
Processing Complex Aggregate Queries over Data Streams

Alin Dobra∗
Cornell University

dobra@cs.cornell.edu

Minos Garofalakis
Bell Labs, Lucent

minos@bell-labs.com

Johannes Gehrke
Cornell University

johannes@cs.cornell.edu

Rajeev Rastogi
Bell Labs, Lucent

rastogi@bell-labs.com

ABSTRACT
Recent years have witnessed an increasing interest in designing algorithms
for querying and analyzing streaming data (i.e., data that is seen only once
in a fixed order) with only limited memory. Providing (perhaps approxi-
mate) answers to queries over such continuous data streams is a crucial re-
quirement for many application environments; examples include large tele-
com and IP network installations where performance data from different
parts of the network needs to be continuously collected and analyzed.

In this paper, we consider the problem of approximately answering gen-
eralaggregateSQL queries over continuous data streams with limited mem-
ory. Our method relies on randomizing techniques that compute small
“sketch” summaries of the streams that can then be used to provide approx-
imate answers to aggregate queries with provable guarantees on the approx-
imation error. We also demonstrate how existing statistical information on
the base data (e.g., histograms) can be used in the proposed framework to
improve the quality of the approximation provided by our algorithms. The
key idea is to intelligently partition the domain of the underlying attribute(s)
and, thus, decompose the sketching problem in a way that provably tight-
ens our guarantees. Results of our experimental study with real-life as well
as synthetic data streams indicate that sketches provide significantly more
accurate answers compared to histograms for aggregate queries. This is es-
pecially true when our domain partitioning methods are employed to further
boost the accuracy of the final estimates.

1. INTRODUCTION
Traditional Database Management Systems (DBMS) software is

built on the concept ofpersistent data sets, that are stored reliably
in stable storage and queried/updated several times throughout their
lifetime. For several emerging application domains, however, data
arrives and needs to be processed on a continuous (24 × 7) basis,
without the benefit of several passes over a static, persistent data
image. Suchcontinuous data streamsarise naturally, for example,
in the network installations of large Telecom and Internet service
providers where detailed usage information (Call-Detail-Records
(CDRs), SNMP/RMON packet-flow data, etc.) from different parts
of the underlying network needs to be continuously collected and
analyzed for interesting trends. Other applications that generate

∗Work done while visiting Bell Labs.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM SIGMOD’2002 June 4-6, Madison, Wisconsin, USA
Copyright 2002 ACM 1-58113-497-5/02/06 ...$5.00.

rapid, continuous and large volumes of stream data include trans-
actions in retail chains, ATM and credit card operations in banks,
financial tickers, Web server log records, etc. In most such appli-
cations, the data stream is actually accumulated and archived in the
DBMS of a (perhaps, off-site) data warehouse, often making ac-
cess to the archived data prohibitively expensive. Further, the abil-
ity to make decisions and infer interesting patternson-line (i.e., as
the data stream arrives) is crucial for several mission-critical tasks
that can have significant dollar value for a large corporation (e.g.,
telecom fraud detection). As a result, recent years have witnessed
an increasing interest in designing data-processing algorithms that
work over continuous data streams, i.e., algorithms that provide re-
sults to user queries while looking at the relevant data itemsonly
once and in a fixed order(determined by the stream-arrival pattern).

Two key parameters for query processing over continuous data-
streams are (1) the amount ofmemorymade available to the on-
line algorithm, and (2) theper-item processing timerequired by the
query processor. The former constitutes an important constraint
on the design of stream processing algorithms, since in a typical
streaming environment, only limited memory resources are avail-
able to the query-processing algorithms. In these situations, we
need algorithms that can summarize the data stream(s) involved
in a concise, but reasonably accurate,synopsisthat can be stored
in the allotted (small) amount of memory and can be used to pro-
vide approximate answersto user queries along with some reason-
able guarantees on the quality of the approximation. Such approx-
imate, on-line query answers are particularly well-suited to the ex-
ploratory nature of most data-stream processing applications such
as, e.g., trend analysis and fraud/anomaly detection in telecom-
network data, where the goal is to identify generic, interesting or
“out-of-the-ordinary” patterns rather than provide results that are
exact to the last decimal.
Prior Work. The strong incentive behind data-stream computa-
tion has given rise to several recent (theoretical and practical) stud-
ies of on-line or one-pass algorithms with limited memory require-
ments for different problems; examples include quantile and order-
statistics computation [16, 21], estimating frequency moments and
join sizes [3, 2], data clustering and decision-tree construction [10,
18], estimating correlated aggregates [13], and computing one-di-
mensional (i.e., single-attribute) histograms and Haar wavelet de-
compositions [17, 15]. Other related studies have proposed tech-
niques for incrementally maintaining equi-depth histograms [14]
and Haar wavelets [22], maintaining samples and simple statistics
over sliding windows [8], as well as general, high-level architec-
tures for stream database systems [4].

None of the earlier research efforts has addressed the general
problem of processing general, possibly multi-join, aggregate queries
over continuous data streams. On the other hand, efficient ap-

proximate multi-join processing has received considerable atten-
tion in the context ofapproximate query answering, a very active
area of database research in recent years [1, 6, 12, 19, 20, 24].
The vast majority of existing proposals, however, rely on the as-
sumption of a static data set which enables either several passes
over the data to construct effective,multi-dimensionaldata syn-
opses (e.g., histograms [20] and Haar wavelets [6, 24]) or intel-
ligent strategies for randomizing the access pattern of the relevant
data items [19]. When dealing with continuous data streams, it is
crucial that the synopsis structure(s) are constructed directly on the
stream, that is, in one pass over the data in the fixed order of arrival;
this requirement renders conventional approximate query process-
ing tools inapplicable in a data-stream setting. (Note that, even
though random-sample data summaries can be easily constructed
in a single pass [23], it is well known that such summaries typi-
cally give very poor result estimates for queries involving one or
more joins [1, 6, 2]1).

Our Contributions. In this paper, we tackle the hard technical
problems involved in the approximate processing of complex (pos-
sibly multi-join) aggregate decision-support queries over continu-
ous data streams with limited memory. Our approach is based on
randomizing techniques that compute small, pseudo-randomsketch
summaries of the data as it is streaming by. The basic sketching
technique was originally introduced for on-line self-join size esti-
mation by Alon, Matias, and Szegedy in their seminal paper [3]
and, as we demonstrate in our work, can be generalized to pro-
vide approximate answers to complex, multi-join, aggregate SQL
queries over streams with explicit and tunable guarantees on the
approximation error. An important practical concern that arises
in the multi-join context is that the quality of the approximation
may degrade as the variance of our randomized sketch synopses in-
creases in an explosive manner with the number of joins involved
in the query. To this end, we propose novelsketch-partitioning
techniques that take advantage of existing approximate statistical
information on the stream (e.g., histograms built on archived data)
to decompose the sketching problem in a way that provably tightens
our estimation guarantees. More concretely, the key contributions
of our work are summarized as follows.

• SKETCH-BASED APPROXIMATE PROCESSINGALGORITHMS

FORCOMPLEX AGGREGATEQUERIES. We show how small, sketch
synopses for data streams can be used to compute provably-accurate
approximate answers to aggregate multi-join queries. Our tech-
niques extend and generalize the earlier results of Alon et al. [3,
2] in two important respects. First, our algorithms provide proba-
bilistic accuracy guarantees for queries containing any number of
relational joins. Second, we consider a wide range of aggregate op-
erators (e.g.,COUNT, SUM) rather than just simpleCOUNTaggre-
gates. We should also point out that our error-bound derivation for
multi-join queries is non-trivial and requires that certain acyclicity
restrictions be imposed on the query’s join graph.

• SKETCH-PARTITIONING ALGORITHMS TOBOOSTESTIMATION

ACCURACY. We demonstrate that (approximate) statistics (e.g.,
histograms) on the distributions of join-attribute values can be used
to reduce the variance in our randomized answer estimate, which is
a function of the self-join sizes of the base stream relations. Thus,
we propose novelsketch-partitioningtechniques that exploit such
statistics to significantly boost the accuracy of our approximate an-
swers by (1) intelligently partitioning the attribute domains so that
the self-join sizes of the resulting partitions are minimized, and (2)
judiciously allocating space to independent sketches for each par-

1The sampling-basedjoin synopsesof [1] provide a solution to this problem
but only for the special case ofstatic, foreign-key joins.

tition. For single-join queries, we develop a sketch-partitioning al-
gorithm that exploits a theorem of Breiman et al. [5] to compute an
optimalsolution, that is provably near-optimal for minimizing the
estimate variance. We also present bounds on the error in the final
answer as a function of the error in the underlying statistics (used
to compute the partitioning). Unfortunately, for queries with more
than one join, we demonstrate that the sketch-partitioning problem
isNP-hard. Thus, we introduce a partitioning heuristic for multi-
joins that can, in fact, be shown to produce near-optimal solutions
if the underlying attribute-value distributions are independent.

• EXPERIMENTAL RESULTS VALIDATING OUR SKETCH-BASED

TECHNIQUES. We present the results of an experimental study
with several real-life and synthetic data sets over a wide range of
queries that verify the effectiveness of our sketch-based approach to
complex stream-query processing. Specifically, our results indicate
that compared to on-line histogram-based methods, sketching can
give much more accurate answers that are often superior by factors
ranging from three to an order of magnitude. Our experiments also
demonstrate that our sketch-partitioning algorithms result in sig-
nificant reductions in the estimation error (almost a factor of two),
even when coarse histogram statistics are employed to select the
join-attribute partitions.

Note that, even though we develop our sketching algorithms in
the data-stream context, our techniques are more generally applica-
ble to huge Terabyte databases where performing multiple passes
over the data for the exact computation of query results may be
prohibitively expensive. Our sketch-partitioning algorithms are, in
fact, ideal for such “huge database” environments, where an ini-
tial pass over the data can be used to compute random samples,
approximate histograms, or other statistics which can subsequently
be used as the basis for determining the sketch partitions.

