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Motivation Definitions Solving Parity MDPs Summary

Sensing - Motivation

•
Consider an alphabet 2I × 2O for some finite sets I and O of

inputs and outputs, respectively.

• Consider a regular I/O specification over 2I × 2O , and a

corresponding transducer T .

•
Reading the truth value of each signal in I requires activating
some sensor.

• The complexity of T can be measured by the expected

number of sensors T uses.
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Related Work

• Mean-payoff Games with Incomplete Information
[P. Hunter, G. A. Pérez, and J.F. Raskin, 2013].

• Minimum attention controller synthesis for ω-regular
objectives
[K. Chatterjee and R. Majumdar, 2011].

• Controller synthesis with budget constraints
[K. Chatterjee, R. Majumdar, and T. A. Henzinger, 2008].

• Synthesis with Incomplete Information
[O. Kupferman and M.Y. Vardi, 97].
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Example (1)

Let I = {p, q} and O = {a}. Consider the specification:

q0 q1q2

q3

p ∧ q¬p ∧ ¬q

¬p ∧ q
¬q ∧ p

a¬a

True

• Initial state senses {p, q}.
• Has sensing cost 2.

• Other states sense ∅.
• Sensing cost of T is 1.
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Sensing - Definition

• Consider an I/O-transducer T .

• A state q of T is said to sense a signal p ∈ I if there exists
i ⊆ I such that δ(q, i) 6= δ(q, i ∪ {p}).

• The sensing cost of a state q is
sensed(q) = |{p : q senses p}|.

• The sensing cost of a word π ∈ (2I )ω is the average sensing
cost along the run of T on π.

• The sensing cost of T is the expected average cost on a
uniformly-random word.
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Problem Formulation

• We are given a specification-automaton A over alphabet
2I × 2O .

• Output an I/O-transducer T that realizes A, with minimal
sensing.
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Example (2)

• It is well known that a DFA specification is realizable iff there
is an “embodied” strategy.

• However, a minimal-sensing transducer does not always
correspond to an embodied strategy.
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Example (2)

• It is well known that a DFA specification is realizable iff there
is an “embodied” strategy.

• However, a minimal-sensing transducer does not always
correspond to an embodied strategy.

• For infinite words, the minimal sensing might not be attained.
For example: GF(a ⇐⇒ Xb)
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Lower Bound

Theorem

Given a DFA specification A and a threshold v , deciding whether
scost(A) ≤ v is EXPTIME-hard.

This lower bound carries to safety properties on infinite words, and
hence to all acceptance conditions.

We show a reduction from the problem of deciding the emptiness
of the intersection of DFTs (EXPTIME-complete).
We demonstrate the idea with DFAs.
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Lower Bound - Proof
Consider DFAs A0, ...,An. We construct a specification:

•
•
•
•
•
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Lower Bound - Proof
Consider DFAs A0, ...,An. We construct a specification:

• The DFAs’ alphabet are outputs.

• In reset, the input determines which DFA we choose.

• We force sensing of one bit in the DFAs.

• The output end signifies that the word is finished.

• A transducer can ignore inputs in reset iff
⋂

i L(Ai ) 6= ∅.
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Upper Bound - Questions

• Given a parity automaton A over alphabet 2I × 2O , can we
compute its infimum sensing cost?

• Can we also output a transducer that attains/approximates
this value?

• Do finite transducers suffice for an approximation?
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From Sensing to Parity-MDPs

• Traditional synthesis from a parity automaton is solved by
translating it to a parity game, and looking for a winning
strategy.

• We reduce our problem to a variant of parity games combined
with an MDP.
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From Sensing to Parity-MDPs

Given a parity automaton A over alphabet 2I × 2O :

1. Construct a universal parity automaton A′ where each state
record the current state of A and which inputs are sensed.
Then, given concrete inputs, universally choose an successor
that agrees with the concrete inputs on the sensed inputs.

2. Determinize A′ to a parity automaton D.

3. Construct from D a parity game G, and assign a cost to each
state according to the number of sensed inputs.

4. A winning strategy in G realizes the specification, and its
expected mean-payoff against a stochastic environment is its
sensing cost.
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Parity MDPs

• A parity MDP is an MDP...

equipped with a parity winning
condition.

• The value of a sure-winning Player 1 strategy is the expected
cost against the stochastic environment.

• Thus, Player 1 needs to surely win against an adversarial
environment, while minimizing the expected cost.

• Optimal strategy may not exist:

110 10 10

aa

c 0.5

1

b

0.5
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Solving Parity MDPs

• A Good End Component (GEC) in G is an end component
whose maximal parity rank is even.

• Easy: every winning strategy reaches a GEC w.p. 1.

• We show that within a GEC, we can approximate the optimal
mean-payoff with an infinite-memory strategy.

Proof Idea:

1. Play a for a long time.

2. Play b for a while, try to reach 2, 10.

3. If 2, 10 reached, goto 1 with a longer counter.

4. Otherwise, play c (“give up”).

1, 12, 10 1, 10 2, 10

aa

c 0.5

1

b

0.5
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Summary of Results

• We show how to compute the value of Parity-MDPs in
NP∩coNP.

• Can also find an approximating infinite-memory strategy.

• We show how to compute the value of Parity-MDPs under
finite-memory strategies in NP∩coNP.

• Can also find an approximating finite-memory strategy for the
latter.

• Enables us to find a minimally-sensing transducer (or an
approximating one) in EXPTIME, matching the lower bound.

• Parity MDPs are a useful tool in modeling combinations of
quantitative and Boolean properties.
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