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Basic definitions

A finite word x ∈ Σ∗ is a bad-prefix for a language L ⊆ Σω if
for all infinite words y ∈ Σω, the concatenation x · y is not in
L.

The language L is safety if every word not in L has a
bad-prefix [AS85].

The language L is liveness if it has no bad-prefixes [AS85].
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Examples

Let Σ = {a, b}.
L = {aω} is safety

Every word not in L has a bad-prefix – one that contains the
letter b

L = (a + b)∗ · aω is liveness

By concatenating aω to every word in Σ∗, we end up with a
word in the language

Orna Kupferman and Gal Vardi On Relative and Probabilistic Finite Counterability



Counterexamples in model-checking

An important advantage of model-checking tools is their
ability to accompany a negative answer by a counterexample.

lasso-shaped counterexample: uvω, for finite computations u
and v .

The simpler the counterexample is, the more helpful it is for
the user.

Efforts for designing algorithms that return short
counterexamples [SB05, KS06].

Orna Kupferman and Gal Vardi On Relative and Probabilistic Finite Counterability



Counterexamples in model-checking

An important advantage of model-checking tools is their
ability to accompany a negative answer by a counterexample.

lasso-shaped counterexample: uvω, for finite computations u
and v .

The simpler the counterexample is, the more helpful it is for
the user.

Efforts for designing algorithms that return short
counterexamples [SB05, KS06].

Orna Kupferman and Gal Vardi On Relative and Probabilistic Finite Counterability



Counterexamples in model-checking

The analysis of counterexamples makes safety properties
appealing: rather than a lasso-shaped counterexample, it is
possible to return to the user a bad-prefix.

This is simpler and points the user not just to one erroneous
execution, but rather to a finite execution all whose
continuations are erroneous.

We extend the notion of finite counterexamples to non-safety
specifications.
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Example 1

Consider a system S and a specification
ψ = G (req → F res)

Note that ψ is not safety and it does not have bad-prefixes.

There might be some input sequence that leads S to an error
state in which it stops sending responses.

Thus, there is a computation prefix that is ”bad with respect
to S”: all its extensions in S do not satisfy ψ.

Returning this prefix to the user is more helpful than returning
a lasso-shaped infinite counterexample.
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Example 2

ϕ = FG¬allocate
The system eventually stops allocating memory.

There might be some input sequence that leads S to an error
state in which every request is followed by a memory
allocation.

A computation that reaches this state almost-surely violates
the specification.

It is possible that requests eventually stop arriving and the
specification would be satisfied, but the probability of this
behavior of the input is 0.

Thus, there is a prefix that is ”bad with respect to S in a
probabilistic sense”: almost all of its extensions in S do not
satisfy ϕ.

We want to return this prefix to the user.
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Counterability

We say that a language L is counterable if it has a bad-prefix.

That is, L is counterable iff it is not liveness.

A language may be counterable and not safety:
For example, a∗ · b · (a + b + c)ω:

c is a bad-prefix
aω has no bad-prefixes

Three natural problems arise:
1 Given a language, decide whether it is counterable.
2 Study the length of minimal bad-prefixes for counterable

languages.
3 Develop algorithms for detecting bad-prefixes for counterable

languages.
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Deciding counterability

Deciding whether a given language is safety:
PSPACE-complete for both LTL formulas and
nondeterministic Büchi word automata (NBWs) [Sis94].

Deciding whether an NBW is liveness: PSPACE-complete.

Deciding whether an LTL formula is liveness:

PSPACE-hard
In EXPSPACE [Sis94]
In PSPACE? [NW97] – wrong upper bound

The problem was declared open in [BJKZ14, Lip14].

We show: EXPSPACE-hard.

Therefore, for LTL, deciding liveness is exponentially more
complex than deciding safety.

Independent EXPSPACE lower bound was found by Diekert,
Muscholl and Walukiewicz [DMW15] - to be published soon.
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Length and the detection of bad-prefixes

The length of a shortest bad-prefix for an NBW is tightly
exponential and it can be found in PSPACE or in EXPTIME.

The length of a shortest bad-prefix for an LTL formula is
tightly doubly-exponential. A bad-prefix can be found in
EXPSPACE or in 2EXPTIME.