2. STREAMS AND RANDOM SKETCHES

2.1 The Stream Data-Processing Model
We now briefly describe the key elements of our generic archi-

tecture for query processing over continuous data streams (depicted
in Figure 1); similar architectures for stream processing have been
described elsewhere (e.g., [4, 15]). Consider an arbitrary (possibly
complex) SQL queryQ over a set of relationsR1, . . . , Rr and let
|Ri| denote the total number of tuples inRi. (Extending our archi-
tecture to handle multiple queries is straightforward, although inter-
esting research issues, e.g., inter-query space allocation, do arise;
we will not consider such issues further in this paper.) In con-
trast to conventional DBMS query processors, our stream query-
processing engine is allowed to see the data tuples inR1, . . . , Rn
only onceand in fixed order as they are streaming in from their re-
spective source(s). Backtracking over the data stream and explicit
access to past data tuples are impossible. Further, the order of tuple
arrival for each relationRi is arbitrary and duplicate tuples can oc-
cur anywhere over the duration of theRi stream. Hence, our stream
data model assumes the most general “unordered, cash-register”
rendition of stream data considered by Gilbert et al. [15] for com-
puting one-dimensional Haar wavelets over streaming values and,
of course, generalizes their model to multiple, multi-dimensional
streams since eachRi can comprise several distinct attributes.

Our stream query-processing engine is also allowed a certain
amount of memory, typically significantly smaller than the total
size of the data set(s). This memory is used to maintain a concise
and accuratesynopsisof each data streamRi, denoted byS(Ri).
The key constraints imposed on each synopsisS(Ri) are that (1) it
is much smaller than the total number of tuples inRi (e.g., its size is

Sketch
for R1

Sketch
for R2

Sketch
for Rr

Memory

Stream for R1

Stream for R2

Stream for Rr

Stream

Engine

Query Q(R1,...,Rr)

Approximate answer to Q
Query-Processing

Figure 1: Stream Query-Processing Architecture.

logarithmic or polylogarithmic in|Ri|), and (2) it can be computed
in a single pass over the data tuples inRi in the (arbitrary) order
of their arrival. At any point in time, our query-processing algo-
rithms can combine the maintained synopsesS(R1), . . . ,S(Rn)
to produce an approximate answer to queryQ.

2.2 Pseudo-Random Sketch Summaries
The Basic Technique: Self-Join Size Tracking.Consider a sim-
ple stream-processing scenario where the goal is to estimate the
size of the self-join of relationR over one of its attributesR.A as
the tuples ofR are streaming in; that is, we seek to approximate
the result of queryQ = COUNT(R ./A R). Letting dom(A) de-
note the domain of the join attribute2 andf(i) be the frequency of
attribute valuei in R.A, we want to produce an estimate for the
expression SJ(A) =

∑
i∈dom(A) f(i)2 (i.e., thesecond moment

of A). In their seminal paper, Alon, Matias, and Szegedy [3] prove
that any deterministic algorithmthat produces a tight approxima-
tion to SJ(A) requires at leastΩ(|dom(A)|) bits of storage, render-
ing such solutions impractical for a data-stream setting. Instead,
they propose arandomized techniquethat offers strong probabilis-
tic guarantees on the quality of the resulting SJ(A) approximation
while using only logarithmic space in|dom(A)|. Briefly, the basic
idea of their scheme is to define a random variableZ that can be
easily computed over the streaming values ofR.A, such that (1)
Z is anunbiased(i.e., correct on expectation) estimator for SJ(A),
so thatE[Z] = SJ(A); and (2)Z has sufficiently small variance
Var(Z) to provide strong probabilistic guarantees for the quality of
the estimate. This random variableZ is constructed on-line from
the streaming values ofR.A as follows:

• Select a family offour-wise independent binary random vari-
ables{ξi : i = 1, . . . , |dom(A)|}, where eachξi ∈ {−1,+1}
andP [ξi = +1] = P [ξi = −1] = 1/2 (i.e., E[ξi] =
0). Informally, the four-wise independence condition means
that for any 4-tuple ofξi variables and for any 4-tuple of
{−1,+1} values, the probability that the values of the vari-
ables coincide with those in the{−1,+1} 4-tuple is exactly
1/16 (the product of the equality probabilities for each in-
dividual ξi). The crucial point here is that, by employing
known tools (e.g., orthogonal arrays) for the explicit con-
struction of small sample spaces supporting four-wise inde-
pendent random variables, such families can be efficiently
constructed on-line using onlyO(log |dom(A)|) space [3].

• DefineZ = X2, whereX =
∑
i∈dom(A) f(i)ξi. Note that

X is simply a randomized linear projection (inner product) of
the frequency vector ofRi.A with the vector ofξi’s that can

2Without loss of generality, we assume that each attribute domaindom(A)
is indexed by the set of integers{0, 1, · · · , |dom(A)| − 1}, where
|dom(A)| denotes the size of the domain.

be efficiently generated from the streaming values ofA as
follows: Start withX = 0 and simply addξi toX whenever
theith value ofA is observed in the stream.

To further improve the quality of the estimation guarantees, Alon,
Matias, and Szegedy propose a standardboosting techniquethat
maintains several independent identically-distributed (iid) instanti-
ations of such random variablesZ and uses averaging and median-
selection operators to boost accuracy and probabilistic confidence.
(Independent instances can be constructed by simply selecting in-
dependent random seeds for generating the families of four-wise
independentξi’s for each instance.) More specifically, the synopsis
S(Ri) comprisess = s1·s2 randomized linear-projection variables
Xij , wheres1 is a parameter that determines theaccuracyof the
result ands2 determines theconfidencein the estimate. The final
boosted estimateY of SJ(A) is the median ofs2 random variables
Y1, . . . , Ys2 , eachYi being the average ofs1 iid random variables
X2
ij , j = 1, . . . , s1, where eachXij uses the same on-line con-

struction as the variableX (described above). The averaging step
is used to reduce the variance, and hence the estimation error (by
Chebyshev’s inequality), and median-selection is used to boost the
confidence in the estimate (by Chernoff bounds). We use the term
atomic sketchto describe each randomized linear projectionXij of
the data stream and the termsketchfor the overall synopsisS. The
following theorem [3] demonstrates that the sketch-based method
offers strong probabilistic guarantees for the second-moment esti-
mate while utilizing only logarithmic space in the number of dis-
tinctR.A values and the length of the stream.

THEOREM 2.1 ([3]). The estimateY computed by the above
algorithm satisfies:P [|Y −SJ(A)| ≤ 4/

√
s1SJ(A)] ≥ 1−2−s2/2.

This implies that the algorithm estimates SJ(A) in one passwith
a relative error of at mostε with probability at least1 − δ (i.e.,
P [|Y − SJ(A)| ≤ ε · SJ(A)] ≥ 1 − δ) while using only

O
(

log(1/δ)

ε2
(log |dom(A)|+ log |R|)

)
bits of memory.

Extensions: Binary Joins, Wavelets, andLp Differencing. In a
more recent paper, Alon et al. [2] demonstrate how the above al-
gorithm can be extended to deal with deletions in the data stream
and demonstrate its benefits experimentally over naive solutions
based on random sampling. They also show how their sketch-based
approach applies to handling the size-estimation problem for bi-
nary joins over a pair of distinct tuple streams. More specifically,
consider approximating the result of the queryQ = COUNT(R1

./R1.A1=R2.A2 R2) over two relational streamsR1 andR2. (Note
that, by the definition of the equi-join operation, the two join at-
tributes have identical value domains, i.e.,dom(A1) = dom(A2).)
As previously, let{ξi : i = 1, . . . , |dom(A1)|} be a family of four-
wise independent{−1,+1} random variables withE[ξi] = 0, and
define the randomized linear projectionsX1 =

∑
i∈dom(A1) f1(i)ξi

andX2 =
∑
i∈dom(A2) f2(i)ξi, wheref1(i), f2(i) represent the

frequencies ofR1.A1 andR2.A2 values, respectively. The follow-
ing theorem [2] shows how sketching can be applied for estimating
binary-join sizes in limited space.

THEOREM 2.2 ([2]). Let the atomic sketchesX1 andX2 be
as defined above. ThenE[X1X2] = |R1 ./A1=A2 R2| and
Var(X1X2) ≤ 2 · SJ1(A1) · SJ2(A2), where SJ1(A1), SJ2(A2)
is the self-join size ofR1.A1 andR2.A2, respectively. Thus, av-
eraging overk = O(SJ1(A1)SJ2(A2)/(ε2L2)) iid instantiations
of the basic scheme, whereL is a lower bound on the join size,
guarantees an estimate that lies within constant relative errorε of
|R1 ./A1=A2 R2| with high probability.

Techniques relying on the same basic idea of compact, pseudo-
random sketching have also been proposed recently for other data-
stream applications. Gilbert et al. [15] propose the use of sketches
for approximately computingone-dimensionalHaar wavelet coeffi-
cients and range aggregates over streaming numeric values. Strauss
et al. [11] discuss sketch-based techniques for the on-line estima-
tion of L1 differences between two numeric data streams. None
of these earlier studies, however, has considered the hard technical
problems involved in using sketching to effectively approximate the
results of complex, multi-join aggregate SQL queries over multiple
massive data streams.

3. APPROXIMATING COMPLEX QUERY
ANSWERS USING STREAM SKETCHES

In this section, we describe our sketch-based techniques for com-
puting guaranteed-quality approximate answers to general aggre-
gate operators over complex, multi-join SQL queries spanning mul-
tiple streaming relationsR1, . . . , Rr. More specifically, the class
of queries that we consider is of the general form: “SELECT AGG
FROMR1, R2, . . . , Rr WHEREE”, whereAGGis an arbitrary ag-
gregate operator (e.g.,COUNT, SUMor AVERAGE) andE repre-
sents the conjunction of ofn equi-join constraints3 of the form
Ri.Aj = Rk.Al (Ri.Aj denotes thejth attribute of relationRi).

We first demonstrate how sketches can provide approximate an-
swers with probabilistic quality guarantees toCOUNTaggregates,
and then show how our results can be generalized to other aggrega-
tion operators likeSUM. In order to derive probabilistic guarantees
on the estimation error, we require that each attribute belonging to
a relation appearsat most oncein the join conditionsE . Note that
this is not a serious restriction, as any set of join conditions can
be transformed to satisfy our requirement, as follows. For any at-
tributeRi.Aj that occursm > 1 times inE , we addm−1 new “at-
tributes” toRi, and replacem−1 occurrences ofRi.Aj in E , each
with a distinct new attribute. These newm − 1 attributes are ex-
act replicas ofRi.Aj , so they all take on values identical toRi.Aj
within each tuple ofRi. For instance, ifE = ((R1.A1 = R2.A1)
AND(R1.A1 = R3.A1)), we can modify it to satisfy our our
single attribute-occurrence constraintby adding a new attribute
A2 to R1 which is a replica ofA1, and replacing an occurrence
of R1.A1 so that, for exampleE = ((R1.A1 = R2.A1) AND
(R1.A2 = R3.A1)). Clearly, this addition of new “attributes”
can be carried out only at a conceptual level, e.g., as part of our
sketch-computation logic. We assume thatE satisfies our single
attribute-occurrence constraint in the remainder of this section.

