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Sensing - Motivation

Consider an alphabet 2/ x 29 for some finite sets / and O of
inputs and outputs, respectively.

Consider a regular //O specification over 2/ x 2 and a
corresponding transducer 7.

Reading the truth value of each signal in / requires activating
some sensor.

The complexity of T can be measured by the expected
number of sensors T uses.
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Example (1)
Let /| = {p,q} and O = {a}. Consider the specification:

e Initial state senses {p, q}.
e Has sensing cost 2.
e Other states sense ().

e Sensing cost of T is 1.



Motivation

Definitions Solving Parity MDPs

Sensing - Definition

e Consider an //O-transducer T .

Summary



Motivation Definitions Solving Parity MDPs

Sensing - Definition

e Consider an //O-transducer T .

e A state g of T is said to sense a signal p € [ if there exists
i C | such that §(q, ) # d6(q,i U {p}).

Summary



Motivation Definitions Solving Parity MDPs Summary

Sensing - Definition

e Consider an //O-transducer T .

e A state g of T is said to sense a signal p € [ if there exists
i C | such that §(q, ) # d6(q,i U {p}).

e The sensing cost of a state q is
sensed(q) = |{p : g senses p}|.



Motivation

Definitions Solving Parity MDPs

Sensing - Definition

Consider an |/ O-transducer T .

A state g of T is said to sense a signal p € | if there exists
i C | such that §(q, ) # d6(q,i U {p}).

The sensing cost of a state q is

sensed(q) = |{p : g senses p}|.

The sensing cost of a word 7 € (2/)“ is the average sensing
cost along the run of 7 on .

Summary



Motivation

Definitions Solving Parity MDPs

Sensing - Definition

Consider an |/ O-transducer T .

A state g of T is said to sense a signal p € | if there exists
i C | such that §(q, ) # d6(q,i U {p}).

The sensing cost of a state q is

sensed(q) = |{p : g senses p}|.

The sensing cost of a word 7 € (2/)“ is the average sensing
cost along the run of 7 on .

The sensing cost of T is the expected average cost on a
uniformly-random word.

Summary
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Problem Formulation

e We are given a specification-automaton A over alphabet
2/ x 29,

e Output an //O-transducer T that realizes A, with minimal
sensing.
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Example (2)
Let / = {p,q} and O = {a}. Consider the specification:

. . 1
Sensing cost 1. Sensing cost 3.
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Example (2)

o It is well known that a DFA specification is realizable iff there
is an “embodied” strategy.

e However, a minimal-sensing transducer does not always
correspond to an embodied strategy.

e For infinite words, the minimal sensing might not be attained.

For example: GF(a <= Xb)
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Lower Bound

Given a DFA specification A and a threshold v, deciding whether
scost(A) < v is EXPTIME-hard.

This lower bound carries to safety properties on infinite words, and
hence to all acceptance conditions.

We show a reduction from the problem of deciding the emptiness
of the intersection of DFTs (EXPTIME-complete).

We demonstrate the idea with DFAs.

13/22
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Lower Bound - Proof
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Lower Bound - Proof
Consider DFAs Ay, ..., A,. We construct a specification:
e The DFAs' alphabet are outputs.

In reset, the input determines which DFA we choose.

We force sensing of one bit in the DFAs.

The output end signifies that the word is finished.
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Lower Bound - Proof
Consider DFAs Ay, ..., A,. We construct a specification:
e The DFAs' alphabet are outputs.
e In reset, the input determines which DFA we choose.
e We force sensing of one bit in the DFAs.
e The output end signifies that the word is finished.

e A transducer can ignore inputs in reset iff (); L(A;) # 0.

end

Summary
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Upper Bound - Questions

e Given a parity automaton A over alphabet 2/ x 2%, can we
compute its infimum sensing cost?

e Can we also output a transducer that attains/approximates
this value?

e Do finite transducers suffice for an approximation?
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From Sensing to Parity-MDPs

e Traditional synthesis from a parity automaton is solved by
translating it to a parity game, and looking for a winning
strategy.

e We reduce our problem to a variant of parity games combined
with an MDP.

16

22



Definitions

From Sensing to Parity-MDPs

Given a parity automaton A over alphabet 2/ x 2°:

1. Construct a universal parity automaton A’ where each state
record the current state of A and which inputs are sensed.
Then, given concrete inputs, universally choose an successor
that agrees with the concrete inputs on the sensed inputs.

17 /22



Definitions

From Sensing to Parity-MDPs

Given a parity automaton A over alphabet 2/ x 2°:

1. Construct a universal parity automaton A’ where each state
record the current state of A and which inputs are sensed.
Then, given concrete inputs, universally choose an successor
that agrees with the concrete inputs on the sensed inputs.

2. Determinize A’ to a parity automaton D.

17 /22



Definitions

From Sensing to Parity-MDPs

Given a parity automaton A over alphabet 2/ x 2°:

1. Construct a universal parity automaton A’ where each state
record the current state of A and which inputs are sensed.
Then, given concrete inputs, universally choose an successor
that agrees with the concrete inputs on the sensed inputs.

2. Determinize A’ to a parity automaton D.

3. Construct from D a parity game G, and assign a cost to each
state according to the number of sensed inputs.

17 /22



Definitions

From Sensing to Parity-MDPs

Given a parity automaton A over alphabet 2/ x 2°:

1. Construct a universal parity automaton A’ where each state
record the current state of A and which inputs are sensed.
Then, given concrete inputs, universally choose an successor
that agrees with the concrete inputs on the sensed inputs.

2. Determinize A’ to a parity automaton D.

3. Construct from D a parity game G, and assign a cost to each
state according to the number of sensed inputs.

4. A winning strategy in G realizes the specification, and its
expected mean-payoff against a stochastic environment is its
sensing cost.
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Parity MDPs

A parity MDP is an MDP... equipped with a parity winning
condition.

The value of a sure-winning Player 1 strategy is the expected
cost against the stochastic environment.

Thus, Player 1 needs to surely win against an adversarial
environment, while minimizing the expected cost.

Optimal strategy may not exist:

2,10
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e A Good End Component (GEC) in G is an end component
whose maximal parity rank is even.
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Solving Parity MDPs

e A Good End Component (GEC) in G is an end component
whose maximal parity rank is even.

e Easy: every winning strategy reaches a GEC w.p. 1.
e We show that within a GEC, we can approximate the optimal
mean-payoff with an infinite-memory strategy.

. Play a for a long time.
. Play b for a while, try to reach 2, 10.

. If 2,10 reached, goto 1 with a longer counter.

A W NN =

. Otherwise, play ¢ (“give up”).

2,10
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Summary of Results

We show how to compute the value of Parity-MDPs in
NPNcoNP.

Can also find an approximating infinite-memory strategy.

We show how to compute the value of Parity-MDPs under
finite-memory strategies in NPNcoNP.

Can also find an approximating finite-memory strategy for the
latter.

Enables us to find a minimally-sensing transducer (or an
approximating one) in EXPTIME, matching the lower bound.

Parity MDPs are a useful tool in modeling combinations of
quantitative and Boolean properties.
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