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ABSTRACT rapid, continuous and large volumes of stream data include trans-

Recent years have witnessed an increasing interest in designing algorithms2ctions in retail chains, ATM and credit card operations in banks,
for querying and analyzing streaming data (i.e., data that is seen only oncefinancial tickers, Web server log records, etc. In most such appli-
in a fixed order) with only limited memory. Providing (perhaps approxi- cations, the data stream is actually accumulated and archived in the
mate) answers to queries over such continuous data streams is a crucial repBMS of a (perhaps, off-site) data warehouse, often making ac-
q“'remed”tlI‘;OLg}i‘v’:};;?ﬁsl'tﬁgzgﬁsr“xﬁgge”;;g?ﬁqzrngleez;T;';’S)em'a(;?ffiif{ cess to the archived data prohibitively expensive. Further, the abil-
com an . .. . . . . .
parts of the network needs to be continuoﬁsly collected and analyzed. ity to make deCISIOr.]S an(_:i infer !nterestlng patta.msf“ne(l'.e" as

In this paper, we consider the problem of approximately answering gen- the data stream ar'rlyes) is crucial for several m|SS|0n-cr|t[caI tasks
eralaggregateSQL queries over continuous data streams with limited mem- that can have 5|gn|f|c_:ant dollar value for a large Corporatlo_n e.9.,
ory. Our method relies on randomizing techniques that compute small teIepom erUd 'detectlo_n). AS_ a result, recent ye&_‘rs have Wltnessed

an increasing interest in designing data-processing algorithms that

“sketch” summaries of the streams that can then be used to provide approx- K . d . 1orith h id
imate answers to aggregate queries with provable guarantees on the alpprox\—NOr over continuous data streams, I.e., algorithms that provide re-

imation error. We also demonstrate how existing statistical information on sults to user queries while Ioo!(lng at the relevant dgta itenty

the base data (e.g., histograms) can be used in the proposed framework Pnee and in a fixed ord¢determined by the. stream-arrlvgl pattern).
improve the quality of the approximation provided by our algorithms. The Two key parameters for query processing over continuous data-
key idea is to intelligently partition the domain of the underlying attribute(s) S_treams are (1) the amount_mfemorymad_e a\./a”able. to the on-
and, thus, decompose the sketching problem in a way that provably tight- line algorithm, and (2) thper-item pro<_:essmg “mq“"ed by the .
ens our guarantees. Results of our experimental study with real-life as well query processor. The former constitutes an important constraint

as synthetic data streams indicate that sketches provide significantly more®" the design of stream processing algorithms, since in a typical

accurate answers compared to histograms for aggregate queries. This is es@treamlng environment, only limited memory resources are avail-

pecially true when our domain partitioning methods are employed to further able to the_ query-processing algor_lthms. In these S|tuat|<_)ns, we
boost the accuracy of the final estimates. need algorithms that can summarize the data stream(s) involved

in a concise, but reasonably accuragnopsighat can be stored

in the allotted (small) amount of memory and can be used to pro-
1. INTRODUCTION vide approximate answert® user queries along with some reason-

Traditional Database Management Systems (DBMS) software is able guarantees on the quality of the approximation. Such approx-

built on the concept opersistent data setshat are stored reliably ~ imate, on-line query answers are particularly well-suited to the ex-
in stable storage and queried/updated several times throughout theiPloratory nature of most data-stream processing applications such
lifetime. For several emerging application domains, however, data as, €.g., trend analysis and fraud/anomaly detection in telecom-
arrives and needs to be processed on a continubus (7) basis, network data, where the goal is to identify generic, interesting or
without the benefit of several passes over a static, persistent data0ut-of-the-ordinary” patterns rather than provide results that are
image. Sucttontinuous data streaneise naturally, for example, ~ €xact to the last decimal.
in the network installations of large Telecom and Internet service Prior Work. The strong incentive behind data-stream computa-
providers where detailed usage information (Call-Detail-Records tion has given rise to several recent (theoretical and practical) stud-
(CDRs), SNMP/RMON packet-flow data, etc.) from different parts  ies of on-line or one-pass algorithms with limited memory require-
of the underlying network needs to be continuously collected and ments for different problems; examples include quantile and order-

analyzed for interesting trends. Other applications that generatestatistics computation [16, 21], estimating frequency moments and
join sizes [3, 2], data clustering and decision-tree construction [10,
*Work done while visiting Bell Labs. 18], estimating correlated aggregates [13], and computing one-di-
mensional (i.e., single-attribute) histograms and Haar wavelet de-
compositions [17, 15]. Other related studies have proposed tech-
niques for incrementally maintaining equi-depth histograms [14]
Permission to make digital or hard copies of all or part of this work for and Haar wavelets [22], maintaining samples and simple statistics
personal or classroom use is granted without fee provided that copies areover sliding windows [8], as well as general, high-level architec-
not made or distributed for profit or commercial advantage and that copies tyres for stream database systems [4].
bear th|s notice and the full citation on th_e first page. To copy otherW|se,_t9 None of the earlier research efforts has addressed the general
rzeumti’gzirg:;ﬁglséfg fzeervers or to redistribute to lists, requires prior specific problem of processing general, possibly multi-join, aggregate queries
KCM SIGMOD'2002 June 4-6, Madison, Wisconsin, USA over continuous data streams. On the other hand, efficient ap-
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proximate multi-join processing has received considerable atten- tition. For single-join queries, we develop a sketch-partitioning al-
tion in the context obBpproximate query answering very active gorithm that exploits a theorem of Breiman et al. [5] to compute an
area of database research in recent years [1, 6, 12, 19, 20, 24]optimal solution, that is provably near-optimal for minimizing the
The vast majority of existing proposals, however, rely on the as- estimate variance. We also present bounds on the error in the final
sumption of a static data set which enables either several passesnswer as a function of the error in the underlying statistics (used
over the data to construct effectiveulti-dimensionaldata syn- to compute the partitioning). Unfortunately, for queries with more
opses (e.g., histograms [20] and Haar wavelets [6, 24]) or intel- than one join, we demonstrate that the sketch-partitioning problem
ligent strategies for randomizing the access pattern of the relevantis NP-hard. Thus, we introduce a partitioning heuristic for multi-
data items [19]. When dealing with continuous data streams, it is joins that can, in fact, be shown to produce near-optimal solutions
crucial that the synopsis structure(s) are constructed directly on theif the underlying attribute-value distributions are independent.
stream, that is, in one pass over the data in the fixed order of arrival;  ExpERIMENTAL RESULTS VALIDATING OUR SKETCH-BASED

_this requir_emen't rende_rs conventional apprqximate query process-TecHniQUEs We present the results of an experimental study
ing tools inapplicable in a data-stream setting. (Note that, even yth several real-life and synthetic data sets over a wide range of
though random-sample data summaries can be easily constructeqyeries that verify the effectiveness of our sketch-based approach to
in a single pass [23], it is well known that such summaries typi- complex stream-query processing. Specifically, our results indicate
cally give very poor result estimates for queries involving one or hat compared to on-line histogram-based methods, sketching can
more joins [1, 6, 2}). give much more accurate answers that are often superior by factors
Our Contributions. In this paper, we tackle the hard technical ranging from three to an order of magnitude. Our experiments also
problems involved in the approximate processing of complex (pos- demonstrate that our sketch-partitioning algorithms result in sig-
sibly multi-join) aggregate decision-support queries over continu- nificant reductions in the estimation error (almost a factor of two),
ous data streams with limited memory. Our approach is based oneven when coarse histogram statistics are employed to select the
randomizing techniques that compute small, pseudo-rarsteich join-attribute partitions.

summaries of the data as it is streaming by. The basic sketching  Note that, even though we develop our sketching algorithms in
technique was originally introduced for on-line self-join size esti-  the data-stream context, our techniques are more generally applica-
mation by Alon, Matias, and Szegedy in their seminal paper [3] ple to huge Terabyte databases where performing multiple passes
and, as we demonstrate in our work, can be generalized to pro-gyer the data for the exact computation of query results may be
vide approximate answers to complex, multi-join, aggregate SQL prohibitively expensive. Our sketch-partitioning algorithms are, in
queries over streams with explicit and tunable guarantees on thefact, ideal for such “huge database” environments, where an ini-
approximation error. An important practical concern that arises tja| pass over the data can be used to compute random samples,
in the multi-join context is that the quality of the approximation  approximate histograms, or other statistics which can subsequently

may degrade as the variance of our randomized sketch synopses inpe ysed as the basis for determining the sketch partitions.
creases in an explosive manner with the number of joins involved

in the query. To this end, we propose nog&ktch-partitioning

techniques that take advantage of existing approximate statistical2. STREAMS AND RANDOM SKETCHES

information on the stream (e.g., histograms built on archived data) )
to decompose the sketching problem in away that provably tightens 2.1~ The Stream Data-Processing Model

our estimation guarantees. More concretely, the key contributions e now briefly describe the key elements of our generic archi-

of our work are summarized as follows. tecture for query processing over continuous data streams (depicted
e SKETCH-BASED APPROXIMATE PROCESSINGALGORITHMS in Figure 1); similar architectures for stream processing have been