3.1 Using Sketches to AnswerCOUNTQueries
The output of aCOUNTqueryQCOUNTis the number of tuples

in the cross-product ofR1, . . . , Rr that satisfy the equality con-
straints inE over the join attributes. Assume a renaming of the
2n join attributes inE toA1, A2, . . . , A2n such that each equi-join
constraint inE is of the formAj = An+j , for 1 ≤ j ≤ n. Let
dom(Ai) = {1, . . . , |dom(Ai)|} be the domain of attributeAi,
andD = dom(A1) × · · · × dom(A2n). Also, letSk denote the
subset of (renamed) attributes from relationRk appearing inE and
letDk = dom(Ak1)×· · ·×dom(Ak|Sk|

), whereAk1 , . . . , Ak|Sk|
are the attributes inSk. An assignmentI assigns values to join at-
tributes from their respective domains. IfI ∈ D, then each join
attributeAj is assigned a valueI[j] by I. On the other hand, if
I ∈ Dk, thenI only assigns a valueI[j] to attributesj ∈ Sk.
(Henceforth, we will simply usej to refer to attributeAj when the

3Simple value-based selections on individual relations are trivial to evaluate
over the streaming tuples.

Symbol Description
R1, . . . , Rr Relations in aggregate query
A1, . . . , A2n Attributes over which join is defined

dom(Aj) Domain of attributeAj
D dom(A1)× · · · × dom(A2n)
Sk Join attributes in relationRk
Dk Projection ofD on attributes inSk

SJk(Sk) Self-join of relationRk on attributes inSk
I Assignment of values to (a subset of) join attributes
I[j] Value assigned to attributej
I[Sk] Projection of I on attributes inSk
fk(I) Number of tuples inRk that matchI
Xk Atomic sketch for relationRk

{ξjl : l = 1, . . . Family of four-wise independent random
. . . , |dom(Aj)|} variables for attributeAj

Table 1: Notation.

distinction is clear from the context.) We useI[Sk] to denote the
projection ofI on attributes inSk; note thatI[Sk] ∈ Dk. Finally,
for I ∈ Dk, we usefk(I) to denote the number of tuples inRk
whose value for attributej equalsI[j] for all j ∈ Sk. Table 1 sum-
marizes some of the key notational conventions used throughout
the paper; additional notation will be introduced when necessary.

The result of ourCOUNTquery can now be expressed asQCOUNT=∑
I∈D,∀j:I[j]=I[n+j]

∏r
k=1 fk(I[Sk]). This is essentially the prod-

uct of the number of tuples in each relation that match a value as-
signmentI, summed over all assignmentsI ∈ D that satisfy the
equi-join constraintsE . Our sketch-based randomized algorithm
for producing a probabilistic estimate of the result of aCOUNT
query is similar in spirit to the technique originally proposed in
[3] and described in Section 2. Essentially, we construct a random
variableX that is an unbiased estimator forQCOUNT(i.e.,E[X] =
QCOUNT), and whose variance can be appropriately bounded from
above. Then, by employing the standard averaging and median-
selection trick of [3], we boost the accuracy and confidence ofX
to compute an estimate ofQCOUNTthat guarantees small relative
error with high probability.

We now show how such a random variableX can be constructed.
For each pair of join attributesj, n + j in E , we build a family of
four-wise independent random variables{ξj,l : l = 1, . . . , |dom(Aj)|},
where eachξj,l ∈ {−1,+1}. The key here is that an every equi-
join attribute pairj andn + j shares the sameξ family, and so
for all l ∈ dom(Aj), ξj,l = ξn+j,l; however, we define a distinct
ξ family for each of then distinct equi-join pairs using mutually-
independent random seeds to generate eachξ family. Thus, ran-
dom variables belonging to families defined for different attribute
pairs are completely independent of each other. Since, as men-
tioned earlier, the family for attribute pairj, n + j can be effi-
ciently constructed on-line using onlyO(log |dom(Aj)|) space,
the space requirements for alln families of random variables is∑n
j=1 O(log |dom(Aj)|).
For each relationRk, we define the atomic sketch forRk,Xk to

be equal to
∑
I∈Dk

(fk(I)
∏
j∈Sk

ξj,I[j]), and define theCOUNT

estimator random variable asX =
∏r
k=1 Xk (i.e., the product of

the atomic relation sketchesXk). Note that each atomic sketch
Xk can be efficiently computed as tuples ofRk are streaming in;
more specifically,Xk is initialized to0 and, for each tuplet in the
Rk stream, the quantity

∏
j∈Sk

ξj,t[j] is added toXk, wheret[j]
denotes the value of attributej in tuplet.
Example 1: Consider the followingCOUNTquery over relations
R1, R2 andR3: SELECT COUNT(*) FROMR1, R2, R3 WHERE
R1.A1 = R2.A1 ANDR2.A2 = R3.A1. After renaming, we get

A1 = R1.A1, A2 = R2.A2, A3 = R2.A1, andA4 = R3.A1.
The first join involves attributesA1 andA3, while the second is
on attributesA2 andA4. Thus, we define two families of four-
wise independent random variables (one for each join pair):{ξ1,l :
l = 1, . . . , |dom(A1)|} and{ξ2,l : l = 1, . . . , |dom(A2)|}. Three
separate atomic sketchesX1, X2 andX3 are maintained for the
three relations, and are defined as follows:X1 =

∑
t∈R1

ξ1,t[1],
X2 =

∑
t∈R2

ξ1,t[3]ξ2,t[2], andX3 =
∑
t∈R3

ξ2,t[4]. The value of
the random variableX = X1X2X3 gives our final estimate for the
result of theCOUNTquery.

As the following lemma shows, the random variableX =
∏r
k=1 Xk

=
∏r
k=1

∑
I∈Dk

(fk(I)
∏
j∈Sk

ξj,I[j]) is indeed anunbiasedes-
timator for ourCOUNTaggregate.

LEMMA 3.1. The random variableX =
∏r
k=1 Xk is an unbi-

ased estimator forQCOUNT; that isE[X] = QCOUNT.

As in traditional query processing, thejoin graph for our input
queryQCOUNTis defined as an undirected graph consisting of a
node for each relationRi, i = 1, . . . , r, and an edge for each join-
attribute pairj, n + j between the relation nodes containing the
join attributesj andn + j. Our computation of tight upper and
lower bounds on the variance ofX relies on the assumption that
the join graph forQCOUNTis acyclic. Thus, the probabilistic qual-
ity guarantees provided by our techniques are valid only for acyclic
multi-join queries. This is not a serious limitation, since many SQL
join queries encountered in database practice are in fact acyclic;
this includes chain joins (see Example 3.1) as well as star joins
(the dominant form of queries over the star/snowflake schemas of
modern data warehouses [7]). Under this acyclicity assumption,
the following lemma bounds the variance of our unbiased estima-
tor X for QCOUNT. To simplify the statement of our result, let
SJk(Sk) =

∑
I∈Dk

fk(I)2 denote the size of the self-join of rela-
tionRk over all attributes inSk.

LEMMA 3.2. Assume that the join graph forQCOUNTisacyclic.
Then, for the random variableX =

∏r
k=1 Xk:

r∏
k=1

SJk(Sk)−
∑

I∈D,I[j]=I[n+j]

r∏
k=1

fk(I[Sk])2 ≤ Var(X)

≤
(
(2n − 1)2 + 1

) r∏
k=1

SJk(Sk)−
∑

I∈D,I[j]=I[n+j]

r∏
k=1

fk(I[Sk])

2

The final estimateY for QCOUNTis chosen to be the median
of s2 random variablesY1, . . . , Ys2 , eachYi being the average of
s1 iid random variablesXij , 1 ≤ j ≤ s1, where eachXij is
constructed on-line in a manner identical to the construction ofX
above. Thus, the total size of our sketch synopsis forQCOUNT
is O(s1 · s2 ·

∑n
j=1 log |dom(Aj)|)4. The values ofs1 and s2

for achieving a certain degree of accuracy with high probability are
derived based on the following theorem that summarizes our results
in this section.

THEOREM 3.1. LetQCOUNTbe an acyclic, multi-joinCOUNT
query over relationsR1, . . . , Rr, such thatQCOUNT≥ L and

SJk(Sk) ≤ Uk. Then, using a sketch of sizeO(
22n(

∏r
k=1 Uk) log(1/δ)

L2ε2∑n
j=1 log |dom(Aj)|), it is possible to approximateQCOUNTso

that the relative error of the estimate is at mostε with probability
at least1− δ.
4Note that this includes thes1 · s2 · (n+ 1) space required for storing the
s1 · s2 · r Xij variables for ther = n+ 1 relations.

3.2 Using Sketches to AnswerSUMQueries
Our sketch-based approach for approximating complexCOUNT

aggregates can also be extended to compute approximate answers
for complex queries with other aggregate functions, likeSUM, over
relation streams. ASUMquery has the formSELECT SUM(Ri.Aj)
FROMR1, R2, . . . , Rr WHEREE . As earlier, letA1, . . . , A2n be a
renaming of the2n join attributes inE and, without loss of gener-
ality , let Ri = R1 andA2n+1 denote the attribute inR1 whose
value is summed in the join result. Further, for an assignment
of valuesI ∈ D1 to all the join attributes inR1, let SUM(I)
=
∑
t∈R1,∀j∈S1:t[j]=I[j] t[A2n+1]; thus, SUM(I) is basically the

sum of the values taken by attributeA2n+1 in all tuplest in R1

that matchI on the join attributesS1. The result of ourSUM
query is a scalar quantityQSUMwhose value can be expressed as∑
I∈D,∀j:I[j]=I[n+j] SUM(I[S1]) ·

∏r
k=2 fk(I[Sk]).

