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Figure 1. Descartes' decomposition of space into vortices.1. IntroductionThe topic of this chapter, Voronoi diagrams, di�ers from other areas of computa-tional geometry, in that its origin dates back to the 17th century. In his book on theprinciples of philosophy [87], R. Descartes claims that the solar system consists ofvortices. His illustrations show a decomposition of space into convex regions, eachconsisting of matter revolving round one of the �xed stars; see �g. 1.Even though Descartes has not explicitly de�ned the extension of these regions,the underlying idea seems to be the following. Let a space M , and a set S of sitesp in M be given, together with a notion of the inuence a site p exerts on a pointx of M . Then the region of p consists of all points x for which the inuence of p isthe strongest, over all s 2 S.



4 F. Aurenhammer and R. KleinThis concept has independently emerged, and proven useful, in various �elds ofscience. Di�erent names particular to the respective �eld have been used, such asmedial axis transform in biology and physiology, Wigner-Seitz zones in chemistryand physics, domains of action in crystallography, and Thiessen polygons in mete-orology and geography. The mathematicians Dirichlet [95] and Voronoi [251, 250]were the �rst to formally introduce this concept. They used it for the study ofquadratic forms; here the sites are integer lattice points, and inuence is measuredby the Euclidean distance. The resulting structure has been called Dirichlet tessel-lation or Voronoi diagram, which has become its standard name today.Voronoi [251] was the �rst to consider the dual of this structure, where anytwo point sites are connected whose regions have a boundary in common. Later,Delaunay [86] obtained the same by de�ning that two point sites are connected i�(i. e. if and only if) they lie on a circle whose interior contains no point of S. Afterhim, the dual of the Voronoi diagram has been denoted Delaunay tessellation orDelaunay triangulation.Besides its applications in other �elds of science, the Voronoi diagram and its dualcan be used for solving numerous, and surprisingly di�erent, geometric problems.Moreover, these structures are very appealing, and a lot of research has been devotedto their study (about one out of 16 papers in computational geometry), ever sinceShamos and Hoey [230] introduced them to the �eld.The reader interested in a complete overview over the existing literature shouldconsult the book by Okabe et al. [208] who list more than 600 papers, and thesurveys by Aurenhammer [27], Bernal [39], and Fortune [124]. Also, chapters 5 and6 of Preparata and Shamos [213] and chapter 13 of Edelsbrunner [104] could beconsulted. Within one chapter, we cannot review all known results and applications.Instead, we are trying to highlight the intrinsic potential of Voronoi diagrams,that lies in its structural properties, in the existence of e�cient algorithms for itsconstruction, and in its adaptability.We start in section 2 with a simple case: the Voronoi diagram and the Delau-nay triangulation of n points in the plane, under the Euclidean distance. We stateelementary structural properties that follow directly from the de�nitions. Furtherproperties will be revealed in section 3, where di�erent algorithmic schemes for com-puting these structures are presented. In section 4 we complete our presentation ofthe classical two-dimensional case, and turn to generalizations. Next, in section 5,important geometric applications of the Voronoi diagram and the Delaunay trian-gulation are discussed. The reader who is interested mainly in these applicationscan proceed directly to section 5, after section 2. Finally, section 6 concludes thechapter and mentions some open problems.2. De�nitions and elementary propertiesThroughout this section we denote by S a set of n > 3 point sites p; q; r; : : : in theplane. For points p = (p1; p2) and x = (x1; x2) let d(p; x) =p(p1 � x1)2 + (p2 � x2)2denote their Euclidean distance. By pq we denote the line segment from p to q. The



