {Π(x):  x ∈  RP(PV)}, are finite.  Thus, Propositions 5.3 and 6.4 of
Benaïm (1999) again imply that CR(PV) = RP(PV).  ■

The Proof of Theorem 5.1
 It is enough to show that if   T yβ β  ≥   T xβ β  and   y

−β  =   x
−β , then     T B yα α α˜ ( )−  ≥

    T B xα α α˜ ( )− .  Since the behavior of all players besides α  and β is fixed, it is enough to
consider a two player game and to suppose that α  = 1 and that β = 2.  It will be
convenient to represent player 1's payoffs as a matrix, and so we define A  ∈      R

n nα β×

by Aij =     u i j1( , ).  Thus, if player 2 chooses mixed strategy     x
2, player 1's vector of

payoffs is A    x
2 ∈      R

nα

.
 We begin with a lemma.

Lemma A.2:  Suppose that     bk k

n{ } =1
 is strictly increasing and that     ck k

n{ } =1
 satisfies

(13)
    

ck
k

j

=
∑

1

 ≤ 0 for all j ≤ n, with a strict inequality for some j and equality at j = n.

Then      b ck ki

n

=∑ 1
 > 0.

Proof:  For all j < n, let dj = bj+1 – bj > 0.  Then

 
    

b ck k
i

n

=
∑

1

 = 
    
b cn k

k

n

=
∑

1

 – 
    

d cj
j

n

k
k

j

=

−

=
∑ ∑



1

1

1

 = –
    

d cj
j

n

k
k

j

=

−

=
∑ ∑



1

1

1

 > 0.  ❏

 The next lemma shows that the increasing differences property of supermodular
games still holds when we consider ordered pairs of opponent's mixed strategies.  Its
proof makes use of the following observation:

(14)   T yα α  ≥   T xα α  if and only if  
    

( )y xi i
i

m
α α−

=
∑

1

 ≤ 0 for all m <   n
α .

Lemma A.3:  If     T y2 2  ≥     T x2 2 and     y
2  ≠     x

2, then (A     y
2 )i – (A    x

2)i is strictly increasing in i.
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Proof:  Fix i < j.  We want to show that (A     y
2 )j – (A     x

2)j > (A     y
2 )i – (A     x

2)i, or

equivalently, that

 (A     y
2 )j – (A    y

2 )i = 
    

( )A A yjk ik k
k

n

−
=

∑ 2

1

2

 > 
    

( )A A xjk ik k
k

n

−
=

∑ 2

1

2

 = (A    x
2)j – (A    x

2)i.

Since G is strictly supermodular, bk = Ajk – Aik =     u j k1( , )  –     u i k1( , ) is strictly increasing
in k, while since     T y2 2  ≥     T x2 2 and     y

2  ≠     x
2, observation (14) implies that ck =     yk

2  –     xk
2

satisfies condition (13).  Thus, Lemma A.2 yields the result. ❏

 Now suppose that     T y2 2  ≥     T x2 2; we want to show that     T B y1 1 2˜ ( ) ≥     T B x1 1 2˜ ( ).  If     y
2  =

    x
2 this is obviously true, so we suppose instead that     y

2  ≠     x
2.  By observation (14), it

is enough to show that for all m <     n
1 ,

 0 > 
    

( ˜ ( ) ˜ ( ))B y B xi i
i

m
1 2 1 2

1

−
=
∑  = 

    
∇ + − ⋅ −∫∑

=

˜ ( ( ) ) ( )B y x y x di
i

m
1 2 2 2 2

0

1

1

1λ λ λ .

If we let     z
2  = λ    y

2  + (1 – λ)    x
2, then it is enough to show that

(15) 
    

∇ ⋅ −
=
∑ ˜ ( ) ( )B z y xi
i

m
1 2 2 2

1

 < 0 for all m <     n
1 .

Since     ̃ ( )B z1 2  =     C Az1 2( ), we see that

 
    

∇ ⋅ −
=
∑ ˜ ( ) ( )B z y xi
i

m
1 2 2 2

1

= 
    

∂
∂π

C
Az A y xi

k
kj

k

n

j j
j

n

i

m 1
2

1

2 2

11

12

( ) ( )
===

∑∑∑






− .

