lvy: Safety Verification by
Interactive Generalization

Oded Padon

Verification Day
1-June-2016

[PLDI’16] Oded Padon, Kenneth McMiillan, Aurojit Panda, Mooly Sagiv,
Sharon Shoham. Ivy: Safety Verification by Interactive Generalization.

Motivation

» Software is everywhere
* Distributed systems are everywhere

 Verification is needed to ensure safety of critical systems

Why Verity Distributed Systems?

e Distributed systems are notoriously hard to get right

* Bugs occur on rare scenarios
* Hard to test/reproduce
* Testing covers tiny fraction of behaviors
* Leaves most bugs for production

* Even small protocolslfszm bLe tricky CCrR'12
g Lightwej
ghtweight Modeling To Underst
and Chorqg

01
CO‘V\M 0 amelg 7
o A Scalable Pe L .
. m ' YeW Jersey
Ch@rd. fOY lﬂterne‘t " Under ¢ he s Sla@research att)./co%?
- WIe same

. i tl]f:’ . e ab‘:’llll 1 -
- Uhen_zqnwe\\ﬁ__\\a" [SIG(_,.(_)]\ IM] vere: 1ptions Made jp
Morris, Hari Balakrish! Ot o of t TS

£ Chor

fon Stocd, Robert

ve features 0

Attrac avable T Present , | versio,
eSS an\:\ plO‘v ab }.I't*cti ed hy Means of con Correct. Tp, 51911 Satis
CUlTecnle ?‘ arrivals ane TR I Preparatio, “tffl‘o;gammes to the i results are
pourrent node att ation for the results. L,t '¢ mvariantg j,
cont ection 9 yiv..
i EBlves g

Safety of Transition Systems

Transition System

. Bad

System S is safe if no bad state is reachable

R, = Init — Initial states, reachable in O transitions
R.,, =R, U{co’| o2 0c’and o € R}

R=R,UR, UR, U...

Safety: R N Bad = &

K-Safety: R, W Bad = &

Inductive Invariants

Transition System

. Bad

Initial

System S is safe if no bad state is reachable
System S is safe iff there exists an inductive invariant Inv s.t.:

Inv N Bad = & (Safety)
Init < Inv (Initiation)
if o € Invand o =2 o’ then o’ € Inv (Consecution)

Counterexample To Induction (CTI)

States 0,0’ are a CTl of Inv if:
* 0 €lnv

e 0 &lInv

020

* A CTl may indicate:
* A bugin the system
* A bugin the safety property
* A bugin the inductive invariant
* Too weak
* Too strong

Strengthening & Weakening from CT]

Strengthening Weakening

Modeling with Logic

e SAT/SMT has made huge progress in the last decade

Great impact on verification:
Z3, Dafny, IronClad/IronFleet, and more

State: finite first-order structure over vocabulary V

Initial states and safety property (first-order formulas):
* |Init(V) — initial states
* Bad(V)— bad states

Transition relation:
first-order formula TR(V, V')
V' is a copy of V describing the next state

[LPAR’10] K.R.M. Leino: Dafny: An Automatic Program Verifier for Functional Correctness

[SOSP’15] C. Hawblitzel, J. Howell, M. Kapritsos, J.R. Lorch, B. Parno, M. Roberts, S. Setty, B.
Zill: IronFleet: proving practical distributed systems correct

Inductive Invariant

Inv is an inductive invariant if:

* |nitiation: Init = Inv InitA—=Inv unsat
e Safety: Inv = —Bad InvABad unsat
e Consecution: InVATR = InvV InvVATRA=INV' unsat

System State Space

. Bad

Initial

Challenges

1. Formal specification:
* Modeling the system (TR, Init)
* Formalizing the safety property (Bad)
* Specifying in logic
2. Deduction — Checking inductiveness
* Undecidability of implication checking

e Arithmetic, quantifier alternation, unbounded state

3. Inductive Invariants for Deductive Verification (Inv)
 Hard to specify
e Hardtoinfer

e Undecidable even when deduction is decidable

10

Existing approaches

* Automated invariant inference
* Model checking
* Exploit finite state / finite abstraction
e Abstract Interpretation
* Sound abstraction
* Limited for infinite state systems due to undecidability
* Use SMT for deduction with manual program annotations
(e.g. Dafny)
* Requires programmer effort to provide inductive invariants
* SMT solver may diverge (matching loops, arithmetic)