FORCOMPLEX AGGREGATEQUERIES. We show how small, sketch ~ described elsewhere (e.g., [4, 15]). Consider an arbitrary (possibly

synopses for data streams can be used to compute provably-accurammplex) SQL queryy over a set of relation®y, ..., R, and let

approximate answers to aggregate multi-join queries. Our tech- | R;| denote the total number of tuplesit. (Extending our archi-
niques extend and generalize the earlier results of Alon et al. [3, tecture to handle multiple queries is straightforward, although inter-
2] in two important respects. First, our algorithms provide proba- esting research issues, e.g., inter-query space allocation, do arise;
bilistic accuracy guarantees for queries containing any number of we will not consider such issues further in this paper.) In con-
relational joins. Second, we consider a wide range of aggregate op-trast to conventional DBMS query processors, our stream query-
erators (e.g.COUNT, SUMrather than just simplEOUNTggre- processing engine is allowed to see the data tuplés,in. ., R,

gates. We should also point out that our error-bound derivation for only onceand in fixed order as they are streaming in from their re-
multi-join queries is non-trivial and requires that certain acyclicity spective source(s). Backtracking over the data stream and explicit
restrictions be imposed on the query’s join graph. access to past data tuples are impossible. Further, the order of tuple
© SKETCH-PARTITIONING ALGORITHMS TOBOOSTESTIMATION arrival for each relatiom; is arbitrary and duplicate tuples can oc-
ACCURACY. We demonstrate that (approximate) statistics (e.g., CUr anywhere over the duration of thg stream. Hence, our stream

histograms) on the distributions of join-attribute values can be used dat& model assumes the most general “unordered, cash-register”
to reduce the variance in our randomized answer estimate, which isféndition of stream data considered by Gilbert et al. [15] for com-

a function of the self-join sizes of the base stream relations. Thus, Puting one-dimensional Haar wavelets over streaming values and,
we propose noveketch-partitioningechniques that exploit such of course, generalizes their mo_del to multlple_, multl-(_jlmensmnal
statistics to significantly boost the accuracy of our approximate an- Stréams since eadk; can comprise several distinct attributes.
swers by (1) intelligently partitioning the attribute domains so that ~ OUr Stream query-processing engine is also allowed a certain
the self-join sizes of the resulting partitions are minimized, and (2) @mount of memory, typically significantly smaller than the total

judiciously allocating space to independent sketches for each par-Size of the data set(s). This memory is used to maintain a concise
and accuratesynopsiof each data strearf?;, denoted byS(R;).

1The sampling-basedin synopsesf [1] provide a solution to this problem  The key constraints imposed on each synog%ig;) are that (1) it
but only for the special case efatic, foreign-key joins is much smaller than the total number of tuple&in(e.g., its size is
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Figure 1: Stream Query-Processing Architecture.

logarithmic or polylogarithmic inR;|), and (2) it can be computed
in a single pass over the data tuplesiinin the (arbitrary) order
of their arrival. At any point in time, our query-processing algo-
rithms can combine the maintained synop$g®:),...,S(R.)

to produce an approximate answer to quéry

2.2 Pseudo-Random Sketch Summaries
The Basic Technique: Self-Join Size TrackingConsider a sim-

be efficiently generated from the streaming valuesioés
follows: Start withX = 0 and simply add; to X whenever
thes'" value of A is observed in the stream.

To further improve the quality of the estimation guarantees, Alon,
Matias, and Szegedy propose a standawdsting techniquéhat
maintains several independent identically-distributed (iid) instanti-
ations of such random variablésand uses averaging and median-
selection operators to boost accuracy and probabilistic confidence.
(Independent instances can be constructed by simply selecting in-
dependent random seeds for generating the families of four-wise
independen§;’s for each instance.) More specifically, the synopsis
S(R;) comprises = s1-s2 randomized linear-projection variables
Xij, wheres; is a parameter that determines tiecuracyof the
result ands, determines theonfidencen the estimate. The final
boosted estimat® of SJ A) is the median of, random variables
Yi,...,Ys,, eachY; being the average of; iid random variables
XfJ j = 1,...,s1, where eachX;; uses the same on-line con-
struction as the variabl& (described above). The averaging step
is used to reduce the variance, and hence the estimation error (by
Chebyshev’s inequality), and median-selection is used to boost the
confidence in the estimate (by Chernoff bounds). We use the term

ple stream-processing scenario where the goal is to estimate theatomic sketcto describe each randomized linear projection of

size of the self-join of relatiorR over one of its attribute®. A as

the tuples ofR are streaming in; that is, we seek to approximate
the result of query) = COUNTR <14 R). Lettingdom(A) de-
note the domain of the join attribdtand f(:) be the frequency of
attribute valuel in R.A, we want to produce an estimate for the
expression SH) = 3. doma f(@)? (i.e., thesecond moment
of A). In their seminal paper, Afon, Matias, and Szegedy [3] prove
thatany deterministic algorithnthat produces a tight approxima-
tion to SJA) requires at leas®(|dom(A)|) bits of storage, render-
ing such solutions impractical for a data-stream setting. Instead,
they propose aandomized techniquidat offers strong probabilis-
tic guarantees on the quality of the resultind &) approximation
while using only logarithmic space idom(A)|. Briefly, the basic
idea of their scheme is to define a random variabléhat can be
easily computed over the streaming valuesfofi, such that (1)

Z is anunbiased{.e., correct on expectation) estimator for 8,

so thatE[Z] = SJA); and (2)Z has sufficiently small variance
Var(Z) to provide strong probabilistic guarantees for the quality of
the estimate. This random variabfeis constructed on-line from
the streaming values @t. A as follows:

e Select a family ofour-wise independent binary random vari-
ables{¢; :i=1,...,|dom(A)|}, where eacl; € {—1,+1}
0). Informally, the four-wise independence condition means
that for any 4-tuple of; variables and for any 4-tuple of
{—1, +1} values, the probability that the values of the vari-
ables coincide with those in the-1, +1} 4-tuple is exactly
1/16 (the product of the equality probabilities for each in-
dividual &;). The crucial point here is that, by employing
known tools (e.g., orthogonal arrays) for the explicit con-
struction of small sample spaces supporting four-wise inde-
pendent random variables, such families can be efficiently
constructed on-line using ont® (log |[dom(A)|) space [3].

DefineZ = X?, whereX = 3=, _qom4) f(i)&:. Note that
X is simply arandomized linear projection (inner product) of
the frequency vector aR;. A with the vector of;’s that can

2without loss of generality, we assume that each attribute docaiif A)
is indexed by the set of integerf0, 1,--- ,|dom(A)] — 1}, where
|dom(A)| denotes the size of the domain.

the data stream and the tesketchfor the overall synopsi§. The
following theorem [3] demonstrates that the sketch-based method
offers strong probabilistic guarantees for the second-moment esti-
mate while utilizing only logarithmic space in the number of dis-
tinct R. A values and the length of the stream.

THEOREM2.1 ([3]). The estimat&” computed by the above
algorithm satisfiesP[|Y —SJA)| < 4/,/51SJA)] > 1-272/2,
This implies that the algorithm estimates(8J in one passwith
a relative error of at most with probability at leastl — § (i.e.,
PlY — SJA)| < €-SJA)] > 1 — 4) while using only

0 (bgg#(log [dom(A)| + log |R|)) bits of memory. |

Extensions: Binary Joins, Wavelets, and.” Differencing. In a
more recent paper, Alon et al. [2] demonstrate how the above al-
gorithm can be extended to deal with deletions in the data stream
and demonstrate its benefits experimentally over naive solutions
based on random sampling. They also show how their sketch-based
approach applies to handling the size-estimation problem for bi-
nary joins over a pair of distinct tuple streams. More specifically,
consider approximating the result of the quély= COUNTR;
XIR,.A1=Rs.A, R2) Over two relational stream®; andR,. (Note

that, by the definition of the equi-join operation, the two join at-
tributes have identical value domains, igom(A4;) = dom(A2).)

As previously, le{¢; : i =1,. .., |[dom(A1)|} be a family of four-
wise independent—1, +1} random variables witt[¢;] = 0, and
define the randomized linear projectiakis = >, domy ., /1(9)&
and Xz = >, domya,) f2(4)&, Wherefi (i), f2(i) represent the
frequencies oR?;.A; andR2. A, values, respectively. The follow-
ing theorem [2] shows how sketching can be applied for estimating
binary-join sizes in limited space.