Similar to theCOUNTcase, in order to approximateQSUMover
a data stream, we utilize families of four-wise independent random
variablesξ to build atomic sketchesXk for each relation, using
distinct, independentξ families for each pair of join attributes. The
atomic sketchesXk for k = 2, . . . , Xk are also defined as de-
scribed earlier forCOUNTqueries; that is,Xk =

∑
I∈Dk

(fk(I)∏
j∈Sk

ξj,I[j]). However, for the relationR1 containing theSUM
attribute,X1 is defined in a slightly different manner asX1 =∑
I∈D1

(SUM(I)
∏
j∈S1

ξj,I[j]). Note thatX1 can be efficiently
maintained on the streaming tuples ofR1 by simply adding the
quantityt[A2n+1] ·

∏
j∈S1

ξj,t[j] for each incomingR1 tuplet. Us-
ing arguments similar to those in Lemmas 3.1 and 3.2, the random
variableX =

∏r
k=1 Xk can be shown to have an expected value

of QSUM, and (assuming an acyclic join graph) a variance that is
bounded by terms similar to those in Lemma 3.2 [9]. These results
can be used to build sketch synopses forQSUMwith probabilistic
accuracy guarantees similar to those stated in Theorem 3.1.

4. IMPROVING ANSWER QUALITY:
SKETCH PARTITIONING

In the proof of Theorem 3.1, to ensure an upper bound ofε on
the relative error of our estimate forQCOUNTwith high probabil-

ity we require that, for eachi, Var(Yi) ≤ ε2L2

8
; this is achieved by

defining eachYi as the average ofs1 iid instances of the atomic-

sketch estimatorX, so that Var(Yi) = Var(X)
s1

. Then, since by

Lemma 3.2, Var(X) ≤ 22n ·
∏r
k=1 SJk(Sk), averaging overs1 ≥

22n+3·
∏r
k=1 SJk(Sk)

ε2L2 iid copies ofX, allows us to guarantee the re-
quired upper bound on the variance ofYi. An important practical
concern for multi-join queries is that (as is evident from Lemma 3.2)
our upper bound on the Var(X) and, therefore, the number ofX in-
stancess1 required to guarantee a given level of accuracy increases
explosively with the number of joinsn in the query.

To deal with this problem, in this section, we propose novel
sketch-partitioningtechniques that exploit approximate statistics
on the streams to decompose the sketching problem in a way that
provably tightens our estimation guarantees. The basic idea is that,
by intelligently partitioning the domain of join attributes in the
query and estimating portions ofQCOUNTindividually on each
partition, we can significantly reduce the storage (i.e., number of iid
X copies) required to approximate eachYi within a given level of
accuracy. (Of course, our sketch-partitioning results are equally ap-
plicable to the dual optimization problem; that is, maximizing the
estimation accuracy for a given amount of sketching space.) Our
techniques can also be extended in a natural way to other aggrega-
tion operators (e.g.,SUM, VARIANCE) similar to the generalization
described in Section 3.2.

The key observation we make is that, given a desired level of ac-
curacy, the number of required iid copies ofX, is proportional to
the product of the self-join sizesof relationsR1, . . . , Rr over the
join attributes (Theorem 3.1). Further, in practice, join-attribute do-
mains are frequently skewed and the skew is often concentrated in
different regions for different attributes. As a consequence, we can
exploit approximate knowledge of the data distribution(s) to intel-
ligently partition the domains of (some subset of) join attributes
so that, for each resulting partitionp of the combined attribute
space, the product of self-join sizes of relations restricted top
is very small compared to the same product over the entire (un-
partitioned) attribute space (i.e.,

∏r
k=1 SJk(Sk)). Thus, lettingXp

denote an atomic-sketch estimator for the portion ofQCOUNTthat
corresponds to partitionp of the attribute space, we can expect the
variance Var(Xp) to be much smaller than Var(X).

Now, consider a scheme that averages oversp iid instances of the
atomic sketchXp for partitionp, and defines eachYi as the sum of
these averages over all partitionsp. We can then show thatE[Yi] =

QCOUNTand Var(Yi) =
∑

p

Var(Xp)

sp
. Clearly, achieving small

self-join sizes and variances Var(Xp) for the attribute-space parti-
tionsp means that the total number of iid sketch instances

∑
p sp

required to guarantee that Var(Yi) ≤ ε2L2

8
is also small; this, in

turn, implies a smaller storage requirement for the prescribed accu-
racy level of ourYi estimator5. We formalize the above intuition in
the following subsection and then present our sketch-partitioning
results and algorithms for both single- and multi-join queries.

4.1 Our General Technique
Consider once again theQCOUNTaggregate query (Section 3).

In general, our sketch-partitioning techniques partition the domain
of each join attributeAj into mj ≥ 1 disjoint subsets denoted
by Pj,1, . . . , Pj,mj . Further, the domains of a join-attribute pair
Aj andAn+j are partitioned identically (note thatdom(Aj) =
dom(An+j)). This partitioning on individual attributes induces
a partitioning of the combined (multi-dimensional) join-attribute
space, which we denote byP. Thus,P = {(P1,l1 , . . . , Pn,ln) :
1 ≤ lj ≤ mj}. Each elementp ∈ P identifies a unique par-
tition of the global attribute space, and we represent byDp the
restriction of this global attribute spaceD to p; in other words,
Dp = {I ∈ D : I[j], I[n + j] ∈ p[j],∀j}, wherep[j] denotes
the partition of attributej in p. Similarly,Dk,p is the projection of
Dp on the join attributes in relationRk.

For each partitionp ∈ P, we construct random variablesXp

that estimateQCOUNTon the domain spaceDp, in a manner sim-
ilar to the atomic sketchX in Section 3. Thus, for each partition
p and join attribute pairj, n + j, we have an independent fam-
ily of random variables{ξj,l,p : l ∈ p[j]}, and for each (rela-
tion, partition) pair(Rk,p), we define a random variableXk,p =∑
I∈Dk,p

(fk(I)
∏
j∈Sk

ξj,I[j],p). VariableXp is then obtained

as the product ofXk,p’s over all relations, i.e.,Xp =
∏r
k=1 Xk,p.

It is easy to verify thatE[Xp] is equal to the number of tuples in
the join result for partitionp and thus, by linearity of expectation,
E[
∑

pXp] =
∑

p E[Xp] = QCOUNT.
By independence across partitions, we have Var(

∑
pXp) =∑

p Var(Xp). As in Section 3, to reduce the variance of our parti-
tioned estimator, we construct iid instances of eachXp. However,
since Var(Xp) may differ widely across the partitions, we can ob-
tain larger reductions in the overall variance by maintaining a larger

5Given Var(Yi) ≤ ε2L2

8
, a relative error at mostε with probability at least

1 − δ can be guaranteed by selecting the median ofs2 = log(1/δ) Yi
instantiations.

number of copies for partitions with a higher variance. Letsp de-
note the number of iid copies of the sketchXp maintained for par-
tition p and letYi,p be the average of thesesp copies. Then, we
computeYi as

∑
p Yi,p (averaging over iid copies does not alter

the expectation, so thatE[Yi] = QCOUNT.
The success of our sketch-partitioning approach clearly hinges

on being able to efficiently compute thesp iid instances ofXk,p for
each (relation, partition) pair as data tuples are streaming in. For
each partitionp, we maintainsp independent familiesξj,p of vari-
ables for each attribute pairj, n+j, where each family is generated
using an independent random seed. Further, for every tuplet ∈ Rk
in the stream and for every partitionp such thatt lies inp (that is,
t ∈ Dk,p), we add toXk,p the quantity

∏
j∈Sk

ξj,t[j],p. (Note that
a tuplet in Rk typically carries only a subset of the join attributes,
so it can belong to multiple partitionsp.) Our sketch-partitioning
techniques make the process of identifying the relevant partitions
for a tuple very efficient by using the (approximate) stream statis-
tics to group contiguous regions of values in the domain of each
attributeAj into a small number of coarsebuckets(e.g., histogram
statistics trivially give such a bucketization). Then, each of the
mj partitions for attributeAj comprises a subset of such buckets
and each bucket stores an identifier for its corresponding partition.
Since the number of such buckets is typically small, given an in-
coming tuplet, the bucket containingt[j] (and, therefore, the rele-
vant partition alongAj) can be determined very quickly (e.g., using
binary or linear search). This allows us to very efficiently determine
the relevant partitionsp for streaming data tuples.

The total storage required for the atomic sketches over all the
partitions isO(

∑
p sp

∑n
j=1 log |dom(Aj)|) to compute eachYi.

For the sake of simplicity, we approximate the storage overhead for
eachξj,p family for partitionp by the constantO(

∑n
j=1 log |dom(Aj)|)

instead of the more precise (and less pessimistic)O(
∑n
j=1 log |p[j]|).

Our sketch-partitioning approach still needs to address two very
important issues: (1) Selecting a good set of partitionsP; and (2)
Determining the number of iid copiessp of Xp to be constructed
for each partitionp. Clearly, effectively addressing these issues is
crucial to our final goal of minimizing the overall space allocated
to the sketch while guaranteeing a a certain degree of accuracyε
for eachYi. Specifically, we aim to compute a partitioningP and
allocating spacesp to each partitionp such that Var(Yi) ≤ ε2L2

8
and

∑
p∈P sp is minimized.

Note that, by independence across partitions and the iid charac-

teristics of individual atomic sketches, we have Var(Yi) =
∑

p

Var(Xp)
sp

.
Given a attribute-space partitioningP, the problem of choosing the
optimal allocation ofsp’s that minimizes the overall sketch space
while guaranteeing an upper bound on Var(Yi) can be formulated
as a concrete optimization problem. The following theorem de-
scribes how to compute such an optimal allocation.

THEOREM 4.1. Consider a partitioningP of the join-attribute

domains. Then, allocating spacesp =
8
√

Var(Xp)
∑

p

√
Var(Xp)

ε2L2 to

eachp ∈ P ensures that Var(Yi) ≤ ε2L2

8
and

∑
p sp is minimum.