* Interactive theorem provers (e.g. Coq, Isabelle/HOL)
* Programmer gives inductive invariant and proves it
* Huge programmer effort (~50 lines of proof per line of code)

11

Our Approach in lvy

» Restrict the specification language for decidability

| can decide
* Deduction is decidable with SAT solvers QUEEEEEUES

* Challenge: model systems
in a restricted language

* Finding inductive invariants:
* Combine automated techniques with human guidance

e Key: generalization from
counterexamples to induction

* Graphical user interaction

* Decidability allows
reliable automated checks

12

https://www.quora.com/Human-Computer-Interaction

Expressiveness vs. Automation

A
coQ
A Dafny
= |
o vy
=
(%]
(%p]
Q . .
§_ Static Analysis
- Types
>
Automation
_ [Cog |Dafny |y |StaticAnalysis
Invariant User User User + System System

Deduction User System (Z3)+ “User” System (EPR Z3) System

13

Relational Modeling Language (RML)

| can decide
* Designed to make verification tasks decidable . inductiveness!

* Yet expressive enough to model systems

Finite relations and stratified function symbols
* Used to describe system state
* E.g., pending packets, nodes’ local data structures
* Also used to record ghost information
e Stratification: function f: A->B, so no function g: B>A

Universally quantified axioms
» Total orders, partial orders, lists, trees, rings, quorums, ...

No numerics

Simple (quantifier-free) updates

Imperative constructs with non-determinism

Turing-Complete

Universal inductive invariants are decidable to check

14

Effectively Propositional Logic — EPR

a.k.a. Bernays-Schonfinkel-Ramsey class

* Limited fragment of first-order logic
* Restricted quantifier prefix: 3*V* ¢ .
e No V* 9%
* No function symbols
e Possible to add stratified function symbols
* No arithmetic

* Small model property

¢ Xy X0V Y,V - P . has @ model iff
it has a model of at most n+k elements
(k - number of constant symbols)

e Satisfiability is decidable
* NEXPTIME / %,

e Supported by theorem provers (e.g., Z3, iProver, Vampire)

F. Ramsey. On a problem in formal logic. Proc. London Math. Soc. 1930

15

Using EPR for Verification

e System Model
* V —vocabulary with relations and stratified function symbols

* TRV, V') —tre Alternation-Free: 3V

BOUWIEINIIE Boolean combination of IV

e Bad(V) — bad ECSEECIERER AR ClinllER Ny *
* Inv(V) is an inductive invariant if: A-F

* Init(V) = Inv(V) InitA—=Inv unsat
* Inv(V) ATR(V,V') = Inv(V’) InvVATRA—=INV’ unsat

* Inv(V) = —Bad(V) InvABad unsat
Decidable to check

SAT(3"V")

16

Example: Leader Election in a Ring

next

* Nodes are organized in a ring next next

* Each node has a unigue numeric id
* Protocol: ERL next
* Each node sends its id to the next next

* A node that receives a message passes it (to the next) if
the id in the message is higher than the node’s own id

A node that receives its own id becomes the leader
e Theorem:

* The protocol selects at most one leader

[CACM’79] E. Chang and R. Roberts. An improved algorithm for decentralized
extrema-finding in circular configurations of processes

Example: Leader Election in a Ring

next

* Nodes are organized in a ring next next

* Each node has a unigue numeric id

nex
* Protocol: = next

e Each node sends its id to the next next

* A node that receives a message passes it (to the next) if
the id in the message is higher than the node’s own id

A node that receives its own id becomes the leader

e Theore.. Proposition: This algorithm detects one and only one
highest number.

e Th Argument: By the circular nature of the configuration
and the consistent direction of messages, any message
must meet all other processes before it comes back to its
initiator. Only one message, that with the highest num- —
[CACM'79] Iper, will not encounter a higher number on its way o/ized
extrema-filaround. Thus, the only process getting its own message

back is the one with the highest number. 18

Leader Election Protocol (RML)