THEOREMZ2.2 ([2]). Let the atomic sketche¥; and X5 be
as defined above. TheB[X1X:] = |R1 Xa,=4, R2| and
Var(X:1Xs) < 2-SJ(A1) - Sh(A2), where SJ(A41), SE(A2)
is the self-join size oRR1.A; and R».As, respectively. Thus, av-
eraging overk = O(SJ(A41)S%(A2)/(¢2L?)) iid instantiations
of the basic scheme, whefeis a lower bound on the join size,
guarantees an estimate that lies within constant relative etrof
|R1 >4,=4, R2| with high probability. |



Techniques relying on the same basic idea of compact, pseudo| Symbol | Description 1

random sketching have also been proposed recently for other data: Ri,.. R, Relations in aggregate query
stream applications. Gilbert et al. [15] propose the use of sketches|| Ai,..., As, [ Attributes over which join is defined
for approximately computingne-dimensionataar wavelet coeffi- dom(4;) Domain of attributed

cients and range aggregates over streaming numeric values. Strauss D dom(A;) x -- - x dom(As;,)

et al. [11] discuss sketch-based techniques for the on-line estima- Sk Join attributes in relatiodt; _

tion of L' differences between two numeric data streams. None D Projection ofD on attributes in, __

. : . : . SJ (Sk) Self-join of relationR;, on attributes inSy
of these earlier studies, however, has considered the hard technic T Assignment of values to (a subset of) join attributes
problems involved in using sketching to effectively approximate the 70 Value assigned to atribuge
results of complex, multi-join aggregate SQL queries over multiple Z[Sk] Projection of I on attributes i}
massive data streams. (@) Number of tuples inR;, that matchZ

X Atomic sketch for relation?;,
i :1=1,... | Family of four-wise independent random
3. APPROXIMATING COMPLEX QUERY {gjf |dom(A;)[} variab);es for attributed ; P
ANSWERS USING STREAM SKETCHES
In this section, we describe our sketch-based techniques for com- Table 1: Notation.

puting guaranteed-quality approximate answers to general aggre-
gate operators over complex, multi-join SQL queries spanning mul-
tiple streaming relation®;, ..., R.. More specifically, the class
of queries that we consider is of the general forf®ELECT AGG
FROMR1, Rs, ..., R WHERE”, where AGGis an arbitrary ag-
gregate operator (e.gGOUNT SUMor AVERAGEand € repre-
sents the conjunction of of equi-join constraints of the form
Ri.A; = Ry A; (Ri.A; denotes thg*" attribute of relationR;).

We first demonstrate how sketches can provide approximate an-
swers with probabilistic quality guaranteesG®UNTaggregates,
and then show how our results can be generalized to other aggrega
tion operators likesSUM In order to derive probabilistic guarantees
on the estimation error, we require that each attribute belonging to
a relation appearat most oncén the join conditions. Note that
this is not a serious restriction, as any set of join conditions can
be transformed to satisfy our requirement, as follows. For any at-
tribute R;. A; that occursn > 1timesin&, we addn — 1 new “at-
tributes” toR;, and replacen — 1 occurrences oR;. A; in &, each
with a distinct new attribute. These new — 1 attributes are ex-
act replicas ofR;.A4;, so they all take on values identical .4
within each tuple ofR,. For instance, i€ = ((R1.A1 = R2.A1)
AND(R;.A1 = Rs.A;)), we can modify it to satisfy our our
single attribute-occurrence constraitly adding a new attribute
Az to R: which is a replica ofA;, and replacing an occurrence
of Ry.A; so that, for exampl&€ = ((R1.A1 = R2.A:1) AND
(R1.A2 = Rs.A1)). Clearly, this addition of new “attributes”
can be carried out only at a conceptual level, e.g., as part of our
sketch-computation logic. We assume tlasatisfies our single
attribute-occurrence constraint in the remainder of this section.

distinction is clear from the context.) We u$éSi] to denote the
projection ofZ on attributes inSy; note thatZ[Sk] € Dy. Finally,

for Z € Dy, we usef(Z) to denote the number of tuples iRy,
whose value for attributg equalsZ|j] for all j € S. Table 1 sum-
marizes some of the key notational conventions used throughout
the paper; additional notation will be introduced when necessary.

The result of ouCOUNTuery can now be expressed28OUNT=
> zepvizi=zintg) LLk=1 fe(Z[Sk]). Thisis essentially the prod-
uct of the number of tuples in each relation that match a value as-
signmentZ, summed over all assignmerifse D that satisfy the
equi-join constraint€. Our sketch-based randomized algorithm
for producing a probabilistic estimate of the result o-C®OUNT
query is similar in spirit to the technique originally proposed in
[3] and described in Section 2. Essentially, we construct a random
variableX thatis an unbiased estimator @counTi-e., F[X] =
QCOoUNT and whose variance can be appropriately bounded from
above. Then, by employing the standard averaging and median-
selection trick of [3], we boost the accuracy and confidenc& of
to compute an estimate 6JcoynNTthat guarantees small relative
error with high probability.

We now show how such a random variablecan be constructed.
For each pair of join attributeg n + j in £, we build a family of
four-wise independent random variablgs; : [ = 1, ..., |dom(A4;)|},
where eaclt;; € {—1,+1}. The key here is that an every equi-
join attribute pairj andn + j shares the samg family, and so
forall I € dom(A;), &1 = &n+j,0; however, we define a distinct
¢ family for each of then distinct equi-join pairs using mutually-

3.1 Using Sketches to Answe@OUN'lQueries independent random seeds to generate &afetmily. Thus, ran-

. dom variables belonging to families defined for different attribute
__ The output of COUNTqueryQQCOUNTS the number of tuples 55 are completely independent of each other. Since, as men-
in the cross-product oy, ..., R, that satisfy the equality con-

straints in€ over the join attributes. Assume a renaming of the tioned earlier, the family for attribute pajin + j can be effi-
: ciently constructed on-line using onl§(log |dom(A;)|) space,
2n join attributes inf€ to A1, Ao, . . ., As, such that each equi-join y g onif(log | (4;)|) sp

constraint in€ is of the formAs — A forl < ; < Let the space requirements for all families of random variables is
LN =J = 271 O(log [dom(4;)]).

dom(A;) = {1,...,|dom(A4;)|} be the domain of attributel;,
andD = dom(A4;) x --- x dom(Az,). Also, letS; denote the
subset of (renamed) attributes from relati®p appearing ir€ and
let Dy = dom(Ag, ) X - - xdom(Alek‘ ), whereAy,, ... s Akys,
are the attributes is,. An assignment assigns values to join at-
tributes from their respective domains. If € D, then each join
attribute A; is assigned a valug[j] by Z. On the other hand, if
Z € Ds, thenZ only assigns a valug|j] to attributesj € S.
(Henceforth, we will simply usg to refer to attributed; when the

For each relatior;,, we define the atomic sketch f&, X to
be equal toy ;. p,, (fx(Z) [I;cs, &,z151), and define th€OUNT
estimator random variable & = HZ:1 X (i.e., the product of
the atomic relation sketcheX;). Note that each atomic sketch
X can be efficiently computed as tuples ®f are streaming in;
more specifically X is initialized to0 and, for each tuple in the
Ry stream, the quantity] s, &;.(;) is added toXx, wheret[j]
denotes the value of attribugan tuplet.

Example 1: Consider the followingCOUNTquery over relations
3Simple value-based selections on individual relations are trivial to evaluate /21, 2 andR3: SELECT COUNT(*) FROMR1, Rz, R3 WHERE
over the streaming tuples. Ri1.A1 = R2.A1 ANDR>.A> = R3.A:. After renaming, we get




A1 = Rl,AL AQ = RQ.AQ, A3 = RQ.A1, andA4 = R3A1
The first join involves attributest; and As, while the second is
on attributes4, and A4. Thus, we define two families of four-
wise independent random variables (one for each join pgfi); :
l=1,...,|[dom(A;)|} and{&,; : I = 1,...,|dom(A2)|}. Three
separate atomic sketché§, X» and X3 are maintained for the
three relations, and are defined as follows; = >, & e},
Xo = ZtGRQ 51,t[3]§2,t[2]- andXs = ztERg §g7t[4]. The value of
the random variabl& = X; X5, X5 gives our final estimate for the
result of theCOUNTjuery. |

As the following lemma shows, the random variaBle=[], _, X
= lho1 2Xzen, (@) I1cs, &.2151) Is indeed arunbiasedes-
timator for ourCOUNTaggregate.