This expression is negative if

(16)
    

( ( )) ( )A y x
C

Azk
k

n
i

ki

m
2 2

1

1
2

1

1

− −




= =

∑ ∑ ∂
∂π

 > 0.

Now bk = (A(    y
2  –     x

2))k is strictly increasing by Lemma A.3, while equations (4) and

(5) imply that ck =     –
∂
∂π
C

i

m
i

k

1

1=∑  satisfies condition (13).  Therefore, Lemma A.2 implies

that inequality (16) holds for all m  <     n
1 , and hence that     T B y1 1 2˜ ( ) ≥     T B x1 1 2˜ ( ).  This

completes the proof of the proposition.  ■
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 It is worth noting that only two properties of the choice probability function   C
α

were used to prove Theorem 5.1.  To establish condition (13), we used these two
facts:

(17) 
    

∂
∂ π

αC

j

l

i

k
i

j
==
∑∑

11

 > 0 for all k, l <   n
α ;

(18)
    

∂
∂ π

α
α

C

j

n
i

j
=
∑

1

 = 0 for all i ≤   n
α .

Notably, the symmetry of D  C
α , which was essential for establishing our results for

other classes of games, was not needed here.  In fact, all of our results for
supermodular games extend immediately to dynamics based on any choice
probability function satisfying (17) and (18).  On the other hand, our results for
supermodular games cannot be extended to all perturbed best response dynamics
based on deterministic perturbations of payoffs:  the characterization of the
corresponding choice functions given after the proof of Theorem 2.1 shows that the
inequalities in expression (17) are not even weakly satisfied by all such functions.

The Proof of Theorem 5.2

 Define     ̃B : Σ → Σ by     ̃B(x) = (    ̃ ( )B x1 1− , … ,     ̃ ( )B xp p− ).  Theorem 5.1 implies that T    ̃B(x) ≤
T    ̃B(y) whenever Tx ≤ Ty.
 Let     y     and   y  be the minimal and maximal elements of Σ.  That is,     y     is the mixed

strategy profile at which each player chooses his lowest pure strategy with probability
1, and   y  is the profile at which each player chooses his highest pure strategy with

probability 1.  Let     ̃
[ ]B k  denote the k-fold iteration of the function     ̃B .  Since T    ̃B(    y    ) ≥ T    y    ,

iteration of     ̃B  starting from     y     yields an increasing sequence     {
˜ }[ ]B k

k =
∞

0 .  Because this

sequence is contained in the compact set Σ, its limit     x     exists.  Moreover, the
continuity of     ̃B  implies that

     x     = 
    
lim ˜ [ ]

k

kB
→∞

(    y    ) = 
    
˜( lim ˜ [ ]B B

k

k

→∞

−1 (    y    )) =     ̃B(    x    ),

and so     x     is a rest point of (P).  Similarly, if we iterate     ̃B  starting from   y , then in the

limit we obtain a rest point   x .
 Now let x* be any rest point of (P), so that     ̃B(x*) = x*.  Since x* ∈  Σ, T    y     ≤ Tx* ≤
T  y .  Therefore, if we iteratively apply     ̃B  to     y    , x*, and   y , then in the limit we obtain

T    x     ≤ Tx* ≤ T  x , proving the theorem.  ■
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The Proof of Proposition 5.3

 If {xt} solves (P), then

   
d
dt tT xα α  =     T xd

dt t
α α( ) =     T B x xt t

α α α α( ˜ ( ) )− −  =     T B T T x T xt t
α α α α α α α˜ (( ) ( ))− − − − −1 ,

so {Txt} solves (T).  Conversely, if {Txt} solves (T), then

  
d
dt txα  =     ( ) ( )T T xd

dt t
α α α−1  =     ( ) ( ˜ (( ) ( )) )T T B T T x T xt t

α α α α α α α α− − − − − −1 1  =     
˜ ( )B x xt t

α α α− − ,

so {xt} solves (P).  ■

The Proof of Theorem 5.4

 Given any subset I of the components of v , we can find a pair of components (α,
i) ∈ I and (β, j) ∉  I such that α  ≠ β.  Define the function     ̂B

α :     T
− −α α( )Σ  →     T Sα α( )∆  by

    ̂B
α (  v

−α ) =     T B T vα α α α˜ (( ) )− − −1 .  To prove the theorem, it is enough to show that 
    
