
Ivy: Safety Verification by
Interactive Generalization

Oded Padon

Verification Day

1-June-2016

[PLDI’16] Oded Padon, Kenneth McMillan, Aurojit Panda, Mooly Sagiv,
Sharon Shoham. Ivy: Safety Verification by Interactive Generalization.

Motivation
• Software is everywhere

• Distributed systems are everywhere

• Verification is needed to ensure safety of critical systems

2

Why Verify Distributed Systems?
• Distributed systems are notoriously hard to get right

• Bugs occur on rare scenarios

• Hard to test/reproduce

• Testing covers tiny fraction of behaviors

• Leaves most bugs for production

• Even small protocols can be tricky

Safety of Transition Systems
Transition System

Bad

System S is safe if no bad state is reachable

R0 = Init – Initial states, reachable in 0 transitions
Ri+1 = Ri ∪ {’ | ’ and Ri}
R = R0 ∪ R1 ∪ R2 ∪ …
Safety: R Bad =
K-Safety: RK Bad =

Initial

Reach

4

Inductive Invariants
Transition System

Bad Inv

System S is safe iff there exists an inductive invariant Inv s.t.:
System S is safe if no bad state is reachable

Inv Bad = (Safety)
Init Inv (Initiation)
if σ Inv and σ σ’ then σ’ Inv (Consecution)

Initial

Reach

5

Counterexample To Induction (CTI)

States σ,σ’ are a CTI of Inv if:
• σ ∈ Inv
• σ’ ∉ Inv
• σ σ’

• A CTI may indicate:
• A bug in the system
• A bug in the safety property
• A bug in the inductive invariant

• Too weak
• Too strong

Inv

σ ∈ Inv

σ’ ∉ Inv

6

Strengthening & Weakening from CTI

7

Inv

σ∈Inv

σ’∉Inv

Inv’Inv’ σ’

σ σ

σ'

Strengthening Weakening

Modeling with Logic
• SAT/SMT has made huge progress in the last decade

• Great impact on verification:
Z3, Dafny, IronClad/IronFleet, and more

• State: finite first-order structure over vocabulary V

• Initial states and safety property (first-order formulas):

• Init(V) – initial states

• Bad(V) – bad states

• Transition relation:
first-order formula TR(V, V’)
V’ is a copy of V describing the next state

8

[SOSP’15] C. Hawblitzel, J. Howell, M. Kapritsos, J.R. Lorch, B. Parno, M. Roberts, S. Setty, B.
Zill: IronFleet: proving practical distributed systems correct

[LPAR’10] K.R.M. Leino: Dafny: An Automatic Program Verifier for Functional Correctness

Inductive Invariant

System State Space

Bad Inv

Initial

Reach

9

Inv is an inductive invariant if:
• Initiation: Init⇒ Inv
• Safety: Inv⇒¬Bad
• Consecution: Inv ∧ TR ⇒ Inv’

InitInv unsat
InvBad unsat
InvTRInv’ unsat

Challenges

1. Formal specification:

• Modeling the system (TR, Init)

• Formalizing the safety property (Bad)

• Specifying in logic

2. Deduction – Checking inductiveness

• Undecidability of implication checking

• Arithmetic, quantifier alternation, unbounded state

3. Inductive Invariants for Deductive Verification (Inv)

• Hard to specify

• Hard to infer

• Undecidable even when deduction is decidable
10

Existing approaches
• Automated invariant inference

• Model checking

• Exploit finite state / finite abstraction

• Abstract Interpretation

• Sound abstraction

• Limited for infinite state systems due to undecidability

• Use SMT for deduction with manual program annotations
(e.g. Dafny)

• Requires programmer effort to provide inductive invariants

• SMT solver may diverge (matching loops, arithmetic)

• Interactive theorem provers (e.g. Coq, Isabelle/HOL)

• Programmer gives inductive invariant and proves it

• Huge programmer effort (~50 lines of proof per line of code)

11

I can decide
inductiveness!