LEMMA 3.1. The random variableX = ], _, X} is an unbi-
ased estimator foQcoyunTthat is E[X] = QCOUNT |

As in traditional query processing, th@n graphfor our input
query QcounTis defined as an undirected graph consisting of a
node for each relatio®;, : = 1,...,r, and an edge for each join-
attribute pairj,n + j between the relation nodes containing the
join attributesj andn + j. Our computation of tight upper and
lower bounds on the variance &f relies on the assumption that
the join graph folQcouNTs acyclic Thus, the probabilistic qual-

3.2 Using Sketches to AnsweBUMQueries

Our sketch-based approach for approximating com@I&@UNT
aggregates can also be extended to compute approximate answers
for complex queries with other aggregate functions, $ké\ over
relation streams. SUMjuery has the forrBELECT SUKR;.A;)
FROMR1, Ra, ..., R- WHERE. As earlier, letdy, ..., A2, be a
renaming of then join attributes in€ and, without loss of gener-
ality , let R, = R; and Az, 41 denote the attribute iR, whose
value is summed in the join result. Further, for an assignment
of valuesZ € D; to all the join attributes inR;, let SUMZ)
= Ytery vies, =y HA2n+1]; thus, SUNZ) is basically the
sum of the values taken by attributk,,+1 in all tuplest in R;
that matchZ on the join attributesS;. The result of ourSUM
query is a scalar quantit@gypwhose value can be expressed as
ZIED,Vj:Z[j]:I[nJrj] SUMZ[S1]) - szz fie(Z[Sk]).

Similar to theCOUNTcase, in order to approximagsynover
a data stream, we utilize families of four-wise independent random
variables¢ to build atomic sketche;, for each relation, using
distinct, independert families for each pair of join attributes. The
atomic sketchesXy for k = 2,..., X} are also defined as de-
scribed earlier folCOUNTqueries; that isXx = >, 5 (fx(Z)
II;cs, &.zii7)- However, for the relatio?, containing theSUM
attribute, X is defined in a slightly different manner a§, =

ity guarantees provided by our techniques are valid only for acyclic 2-zep, (SUMZ) [];cs, &5.7151)- Note thatX, can be efficiently

multi-join queries. This is not a serious limitation, since many SQL

maintained on the streaming tuples Bf by simply adding the

join queries encountered in database practice are in fact acyclic;duantityt[Asn1]-I];cs, &;.(5) for each incoming?, tuplet. Us-

this includes chain joins (see Example 3.1) as well as star joins iNg arguments similar to those in Lemmas 3.1 and 3.2, the random
(the dominant form of queries over the star/snowflake schemas ofvariableX = [];_, Xj can be shown to have an expected value
modern data warehouses [7]). Under this acyclicity assumption, of @sum and (assuming an acyclic join graph) a variance that is
the following lemma bounds the variance of our unbiased estima- Pounded by terms similar to those in Lemma 3.2 [9]. These results

tor X for QcounNT To simplify the statement of our result, let
Sk(Sk) =2 zep, fr (7)? denote the size of the self-join of rela-
tion Ry, over all attributes irb},.

LEMMA 3.2. Assume that the join graph fGcouNTs acyclic
Then, for the random variabl® =[], _, Xi:

Il sk - >

[ £@IS)? < Var(x)

k=1 ZeD,Z[j]=Z[n+j] k=1
T s 2
<@ =12+1) [ [] sk - > I1 se@isi)
k=1 ZeD,Z[j]=Z[n+j] k=1
1

The final estimat&” for QcounTis chosen to be the median
of s random variabled, ..., Ys,, eachY; being the average of
s1 lid random variablesX;;, 1 < j < s, where eachX;; is
constructed on-line in a manner identical to the constructioX of
above. Thus, the total size of our sketch synopsisd@loUNT
is O(s1 - s2 - Y., log|dom(4;)|)*. The values ofs; and s,

for achieving a certain degree of accuracy with high probability are
derived based on the following theorem that summarizes our results

in this section.

THEOREM 3.1. LetQcounNTPe an acyclic, multi-joirlCOUNT
query over relationsRy, ..., R, such thatQcoynT> L and

SX(Sx) < Ug. Then, using a sketch of sigd 22n(m=i2UE’;) log(1/4)
2=, log|dom(A;)]), it is possible to approximat€) cCOUNTSO
that the relative error of the estimate is at meswith probability

at leastl — §. |

“Note that this includes the; - so - (n + 1) space required for storing the
s1 - s2 - v X;; variables for the = n + 1 relations.

can be used to build sketch synopses@agypnwith probabilistic
accuracy guarantees similar to those stated in Theorem 3.1.

4. IMPROVING ANSWER QUALITY:

SKETCH PARTITIONING

In the proof of Theorem 3.1, to ensure an upper bound arf
the relative error of our estimate f@)coynTwith high probabil-

ity we require that, for each Var(Y;) < 628L2 ; this is achieved by

defining eachy; as the average of; iid instances of the atomic-
sketch estimatoX, so that VafY;) = V%i)(). Then, since by
Lemma 3.2, VafX) < 2°" - [];_, S&(Sk), averaging oves; >

2 S jig copies ofX, allows us to guarantee the re-
€22 ’

quired upper bound on the variance¥af An important practical

concern for multi-join queries is that (as is evident from Lemma 3.2)

our upper bound on the @KX') and, therefore, the number &fin-

stances; required to guarantee a given level of accuracy increases

explosively with the number of joins in the query.

To deal with this problem, in this section, we propose novel
sketch-partitioningtechniques that exploit approximate statistics
on the streams to decompose the sketching problem in a way that
provably tightens our estimation guarantees. The basic idea is that,
by intelligently partitioning the domain of join attributes in the
query and estimating portions @coynTindividually on each
partition, we can significantly reduce the storage (i.e., number of iid
X copies) required to approximate eachwithin a given level of
accuracy. (Of course, our sketch-partitioning results are equally ap-
plicable to the dual optimization problem; that is, maximizing the
estimation accuracy for a given amount of sketching space.) Our
techniques can also be extended in a natural way to other aggrega-
tion operators (e.gSUMVARIANCH similar to the generalization
described in Section 3.2.




The key observation we make is that, given a desired level of ac-

curacy, the number of required iid copies ®f is proportional to
the product of the self-join sizesf relationsRy, . .., R, over the
join attributes (Theorem 3.1). Further, in practice, join-attribute do-

number of copies for partitions with a higher variance. kgte-
note the number of iid copies of the sket&ly maintained for par-
tition p and letY; , be the average of thesg copies. Then, we
computey; as Zp Y., p (averaging over iid copies does not alter

mains are frequently skewed and the skew is often concentrated inthe expectation, so th&[Y;] = QCOUNT

different regions for different attributes. As a consequence, we can

exploit approximate knowledge of the data distribution(s) to intel-
ligently partition the domains of (some subset of) join attributes
so that, for each resulting partition of the combined attribute
space, the product of self-join sizes of relations restrictegh to

is very small compared to the same product over the entire (un-

partitioned) attribute space (i.¢.],_, Sk(Sk)). Thus, lettingX,,
denote an atomic-sketch estimator for the portioefoynNTthat
corresponds to partitiop of the attribute space, we can expect the
variance Vaf Xy ) to be much smaller than Viax).

Now, consider a scheme that averages eyéid instances of the
atomic sketchX, for partitionp, and defines eact; as the sum of
these averages over all partitigpsWe can then show thd[Y;] =

QcounTand Va(Y;) = 3 %. Clearly, achieving small
self-join sizes and variances V&) for the attribute-space parti-
tions p means that the total number of iid sketch instanegssp

I

required to guarantee that Vaf) < <= is also small; this, in

turn, implies a smaller storage requirement for the prescribed accu-

racy level of ourY; estimator. We formalize the above intuition in
the following subsection and then present our sketch-partitioning
results and algorithms for both single- and multi-join queries.

4.1 Our General Technique

Consider once again tt@coyNTaggregate query (Section 3).
In general, our sketch-partitioning techniques partition the domain
of each join attributed; into m; > 1 disjoint subsets denoted
by Pj1,...,Pjm;. Further, the domains of a join-attribute pair
A; and A,.4; are partitioned identically (note thaom(A;) =
dom(A,+;)). This partitioning on individual attributes induces
a partitioning of the combined (multi-dimensional) join-attribute
space, which we denote Iy. Thus,P = {(P1,;1,...,Pn,) :

1 < 1; < m;}. Each elemenp € P identifies a unique par-
tition of the global attribute space, and we representhythe

restriction of this global attribute spad@ to p; in other words,
Dy = {T € D : I[j],Z[n + j] € plj],V;}, whereplj] denotes
the partition of attributg in p. Similarly, Dy, , is the projection of
Dy on the join attributes in relatioRy.

For each partitiorp € P, we construct random variables,
that estimate) coynTon the domain spacBy, in a manner sim-
ilar to the atomic sketclX in Section 3. Thus, for each partition
p and join attribute pairj, n + j, we have an independent fam-
ily of random variables{¢;;» : | € p[j]}, and for each (rela-
tion, partition) pair( Rk, p), we define a random variabl€; , =
Yzep, , (@) Il es, &iz1.0)- Variable Xy is then obtained

as the product oK ,'s over all relations, i.e Xp = [[;_; X&.p-
It is easy to verify thatF[X;] is equal to the number of tuples in
the join result for partitiorp and thus, by linearity of expectation,
B[}, Xpl =3, E[Xp] = QCOUNT

By independence across partitions, we have(¥af Xp) =
>_p Var(Xp). As in Section 3, to reduce the variance of our parti-
tioned estimator, we construct iid instances of eAgh However,
since Vaf Xy ) may differ widely across the partitions, we can ob-
tain larger reductions in the overall variance by maintaining a larger

5Given Vary;) < 528’42 , a relative error at mostwith probability at least
1 — 4 can be guaranteed by selecting the mediar-of= log(1/d) Y;

instantiations.