∂
∂

αα

β

ˆ
( )B

v
i

j

v−

> 0.  As in the proof of Theorem 5.1, it is enough to consider a two player game, and
to let α = 1 and β = 2.
 Let     x

2 =     ( )T v2 1 2− .  Observe that if ej+1 and ej are standard basis vectors in       R
n2

, then

    T
2 (ej+1 – ej) = ι j, a standard basis vector in       R

n2 1− .  It follows that

 
    

∂
∂

ˆ
( )

B
v

vi

j

1

2
2 = 

    
lim ˆ ( ) ˆ ( )
ε ε

ει
→

+ −( )



0

1 2 1 21
B v B vj

i

 = 
    

lim ˜ (( ) ( )) ˜ (( ) ( ))
ε ε

ει
→

− −+ −( )



0

1 1 2 1 2 1 1 2 1 21
T B T v T B T vj

i

 = 
    

T B x e e B xj j
i

1

0

1 2
1

1 21
lim ˜ ( ( )) ˜ ( )
ε ε

ε
→ ++ − −( )











 = 
    
T DB x e ej j

i

1 1 2
1( ˜ ( )( ))+ −[ ]

 = 
    

∇ ⋅ −+
= +
∑ ˜ ( ) ( )B x e ek j j

k i

n
1 2

1
1

1

Since     
˜ ( )B ykk

n 1 2

1

1

=∑  = 1 for all     y
2  ∈      ∆S2,     ∇ ⋅

=∑ ˜ ( )B y zkk

n 1 2

1

2
1

 = 0 for all     y
2  ∈      ∆S2 and all     z

2

∈        R0

2n .  We can therefore conclude from equation (15) that

 
    

∂
∂

ˆ
( )

B
v

vi

j

1

2
2  = 

    
− ∇ ⋅ −+

=
∑ ˜ ( ) ( )B x e ek j j
k

i
1 2

1
1

 > 0.  ■
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The Proof of Corollary 5.5 (ii)
 Let φ: R+ × Σ → Σ denote the semiflow of (P), and let     y     and   y  denote the minimal

and maximal points in Σ.  By part (i) of the corollary, we have that Tφ(t,     y    ) ≤ Tφ(t, x) ≤
Tφ(t,   y ) for all t ≥ 0 and x ∈  Σ.  The forward invariance of Σ and Theorem 1.2.1 of
Smith (1995) imply that φ(t,     y    ) and φ(t,   y ) both converge to rest points of (P) as t

grows large.  Consequently, the previous inequalities and Theorem 5.2 imply that

 T    x     ≤ T    ̂x  ≤ T  x   for all     ̂x  ∈  GA(P) ≡ 
      

φ( , )t
t

Σ
≥0
I .

(Moreover, these facts also imply that φ(t,     y    ) →     x     and that φ(t,   y ) →   x .)  The set

GA(P) is called the global attractor of the dynamic (P).  It is well known that GA(P) is
the maximal invariant subset of Σ and that it is compact and asymptotically stable.
Most importantly, Theorem 9.1.3 of Robinson (1995) shows that CR(P) ⊂ GA(P),
establishing the result.  ■

Characterization of Equilibria in Example 5.6
 Let G denote the common distribution function for   ε

α
1  –   ε

α
2 .  Our assumptions

about this difference imply that G(0) =   
1
2 , that     ′G ( )0  >   

1
2 , that G is concave on (0, ∞),

and that G is convex on (–∞, 0).  It follows that the equality G(2p – 1) = p holds for
exactly three values of p:  one above, one below, and one equal to   

1
2 .

 Since player α 's payoffs only depend on the behavior of player α  + 1 and since
each player has exactly two strategies, we can write

     B x2 2
1α α( )+  = P(    x2

1α +  +   ε
α
2  ≥ (1 –     x2

1α + ) +   ε
α
1 ) = P(  ε

α
1  –   ε

α
2  ≤ 2    x2

1α +  – 1) = G(2    x2
1α +  – 1).