The length of a shortest bad-prefix for a safety LTL formula is
tightly exponential and it can be found in PSPACE or in
EXPTIME.
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Finite counterexamples

Our primary interest – finding finite counterexamples.

Recall Example 1: A system S and a specification
ψ = G (req → F res).

The specification ψ is not counterable.

However, there might be some input sequence that leads S to
an error state in which it stops sending responses.

Therefore, there is a computation prefix that is ”bad with
respect to S”.

This prefix can be used as a finite counterexample.
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K -bad-prefixes

A finite computation x ∈ (2AP)∗ of a Kripke structure K is a
K -bad-prefix for a language L ⊆ (2AP)ω, if x cannot be
extended to an infinite computation of K that is in L.

We wish to return to the user a K -bad-prefix as a finite
counterexample.
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K -counterability

Consider a language L and a Kripke structure K .

The language L is K -counterable if it has a K -bad-prefix.

Three natural problems arise:
1 Decide whether a language is K -counterable.
2 Study the length of minimal K -bad-prefixes for K -counterable

languages.
3 Develop algorithms for detecting K -bad-prefixes for

K -counterable languages.
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K -counterability problems

The solutions for the three problems in the non-relative
setting apply also to the relative one, with an additional
NLOGSPACE or linear-time dependency in |K |:

Deciding K -counterability and finding a shortest K -bad-prefix:

PSPACE-complete for NBW
EXPSPACE-complete for LTL
In both cases: time linear or space polylogarithmic in |K |

The length of a shortest K -bad-prefix:

Tightly exponential for NBW
Tightly doubly-exponential for LTL
In both cases: tightly linear in |K |
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A probabilistic view

A random word over Σ is a word in which all letters are drawn
from Σ uniformly at random.

In particular, when Σ = 2AP , then the probability of each
atomic proposition to hold in each position is 1

2 .

A finite word x ∈ Σ∗ is a prob-bad-prefix for a language
L ⊆ Σω if the probability of an infinite word with prefix x to
be in L is 0.

That is, Pr({y ∈ Σω : x · y ∈ L}) = 0.

L is prob-counterable if it has a prob-bad-prefix.
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Example of a prob-counterable formula

Counterable ⇒ prob-counterable. The other direction does
not hold.

Consider the LTL formula
ψ = (req ∧ GFgrant) ∨ (¬req ∧ FG¬grant).

ψ does not have a bad-prefix – it is not counterable.

All finite computations in which a request is not sent in the
beginning are prob-bad-prefixes for ψ – it is prob-counterable.
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Finite counterexamples - a probabilistic view

Recall Example 2: A system S and a specification ϕ stating
that the system eventually stops allocating memory.

There might be some input sequence that leads S to a state
in which every request is followed by a memory allocation.

A computation that reaches this state almost-surely violates
the specification.

Thus, there is a computation prefix that is ”bad with respect
to S in a probabilistic sense” : almost all of its extensions in
S do not satisfy ϕ.

This prefix can be used as a finite counterexample.
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K -prob-counterability

A finite computation x ∈ (2AP)∗ of a Kripke structure K is a
K -prob-bad-prefix for a language L ⊆ (2AP)ω if a
computation of K obtained by continuing x with some
random walk on K , is almost surely not in L.

The definition is independent of the probabilities of the
transitions in the random walk on K .

L is K -prob-counterable if it has a K -prob-bad-prefix.

K -counterable ⇒ K -prob-counterable. The other direction
does not hold.
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Probabilistic counterability advantages

The probabilistic setting increases our chances to return finite
counterexamples.

It also makes the solution of our three basic problems
exponentially easier for LTL formulas:

Deciding prob-counterability and K -prob-counterability and
finding the prefixes are exponentially easier than deciding
counterability and K -counterability.
The length of the prefixes is exponentially smaller.
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Probabilistic counterability basic problems

Formally (we show here only the relative variant):

Deciding K -prob-counterability and finding a
K -prob-bad-prefix:

PSPACE-complete for NBW
PSPACE-complete for LTL
In both cases: time linear or space polylogarithmic in |K |

The length of a shortest K -prob-bad-prefix:

Tightly exponential for NBW
Tightly exponential for LTL
In both cases: tightly linear in |K |
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Questions?
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