The success of our sketch-partitioning approach clearly hinges
on being able to efficiently compute thg iid instances ofX, , for
each (relation, partition) pair as data tuples are streaming in. For
each partitiorp, we maintains, independent familieg; , of vari-
ables for each attribute pajrn+ j, where each family is generated
using an independent random seed. Further, for every tupl&y,
in the stream and for every partitignsuch that lies inp (that is,
t € Di,p), We add taXy. p the quantity[ [ ;5. &;,¢(;1,0- (NOte that
atuplet in Ry, typically carries only a subset of the join attributes,
so it can belong to multiple partitions.) Our sketch-partitioning
techniques make the process of identifying the relevant partitions
for a tuple very efficient by using the (approximate) stream statis-
tics to group contiguous regions of values in the domain of each
attribute A; into a small number of coardricketqe.g., histogram
statistics trivially give such a bucketization). Then, each of the
my; partitions for attributed; comprises a subset of such buckets
and each bucket stores an identifier for its corresponding partition.
Since the number of such buckets is typically small, given an in-
coming tuplet, the bucket containingjj] (and, therefore, the rele-
vant partition alongd ;) can be determined very quickly (e.g., using
binary or linear search). This allows us to very efficiently determine
the relevant partitionp for streaming data tuples.

The total storage required for the atomic sketches over all the
partitions isO(3_ , sp >, log[dom(4;)|) to compute eachy;.
For the sake of simplicity, we approximate the storage overhead for
eacht;,, family for partitionp by the constanD(3_7_, log [dom(A;)])
instead of the more precise (and less pessimi6tig)._, log |p[5]).-
Our sketch-partitioning approach still needs to address two very
important issues: (1) Selecting a good set of partitifmand (2)
Determining the number of iid copies, of X, to be constructed
for each partitiorp. Clearly, effectively addressing these issues is
crucial to our final goal of minimizing the overall space allocated
to the sketch while guaranteeing a a certain degree of accaracy
for eachY;. Specifically, we aim to compute a partitionifiyand

allocating space; to each partitiorp such that VafY;) < GZSLQ
and__p sp is minimized.

Note that, by independence across partitions and the iid charac-
teristics of individual atomic sketches, we have(a) = > | Vargf") .
Given a attribute-space partitionifigy the problem of choosing the
optimal allocation ofsp’s that minimizes the overall sketch space
while guaranteeing an upper bound on 4 can be formulated
as a concrete optimization problem. The following theorem de-
scribes how to compute such an optimal allocation.

THEOREM 4.1. Consider a partitioningP of the join-attribute

8\/Var(Xp) >p \/Var(Xp) to

domains. Then, allocating spaseg = s
eachp € P ensures that Vdiy;) < % and}_  sp is minimum.

From the above theorem, it follows that, given a partitioring
the optimal space allocatioffor a given level of accuracy requires

2
a total sketch space ofy"_sp = W Obviously,
this means that theptimaﬁ, partitioning P with respect to mini-
mizing the overall space requirements for our sketches is one that
minimizes the sumd_  \/Var(Xp). Thus, in the remainder of
this section, we focus on techniques for computing such an opti-
mal partitioningP; onceP has been found, we use Theorem 4.1




to compute the optimal space allocation for each partition. We first but also that their skews are aligned so that they result in extreme
consider the simpler case of single-join queries, and address multi-skew in the resulting join-frequency vectfr(z) f2(z). When no

join queries in Section 4.3.

4.2 Sketch-Partitioning for Single-Join Queries

We describe our techniques for computing an effective partition-
ing P of the attribute space for the estimation@DUNTqueries
over single joins of the formR; Di4,—4, R2. Since we only
consider a single join-attribute pair (and, of coutk®m(A;)
dom(Az)), for notational simplicity, we ignore the additional sub-
script for join attributes wherever possible. Our partitioning algo-
rithms rely on knowledge of approximate frequency statistics for
attributesA; and A.. Typically, such approximate statistics are
available in the form of per-attributéstogramdhat split the under-
lying data domairdom(A4;) into a sequence of contiguous regions
of values (termedbucket} and store some coarse aggregate statis-
tics (e.g., number of tuples and number of distinct values) within
each bucket.

4.2.1 Binary Sketch Partitioning

Consider the simple case ob@ary partitioning? of dom( A1)
into two subsets?, and P»; that is,P = {P1, P»}. Let fi (i) de-
note the frequency of valuec dom(A;) in relation R;.. For each
relation Ry, we associate with the (relation, partition) p@its, P;)
arandom variabl&x,p, = >, c p, fr()&i,p,, Wherel, k € {1,2}.
We can now defin& p, = X1,p, X2,p, forl € {1, 2}. Itis obvious
that E[Xp,] = |R1 MNa;=4,n4,ep, R2| (i.€., the partialCOUNT
over ), and it is easy to check that the variance (Mg, ) is as

> i) fe

follows [2]:
2
+ ( (D)
i€P

— 2 A6

ieP,

Var(X pl

=> h)

i€ Py

2> i)

ieP,

)

Theorem 4.1 tells us that the overall storage is proportional to
VVar(Xp,) + y/Var(Xp,). Thus, to minimize the total sketch-
ing space through partitioning, we need to find the partitioning
P = {P, P;} that minimizes\/Var(Xp,) + /Var(Xp,). Un-
fortunately, the minimization problem using the exact values for
Var(Xp,) and VafXp,) as given in Equation (1) is very hard;
we conjecture this optimization problem to B&P-hard and leave
proof of this statement for future work. Fortunately, however, due
to Lemma 3.2, we know that the variance \lp,) lies in be-
tweeny>,p f1(0)? Y iep, f2(0)° — X p f1(0) f2() and2 -
(Cicp, [1(0)* Xicp, f2(0)* = Xiep, £1(6)* f2(3)%). In general,
one can expect the first ey, , f1( )2 Dicp f2(i )2 (i.e., the

product of the self-join sizes) to 'dominate the above bounds We
now demonstrate that, under a loose condition on join-attribute dis-

tributions, we can find a close t¢/2-approximation to the opti-
mal value for\/Var(Xp,) + /Var(Xp,) by simply substituting
Var(Xpl) with >, p f1(i ) 2icn, f2(4)?, the product of self-
join sizes of the two relations.

Specifically, suppose that we define the join/®f and R- to
be y-spreadif and only if the conditiony_ ., f1(j)f2(j) >
f1(2) f2(4) holds for alli € dom(A;), for some constant > 1.
Essentially, they-spread condition states that not too much of the
join-frequency “mass” is concentrated at any single point of the
join-attribute domairdom(A,). We typically expect they-spread
condition to be satisfied in most practical scenarios; violating the
condition requires not only: (i) and f2(7) to be severely skewed,

such extreme scenarios arise, and for reasonably-sized join attribute
domains, we typically expect theparameter in the-spread defi-
nition to be fairly large; for example, when ttfe(¢) f2(¢) distribu-

tion is approximately uniform, the-spread condition is satisfied
with v = O(|dom(A44)]) >> 1.

THEOREM 4.2. For a «-spread joinR; 1 Ry, determining
the optimal solution to the binary-partitioning problem using the
self-join-size approximation to the variance guaranteqg2/ (1 —
\/ﬁ) -factor approximation to the optimal binary partitioning (with
respect to the summed square roots of partition variances). In gen-
eral, if m domain partitions are allowed, the optimal self-join-size
solution guarantees &2/ (1 — —= )-factor approximation. |

Given the approximation guarantees in Theorem 4.2, we con-
sider the simplified partitioning problem that uses the self-join size
approximation for the partition variances; that is, we aim to find a
partitioning® that minimizes the function:

> fii)?

=

P ORES

iEP;

> h)?

iEP,y

> ()2 ()

i€EPy

Clearly, a brute-force solution to this problem is extremely ineff-
ficientasit require@(zdom(*“)) time (proportional to the number
of all possible partitionings adom(A4,)). Fortunately, we can take
advantage of the following classic theorem from the classification-
tree literature [5] to design a much more efficiaptimal algo-
rithm.