It follows that there is a rest point with     x2
α  = p for all players p if and only if p = G(2p

– 1), and so there are exactly three symmetric rest points of (P).  Moreover, if   p
+  >   

1
2

and   p
−  <   

1
2  are the weights placed on strategy 2 in the rest points corresponding to

the pure equilibria of the underlying game, then our assumptions about the
distribution of   ε

α
1  –   ε

α
2  imply that g(  p

+ ) = g(  p
− ) <   

1
2 ; a variation on the stability

analysis provided in the text then reveals that these two rest points are stable.
 We now show that (P) does not admit any asymmetric rest points.  By symmetry,
we can write B(·) for     B2

α ( )⋅ .  Now suppose that x is an asymmetric rest point of (P).
Then     x2

α  ≠     x2
1α +  for some α.  Suppose that     x2

α  <     x2
1α + .  Then since each player is

playing a best response and since B is strictly increasing, we see that     x2
1α −  = B(    x2

α ) <
B(    x2

1α + ) =     x2
α .  Iterating (and using the fact that player p's payoffs depend on player 1's
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behavior), we conclude that     x2
1α +  <     x2

1α + , which is a contradiction.  If     x2
α  >     x2

1α + , we can
establish that     x2

1α +  >     x2
1α + , which is again a contradiction.  ■

 To prove parts (iii) and (iv) of Theorem 6.1, we need to establish that standard
stochastic fictitious play Zt satisfies a global version of Pemantle's (1990)
nondegeneracy condition.  To state this condition, we let U = {θ ∈        R0

nα

α∏ :

    ( )θα
α ii

2∑∑  = 1} denote the set of unit vectors in       R0
nα

α∏ , the tangent space of Σ.

Lemma A.4:  
    
min min max ( ˜ ( )) ,

z U t tE B z Z z
∈ ∈ +

−− ⋅{ } =( )∑Σ θ

α α α α
α

ζ θ1 0  > 0.

To interpret this condition, recall that if Zt = z, then the increment in beliefs at
time t + 1 is described by     Zt+1

α  –   Zt
α  =     

1
1t+ (    ζ

α
t+1 –   z

α ), while the expected increment is
described by     E Z Z Z zt t t+ − =( )1

α α  =     
1

1t+ (    ̃ ( )B zα α−  –   z
α ).  Thus, the condition in the

lemma requires that there are significant random deviations of the process Zt from
its expected motion; these deviations must be possible from any current state z and
in any direction θ.  The proof of Lemma A.4 requires this preliminary result.

Lemma A.5:  If θ ∈  U, then there exists a player β such that     max
i S∈ β   θ

β
i  > 

    
1

n pβ  a n d

    min
i S∈ β   θ

β
i  < –

    
1

n pβ .

 Proof of Lemma A.5:  Since θ is of unit length, there must be a player β such that
τ β  ≡     ( )θ β

β ii S

2

∈∑  ≥     
1
p .  Since θ β  ∈        R0

nβ

, we know that k, the number of strictly positive

components of θ β , is between 1 and   n
β  – 1; we may suppose the first k  components

are strictly positive.  Now suppose that     max
i S∈ β   θ

β
i  <     τ β β β/( ( ))n n − 1 .  In this case,

    θ β
ii

k

=∑ 1
 < k     τ β β β/( ( ))n n − 1  and     ( )θ β

ii

k 2

1=∑  <     ( )/( ( ))k n nτ β β β − 1 .  Since θ β  ∈        R0
nβ

,

    θ β
β

ii k

n

= +∑ 1
 = –    θ β

ii

k

=∑ 1
; moreover,     ( )θ β

β

ii k

n 2

1= +∑  <     ( )/( ( ))k n n2 1τ β β β − , as this sum is

maximized if exactly one term is non-zero.  But then     ( )θ β
β

ii

n

=∑ 1

2  <

    (( ) )/( ( ))k k n n+ −1 1τ β β β  ≤ τ β , which is a contradiction.  Therefore,     max
i S∈ β   θ

β
i  ≥

    τ β β β/( ( ))n n − 1  > 
    

1
n pβ .  The proof of the other claim is similar.  ❏

 Proof of Lemma A.4:  Since the density of each disturbance vector εα  has full
support on     R

nα

, we can place a uniform lower bound on the probability of an
arbitrary strategy being the best response after the payoff disturbances are realized:
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 m  ≡ 
    
min min min ˜ ( )

α

α α
α α αx i S

iB x
− −∈ ∈

−

Σ
 > 0.