Our Approach in Ivy
• Restrict the specification language for decidability

• Deduction is decidable with SAT solvers

• Challenge: model systems
in a restricted language

• Finding inductive invariants:

• Combine automated techniques with human guidance

• Key: generalization from
counterexamples to induction

• Graphical user interaction

• Decidability allows
reliable automated checks

12

https://www.quora.com/Human-Computer-Interaction

Expressiveness vs. Automation
Ex

p
re

ss
iv

en
e

ss

Automation

COQ

Types

Static Analysis

Dafny
Ivy

Coq Dafny Ivy Static Analysis

Invariant User User User + System System

Deduction User System (Z3) + “User” System (EPR Z3) System

13

I can decide
inductiveness!• Designed to make verification tasks decidable

• Yet expressive enough to model systems

• Finite relations and stratified function symbols

• Used to describe system state

• E.g., pending packets, nodes’ local data structures

• Also used to record ghost information

• Stratification: function f: A→B, so no function g: B→A

• Universally quantified axioms

• Total orders, partial orders, lists, trees, rings, quorums, …

• No numerics

• Simple (quantifier-free) updates

• Imperative constructs with non-determinism

• Turing-Complete

• Universal inductive invariants are decidable to check

Relational Modeling Language (RML)

14

Effectively Propositional Logic – EPR
a.k.a. Bernays-Schönfinkel-Ramsey class

• Limited fragment of first-order logic
• Restricted quantifier prefix: ** φQ.F.

• No * *
• No function symbols

• Possible to add stratified function symbols
• No arithmetic

• Small model property
• x1,…, xn. y1,…,ym.φQ.F. has a model iff

it has a model of at most n+k elements
(k - number of constant symbols)

• Satisfiability is decidable
• NEXPTIME / 2

• Supported by theorem provers (e.g., Z3, iProver, Vampire)

F. Ramsey. On a problem in formal logic. Proc. London Math. Soc. 1930
15

Using EPR for Verification
• System Model

• V – vocabulary with relations and stratified function symbols

• TR(V, V’) – transition relation

• Init(V) – initial states

• Bad(V) – bad states (e.g. assertion violation)

• Inv(V) is an inductive invariant if:

• Init(V) Inv(V) InitInv unsat

• Inv(V) TR(V,V’) Inv(V’) InvTRInv’ unsat

• Inv(V) Bad(V) InvBad unsat

**

**

**

Decidable to check
SAT(**)

A-F

Alternation-Free:
Boolean combination of

closed * and * formulas

16

• Nodes are organized in a ring

• Each node has a unique numeric id

• Protocol:

• Each node sends its id to the next

• A node that receives a message passes it (to the next) if

the id in the message is higher than the node’s own id

• A node that receives its own id becomes the leader

• Theorem:

• The protocol selects at most one leader

[CACM’79] E. Chang and R. Roberts. An improved algorithm for decentralized
extrema-finding in circular configurations of processes

3 5

2

4

1

6
next

next next

Example: Leader Election in a Ring

next

next

next

17

• Nodes are organized in a ring

• Each node has a unique numeric id

• Protocol:

• Each node sends its id to the next

• A node that receives a message passes it (to the next) if

the id in the message is higher than the node’s own id

• A node that receives its own id becomes the leader

• Theorem:

• The protocol selects at most one leader

[CACM’79] E. Chang and R. Roberts. An improved algorithm for decentralized
extrema-finding in circular configurations of processes

3 5

2

4

1

6
next

next next

Example: Leader Election in a Ring

next

next

next

18

Leader Election Protocol (RML)
• (ID, ID) – total order on node id’s

• btw (Node, Node, Node) – the ring topology

• id: Node ID – relate a node to its id

• pending(ID, Node) – pending messages

• leader(Node) – leader(n) means n is the leader

|

while true do {

}

conjecture I0 = x, y: Node. x ≠ y ∧ leader(x) ∧ id[x] id[y]

// receive(n1)
m, n1 := pending.remove();
if id[n1] = m then:
// found leader
leader.insert(n1)

else if id[n1] m then:
// pass message
n2 := *;
assume next(n1, n2);
pending.insert(m, n2)

// send(n1)
n1 := *;
n2 := *;
assume next(n1, n2);
pending.insert(id[n1], n2)

Bounded Model Checking (BMC)

Safety Property I0:
At most one leader

BMC VC Generator

Counterexample Trace Proof

Leader Protocol Bound k

EPR Solver

Verification Condition:
Init(V0) TR(V0, V1) … TR(Vk-1, Vk) I0(Vk)

20

BMC(2)

sn
d

(n
1)

rcv(n
2)

n1

 L

next

id1

n2

L

next
id id

n1

L

next

id1

n2

L

next
id id

initial I0

I0

 I0

n1

L

next

id1

n2

L

next
id id

Leader Protocol – 2nd attempt

Axiom x, y: Node. id[x] = id[y] x = y

• BMC(1) – OK

• BMC(2) – OK

• BMC(3) – OK

• BMC(4) – OK

• BMC(5) – OK

• BMC(6) – OK

• BMC(7) – OK

• BMC(8) – OK

Looks good, let’s find an inductive invariant!