THEOREM4.3 ([5]). Let®(x) be a concave function afde-
fined on some compact domdih Let P = {1,...,d},d >= 2,
andVi € P letg > 0andr; be real numbers with values i
not all equal. Then one of the partitiofs,, P} of P that mini-

i Ticpy €T Yiep, €iTi
Mizes)s e p, ai®(Sg) + Yiep, @ (%) has the

property thatvi1 € P, Via € P, 13y < 74y. |

To see how Theorem 4.3 applies to our partitioning problem, let

i € dom(A;), and setr; = ;182, ¢ = %
i Zjedorn(Al) 2(7)

Substituting in Equation (2), we obtain:

Do L2 ) f(2rit [ D f20002 ) f2(i)%r

i€ Py 1€Py 1€ Py i€ Py
=" f2(i)? Sad arit+ [ @ Yy ar
i iep, icP; iep, ieP;
2 Z'LGPl qiTq 'LEPQ qiTq
ERRERE P +D @
i€ Py ZzePl qi i€Py ZLEPQ qi

Except for the constant factdr, .qom 4, f2(¢)* (which is al-
ways nonzero ifRs # ¢), our objective functior’F now has ex-
actly the form prescribed in Theorem 4.3 witl{z) = \/z. Since
fi(2) > 0, f2(i) > 0fori € dom(A;), we haver; > 0,¢; > 0,

andVP, C dom(A;), <<%

ZiePl a7
be shown is tha{/z is concave omlom(A;). Since concaveness is
equivalent to negative second derivative &g)” = —1/4273/2 <
0, Theorem 4.3 applies.

> 0. So, all that remains to



Applying Theorem 4.3 essentially reduces the search space fororem 4.3 and{ Py, ..., P, } is a partitioning of P = {1,...,d}.

finding an optimal partitioning alom(A) from exponential to lin- Then among the partitionings that minimigg P, . . ., P,) there
ear, since only partitionings in the order of increasifig need to is one partitioning{ P1, ..., P} with the following propertyr:
be considered. Thus, our optimal binary-partitioning algorithm for vi,I’ € {1,...,m} : i<l = Vie BVi' € Py r; <ry. 1

minimizing F(P) simply orders the domain values in increasing
order of frequency ratio ;8; , and only considers partition bound-

aries between two consecutive values in that order; the partitioning As described in Sectiodh.2.], our objective functionr(P)

-\ 2
with the smallest resulting value foF(P) gives the optimal solu-  can be expressed @_E;edomml) f2(2) \I’(_P;""’P’")* where
tion. O(z) = /T, 70 = ;;82 andg; = % thus, min-
Example 2: Consider the joinR; >a4,—4, Ro Of two relations o . _ =jedoma,) 2V
Ry and Rz with dom(A;) — dom(As) — {1,2,3,4}. Also, let imizing F({ P, . . .,Pm'}) is equivalent to m|_n_|m|_2|ng1(P1,...,Pm).
the frequencyfi (i) of domain values for relationsR; and R2 be By Theore”.‘ 4.4, to f!nd the optimal partitioning fc_ﬂ.’ all we
as follows: have to do is to consider an arrangement of elemeimsP =
{1,...,d} in the order of increasing;’s, and findm — 1 split
112134 points in this sequence such thhtfor the resultingm partitions

S1(2) 220 15 10 12 is as small as possible. The optimum— 1 split points can be

F2(2) 513110 efficiently found usinglynamic programmingas follows. Without
Without partitioning, the number of copies of the atomic- loss of generality, assume thiat . ., d is the sequence of elements

sketch estimatoiX, so that VafY;) < ezSLz is given bys, — in P in increasing value of;. Forl < u <d andlll S. v < m,

s\Var(x) ) let ¢ (u,v) be the value ofr for the optimal partitioning of ele-

—z7 - Where VafX) = 529-3384165°—2-8525 = 188977 by mentsl, ... u (in order of increasing;) in v parts. The equations

Equation (1). Now consider the binary partitionifgof dom(A;) describing our dynamic-programming algorithm are:

into P, = {1,3} and P, = {2,4}. The total number of copies

>_p sp Of the sketch estimatorX, for partitions 1 and P is

s(y/Var(xp,)+,/Var(xp,))?

Yo se = T (by Theorem (24.1)), where G = 3 qifb(z"jl iri

(v/Var(Xp,) + /Var(Xp,))* = (v/6400 + v/6400)* = 25600. P i=1

Thus, using this binary partitioning, the sketching space require- “ S g

ments are reduced by a factor gf*— = S50 ~ 7.5. blww) = min {w(j,v -n+y qié(%l;z)} ,v>1
Note that the partitioning® with P, = {1,3} andP, = {2,4} - i=j+1 =g

also minimizes the functiotF (P) defined in Equation (2). Thus,
our approximation algorithm based on Theorem 4.3 returns the

above partitioningP. Essentially, since; = 22%2 = 100, ro = _ _ _ _
% = 1/9,r; = 13%2 — 100/9 andry = 12.% — 1/25, only AlThle tcorrectngsstk(])f Qu(jr aIg(;rtlahn; |stba|lsed otn.the Il?;e.arltill.of
the three split points in the sequent, 3, 1 of domain values ar- S0 letp(u, v) be the index of the last element in partition-

of the optimal partitioning oft, ..., u in v parts (so that the last

ranged in the increasing order of need to be considered. Of the

three potential split points, the one betwezand3 results in the ~ Partition consists of elements betwegfu, v) + 1 andu). Then,
smallest valuel(77) for F(P). I p(u,1) = 0and forv > 1, p(u,v) = arg mini<j<u{¢(j,v — 1)

+ Y q@(%)}. The actual best partitioning can
g1 O

4.2.2 K-ary _SketCh Partitioning ) then be reconstructed from the valuesptf., v) in time O(m);
We now describe how to extend our earlier results to more gen- essentially, thém — 1)m split point of the optimal partitioning is

eral partitioning; comp_risingz > 2 dc_)main partitions. By The- p(d, m), the split point preceding it is(p(d, m), m — 1), and so
orem 4.1, we aim to find a partitionin@ = {F,..., P} of on. The space complexity of the algorithm is obviouglymd)
dom(A,) that minimizes,/Var(Xp, ) +...+/Var(Xp,, ), where and the time complexity i©)(md?), since we need(d) time to
each Va(Xp,) is computed as in Equation (1). Once again, given find the index; that achieves the minimum for a fixaedand v,

the approximation guarantees of Theorem 4.2, we substitute theand the functionb () for sequences of consecutive elements can be
complicated variance formulas with the product of self-join sizes; computed in timeO(d?)

thus, we seek to find a partitionirf@ = {P1, ..., P} that mini-
mizes the function:

4.3 Sketch-Partitioning for Multi-Join Queries

: 4 : : Queries Containing 2 Joins. When queries contain 2 or more
F(P) = Z f1()? Z fo(0)2 ..+ Z f1(@)? Z f2(2)? joins, unfortunately, the problem of computing an optimal parti-
ieh ek 1€Pm 1€ Pm tioning becomes intractable. Consider the problem of estimating

©) the join-size of the following query over three relatioRs (con-

. S . . . taining attributeA;), R» (containing attributesd, and As) and

Abrutg(—)fr?{iefo!utlon to minimizing(P) requires an |mpract.|- Rs (containing attributeds): Ry bda,—a, Re bda,_a, Rs. We

calO(m="""1"1)) time. Fortunately, we have shown the following  are interested in computing a partitionifigof attribute domains

generalization of Theorem 4.3 that allows us to drastically reduce 4, and 4, such thafP| < K and the quantityy” /Var(Xp)

the problem search space and design a much more efficient algo+g minimized. Let the partitions adom(4;) be Pj.1,. .., Pjm,.

rithm. Then the number of partitions i, |P| = m1ma. Also, for values

THEOREM 4.4. Consider the functiof (P, ..., P,) = 327, i,J, let f1(i), f2(i, j) andf3(j) be the frequencies of the values in
relationsR1, R> and R3, respectively.

Yiep, GiTi ) .
diep, qiq’(—zlfﬁ o), Where®, g; andr; are defined as in The- Due to Lemma 3.2, for a partitiofP, 1, , P»1,) € P,




simply

Var(X(p, , ,py,,)) < i, | Rl ﬁ
51 [RGB+ 5)] 55
N2 -2 N2
10 > A) > F2(5,9)* Y fa(d) mg
i€PL 1, () E(PLI Pa.iy) JEP2,1y DI R D% D] FR(ngg,i (1)
1=1\ i€P;, i€EP;;

- > F1(0)? f2(6,5)% £(5)°) |

(4,5)€(P114,P2,15) o 1Bl
. . . . . . Thus, due to Theorem 4.6, and sin k=1 tkl
Since the first term in the above equation for variance is the dom- 7=1 [RGIR(n+7)]

inant term, for the sake of simplicity, we focus on computing a par- constant independent of the partitioning, we simply need to com-
titioning P that minimizes the following quantity: putem; partitions for each attributel; such that the product of
2 \/Ziepj,l Fr(). ()2 2Xiep, , TRt ()2 forg =1,...,
mi my A . ] n is minimized and[[_, m; < K. Clearly, the dynamic pro-
2 2 2 (4 j=1"%
> J Pt0) Yoo 06,02 Y. f0)2 @) gramming algorithm from Sectiod.2.2can be employed to ef-

is a

Dt G Py Pay) € ficiently compute, for a given value of,;, the optimalm,; parti-
_ _ tions (denoted by??%* ..., P?P" ) for an attributej that minimize
Unfortunately, we have shown that computing such an optimal ___ - > g
partitioning is\”P-hard based on a reduction from themmium 2u=h \/Ziepjyl Fr(5).3(0? Xicp, , [R+5).5(1)? LetQ(G,m;)
SUM OF SQUARES problem [9]. denote this quantity for the optimal partitions; then, our problem is
. o to compute the valuesuy, ..., m,, for the n attributes such that
THEOREM 4.5. The prot_)lc_em of _computlng a partitioning, 1, 17, m; < K and[["_, Q(j,m;) is minimum. This can be
-5 Pjm; of dom(A;) for join attribute A;, j = 1,2 such that efficiently computed using dynamic programming as follows. Sup-
_\P| = mimz < K and the quantity in Equation (4) is minimized poseM (u, v) denotes the minimum value fﬂ;;l Q(j,m;) such
is A"P-hard. thatms, ..., m., satisfy the constraint theft[;_, m; < wv, for

In the following subsection, we present a simple heuristic for 1 < v < nandl < v < K. Then, one can defing/(u, v)
partitioning attribute domains of multi-join queries that is optimal recursively as follows:
if attribute value distributions within each relation are independent.