* < (ID, ID) — total order on node id’s

* btw (Node, Node, Node) — the ring topology

* id: Node = ID - relate a node to its id

* pending(ID, Node) — pending messages

* leader(Node) — leader(n) means n is the leader

while true do {

(// receive(nl) h

- ~ m, nl := pending.remove();

// send(nl) if id[n1] = m then:

nl := *; // found leader

n2 := *; < leader.insert(nl) >
< assume next(nl, n2); > else if id[nl] < m then:

pending.insert(id[nl], n2) // pass message

n2 := *;

\- J assume next(nl, n2);

} L pending.insert(m, n2) y

conjecture I, = —3x, y: Node. x # y A leader(x) A id[x] < id[y]

Bounded Model Checking (BMC)

Safety Property I:
At most one leader

Leader Protocol Bound k

BMC VC Generator

}

Verification Condition:
Init(Vy) A TR(Vy, Vi) Ao ATR(V, 1, Vi) A = T(V,

1

EPR Solver

1] |
Counterexample Trace Proof é’iﬁ

20

initial >

Leader Protocol — 2"¢ attempt

Axiom VX, y: Node. id[x] = id[y] > x =y

e BMC(1)-G Looks good, let’s find an inductive invariant!

e BMC(2)-OK
e BMC(3)-OK
e BMC(4)- OK.
e BMC(5) - OK
e BMC(6) - OK
e BMC(7)-OK
e BMC(8) - OK

Invariant Inference in vy

Candidate Inductive Invariant

Inductive Invariant Found Inductive?

Modify candidate invariant

Find “minimal” CTI

Generalize from CTI

Automation

https://www.quora.com/Human-Computer-Interaction

Interactive Generalization from CT|

Generalize from CTI

User Automation

1. Generalize by removing facts to form a conjecture
e User graphically selects which facts to remove

2. Check if the conjecture is true up to K: BMC(K)
* User determines the right K to use
* |lvy uses a SAT solver - sound & complete

3. Automatically remove more facts: Interpolate(K)

* lvy uses the SAT solver to discover more facts that can be
removed

e User examines the result — it could be wrong

https://www.quora.com/Human-Computer-Interaction

Algorithmic Deductive Verification (1)

<Leader Protocw S Bad = — IO>

VC Generator

v

Init A — Inv>
Inv(V) A TR(VV’) A =lnv(V7)
Inv(V) A Bad(V)
v
CTI EPR Solver

Generalize from CTI (1)

Only the highest id

can be self pending

1. Each node sends its id to the next
2. A node that receives a message passes it (to the next in the ring) if

the id in the message is higher than the node’s own id
3. A node that receives its own id becomes the leader

Generalize from CTI (1)

Only the highest id

can be self pending

Project to {pnd,s, id}

id,|——>]id,

B

pnd J Tid id C, =—dn,, n,: Node. n;#n, A pnd(id[n,], n;) A
id[n],#id[n,] A id[n,] <id[n,]

BMC VC Generator (K=3, C,)

@
< Init(Vg) A TRIVGVATRIVL VTRV, Vo)A — Cy (V)
2
EPR Solver \
Proof é

Generalize from CTI (1)

Only the highest id

can be self pending

pnd J Tid id C, =—dn,, n,: Node. n;#n, A pnd(id[n,], n;) A
id[n],#id[n,] A id[n,] <id[n,]

Lookd good, add to the invariant as I,

I, =—=dn,, n,: Node.
pnd(id[n,], n;) A
id[n],#id[n,] A id[n,] <id[n,]

EPR Solver k

Proof +
Minimal UNSAT core

—

Algorithmic Deductive Verification (2)

<Leader Protocol Qv =1, /\Il>

S Bad=—|:D

VC Generator

v

Inv(V) A TR(V.V) A —lInv(V’)

Init A — |nv>

Inv(V) A Bad(V)

CTI EPR Slolver
v
. <) < :
id, W id,—»id,
i id id
next next rcv(n)
Ny n, Ny 1
— L —L —L
next

, < : < :
id,—>id,|—>] id,

g _Pnd\ Ty id
next next
n, n, N,

Generalize from CTI (2)
id, |——id,|—>{id,

pnd - .
' next < hext . Cannot bypass nodes
Ny n, N3 e © with higher ids
—L —L —L
next

