http://ie.technion.ac.il/~ofers/frontend/

Regression Verification for
unbalanced recursive
functions

OFER STRICHMAN MAOR VEITSMAN

TECHNION, HAIFA, ISRAEL

Submitted to FM16’

Regression Verification

Develop a method for formally verifying the equivalence of two
similar programs.

Selling points:
o Specification: not needed

o Complexity: depends on the semantic difference between the programs,
and not on their size.

Partial Equivalence

= There are many definitions of equivalence.
= We will focus on partial equivalence:

= Executions of P1 and P2 on equal inputs
o ..which terminate,

o result in equal outputs.

= Undecidable

Partial Equivalence for Recursive Functions

Consider the call graphs: p p

Side1 ' Side 2

o ... where A,B have:
° same prototype

° no loops

Prove partial equivalence of A, B
° How shall we handle the recursion ?

Hoare’s Rule for Recursion

Let 4 be a recursive function.

{p} call A {q} ~ {p} A body {q}

{p} call A {q} (REC)

Hoare’s Rule for Recursion

{p} call A {¢} F {p} A body {q}
{p} call A {q}

1P}

AC..)

{

(REC)

/I {p}
m—

ZatH

b
ZatH v

Proving Partial Equivalence

partial-equiv(call A, call B) | - |partial-equiv(A body, B body)
partial-equiv(call A, call B)

(PART-EQ-1)

//inlAl //in[B]
AC.) A BC...) B
{ {
//in[call A] // in[call B]
J [—
//out[call A] //out[call B]
L |
| A/ //out[B]
//out[A]

Proving Partial Equivalence

partial-equiv(call A, call B) + partial-equiv(A body, B body)

PART-EQ-1
partial-equiv(call A,call B) (R-1)

Q: How can a verification condition for the premise look like?

A: Replace the recursive calls with calls to functions that
o over-approximate A, B, and

° are partially equivalent by construction

Natural candidates: Uninterpreted Functions

Proving Partial Equivalence

Let AYF. BYF be A,B, after replacing the recursive call with a call to (the
same) uninterpreted function.

We can now rewrite the rule:

partial-equiv(AV¥ BUI
partial-equiv(A, B)

(PART-EQ-1)

What (PART-EQ) cannot prove (1)

Calling under different base conditions:
int factl (L int fact2 (1
1f((n <= 1))eturn 1; 1f((n <= 0))return 1;
retur fact uf(n-1); retu fact uf(n-1);

whenn=1:

returns 1 returns 1 * nondet()

The verification condition

int main () {
int n = non det(); // suppose n =1
int retl, ret?2;
retl = factl(n); // returns 1
ret2 = fact2(n); // returns nondet
assert (retl = ret2); // fails !

}

*We check this program with a bounded model checker (i.e. CBMC).

What (PART-EQ) cannot prove (2)

Unbalanced recursive functions lead to function calls with different

arguments:

int suml (int n) { int sum2 (int n) {

if (n <= 1){ if (n <= 1){

return n; return n;

} }

return n + n-1 return n +
} }

returns n + n -1 + nondet() returns n + nondet()

Our strategy

1. For the same input: f invokes base-case, g does not.

Therefor, we will prove equivalence separately for:
* Inputs that invoke the base-case in at-least one of f, g
* All the rest

2. f, g are not in lock-step!

Therefor: unroll them separately to their least-common multiplier.

* But: Unrolling changes what we mean by base-case. Previous solution must
be adapted.

New Proof Rule

Our new proof rule contains two premises:
> Base cases are equivalent: base—equiv(f, g)
o Step is equivalent: step—equiv(f, g)

base—equiv(f, g) step—equiv(f, g)
partial—equiv(f, g)

base—equiv(f, g)

°Let iny be the set of inputs driving f or g to a base case.
Let partial—equiv(f,g)|m3 be partial-equivalence under inputs ing.

*We now define:

base—equiv(f, g) = partial—equiv(f,g) |

Inp

step—equiv(f, g)

*Let in be the full set of possible inputs.

‘leting=in —ing
* (the set of inputs not driving f or g to a base case).

*We now define:

step—equiv(f, g) = partial—equiv(f,g) |

Ing

Non Balanced Recursive Step - Solution

*We perform unbalanced unrolling.

*By applying unroll(sum2,1) we get:

int suml (int n) { int sum2 1 (int n) {
if (n <= 1) { if (n <= 1) {
return n; return n;
} }
return n + n-1 + uf sum(n-2); return n + uf sum(n-1);
J 8 + 7 + uf sum(6) 7 + uf sum(6)

int sum2 (int n) {
if (n <= 1) {
return n;

n=28)
return n + sum2 1(n-1);
} 8

Non Balanced Recursive Step - Problem

*For n = 2:
int suml (int n) { int sum2 1 (int n) {
if (n <= 1) { if (n <= 1){
return nj; return nj;
} }
return n + n-1 + uf sum(n-2); return n + uf sum(n-1);

} }

int sum2 (int n) {
returns 2 + 1 + nondet() if (n <= 1) {
return n;

}

return n + sum2 1(n-1);

}

returns 2 + 1

Proof Rule for Unbalanced Recursion Base Cases

Let us define now the proof rule for unbalanced recursions:

base—equivy, ,,(f, g) step—equivy, ,m(f, 9)
partial—equiv(f, g)

*n, m: unrolling factors for sides 1 and 2, respectively.

Can software verifiers prove equivalence?

*Seahorn [GKKN’15]
* Based on Horn-clauses representation of the program and rules
* Invariants are searched-for with yZ (PDR-based)

*HSF [GGLPR’12]
* Based on Horn-clauses representation of the program and rules
* based on predicate abstraction and refinement using CEGAR

“REVE [FGKRU’14]

* Based on Horn-clauses representation of the program and uninterpreted
predicates.

Questions?

