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Problem properties

A discrete optimization problem with the following characteristics:

+Incremental
<+ Online — Fufure input is unknown

+~Temporal consiraints — Solution values are associated with durations

<+ Real time - Find solution within, e.g., 1 sec.

NP-Hard, Should be solved fast = Approximation



Problem’s Sources

1.

A group of robots which explore Mars

< Initial information about scientific value, which updates when some
robot discovers an interesting area, or a non-relevant one

+When a robot moves, it imposes constraints on the other robofts’
movements for several following time steps

<+ A decision problem which has to be solved fast — no extra batteries

Stocks investment system
<+ News events influence investment decisions
<« An investment allocates part of the money aside, for a time period
<+ Time is money
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Problem Formulation

The Constrained Optimization Problem

Defined by a tuple P = (V,D,C,F) where

V ={V,,..,V,}is the set of variables

D ={D,,..,D,}is the set of domains, defining a domain for each of the variablesin V

Cc ={C4,..,C,}is the set of constraints over V
F:D, x---x D, —» Ris the objective function

An optimal solution to the COP is an assignment $* of values to variables such that no constraint

is violated, and every other solution S, implies F(S*) = F(S).
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The Dynamic Constraint Optimization Problem

The DCOP is an online series of COPs:P1, P2, ... where

%
FinalD! is a partial assignment added by the solution of P, ' l
Finalth FinalD4I FinalDSZ
Each domain value d is associated with a time interval, ¥2 =5 x =3 x6 =1
X4 =8 Xg = 4/
ty = [starty; endy] Y
S5 F(Ss)

The solver of P; might choose some variables set to domain values
witht = [i + 1; i + k] forsome k > 1.
The chosen domain values are added to the set FinalD!.

An optimal solution to the DCOP is a series of solutions to its COPs

with the best objective function over (U} FinalD?).



Solution approaches

+~Hardware: Multiple cores

+~Software: Anytime algorithms



Normal vs. Fast Anytime algorithm
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Candidate Algorithms

< Local Search - Full Solutions, only partially feasible
The Cross-Entropy Method
Simulated Annealing
Tabu Search
Stochastic Hill Climbing
<+ Complete Algorithms - Partial solutions, feasible
Depth-First Branch And Bound
Anytime variants of A*
<+ Online Search
Learning Real Time A*

Monte Carlo Tree Search

> For the COP

N

For the DCOP



CDF; —probability distribution over C an d |d d 'l'e Al g Orl'l'h IMS

D; (initially uniform)
N — sample size

p — elite rafio

a — smoothing factor

The Cross-Entropy Method for COP
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while (! converged && ! timeout) { 1or

for j =1..N){ "ol
for alli,choose d; randomly according to CDF;
EvaluateSolution
}
Choose p - N best solutions to form distribution CDF]

CDF; = aCDF} + (1 — a)CDF,

ITERATION 0

ITERATION 1




Candidate Algorithms

Monte Carlo Tree Search for DCOP € — greedyTreePolicy(A): DefaultRandomPolicy(A):
Ao = EmptyAssignment while (! OnTree) { while (! AllVariablesAssigned) {
while (! timeout) { TreeAssignment(CurrentTimeStep) <« DefaultAssignment(CurrentTimeStep)
A; < € — greedyTreePolicy(4y); best assignment with prob.1 — € < Random,;
A = DefalutRandomPolicy(A)); random assignment with prob. e CurrentTimeStep + +;
BackPropagate(A;, A) CurrentTimeStep + +; }
} / return DefaultAssignment;

return best(4,)

return TreeAssignment;

/—> Selection ——— Expansion — Simulation —> Backpropagation \

Tree Default
Policy Policy

v

\_ A Browne et al (2012)

Possible assignments sorted by time steps



Parallel Portfolio — Diversity & Choose algorithms

< Different algorithms
< Different parameters to the same algorithm

<+ Adding randomness to deterministic algorithms

N1y, p1 g N5, po, a5

Variable
Ordering 1 Variable Seed,

Ordering 2 Seed,




Parallel Portfolio — Static, Non-cooperating
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Parallel Portfolio — Dynamic, Non-cooperating
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Parallel Portfolio — Static, Cooperafing
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Summary

< The Dynamic Constrained Optimization Problem is a readlistic problem arises in
many systems: An Online COP which should be solved in real-time

<+ The requirement to solve real time suggest the use of anytime algorithms and
parallelism

<+ Candidate algorithms include complete anytime methods (eg. DFBB), stochastic
local search (eg. CE) and Online search (eg. MCTS).

<+ A good non-cooperating static parallel porifolio is a single portfolio. It can be built
systematically using offline runs of each algorithm alone on a given set of inputs,
and search the space of results for a good subset of algorithmes.

<+ A good non-cooperating dynamic porifolio is a function from problem’s features
to a subset of algorithms. It can be built by learning a classifier.

<+ In a cooperating portfolio, the offline runs are over portfolios, not single algorithms