Invariant Inference in Ivy

Model Candidate Inductive Invariant

Inductive?
Yes

No

Find “minimal” CTI

Modify candidate invariant

Generalize from CTI

User Automation

Inductive Invariant Found

https://www.quora.com/Human-Computer-Interaction

1. Generalize by removing facts to form a conjecture

• User graphically selects which facts to remove

2. Check if the conjecture is true up to K: BMC(K)

• User determines the right K to use

• Ivy uses a SAT solver - sound & complete

3. Automatically remove more facts: Interpolate(K)

• Ivy uses the SAT solver to discover more facts that can be
removed

• User examines the result – it could be wrong

Generalize from CTI

User Automation

Interactive Generalization from CTI

https://www.quora.com/Human-Computer-Interaction

Algorithmic Deductive Verification (1)

Bad = I0

VC Generator

Leader Protocol Inv = I0

EPR Solver

Init Inv
Inv(V) TR(V,V’) Inv(V’)

Inv(V) Bad(V)

CTI

n1

 L
next

id1

n2

L

next
id id

id2

pnd
rcv(n1)

I0 I0

n1

L
next

id1

n2

L

next
id id

id2

1. Each node sends its id to the next
2. A node that receives a message passes it (to the next in the ring) if
the id in the message is higher than the node’s own id
3. A node that receives its own id becomes the leader

Generalize from CTI (1)

Only the highest id
can be self pending

n1

 L
next

id1

n2

L

next
id id

id2

pnd

Generalize from CTI (1)

Only the highest id
can be self pending

n1

 L
next

id1

n2

L

next
id id

id2

pnd

Project to {pnd,, id}

C1 = n1, n2: Node. n1n2 pnd(id[n1], n1)
id[n]1id[n2] id[n1] id[n2]

n1

id1

n2

id id

id2

pnd

Proof

BMC VC Generator (K=3, C1)

EPR Solver

Init(V0)TR(V0,V1)TR(V1,V2)TR(V1,V3)C1(V3)
BMC(3)

Generalize from CTI (1)

Only the highest id
can be self pending

n1

 L
next

id1

n2

L

next
id id

id2

pnd

Project to {pnd,, id}

C1 = n1, n2: Node. n1n2 pnd(id[n1], n1)
id[n]1id[n2] id[n1] id[n2]

n1

id1

n2

id id

id2

pnd

BMC VC Generator (K=3, C1)

EPR Solver

Init(V0)TR(V0,V1)TR(V1,V2)TR(V1,V3)C1(V3)

Interp(3)

Proof +
Minimal UNSAT core

C’1 = n1, n2: Node.
pnd(id[n1], n1)
id[n]1id[n2] id[n1] id[n2]

Lookd good, add to the invariant as I1

I1

Algorithmic Deductive Verification (2)

Bad = I0

VC Generator

Leader Protocol Inv = I0 I1

EPR Solver

Init Inv
Inv(V) TR(V,V’) Inv(V’)

Inv(V) Bad(V)

CTI

rcv(n1)

I0I1 I1

n1

 L
next

id1

n2

L

next
id id

id2pnd

n3

L

id2

id
next

n1

 L
next

id1

n2

L

next
id id

id2

pnd

n3

L

id2

id
next

1. Each node sends its id to the next
2. A node that receives a message passes it (to the next in the ring) if
the id in the message is higher than the node’s own id
3. A node that receives its own id becomes the leader

Generalize from CTI (2)

Cannot bypass nodes
with higher ids

n1

 L
next

id1

n2

L

next
id id

id2pnd

n3

L

id2

id
next

Generalize from CTI (2)