From the above theorem, it follows that, given a partitioningP,
theoptimal space allocationfor a given level of accuracy requires

a total sketch space of:
∑

p sp =
8(
∑

p

√
Var(Xp))2

ε2L2 . Obviously,
this means that theoptimal partitioningP with respect to mini-
mizing the overall space requirements for our sketches is one that
minimizes the sum

∑
p

√
Var(Xp). Thus, in the remainder of

this section, we focus on techniques for computing such an opti-
mal partitioningP; onceP has been found, we use Theorem 4.1

to compute the optimal space allocation for each partition. We first
consider the simpler case of single-join queries, and address multi-
join queries in Section 4.3.

4.2 Sketch-Partitioning for Single-Join Queries
We describe our techniques for computing an effective partition-

ing P of the attribute space for the estimation ofCOUNTqueries
over single joins of the formR1 ./A1=A2 R2. Since we only
consider a single join-attribute pair (and, of coursedom(A1) =
dom(A2)), for notational simplicity, we ignore the additional sub-
script for join attributes wherever possible. Our partitioning algo-
rithms rely on knowledge of approximate frequency statistics for
attributesA1 andA2. Typically, such approximate statistics are
available in the form of per-attributehistogramsthat split the under-
lying data domaindom(Aj) into a sequence of contiguous regions
of values (termedbuckets) and store some coarse aggregate statis-
tics (e.g., number of tuples and number of distinct values) within
each bucket.

4.2.1 Binary Sketch Partitioning
Consider the simple case of abinarypartitioningP of dom(A1)

into two subsetsP1 andP2; that is,P = {P1, P2}. Let fk(i) de-
note the frequency of valuei ∈ dom(A1) in relationRk. For each
relationRk, we associate with the (relation, partition) pair(Rk, Pl)
a random variableXk,Pl =

∑
i∈Pl

fk(i)ξi,Pl , wherel, k ∈ {1, 2}.
We can now defineXPl = X1,PlX2,Pl for l ∈ {1, 2}. It is obvious
thatE[XPl] = |R1 ./A1=A2∧A1∈Pl R2| (i.e., the partialCOUNT
overPl), and it is easy to check that the variance Var(XPl) is as
follows [2]:

Var(XPl) =
∑
i∈Pl

f1(i)2
∑
i∈Pl

f2(i)2 +

∑
i∈Pl

f1(i)f2(i)

2

− 2
∑
i∈Pl

f1(i)2f2(i)2 (1)

Theorem 4.1 tells us that the overall storage is proportional to√
Var(XP1) +

√
Var(XP2). Thus, to minimize the total sketch-

ing space through partitioning, we need to find the partitioning
P = {P1, P2} that minimizes

√
Var(XP1) +

√
Var(XP2). Un-

fortunately, the minimization problem using the exact values for
Var(XP1) and Var(XP2) as given in Equation (1) is very hard;
we conjecture this optimization problem to beNP-hard and leave
proof of this statement for future work. Fortunately, however, due
to Lemma 3.2, we know that the variance Var(XPl) lies in be-
tween

∑
i∈Pl

f1(i)2∑
i∈Pl

f2(i)2 −
∑
i∈Pl

f1(i)2f2(i)2 and2 ·
(
∑
i∈Pl

f1(i)2∑
i∈Pl

f2(i)2 −
∑
i∈Pl

f1(i)2f2(i)2). In general,

one can expect the first term
∑
i∈Pl

f1(i)2∑
i∈Pl

f2(i)2 (i.e., the
product of the self-join sizes) to dominate the above bounds. We
now demonstrate that, under a loose condition on join-attribute dis-
tributions, we can find a close to

√
2-approximation to the opti-

mal value for
√

Var(XP1) +
√

Var(XP2) by simply substituting
Var(XPl) with

∑
i∈Pl

f1(i)2∑
i∈Pl

f2(i)2, the product of self-
join sizes of the two relations.

Specifically, suppose that we define the join ofR1 andR2 to
be γ-spreadif and only if the condition

∑
j 6=i f1(j)f2(j) ≥ γ ·

f1(i)f2(i) holds for alli ∈ dom(A1), for some constantγ > 1.
Essentially, theγ-spread condition states that not too much of the
join-frequency “mass” is concentrated at any single point of the
join-attribute domaindom(A1). We typically expect theγ-spread
condition to be satisfied in most practical scenarios; violating the
condition requires not onlyf1(i) andf2(i) to be severely skewed,

but also that their skews are aligned so that they result in extreme
skew in the resulting join-frequency vectorf1(i)f2(i). When no
such extreme scenarios arise, and for reasonably-sized join attribute
domains, we typically expect theγ parameter in theγ-spread defi-
nition to be fairly large; for example, when thef1(i)f2(i) distribu-
tion is approximately uniform, theγ-spread condition is satisfied
with γ = O(|dom(A1)|) >> 1.

THEOREM 4.2. For a γ-spread joinR1 ./ R2, determining
the optimal solution to the binary-partitioning problem using the
self-join-size approximation to the variance guarantees a

√
2/(1−

2√
1+γ

)-factor approximation to the optimal binary partitioning (with
respect to the summed square roots of partition variances). In gen-
eral, ifm domain partitions are allowed, the optimal self-join-size
solution guarantees a

√
2/(1− m√

1+γ
)-factor approximation.

Given the approximation guarantees in Theorem 4.2, we con-
sider the simplified partitioning problem that uses the self-join size
approximation for the partition variances; that is, we aim to find a
partitioningP that minimizes the function:

F(P) =

√∑
i∈P1

f1(i)2
∑
i∈P1

f2(i)2 +

√∑
i∈P2

f1(i)2
∑
i∈P2

f2(i)2. (2)

Clearly, a brute-force solution to this problem is extremely ineff-
ficient as it requiresO(2dom(A1)) time (proportional to the number
of all possible partitionings ofdom(A1)). Fortunately, we can take
advantage of the following classic theorem from the classification-
tree literature [5] to design a much more efficientoptimal algo-
rithm.

THEOREM 4.3 ([5]). LetΦ(x) be a concave function ofx de-
fined on some compact domain̂D. LetP = {1, . . . , d}, d >= 2,
and∀i ∈ P let qi > 0 and ri be real numbers with values in̂D
not all equal. Then one of the partitions{P1, P2} of P that mini-

mizes
∑
i∈P1

qiΦ(
∑
i∈P1

qiri∑
i∈P1

qi
) +
∑
i∈P2

qiΦ(
∑
i∈P2

qiri∑
i∈P2

qi
) has the

property that∀i1 ∈ P1,∀i2 ∈ P2, ri1 < ri2 .

To see how Theorem 4.3 applies to our partitioning problem, let

i ∈ dom(A1), and setri = f1(i)2

f2(i)2
, qi = f2(i)2∑

j∈dom(A1)
f2(j)2

.

Substituting in Equation (2), we obtain:

F(P) =

√∑
i∈P1

f2(i)2
∑
i∈P1

f2(i)2ri +

√∑
i∈P2

f2(i)2
∑
i∈P2

f2(i)2ri

=
∑
i

f2(i)2

√∑
i∈P1

qi
∑
i∈P1

qiri +

√∑
i∈P1

qi
∑
i∈P1

qiri


=
∑
i

f2(i)2

∑
i∈P1

qi

√√√√∑
i∈P1

qiri∑
i∈P1

qi
+
∑
i∈P2

qi

√√√√∑
i∈P2

qiri∑
i∈P2

qi


Except for the constant factor

∑
i∈dom(A1) f2(i)2 (which is al-

ways nonzero ifR2 6= φ), our objective functionF now has ex-
actly the form prescribed in Theorem 4.3 withΦ(x) =

√
x. Since

f1(i) ≥ 0, f2(i) ≥ 0 for i ∈ dom(A1), we haveri ≥ 0, qi ≥ 0,

and∀Pl ⊆ dom(A1),
∑
i∈Pl

qi∑
i∈Pl

qiri
≥ 0. So, all that remains to

be shown is that
√
x is concave ondom(A1). Since concaveness is

equivalent to negative second derivative and(
√
x)′′ = −1/4x−3/2 ≤

0, Theorem 4.3 applies.

Applying Theorem 4.3 essentially reduces the search space for
finding an optimal partitioning ofdom(A) from exponential to lin-
ear, since only partitionings in the order of increasingri’s need to
be considered. Thus, our optimal binary-partitioning algorithm for
minimizing F(P) simply orders the domain values in increasing
order of frequency ratiosf1(i)

f2(i)
, and only considers partition bound-

aries between two consecutive values in that order; the partitioning
with the smallest resulting value forF(P) gives the optimal solu-
tion.
Example 2: Consider the joinR1 ./A1=A2 R2 of two relations
R1 andR2 with dom(A1) = dom(A2) = {1, 2, 3, 4}. Also, let
the frequencyfk(i) of domain valuesi for relationsR1 andR2 be
as follows:

1 2 3 4
f1(i) 20 5 10 2
f2(i) 2 15 3 10

Without partitioning, the number of copiess1 of the atomic-
sketch estimatorX, so that Var(Yi) ≤ ε2L2

8
is given bys1 =

8Var(X)

ε2L2 , where Var(X) = 529·338+1652−2·8525 = 188977 by
Equation (1). Now consider the binary partitioningP of dom(A1)
into P1 = {1, 3} andP2 = {2, 4}. The total number of copies∑

p sp of the sketch estimatorsXp for partitionsP1 andP2 is∑
p sp =

8(
√

Var(XP1)+
√

Var(XP2))2

ε2L2 (by Theorem (4.1)), where

(
√

Var(XP1) +
√

Var(XP2))2 = (
√

6400 +
√

6400)2 = 25600.
Thus, using this binary partitioning, the sketching space require-
ments are reduced by a factor ofs1∑

p sp
= 188977

25600
≈ 7.5.

Note that the partitioningP with P1 = {1, 3} andP2 = {2, 4}
also minimizes the functionF(P) defined in Equation (2). Thus,
our approximation algorithm based on Theorem 4.3 returns the
above partitioningP. Essentially, sincer1 = 202

22 = 100, r2 =
52

152 = 1/9, r3 = 102

32 = 100/9 andr4 = 22

102 = 1/25, only
the three split points in the sequence4, 2, 3, 1 of domain values ar-
ranged in the increasing order ofri need to be considered. Of the
three potential split points, the one between2 and3 results in the
smallest value (177) for F(P).