Now fix z ∈  Σ and θ ∈ U, and let   S
+  = {s ∈  S:     ( ˜ ( ))e B z

sα
α α α α

α
θ− ⋅−∑  > 0}, where   esα

α  is a

standard basis vector in     R
nα

.  Then

 
    
E B z Z zt tmax ( ˜ ( )) ,ζ θα α α α

α +
−− ⋅{ } =( )∑ 1 0

 = 
    

P e e Z z e B zt s t
p

s
p

t
s S

spζ ζ θα
α α α

α
α

+ +
∈

−= = =( ) − ⋅{ }∑ ∑1
1 1

11 0,..., max ( ˜ ( )) ,

 = 
    

˜ ( ) ( ˜ ( ))B z e B z
s

s S
sγ α

γ γ

γ

α α α

α

αθ−

∈

−∏∑ ∑






− ⋅





+

 ≥ 
    
m e B zp

s S s
max ( ˜ ( ))

∈

−− ⋅∑ α
α α α α

α
θ

 = 
    
m B zp

s S s
max ˜ ( )

∈

−− ⋅






∑ ∑θ θα

α

α

γ γ γ

γ

 ≥ 
    
m m mp

i S
i

i S
i

i S
imax ( )max min

∈ ∈ ∈
− − +











∑ ∑α γ γ

θ θ θα

α

γ γ

γ
1

 = 
    
mp

i S
i

i S
i

+

∈ ∈
−



∑1 max min

α α
θ θα α

α

 ≥ 
    
2 1m
n p

p+

β ,

where β is the player specified in Lemma A.5.  ■

The Proof of Theorem 6.1 (iii)
 We only consider the case of standard stochastic fictitious play; the proof for the
symmetric case is similar.  Suppose that G is a potential game and that the
distributions of the vectors εα  are smooth enough that the corresponding
deterministic perturbations   V

α  are     C
N .  Then Proposition 4.2 and Theorem 2.1

imply that CR(P) = RP(P).  Therefore, Theorem 3.3 of Benaïm and Hirsch (1999a) and
Proposition 5.3 of Benaïm (1999) imply that P(ω(Zt) is a connected subset of RP(P)) =
1.  (In addition, Proposition 6.4 of Benaïm (1999) implies that the Lyapunov function
Π is almost surely constant on ω(Zt).)
 Next, suppose that G is a potential game, that all rest points of (P) are hyperbolic,
and that (P) is   C

2.  Then Proposition 4.3 and Theorem 2.1 show that CR(P) = RP(P)
and that this set is finite.  Thus, Theorem 3.3 of Benaïm and Hirsch (1999a) and
Proposition 5.3 of Benaïm (1999) imply that P(limt→∞Zt ∈  RP(P)) = 1.  Furthermore,



–35–

since the rest points of (P) are hyperbolic, each is either linearly stable or linearly
unstable.  Given this observation, the fact that (P) is   C

2, and Lemma A.4, Theorem 1
of Pemantle (1990) implies that P(limt→∞Zt ∈  LS) = 1.  ■

The Proof of Theorem 6.1 (iv)
 Again, we only consider the case of standard stochastic fictitious play; the proof
for the symmetric case is similar.  Suppose that G is a supermodular game.  By
Theorem 5.2 and Corollary 5.5, CR(P) ⊂ RP(P) 

      ∪ ( MiiU  ∩  [    x    ,   x ]), where each set Mi

is an unstable invariant manifold of (P).  Hence, Theorem 3.3 of Benaïm and Hirsch
(1999a) and Proposition 5.3 of Benaïm (1999) establish the first statement in the
result.  If Σ is two dimensional, we can appeal to Proposition 5.3, Theorem 5.4, and
Theorem 4.3 of Benaïm (2000), which establishes that when (P) is a   C

2, two
dimensional, cooperative, and irreducible dynamic, Zt converges with probability
one to a rest point of (P) which is not linearly unstable.  Once again, Lemma A.4
provides the nondegeneracy condition which is needed to apply this result.  (Under
symmetric stochastic fictitious play, the state space     ∆S1  is one dimensional if     n

1  = 2.

In this case, each unstable invariant manifold is simply a rest point, and so our
result for this case follows from the   C

2 smoothness of (P), Lemma A.4, and
Theorem 1 of Pemantle (1990).)  ■
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