Optimal Partitioning Algorithm for Independent Join Attributes. M (u,v) = Q(u,v) ifu=1
For general multi-join queries, the partitioning problem involves ’ min; <;<, {M(u—1,1) - Q(u, | 7])} otherwise
computing a partitioning® 1, . . . , P;,m, of each join attribute do-

Clearly, M (n, K) can be computed using dynamic program-

. o i o ming, and it corresponds to the minimum value of function
tity Zp \/Var.(Xp) is mlnlmlzed. Ignoring constants and .r(_etalnlng > \/HZ—l > sep,  fx(Z)? for the optimal partitioning when
only the dominant self-join term of V&K,,) for each partitionp P TRk .

(see Lemma 3.2), our problem reduces to computing a partitioning attributes are independent. FurthermorePifu, v) denotes the

L . - 3 o optimal v partitions of the attribute space ovds, ..., A,, then
that minimizes the quantity” | \/Hk:1 Y.zep, , fk(T)?. Since Plu,v) = (PP, Py if u = 1. Otherwise,P(u,v) =

the 2-join case is a special instance of the general multi-join prob- Plu — 1,lo) x {P
. . .. . . 5 L0 w,1 9"
lem, due to Theorem 4.5, our simplified optimization problem is ’
also N'P-hard. However, if we assume that the join attributes {M(u—1,0) - Q(u, | 7])}.
in each relation are independent, then a polynomial-time dynamic ~ ComputingQ(u, v) for 1 < v < nandl < v < K us-
programming solution can be devised for computing the optimal ing the dynamic programming algorithm from Sectir2. 2takes
partitioning. We will employ this optimal dynamic programming O(>_)—; [dom(4;)|*K) time in the worst case. Furthermore, us-
algorithm for the independent attributes case as a heuristic for split- ing the computed) (u, v) values to computé/ (n, K') has a worst-
ting attribute domains for multi-join queries even when attributes case time complexity o®(nK). Thus, overall, the dynamic pro-

main dom(A;) such thatfP| = J[7_, m; < K and the quan-

t .
'7P5ﬁ%j}' wherelp = argmini<;<,

may not satisfy our independence assumption. grammin_g algorithm for computingy/ (n, K') has a worst-case time

Suppose that for a relatioRy, join attributej € S and value complexity ofO((n+>_7_, |[dom(A4;)|*) K). The space complex-
i € dom(A;), fx,;(¢) denotes the number of tuplesit), for whom ity of the dynamic programming algorithm@¥(max; [dom(A;)|K),
A; has value. Then, the attribute value independence assumption since computation o/ for a specific value of: requires onlyA/
implies that forZ € Dy, fi(T) = |Ri|;cs, fk~‘f}g‘[ﬂ). This values foru — 1 andQ values ofu to be kept around.

is because the independence of attributes implies the fact that the 'NOte that since building good one-dimensional histograms on
probability of a particular set of values for the join attributes is streams is much easier than building multi-dimensional histograms,

the product of the probabilities of each of the values in the set. IN Practice, we expect the partitioning of the domain of join at-
Under this assumption, one can show that the optimization problem tiPutes to be made based exclusively on such histograms. In this
for multiple joins can be decomposed to optimizing the product of €aSe: the independence assumption will need to be made anyway
single joins. Recall that attributgsandn + j form a join pair, and to approxnr_nate the multl-dlmer_15|onal frequencies, and so the opti-
in the following, we will denote byR(j) the relation containing mum solution can be found using the above proposed method.
attribute A;.

_ _ , 5. EXPERIMENTAL STUDY
. THEOREM 4.6. If reIaFlonsRl, -+, It satisfy the attribute Yalue In this section, we present the results of an extensive experimen-
independence assumption, th@b \/HZ:1 Zzepkwp fi(Z)? is tal study of our sketch-based techniques for processing queries in a




streaming environment. Our objective was twofold: We wanted to gorithm from Section 4.3 for computing partitions. We employ
(1) compare our sketch-based method of approximately answeringsophisticated de-randomization techniques to dramatically reduce
complex queries over data streams with traditional histogram-basedthe overhead for generating thefamilies of independent random
methods, and (2) examine the impact of sketch partitioning on the variable§. Thus, when attribute domains are not partitioned, the
quality of the computed approximations. Our experiments consider total storage requirement for a sketch is approximately sz -

a wide range o€OUNTjueries on both synthetic and real-life data words, which is essentially the overhead of storing s random
sets. The main findings of our study can be summarized as follows. variables for the- relations. On the other hand, in case attributes

« Improved Query Answer Quality. Our sketch-based algorithms &€ Split, then the space overhead for the sketch is approximately
are quite accurate when estimating the results of complex aggregate’_p Sp * $2 - 7 WOrds. In our experiments, we found that smaller
queries. Even with few kilobytes of memory, the relative error in fi- VaﬁJ?S fors, generally resulted in better accuracy, and so we:set

nal answer is frequently less than 10%. Our experiments also showt© 2 in all our experiments.

that our sketch-based method gives much more accurate answers In each experiment, we allocate the same amount of memory to
than on-line histogram-based methods, the improvement in accu-histograms and sketches.

racy ranging from a factor of three to over an order of magnitude. pata Sets.We used two real-life and several synthetic data sets in
e Effectiveness of Sketch Partitioning. Our study shows that our experiments. We used the synthetic data generator employed
partitioning attribute domains (using our dynamic programming previously in [24, 6] to generate data sets with very different char-
heuristic to compute the partitions) and carefully allocating the acteristics for a wide variety of parameter settings.

available memory to sketches for the partitions can significantly o census data set (www.bls.census.gdMis data set was taken
boost the quality of returned estimates. from the Current Population Survey (CPS) data, which is a monthly
e Impact of Approximate Attribute Statistics. Our experiments survey of about 50,000 households conducted by the Bureau of
show that sketch partitioning is still very effective and robust evenif the Census for the Bureau of Labor Statistics. Each month’s data
only very rough and approximate attribute statistics for computing contains around 135,000 tuples with 361 attributes, of which we
partitions are available. used five attributes in our studsige, income, education, weekly

Thus our experimental results validate the thesis of this paper Wage andweekly wage overtime. Theincome attribute is dis-
that sketches are a viable, effective tool for answering complex ag- ¢rétized and has a range of 1:14, aedlication is a categori-
gregate queries over data streams, and that a careful allocation of@l attribute with domain 1:46. The three numeric attributgs,
available space through sketch partitioning is important in prac- Weekly wage andweekly wage overtime have ranges of 1:99,
tice. In the next section, we describe our experimental setup and0:288416 and 0:288416, respectively. Our study use data from
methodology. All experiments in this paper were performed on a W0 months (August 1999 and August 2001) containing 72100 and
Pentium Il with 1 GB of main memory, running Redhat Linux 7.2, 81600 records respectively, with a total size of 6.51 MB.