4.2.2 K-ary Sketch Partitioning
We now describe how to extend our earlier results to more gen-

eral partitionings comprisingm ≥ 2 domain partitions. By The-
orem 4.1, we aim to find a partitioningP = {P1, . . . , Pm} of
dom(A1) that minimizes

√
Var(XP1)+ . . .+

√
Var(XPm), where

each Var(XPl) is computed as in Equation (1). Once again, given
the approximation guarantees of Theorem 4.2, we substitute the
complicated variance formulas with the product of self-join sizes;
thus, we seek to find a partitioningP = {P1, . . . , Pm} that mini-
mizes the function:

F(P) =

√∑
i∈P1

f1(i)2
∑
i∈P1

f2(i)2+. . .+

√ ∑
i∈Pm

f1(i)2
∑
i∈Pm

f2(i)2

(3)

A brute-force solution to minimizingF(P) requires an impracti-

calO(mdom(A1)) time. Fortunately, we have shown the following
generalization of Theorem 4.3 that allows us to drastically reduce
the problem search space and design a much more efficient algo-
rithm.

THEOREM 4.4. Consider the functionΨ(P1, . . . , Pm) =
∑m
l=1∑

i∈Pl
qiΦ(

∑
i∈Pl

qiri∑
i∈Pl

qi
), whereΦ, qi andri are defined as in The-

orem 4.3 and{P1, . . . , Pm} is a partitioning ofP = {1, . . . , d}.
Then among the partitionings that minimizeΨ(P1, . . . , Pm) there
is one partitioning{P1, . . . , Pm} with the following propertyπ:
∀l, l′ ∈ {1, . . . ,m} : l < l′ =⇒ ∀i ∈ Pl ∀i′ ∈ Pl′ ri < ri′ .

As described in Section4.2.1, our objective functionF(P)
can be expressed as

∑
i∈dom(A1) f2(i)2Ψ(P1, . . . , Pm), where

Φ(x) =
√
x, ri = f1(i)2

f2(i)2
andqi = f2(i)2∑

j∈dom(A1)
f2(j)2

; thus, min-

imizingF({P1, . . . , Pm}) is equivalent to minimizingΨ(P1, . . . , Pm).
By Theorem 4.4, to find the optimal partitioning forΨ, all we
have to do is to consider an arrangement of elementsi in P =
{1, . . . , d} in the order of increasingri’s, and findm − 1 split
points in this sequence such thatΨ for the resultingm partitions
is as small as possible. The optimumm − 1 split points can be
efficiently found usingdynamic programming, as follows. Without
loss of generality, assume that1, . . . , d is the sequence of elements
in P in increasing value ofri. For 1 ≤ u ≤ d and1 ≤ v ≤ m,
let ψ(u, v) be the value ofΨ for the optimal partitioning of ele-
ments1, . . . u (in order of increasingri) in v parts. The equations
describing our dynamic-programming algorithm are:

ψ(u, 1) =

u∑
i=1

qiΦ(

∑u
i=1 qiri∑u
i=1 qi

)

ψ(u, v) = min
1≤j<u

ψ(j, v − 1) +
u∑

i=j+1

qiΦ(

∑u
i=j+1 qiri∑u
i=j+1 qi

)

 , v > 1

The correctness of our algorithm is based on the linearity ofΨ.
Also let p(u, v) be the index of the last element in partitionv − 1
of the optimal partitioning of1, . . . , u in v parts (so that the last
partition consists of elements betweenp(u, v) + 1 andu). Then,
p(u, 1) = 0 and forv > 1, p(u, v) = arg min1≤j<u{ψ(j, v − 1)

+
∑u
i=j+1 qiΦ(

∑u
i=j+1 qiri∑u
i=j+1 qi

)}. The actual best partitioning can

then be reconstructed from the values ofp(u, v) in time O(m);
essentially, the(m − 1)th split point of the optimal partitioning is
p(d,m), the split point preceding it isp(p(d,m),m − 1), and so
on. The space complexity of the algorithm is obviouslyO(md)
and the time complexity isO(md2), since we needO(d) time to
find the indexj that achieves the minimum for a fixedu andv,
and the functionΦ() for sequences of consecutive elements can be
computed in timeO(d2).

4.3 Sketch-Partitioning for Multi-Join Queries
Queries Containing 2 Joins. When queries contain 2 or more
joins, unfortunately, the problem of computing an optimal parti-
tioning becomes intractable. Consider the problem of estimating
the join-size of the following query over three relationsR1 (con-
taining attributeA1), R2 (containing attributesA2 andA3) and
R3 (containing attributeA4): R1 ./A1=A3 R2 ./A2=A4 R3. We
are interested in computing a partitioningP of attribute domains
A1 andA2 such that|P| ≤ K and the quantity

∑
p

√
Var(Xp)

is minimized. Let the partitions ofdom(Aj) bePj,1, . . . , Pj,mj .
Then the number of partitions inP, |P| = m1m2. Also, for values
i, j, let f1(i), f2(i, j) andf3(j) be the frequencies of the values in
relationsR1, R2 andR3, respectively.

Due to Lemma 3.2, for a partition(P1,l1 , P2,l2) ∈ P,

Var(X(P1,l1 ,P2,l2)) ≤

10 ·

 ∑
i∈P1,l1

f1(i)2
∑

(i,j)∈(P1,l1 ,P2,l2)

f2(i, j)2
∑

j∈P2,l2

f3(j)2

−
∑

(i,j)∈(P1,l1 ,P2,l2)

f1(i)2f2(i, j)2f3(j)2)


Since the first term in the above equation for variance is the dom-

inant term, for the sake of simplicity, we focus on computing a par-
titioningP that minimizes the following quantity:

m1∑
l1=1

m2∑
l2=1

√√√√ ∑
i∈P1,l1

f1(i)2
∑

(i,j)∈(P1,l1 ,P2,l2)

f2(i, j)2
∑

j∈P2,l2

f3(j)2 (4)

Unfortunately, we have shown that computing such an optimal
partitioning isNP-hard based on a reduction from the MINIMUM

SUM OF SQUARESproblem [9].

THEOREM 4.5. The problem of computing a partitioningPj,1,
. . . , Pj,mj of dom(Aj) for join attributeAj , j = 1, 2 such that
|P| = m1m2 ≤ K and the quantity in Equation (4) is minimized
isNP-hard.

In the following subsection, we present a simple heuristic for
partitioning attribute domains of multi-join queries that is optimal
if attribute value distributions within each relation are independent.

Optimal Partitioning Algorithm for Independent Join Attributes.
For general multi-join queries, the partitioning problem involves
computing a partitioningPj,1, . . . , Pj,mj of each join attribute do-
main dom(Aj) such that|P| =

∏n
j=1 mj ≤ K and the quan-

tity
∑

p

√
Var(Xp) is minimized. Ignoring constants and retaining

only the dominant self-join term of Var(Xp) for each partitionp
(see Lemma 3.2), our problem reduces to computing a partitioning

that minimizes the quantity
∑

p

√∏r
k=1

∑
I∈Dk,p

fk(I)2. Since

the 2-join case is a special instance of the general multi-join prob-
lem, due to Theorem 4.5, our simplified optimization problem is
alsoNP-hard. However, if we assume that the join attributes
in each relation are independent, then a polynomial-time dynamic
programming solution can be devised for computing the optimal
partitioning. We will employ this optimal dynamic programming
algorithm for the independent attributes case as a heuristic for split-
ting attribute domains for multi-join queries even when attributes
may not satisfy our independence assumption.

Suppose that for a relationRk, join attributej ∈ Sk and value
i ∈ dom(Aj), fk,j(i) denotes the number of tuples inRk for whom
Aj has valuei. Then, the attribute value independence assumption

implies that forI ∈ Dk, fk(I) = |Rk|
∏
j∈Sk

fk,j(I[j])

|Rk|
. This

is because the independence of attributes implies the fact that the
probability of a particular set of values for the join attributes is
the product of the probabilities of each of the values in the set.
Under this assumption, one can show that the optimization problem
for multiple joins can be decomposed to optimizing the product of
single joins. Recall that attributesj andn+ j form a join pair, and
in the following, we will denote byR(j) the relation containing
attributeAj .

THEOREM 4.6. If relationsR1, . . . , Rr satisfy the attribute value

independence assumption, then
∑

p

√∏r
k=1

∑
I∈Dk,p

fk(I)2 is

simply ∏r
k=1 |Rk|∏n

j=1 |R(j)||R(n+ j)|

n∏
j=1

·

mj∑
l=1

√ ∑
i∈Pj,l

fR(j),j(i)
2
∑
i∈Pj,l

fR(n+j),j(i)
2

Thus, due to Theorem 4.6, and since
∏r
k=1 |Rk|∏n

j=1 |R(j)||R(n+j)| is a

constant independent of the partitioning, we simply need to com-
putemj partitions for each attributeAj such that the product of∑mj
l=1

√∑
i∈Pj,l

fR(j),j(i)2
∑
i∈Pj,l

fR(n+j),j(i)2 for j = 1, . . . ,

n is minimized and
∏n
j=1 mj ≤ K. Clearly, the dynamic pro-

gramming algorithm from Section4.2.2can be employed to ef-
ficiently compute, for a given value ofmj , the optimalmj parti-
tions (denoted byP optj,1 , . . . , P

opt
j,mj

) for an attributej that minimize∑mj
l=1

√∑
i∈Pj,l

fR(j),j(i)2
∑
i∈Pj,l

fR(n+j),j(i)2. LetQ(j,mj)

denote this quantity for the optimal partitions; then, our problem is
to compute the valuesm1, . . . ,mn for then attributes such that∏n
j=1 mj ≤ K and

∏n
j=1 Q(j,mj) is minimum. This can be

efficiently computed using dynamic programming as follows. Sup-
poseM(u, v) denotes the minimum value for

∏u
j=1 Q(j,mj) such

that m1, . . . ,mu satisfy the constraint that
∏u
j=1 mj ≤ v, for

1 ≤ u ≤ n and 1 ≤ v ≤ K. Then, one can defineM(u, v)
recursively as follows:

M(u, v) =

{
Q(u, v) if u = 1
min1≤l≤v{M(u− 1, l) ·Q(u, b v

l
c)} otherwise

Clearly, M(n,K) can be computed using dynamic program-
ming, and it corresponds to the minimum value of function∑

p

√∏r
k=1

∑
I∈Dk,p

fk(I)2 for the optimal partitioning when

attributes are independent. Furthermore, ifP(u, v) denotes the
optimal v partitions of the attribute space overA1, . . . , Au, then
P(u, v) = {P opt1,1 , . . . , P

opt
1,v } if u = 1. Otherwise,P(u, v) =

P(u − 1, l0) × {P optu,1 , . . . , P
opt
u,b v

l0
c}, wherel0 = arg min1≤l≤v

{M(u− 1, l) ·Q(u, b v
l
c)}.