Cannot bypass nodes
with higher ids

n1

 L
next

id1

n2

L

next
id id

id2pnd

n3

L

id2

id
next

Project to {pnd,, id}

n1

id1

n2

id id

id2pnd

n3

id2

id

C2 = n1, n2, n3 : Node. (n1,n2,n3)
(id[n1],id[n2],id[n3])
id[n1] id[n2] id[n3]
pnd(id[n2], n1)

BMC(3)

BMC VC Generator (K=3, C2)

EPR Solver

Init(V0)TR(V0,V1)TR(V1,V2)TR(V1,V3)C2(V3)

Counterexample Trace

Generalize from CTI (2)

Cannot bypass nodes
with higher ids

n1

 L
next

id1

n2

L

next
id id

id2pnd

n3

L

id2

id
next

Project to {pnd,, id,btw}

n1

id1

n2

id id

id2pnd

n3

id2

id

btw

C2 = n1, n2, n3 : Node. (n1,n2,n3)
(id[n1],id[n2],id[n3])
id[n1] id[n2] id[n3]
pnd(id[n2], n1) btw(n1, n2, n3)

Proof

BMC VC Generator (K=3, C2)

EPR Solver

Init(V0)TR(V0,V1)TR(V1,V2)TR(V1,V3)C2(V3)
BMC(3)

Generalize from CTI (2)

Cannot bypass nodes
with higher ids

n1

 L
next

id1

n2

L

next
id id

id2pnd

n3

L

id2

id
next

Project to {pnd,, id,btw}

n1

id1

n2

id id

id2pnd

n3

id2

id

btw

pnd

n1 n2

id

id2

n3

id2

id

btw

Interp(3)

C2 = n1, n2, n3 : Node. (n1,n2,n3)
(id[n1],id[n2],id[n3])
id[n1] id[n2] id[n3]
pnd(id[n2], n1) btw(n1, n2, n3)

C’2 = n1, n2, n3 : Node. btw(n1, n2, n3)
pnd(id[n2], n1)
id[n2] id[n3]

This looks good, add to
the invariant as I2

I2

Algorithmic Deductive Verification (3)

Bad = I0

VC Generator

Leader Protocol Inv = I0 I1 I2

EPR Solver

Init Inv
Inv(V) TR(V,V’) Inv(V’)

Inv(V) Bad(V)

Proof

I0 I1 I2 is an inductive invariant for the leader protocol,
which proves the protocol is safe

• Any generalization from CTI adds one universal clause to the

invariant

• The invariant is constructed in CNF

• If there is a universal invariant with N clauses, it can be

obtained by the user in N generalization steps

• Assuming the user is optimal

• If the user is sub-optimal, backtracking (weakening) may be

needed

Completeness and
Interaction Complexity

Verified Protocols

Protocol
Model
Types

Relations &
Functions

Property
(# Literals)

Invariant
(# Literals)

CTI Gen.
Steps

Leader in Ring 2 5 3 12 3

Learning Switch 2 5 11 18 3

DB Chain Replication 4 13 11 35 7

Chord 1 13 35 46 4

Lock Server
500 Coq lines [Verdi]

5 11 3 21 8 (1h)

Distributed Lock
1 week [IronFleet]

2 5 3 26 12 (1h)

Paxos
Work in progress

Raft

• Ivy:

• RML – modeling language that makes deduction decidable

• Interactive generalization for finding inducting invariants

• Application to the domain of distributed protocols

• User intuition and machine heuristics complement each other:

• User has the ability to ignore irrelevant facts and intuition that
leads to better generalizations

• Machine is better at finding bugs and corner cases

• The safety of many protocols can be proven w/o reasoning about
arithmetic operations or set cardinalities

• Many important properties can be captured in a (parametric)
model that abstracts the actual numerical values

• Unbounded topologies

• Unique paths (ring, trees, …)

Ivy Summary & Lessons Learned

37

Current & Future Work

38

Ex
p

re
ss

iv
en

e
ss

Automation

COQ

Types
Static Analysis

Dafny

Ivy

• More expressiveness, keeping decidability

• System, Spec, Invariant (proof)

• Verifying more systems (Paxos and Raft are next)

• Inferring inductive invariants (more) automatically

• Better theoretical understanding of limitations and tradeoffs