. e Synthetic data setsWe used the synthetic data generator from

5.1 Experlmental Testbed and Methodology [24] to generate relations with 1, 2 and 3 attributes. The data gener-
Algorithms for Query Answering. We focused on algorithms that  ator works by populating uniformly distributed rectangular regions
are truly on-line in that they can work exclusively with a limited in the multi-dimensional attribute space of each relation. Tuples
amount of main memory and a small per-tuple processing over- are distributed across regions and within regions using a Zipfian
head. Since histograms are a popular data reduction technique fordistribution with values; e andzinerq, respectively. We set the
approximate query answering [20], and a number of algorithms for parameters of the data generator to the following default values:
constructing equi-depth histograms on-line have been proposed ressize of each domain=1024, number of regions=10, volume of each
cently [21, 16], we consider equi-depth histograms in our study. region=1000-2000, skew across regions {.-)=1.0, skew within
However, we do not consider random-sample data summaries sinceeach region 4;,+-.) =0.0-0.5 and number of tuples in each rela-
these have been shown to perform poorly for queries with one or tion = 10,000,000. By clustering tuples within regions, the data
more joins [1, 6, 2]. generator used in [24] is able to model correlation among attributes

o Equi-Depth Histograms.We construct one-dimensional equi- Within a relation. However, in practice, join attributes belonging
depth histograms off-line since space-efficient on-line algorithms to different relations are frequently correlated. In order to capture
for histograms are still being proposed in the literature, and we this attribute dependency across relations, we introduce paew
would like our study to be valid for the best single-pass algorithms turbationparametep (with default value 1.0). Essentially, relation

of the future. We do not consider multi-dimensional histograms in 22 is generated from relatiof; by perturbing each region in

our experiments since their construction typically involves multi- 1 using parametep as follows. Consider the rectangular space
ple passes over the data. (The technique of Gibbons et al. [14] foraround the center of obtained as a result of shrinkingby a fac-
constructing approximate multi-dimensional histograms utilizes a tor p along each dimension. The new center for regidn R, is
backing sample and thus cannot be used in our setting.) Conse-selected to be a random point in the shrunk space.

quently, we use the attribute value independence assumption to ap-Queries. The workload used to evaluate the various approximation
proximate the value distribution for multiple attributes from the in- techniques consists of three main query types: (1) Chain JOIN-
dividual attribute histograms. Thus, by assuming that values within COUNT Queries: We join two or more relations on one or more
each bucket are distributed uniformly and attributes are indepen- attributes such that the join graph forms a chain, and we return the
dent, the entire relation can be approximated and we use this ap-number of tuples in the result of the join as output of the query;
proximation to answer queries. Note that a one-dimensional his- (2) Star JOIN-COUNT Queries: We join two or more relations on
togram withb buckets require@b words (4-byte integers) of stor-  one or more attributes such that the join graph forms a star, and
age, one word for each bucket boundary and one for each bucketwe return the number of tuples in the output of the query; (3) Self-
count.

o Sketches.We use our sketch-based algorithm from Section 3 SA detailed discussion of this is outside the scope of this paper.
for answering queries, and the dynamic programming-based al- "We excluded records with missing values.




join JOIN-COUNT Queries: We self-join a relation on one or more query involving three two-dimensional relations, in which the two
attributes, and we return the number of tuples in the output of the attributes of a central relation are joined with one attribute belong-
guery. We believe that the above-mentioned query types are fairly ing to each of the other two relations. The memory allocated to the
representative of typical query workloads over data streams. sketch for the query is 9000 words.

Answer-Quality Metrics. In our experiments we use the absolute ~ Clearly, the graph points to two definite trends. First, as the

relative error éactual—app'r‘oﬂ) in the aggregate value as a mea- number of sketch partitions increases, the error in the computed
actual

sure of the accuracy of the approximate query answer. We re|oeataggregates becomes smaller. The second interesting trend is that as
istograms become more accurate due to an increased number of

each experiment 100 times, and use the average value for the error% = N
across the iterations as the final error in our plots uckets, the computed sketch partitions are more effective in terms
' of reducing error. There are also two further observations that are

5.2 Results: Sketches vs. Histograms interesting. First, most of the error reduction occurs for the first

Synthetic Data SetsFigure 2 depicts the error due to sketches and feW partitions and after a certain point, the incremental benefits of
histograms for a self-join query as the amount of available memory _further partitioning are minor. For |nstan_ce, fou_r partltlops result
is increased. It is interesting to observe that the relative error due N MOSt of the error reduction, and very little gain is obtained be-
to sketches is almost an order of magnitude lower than histograms.Yond four sketch partitions. Second, even with partitions computed
The self-join query in Figure 2 is on a relation with a single attribute  USing very small histograms and crude attribute statistics, signifi-
whose domain size is 1024000. Further, the one-dimensional datacant reductions in error are realized. For instance, for an attribute
set contains 10,000 regions with volumes between 1 and 5, and adomain of size 1024, even with 25 buckets we are able to reduce
skew of 0.2 across the relations(:...). Histograms perform very ~ ©mor by a factor of 2 using sketch partitioning. Also, note that
poorly on this data set since a few buckets cannot accurately capture?Ur heuristic based on dynamic programming for splitting multiple

the data distribution of such a large, sparse domain with so manyjoin attributes (see Section 4.3) performs quite well in practice and
regions. is able to achieve significant error reductions.

Real-life Data Sets. The experimental results with the Census Real-life D_ata Sets. Sketch partitioning also improves_the accu-
1999 and 2001 data sets are depicted in Figures 3-5. Figure 3raCY of_estlm_ates_ for the Census 1999 e_md 2001 real-life data sets,
is a join of the two relations on thé/eekly Wage attribute and as depicted in Figure 7. As for synthetic data sets, we allocate a
Figure 4 involves joining the relations on thge and Education fixed amount, 4000 words, of memory to the sketch for the query,
attributes. Finally, Figure 5 contains the result of a star query in- @nd vary the number of partitions. Also, histograms with 25, 50
volving four copies of the 2001 Census data set, with center of and_l_OO buckets are uged to compute sketch partitions. Elgure 7is
the star joined with the three other copies on attribdigs, Edu- the join of the two relatlor_ls on attribuW®eekly Wage Overtime
cation andIncome. Observe that histograms perform worse than for Census 1999 and attribuiéeekly Wage for Census 2001.
sketches for all three query types; their inferior performance forthe _From the figure, we can conclude that the real-life data sets ex-
first join query (see Figure 3) can be attributed to the large domain Nibit the same trends that were previously observed for synthetic
size ofWeekly Wage (0:288416), while their poor accuracies for data s<_ets. 'I_'he benefits o_f s_ketch partitioning in terms_ of significant
the second and third join queries (see Figures 4 and 5) are due toreductlons_ln error are _S|m|Iar for both sets of experiments. the
the inherent problems of approximating multi-dimensional distri- @S0 that histograms with a small number of buckets are effective
butions from one-dimensional statistics. Specifically, the accuracy for partitioning sketches, even though they give a poor estimate
of the approximate answers due to histograms suffers because th@f the join-size for the experiment in Figure 3. This suggests that
attribute value independence assumption leads to erroneous estiMerely guessing the shape of the distributions is sufficient in most
mates for the multi-dimensional frequency histograms of each re- practical situations to allow good sketch partitions to be built.
lation. Note that this also causes the error for histogram-based data
summaries to improve very little as more memory is made avail-
able to the streaming algorithms. On the other hand, the relative 6. CONCLUSIONS
error with sketches decreases significantly as the space allocated to In this paper, we considered the problem of approximatively an-
sketches is increased — this is only consistent with theory since ac-swering generadggregateSQL queries over continuous data streams
cording to Theorem 3.1, the sketch error is inversely proportional with limited memory. Our approach is based on computing small
to the square root of sketch storage. It is worth noting that the rel- “sketch” summaries of the streams that are used to provide approx-
ative error of the aggregates for sketches is very low; for all three imate answers of complex multi-join aggregate queries with prov-
join queries, it is less than 2% with only a few kilobytes of memory. able approximation guarantees. Furthermore, since the degrada-
e tion of the approximation quality due to the high variance of our
5.3 Results: Sketch Pamtlon'ng randomized sketch synopses may be a concern in practical situa-
In this set of experiments, each sketch is allocated a fixed amounttions, we developed noveketch-partitioningechniques. Our pro-
of memory, and the number of partitions is varied. Also, the sketch posed methods take advantage of existing statistical information
partitions are computed using approximate statistics from histogramen the stream to intelligently partition the domain of the underly-
with 25, 50 and 100 buckets (we plot a separate curve for each his-ing attribute(s) and, thus, decompose the sketching problem in a
togram size value). Intuitively, histograms with fewer buckets oc- way that provably tightens the approximation guarantees. Finally,
cupy less space, but also introduce more error into the frequencywe conducted an extensive experimental study with both synthetic
statistics for the attributes based on which the partitions are com- and real-life data sets to determine the effectiveness of our sketch-
puted. Thus, our objective with this set of experiments is to show based techniques and the impact of sketch partitioning on the qual-
that even with approximate statistics from coarse-grained small his- ity of computed approximations. Our results demonstrate that (a)
tograms, it is possible to use our dynamic programming heuristic our sketch-based technique provides approximate answers of bet-
to compute partitions that boost the accuracy of estimates. ter quality than histograms (by factors ranging from three to an
Synthetic Data Sets.Figure 6 illustrates the benefits of partition-  order of magnitude), and (b) sketch partitioning, even when based
ing attribute domains, on the accuracy of estimates for a chain join on coarse statistics, is an effective way to boost the accuracy of our
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estimates (by a factor of almost two).
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