ComputingQ(u, v) for 1 ≤ u ≤ n and 1 ≤ v ≤ K us-
ing the dynamic programming algorithm from Section4.2.2takes
O(
∑n
j=1 |dom(Aj)|2K) time in the worst case. Furthermore, us-

ing the computedQ(u, v) values to computeM(n,K) has a worst-
case time complexity ofO(nK). Thus, overall, the dynamic pro-
gramming algorithm for computingM(n,K) has a worst-case time
complexity ofO((n+

∑n
j=1 |dom(Aj)|2)K). The space complex-

ity of the dynamic programming algorithm isO(maxj |dom(Aj)|K),
since computation ofM for a specific value ofu requires onlyM
values foru− 1 andQ values ofu to be kept around.

Note that since building good one-dimensional histograms on
streams is much easier than building multi-dimensional histograms,
in practice, we expect the partitioning of the domain of join at-
tributes to be made based exclusively on such histograms. In this
case, the independence assumption will need to be made anyway
to approximate the multi-dimensional frequencies, and so the opti-
mum solution can be found using the above proposed method.

5. EXPERIMENTAL STUDY
In this section, we present the results of an extensive experimen-

tal study of our sketch-based techniques for processing queries in a

streaming environment. Our objective was twofold: We wanted to
(1) compare our sketch-based method of approximately answering
complex queries over data streams with traditional histogram-based
methods, and (2) examine the impact of sketch partitioning on the
quality of the computed approximations. Our experiments consider
a wide range ofCOUNTqueries on both synthetic and real-life data
sets. The main findings of our study can be summarized as follows.

• Improved Query Answer Quality. Our sketch-based algorithms
are quite accurate when estimating the results of complex aggregate
queries. Even with few kilobytes of memory, the relative error in fi-
nal answer is frequently less than 10%. Our experiments also show
that our sketch-based method gives much more accurate answers
than on-line histogram-based methods, the improvement in accu-
racy ranging from a factor of three to over an order of magnitude.

• Effectiveness of Sketch Partitioning. Our study shows that
partitioning attribute domains (using our dynamic programming
heuristic to compute the partitions) and carefully allocating the
available memory to sketches for the partitions can significantly
boost the quality of returned estimates.

• Impact of Approximate Attribute Statistics. Our experiments
show that sketch partitioning is still very effective and robust even if
only very rough and approximate attribute statistics for computing
partitions are available.

Thus our experimental results validate the thesis of this paper
that sketches are a viable, effective tool for answering complex ag-
gregate queries over data streams, and that a careful allocation of
available space through sketch partitioning is important in prac-
tice. In the next section, we describe our experimental setup and
methodology. All experiments in this paper were performed on a
Pentium III with 1 GB of main memory, running Redhat Linux 7.2.

5.1 Experimental Testbed and Methodology
Algorithms for Query Answering. We focused on algorithms that
are truly on-line in that they can work exclusively with a limited
amount of main memory and a small per-tuple processing over-
head. Since histograms are a popular data reduction technique for
approximate query answering [20], and a number of algorithms for
constructing equi-depth histograms on-line have been proposed re-
cently [21, 16], we consider equi-depth histograms in our study.
However, we do not consider random-sample data summaries since
these have been shown to perform poorly for queries with one or
more joins [1, 6, 2].

• Equi-Depth Histograms.We construct one-dimensional equi-
depth histograms off-line since space-efficient on-line algorithms
for histograms are still being proposed in the literature, and we
would like our study to be valid for the best single-pass algorithms
of the future. We do not consider multi-dimensional histograms in
our experiments since their construction typically involves multi-
ple passes over the data. (The technique of Gibbons et al. [14] for
constructing approximate multi-dimensional histograms utilizes a
backing sample and thus cannot be used in our setting.) Conse-
quently, we use the attribute value independence assumption to ap-
proximate the value distribution for multiple attributes from the in-
dividual attribute histograms. Thus, by assuming that values within
each bucket are distributed uniformly and attributes are indepen-
dent, the entire relation can be approximated and we use this ap-
proximation to answer queries. Note that a one-dimensional his-
togram withb buckets requires2b words (4-byte integers) of stor-
age, one word for each bucket boundary and one for each bucket
count.

• Sketches.We use our sketch-based algorithm from Section 3
for answering queries, and the dynamic programming-based al-

gorithm from Section 4.3 for computing partitions. We employ
sophisticated de-randomization techniques to dramatically reduce
the overhead for generating theξj families of independent random
variables6. Thus, when attribute domains are not partitioned, the
total storage requirement for a sketch is approximatelys1 · s2 · r
words, which is essentially the overhead of storings1 · s2 random
variables for ther relations. On the other hand, in case attributes
are split, then the space overhead for the sketch is approximately∑

p sp · s2 · r words. In our experiments, we found that smaller
values fors2 generally resulted in better accuracy, and so we sets2

to 2 in all our experiments.

In each experiment, we allocate the same amount of memory to
histograms and sketches.

Data Sets.We used two real-life and several synthetic data sets in
our experiments. We used the synthetic data generator employed
previously in [24, 6] to generate data sets with very different char-
acteristics for a wide variety of parameter settings.

• Census data set (www.bls.census.gov).This data set was taken
from the Current Population Survey (CPS) data, which is a monthly
survey of about 50,000 households conducted by the Bureau of
the Census for the Bureau of Labor Statistics. Each month’s data
contains around 135,000 tuples with 361 attributes, of which we
used five attributes in our study:age, income, education, weekly
wage andweekly wage overtime. The income attribute is dis-
cretized and has a range of 1:14, andeducation is a categori-
cal attribute with domain 1:46. The three numeric attributesage,
weekly wage andweekly wage overtime have ranges of 1:99,
0:288416 and 0:288416, respectively. Our study use data from
two months (August 1999 and August 2001) containing 72100 and
81600 records,7 respectively, with a total size of 6.51 MB.

• Synthetic data sets.We used the synthetic data generator from
[24] to generate relations with 1, 2 and 3 attributes. The data gener-
ator works by populating uniformly distributed rectangular regions
in the multi-dimensional attribute space of each relation. Tuples
are distributed across regions and within regions using a Zipfian
distribution with valueszinter andzintra, respectively. We set the
parameters of the data generator to the following default values:
size of each domain=1024, number of regions=10, volume of each
region=1000–2000, skew across regions (zinter)=1.0, skew within
each region (zintra) =0.0–0.5 and number of tuples in each rela-
tion = 10,000,000. By clustering tuples within regions, the data
generator used in [24] is able to model correlation among attributes
within a relation. However, in practice, join attributes belonging
to different relations are frequently correlated. In order to capture
this attribute dependency across relations, we introduce a newper-
turbationparameterp (with default value 1.0). Essentially, relation
R2 is generated from relationR1 by perturbing each regionr in
R1 using parameterp as follows. Consider the rectangular space
around the center ofr obtained as a result of shrinkingr by a fac-
tor p along each dimension. The new center for regionr in R2 is
selected to be a random point in the shrunk space.

Queries.The workload used to evaluate the various approximation
techniques consists of three main query types: (1) Chain JOIN-
COUNT Queries: We join two or more relations on one or more
attributes such that the join graph forms a chain, and we return the
number of tuples in the result of the join as output of the query;
(2) Star JOIN-COUNT Queries: We join two or more relations on
one or more attributes such that the join graph forms a star, and
we return the number of tuples in the output of the query; (3) Self-

6A detailed discussion of this is outside the scope of this paper.
7We excluded records with missing values.

join JOIN-COUNT Queries: We self-join a relation on one or more
attributes, and we return the number of tuples in the output of the
query. We believe that the above-mentioned query types are fairly
representative of typical query workloads over data streams.

Answer-Quality Metrics. In our experiments we use the absolute
relative error (|actual−approx|

actual
) in the aggregate value as a mea-

sure of the accuracy of the approximate query answer. We repeat
each experiment 100 times, and use the average value for the errors
across the iterations as the final error in our plots.

5.2 Results: Sketches vs. Histograms
Synthetic Data Sets.Figure 2 depicts the error due to sketches and
histograms for a self-join query as the amount of available memory
is increased. It is interesting to observe that the relative error due
to sketches is almost an order of magnitude lower than histograms.
The self-join query in Figure 2 is on a relation with a single attribute
whose domain size is 1024000. Further, the one-dimensional data
set contains 10,000 regions with volumes between 1 and 5, and a
skew of 0.2 across the relations (zinter). Histograms perform very
poorly on this data set since a few buckets cannot accurately capture
the data distribution of such a large, sparse domain with so many
regions.

Real-life Data Sets. The experimental results with the Census
1999 and 2001 data sets are depicted in Figures 3–5. Figure 3
is a join of the two relations on theWeekly Wage attribute and
Figure 4 involves joining the relations on theAge andEducation
attributes. Finally, Figure 5 contains the result of a star query in-
volving four copies of the 2001 Census data set, with center of
the star joined with the three other copies on attributesAge, Edu-
cation andIncome. Observe that histograms perform worse than
sketches for all three query types; their inferior performance for the
first join query (see Figure 3) can be attributed to the large domain
size ofWeekly Wage (0:288416), while their poor accuracies for
the second and third join queries (see Figures 4 and 5) are due to
the inherent problems of approximating multi-dimensional distri-
butions from one-dimensional statistics. Specifically, the accuracy
of the approximate answers due to histograms suffers because the
attribute value independence assumption leads to erroneous esti-
mates for the multi-dimensional frequency histograms of each re-
lation. Note that this also causes the error for histogram-based data
summaries to improve very little as more memory is made avail-
able to the streaming algorithms. On the other hand, the relative
error with sketches decreases significantly as the space allocated to
sketches is increased – this is only consistent with theory since ac-
cording to Theorem 3.1, the sketch error is inversely proportional
to the square root of sketch storage. It is worth noting that the rel-
ative error of the aggregates for sketches is very low; for all three
join queries, it is less than 2% with only a few kilobytes of memory.