1. Each node sends its id to the next
2. A node that receives a message passes it (to the next in the ring) if

the id in the message is higher than the node’s own id
3. A node that receives its own id becomes the leader

) Generalize from CTI (2)

id, |——id,|—>{id,

pnd
I next < hext . Cannot bypass nodes
Ny n, N3 e © with higher ids
—L —L —L
next

Project to {pnd,s, id}

C, =—dn,, n,, n;: Node. #(n;,n,,n3) A

: < : < :
id, ond) id,[—>1id, #(id[n,],id[n,],id[n,]) A
i id id id[n,] <id[n,] <id[n5] A

pnd(id[n,], n,)

BMC VC Generator (K=3, C,)
v

@ < Init{Vp) ATRIVOVATRIVL VTRV VA - GlVy)
L 4
EPR Solver

& ¥
W Counterexample Trace

) Generalize from CTI (2)

: < .
—| id,—>] id,

ny
— L

pnd - .
next < hext . Cannot bypass nodes
n, N e © with higher ids
—L —L
next

Project to {pnd,<, id,btw}

C, =—dn,, n,, n;: Node. #(n;,n,,n3) A

#(id[n,],id[n,],id[n]) A
id[n,] <id[n,] <id[n;] A
pnd(id[n,], n;) A btw(n, n,, n,)

BMC VC Generator (K=3, C,)

@ < InitVp) ATRY, vl)ATR(VIATRIV VA~ GolVy) >
EPR Solver \
Proof éz

Generalize from CTI (2)

id, ﬁ» id, = id,

I next < hext . Cannot bypass nodes
Ny n, N3 e © with higher ids
—L —L —L
next

Project to {pnd,<, id,btw}

C, =—dn,, n,, n;: Node. #(n;,n,,n3) A
#(id[n,],id[n,],id[n3]) A
id[n,] <id[n,] <id[n;] A
pnd(id[n,], n,) A btw(n,, n,, n;)

This looks good, add to
the invariant as I,
®

x] I, =—dny, n,, n;: Node. btw(ny, n,, n3) A

Ny O pnd(idIn,], n,) A

id[n,] <id[n,]

otw

Algorithmic Deductive Verification (3)

<Leader Protocol Qv =I, AL /\Iz> (Bad = — Io>

VC Generator
¥
Init A — Inv
Inv(V) A TR(VV’) A =lnv(V7)
Inv(V) A Bad(V)
v
EPR Solver

Proof

(1!

I, AI; AL, is an inductive invariant for the leader protocol,
which proves the protocol is safe

Completeness and
Interaction Complexity

* Any generalization from CTI adds one universal clause to the
Invariant

 The invariant is constructed in CNF

 |f there is a universal invariant with N clauses, it can be
obtained by the user in N generalization steps

* Assuming the user is optimal

* If the user is sub-optimal, backtracking (weakening) may be
needed

Verified Protocols

Model | Relations & | Property Invariant | CTI Gen.
Protocol
Types | Functions | (# Literals) | (# Literals) | Steps

Leader in Ring

Learning Switch 2 5 11 18 3
DB Chain Replication 4 13 11 35 7
Chord 1 13 35 46 4
Lock Server

500 Coq lines [Verdi] > 11 3 21 B,
Distributed Lock 5 c 3 26 12 (1h)

1 week [IronFleet]

Paxos
Work in progress
Raft

lvy Summary & Lessons Learned

* |vy:
* RML — modeling language that makes deduction decidable
* |Interactive generalization for finding inducting invariants
* Application to the domain of distributed protocols

e User intuition and machine heuristics complement each other:

* User has the ability to ignore irrelevant facts and intuition that
leads to better generalizations

* Machine is better at finding bugs and corner cases

* The safety of many protocols can be proven w/o reasoning about
arithmetic operations or set cardinalities

 Many important properties can be captured in a (parametric)
model that abstracts the actual numerical values

* Unbounded topologies

* Unique paths (ring, trees, ...)

Current & Future Work

Expressiveness

A
CcOQ
Dafny T
vy —>
Static Analysis
Types
>
Automation

More expressiveness, keeping decidability
e System, Spec, Invariant (proof)

Verifying more systems (Paxos and Raft are next)
Inferring inductive invariants (more) automatically

Better theoretical understanding of limitations and tradeoffs
38

