http://ie.technion.ac.il/~ofers/frontend/

Regression Verification for unbalanced recursive functions

OFER STRICHMAN

MAOR VEITSMAN

TECHNION, HAIFA, ISRAEL

Submitted to FM16'

Regression Verification

Develop a method for formally verifying the equivalence of two similar programs.

Selling points:

- Specification: not needed
- Complexity: depends on the semantic difference between the programs, and not on their size.

Partial Equivalence

- There are many definitions of equivalence.
- We will focus on partial equivalence:
- Executions of P1 and P2 on equal inputs
 - ...which terminate,
 - result in equal outputs.
- Undecidable

Partial Equivalence for Recursive Functions

Consider the call graphs:

- ... where A,B have:
 - same prototype
 - no loops

Prove partial equivalence of A, B

• How shall we handle the recursion ?

Hoare's Rule for Recursion

Let A be a recursive function.

$$\frac{\{p\} \text{ call } A \ \{q\} \ \vdash \ \{p\} \ A \text{ body } \{q\}}{\{p\} \text{ call } A \ \{q\}} \ (\text{REC})$$

Hoare's Rule for Recursion

```
\frac{\{p\} \text{ call } \overline{A} \ \{q\} \ \vdash \ \{p\} \ A \text{ body } \{q\}}{\{p\} \text{ call } A \ \{q\}} \ (\text{REC})
               // {p}
               A(...)
                    // {q}
               // {q}
```

Proving Partial Equivalence

Proving Partial Equivalence

```
\frac{\mathsf{partial\text{-}equiv}(\mathbf{call}\ A, \mathbf{call}\ B)\ \vdash\ \mathsf{partial\text{-}equiv}(A\ \mathbf{body}, B\ \mathbf{body})}{\mathsf{partial\text{-}equiv}(\mathbf{call}\ A, \mathbf{call}\ B)}\ (\mathsf{PART\text{-}EQ\text{-}1})
```

Q: How can a verification condition for the premise look like?

A: Replace the recursive calls with calls to functions that

- over-approximate A, B, and
- are partially equivalent by construction

Natural candidates: Uninterpreted Functions

Proving Partial Equivalence

Let A^{UF}, B^{UF} be A,B, after replacing the recursive call with a call to (the same) uninterpreted function.

We can now rewrite the rule:

What (PART-EQ) cannot prove (1)

Calling under different base conditions:

```
int fact1(int n) {
    if (n <= 1) return 1;
    return n * fact uf(n-1);
}

when n = 1:

returns 1

int fact2(int n) {
    if (n <= 0) return 1;
    return n * fact uf(n-1);
}

return 1 * return 1 * nondet()</pre>
```

The verification condition

•We check this program with a bounded model checker (i.e. CBMC).

What (PART-EQ) cannot prove (2)

Unbalanced recursive functions lead to function calls with different arguments:

```
int sum1(int n) {
  if (n <= 1) {
    return n;
  }
  return n + n-1 {sum1(n-2);
  }
  return n + n-1 + nondet()
  returns n + n -1 + nondet()</pre>
```

Our strategy

1. For the same input: f invokes base-case, g does not.

Therefor, we will prove equivalence separately for:

- Inputs that invoke the base-case in *at-least* one of *f* , *g*
- All the rest

2. f, g are not in lock-step!

Therefor: unroll them separately to their least-common multiplier.

• But: Unrolling changes what we mean by base-case. Previous solution must be adapted.

New Proof Rule

Our new proof rule contains two premises:

- Base cases are equivalent: base-equiv(f,g)
- Step is equivalent: step-equiv(f,g)

$$\frac{base-equiv(f,g)}{partial-equiv(f,g)}$$

base-equiv(f,g)

- •Let in_B be the set of inputs driving f or g to a base case.
- •Let $partial-equiv(f,g)|_{in_B}$ be partial-equivalence under inputs in_B .
- •We now define:

$$base-equiv(f,g) \doteq partial-equiv(f,g) \Big|_{in_B}$$

step-equiv(f,g)

- •Let in be the full set of possible inputs.
- •Let $in_S = in in_B$
 - (the set of inputs **not** driving f **or** g to a base case).
- •We now define:

$$step-equiv(f,g) = partial-equiv(f,g)\Big|_{in_S}$$

Non Balanced Recursive Step - Solution

- •We perform unbalanced unrolling.
- •By applying unroll(sum2,1) we get:

```
int sum2 1(int n) {
int sum1(int n) {
                                 if (n <= 1) {
 if (n <= 1) {
                                  return n;
 return n;
return n + n-1 + uf_{sum(n-2)}; return n + uf_{sum(n-1)};
       8 + 7 + uf sum(6)
                                     7 + uf sum(6)
                                int sum2(int n) {
                                 if (n <= 1) {
                                  return n;
         n = 8
                                 return n + sum2 1(n-1);
```

Non Balanced Recursive Step - Problem

•For n = 2: int sum2 1(int n) { int sum1(int n) { if (n <= 1) { if $(n \le 1)$ { return n; return n; return $n + n-1 + uf_sum(n-2);$ return $n + uf_sum(n-1)$; int sum2(int n) { if (n <= 1) { returns 2 + 1 + nondet()return n; return n + sum2 1(n-1); returns 2+1

Proof Rule for Unbalanced Recursion Base Cases

•Let us define now the proof rule for unbalanced recursions:

$$\frac{base-equiv_{n,m}(f,g)}{partial-equiv(f,g)}$$

•n, m: unrolling factors for sides 1 and 2, respectively.

Can software verifiers prove equivalence?

Seahorn [GKKN'15]

- Based on Horn-clauses representation of the program and rules
- Invariants are searched-for with μZ (PDR-based)

•HSF [GGLPR'12]

- Based on Horn-clauses representation of the program and rules
- based on predicate abstraction and refinement using CEGAR

•REVE [FGKRU'14]

 Based on Horn-clauses representation of the program and uninterpreted predicates.

Questions?