5.3 Results: Sketch Partitioning
In this set of experiments, each sketch is allocated a fixed amount

of memory, and the number of partitions is varied. Also, the sketch
partitions are computed using approximate statistics from histograms
with 25, 50 and 100 buckets (we plot a separate curve for each his-
togram size value). Intuitively, histograms with fewer buckets oc-
cupy less space, but also introduce more error into the frequency
statistics for the attributes based on which the partitions are com-
puted. Thus, our objective with this set of experiments is to show
that even with approximate statistics from coarse-grained small his-
tograms, it is possible to use our dynamic programming heuristic
to compute partitions that boost the accuracy of estimates.
Synthetic Data Sets.Figure 6 illustrates the benefits of partition-
ing attribute domains, on the accuracy of estimates for a chain join

query involving three two-dimensional relations, in which the two
attributes of a central relation are joined with one attribute belong-
ing to each of the other two relations. The memory allocated to the
sketch for the query is 9000 words.

Clearly, the graph points to two definite trends. First, as the
number of sketch partitions increases, the error in the computed
aggregates becomes smaller. The second interesting trend is that as
histograms become more accurate due to an increased number of
buckets, the computed sketch partitions are more effective in terms
of reducing error. There are also two further observations that are
interesting. First, most of the error reduction occurs for the first
few partitions and after a certain point, the incremental benefits of
further partitioning are minor. For instance, four partitions result
in most of the error reduction, and very little gain is obtained be-
yond four sketch partitions. Second, even with partitions computed
using very small histograms and crude attribute statistics, signifi-
cant reductions in error are realized. For instance, for an attribute
domain of size 1024, even with 25 buckets we are able to reduce
error by a factor of 2 using sketch partitioning. Also, note that
our heuristic based on dynamic programming for splitting multiple
join attributes (see Section 4.3) performs quite well in practice and
is able to achieve significant error reductions.

Real-life Data Sets. Sketch partitioning also improves the accu-
racy of estimates for the Census 1999 and 2001 real-life data sets,
as depicted in Figure 7. As for synthetic data sets, we allocate a
fixed amount, 4000 words, of memory to the sketch for the query,
and vary the number of partitions. Also, histograms with 25, 50
and 100 buckets are used to compute sketch partitions. Figure 7 is
the join of the two relations on attributeWeekly Wage Overtime
for Census 1999 and attributeWeekly Wage for Census 2001.

From the figure, we can conclude that the real-life data sets ex-
hibit the same trends that were previously observed for synthetic
data sets. The benefits of sketch partitioning in terms of significant
reductions in error are similar for both sets of experiments. Note
also that histograms with a small number of buckets are effective
for partitioning sketches, even though they give a poor estimate
of the join-size for the experiment in Figure 3. This suggests that
merely guessing the shape of the distributions is sufficient in most
practical situations to allow good sketch partitions to be built.

6. CONCLUSIONS
In this paper, we considered the problem of approximatively an-

swering generalaggregateSQL queries over continuous data streams
with limited memory. Our approach is based on computing small
“sketch” summaries of the streams that are used to provide approx-
imate answers of complex multi-join aggregate queries with prov-
able approximation guarantees. Furthermore, since the degrada-
tion of the approximation quality due to the high variance of our
randomized sketch synopses may be a concern in practical situa-
tions, we developed novelsketch-partitioningtechniques. Our pro-
posed methods take advantage of existing statistical information
on the stream to intelligently partition the domain of the underly-
ing attribute(s) and, thus, decompose the sketching problem in a
way that provably tightens the approximation guarantees. Finally,
we conducted an extensive experimental study with both synthetic
and real-life data sets to determine the effectiveness of our sketch-
based techniques and the impact of sketch partitioning on the qual-
ity of computed approximations. Our results demonstrate that (a)
our sketch-based technique provides approximate answers of bet-
ter quality than histograms (by factors ranging from three to an
order of magnitude), and (b) sketch partitioning, even when based
on coarse statistics, is an effective way to boost the accuracy of our

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 500 1000 1500 2000 2500 3000 3500 4000

R
el

at
iv

e
E

rr
or

Memory(words)

sketch
histogram

Figure 2: Self-join (1 Attribute)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 500 1000 1500 2000 2500 3000 3500 4000

R
el

at
iv

e
E

rr
or

Memory(words)

sketch
histogram

Figure 3: Join (1 Attribute)

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0 1000 2000 3000 4000 5000 6000 7000 8000

R
el

at
iv

e
E

rr
or

Memory(words)

sketch
histogram

Figure 4: Join (2 Attributes)

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 2000 4000 6000 8000 10000 12000

R
el

at
iv

e
E

rr
or

Memory(words)

sketch
histogram

Figure 5: Join (3 Attributes)

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

0 2 4 6 8 10 12 14 16

R
el

at
iv

e
E

rr
or

Number of Partitions

25 buckets
50 buckets

100 buckets

Figure 6: Join (3 Relations)

0.03

0.035

0.04

0.045

0.05

0.055

0.06

0.065

0.07

1 2 3 4 5 6 7 8

R
el

at
iv

e
E

rr
or

Number of Partitions

25 buckets
50 buckets

100 buckets

Figure 7: Join (1 Attribute)

estimates (by a factor of almost two).

7. REFERENCES
[1] S. Acharya, P.B. Gibbons, V. Poosala, and S. Ramaswamy. “Join

Synopses for Approximate Query Answering”. InProc. of the 1999
ACM SIGMOD Intl. Conf. on Management of Data, May 1999.

[2] N. Alon, P.B. Gibbons, Y. Matias, and M. Szegedy. “Tracking Join
and Self-Join Sizes in Limited Storage”. InProc. of the Eighteenth
ACM SIGACT-SIGMOD-SIGART Symp. on Principles of Database
Systems, May 1999.

[3] N. Alon, Y. Matias, and M. Szegedy. “The Space Complexity of
Approximating the Frequency Moments”. InProc. of the 28th
Annual ACM Symp. on the Theory of Computing, May 1996.

[4] S. Babu and J. Widom. “Continous Queries over Data Streams”.
ACM SIGMOD Record, 30(3), September 2001.

[5] L. Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stone.
“Classification and Regression Trees”. Chapman & Hall, 1984.

[6] K. Chakrabarti, M. Garofalakis, R. Rastogi, and K. Shim.
“Approximate Query Processing Using Wavelets”. InProc. of the
26th Intl. Conf. on Very Large Data Bases, September 2000.

[7] S. Chaudhuri and U. Dayal. “An Overview of Data Warehousing and
OLAP Technology”.ACM SIGMOD Record, 26(1), March 1997.

[8] M. Datar, A. Gionis, P. Indyk, and R. Motwani. “Maintaining Stream
Statistics over Sliding Windows”. InProc. of the 13th Annual
ACM-SIAM Symp. on Discrete Algorithms, January 2002.

[9] A. Dobra, M. Garofalakis, J. Gehrke, and R. Rastogi. “Processing
Complex Aggregate Queries over Data Streams”. Bell Labs Tech.
Memorandum, March 2002.

[10] P. Domingos and G. Hulten. “Mining high-speed data streams”. In
Proc. of the Sixth ACM SIGKDD Intl. Conf. on Knowledge Discovery
and Data Mining, August 2000.

[11] J. Feigenbaum, S. Kannan, M. Strauss, and M. Viswanathan. “An
ApproximateL1-Difference Algorithm for Massive Data Streams”.
In Proc. of the 40th Annual IEEE Symp. on Foundations of Computer
Science, October 1999.

[12] M. Garofalakis and P.B. Gibbons. “Approximate Query Processing:
Taming the Terabytes”. Tutorial in27th Intl. Conf. on Very Large
Data Bases, September 2001.

[13] J. Gehrke, F. Korn, and D. Srivastava. “On Computing Correlated
Aggregates over Continual Data Streams”. InProc. of the 2001 ACM
SIGMOD Intl. Conf. on Management of Data, September 2001.

[14] P.B. Gibbons, Y. Matias, and V. Poosala. “Fast Incremental
Maintenance of Approximate Histograms”. InProc. of the 23rd Intl.
Conf. on Very Large Data Bases, August 1997.

[15] A.C. Gilbert, Y. Kotidis, S. Muthukrishnan, and M.J. Strauss.
“Surfing Wavelets on Streams: One-pass Summaries for
Approximate Aggregate Queries”. InProc. of the 27th Intl. Conf. on
Very Large Data Bases, September 2000.

[16] M. Greenwald and S. Khanna. “Space-efficient online computation
of quantile summaries”. InProc. of the 2001 ACM SIGMOD Intl.
Conf. on Management of Data, May 2001.

[17] S. Guha, N. Koudas, and K. Shim. “Data streams and histograms”. In
Proc. of the 2001 ACM Symp. on Theory of Computing (STOC), July
2001.

[18] S. Guha, N. Mishra, R. Motwani, and L. O’Callaghan. “Clustering
data streams”. InProc. of the 2000 Annual Symp. on Foundations of
Computer Science (FOCS), November 2000.

[19] P.J. Haas and J.M. Hellerstein. “Ripple Joins for Online
Aggregation”. InProc. of the 1999 ACM SIGMOD Intl. Conf. on
Management of Data, May 1999.

[20] Y.E. Ioannidis and V. Poosala. “Histogram-Based Approximation of
Set-Valued Query Answers”. InProc. of the 25th Intl. Conf. on Very
Large Data Bases, September 1999.

[21] G. Manku, S. Rajagopalan, and B. Lindsay. “Random sampling
techniques for space efficient online computation of order statistics
of large datasets”. InProc. of the 1999 ACM SIGMOD Intl. Conf. on
Management of Data, May 1999.

[22] Y. Matias, J.S. Vitter, and M. Wang. “Dynamic Maintenance of
Wavelet-Based Histograms”. InProc. of the 26th Intl. Conf. on Very
Large Data Bases, September 2000.

[23] J.S. Vitter. Random sampling with a reservoir.ACM Transactions on
Mathematical Software, 11(1), 1985.

[24] J.S. Vitter and M. Wang. “Approximate Computation of
Multidimensional Aggregates of Sparse Data Using Wavelets”. In
Proc. of the 1999 ACM SIGMOD Intl. Conf. on Management of Data,
May 1999.