Voronoi Diagrams 5closure of a set A will be denoted by A:De�nition 2.1. For p; q 2 S letB(p; q) = fx j d(p; x) = d(q; x)gbe the bisector of p and q. B(p; q) is the perpendicular line through the center ofthe line segment pq. It separates the halfplaneD(p; q) = fx j d(p; x) < d(q; x)gcontaining p from the halfplane D(q; p) containing q. We callVR(p; S) = \q2S;q 6=pD(p; q)the Voronoi region of p with respect to S. Finally, the Voronoi diagram of S isde�ned byV (S) = [p;q2S;p 6=qVR(p; S) \VR(q; S):By de�nition, each Voronoi region VR(p; S) is the intersection of n � 1 openhalfplanes containing the site p. Therefore, VR(p; S) is open and convex. Di�erentVoronoi regions are disjoint.The common boundary of two Voronoi regions belongs to V (S) and is called aVoronoi edge, if it contains more than one point. If the Voronoi edge e borders theregions of p and q then e � B(p; q) holds. Endpoints of Voronoi edges are calledVoronoi vertices; they belong to the common boundary of three or more Voronoiregions.There is an intuitive way of looking at the Voronoi diagram V (S). Let x be anarbitrary point in the plane. We center a circle, C, at x and let its radius grow,from 0 on. At some stage the expanding circle will, for the �rst time, hit one ormore sites of S. Now there are three di�erent cases.Lemma 2.1. If the circle C expanding from x hits exactly one site, p, then xbelongs to VR(p; S). If C hits exactly two sites, p and q, then x is an interior pointof a Voronoi edge separating the regions of p and q. If C hits three or more sitessimultaneously, then x is a Voronoi vertex adjacent to those regions whose siteshave been hit.Proof. If only site p is hit then p is the unique element of S closest to x. Conse-quently, x 2 D(p; r) holds for each site r 2 S with r 6= p. If C hits exactly p andq, then x is contained in each halfplane D(p; r); D(q; r), where r 62 fp; qg, and inB(p; q), the common boundary of D(p; q) and D(q; p). By de�nition 2.1, x belongs
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Γ

Figure 2. A Voronoi diagram of 11 points in the Euclidean plane.to the closure of the regions of both p and q, but of no other site in S. In the thirdcase, the argument is analogous.This lemma shows that the Voronoi regions form a decomposition of the plane;see �g. 2.Conversely, if we imagine n circles expanding from the sites at the same speed,the fate of each point x of the plane is determined by those sites whose circles reachx �rst. This "expanding waves" view has been systematically used by Chew andDrysdale [66] and Thurston [246].The Voronoi vertices are of degree at least three, by lemma 2.1. Vertices of degreehigher than three do not occur if no four point sites are cocircular. The Voronoidiagram V (S) is disconnected if all point sites are collinear; in this case it consistsof parallel lines.From the Voronoi diagram of S one can easily derive the convex hull of S, i. e. theboundary of the smallest convex set containing S.Lemma 2.2. A point p of S lies on the convex hull of S i� its Voronoi regionVR(p; S) is unbounded.Proof. The Voronoi region of p is unbounded i� there exists some point q 2 Ssuch that V (S) contains an unbounded piece of B(p; q) as a Voronoi edge. Letx 2 B(p; q), and let C(x) denote the circle through p and q centered at x, as shown
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Figure 3. As x moves to the right, the intersection of circle C(x) with the left halfplane shrinks,while C(x) \R grows.in �g. 3. Point x belongs to V (S) i� C(x) contains no other site. As we move x tothe right along B(p; q), the part of C(x) contained in halfplane R keeps growing.If there is another site r in R, it will eventually be reached by C(x), causing theVoronoi edge to end at x. Otherwise, all other sites of S must be contained in theclosure of the left halfplane L. Then p and q both lie on the convex hull of S.Sometimes it is convenient to imagine a simple closed curve � around the \inter-esting" part of the Voronoi diagram, so large that it intersects only the unboundedVoronoi edges; see �g. 2. While walking along �, the vertices of the convex hull of Scan be reported in cyclic order. After removing the halines outside �, a connectedembedded planar graph with n+1 faces results. Its faces are the n Voronoi regionsand the unbounded face outside �. We call this graph the �nite Voronoi diagram.One virtue of the Voronoi diagram is its small size.Lemma 2.3. The Voronoi diagram V (S) has O(n) many edges and vertices. Theaverage number of edges in the boundary of a Voronoi region is less than 6.Proof. By the Euler formula (see e. g. [129]) for planar graphs, the followingrelation holds for the numbers v, e, f , and c of vertices, edges, faces, and connectedcomponents.v � e + f = 1 + c:We apply this formula to the �nite Voronoi diagram. Each vertex has at least threeincident edges; by adding up we obtain e > 3v=2, because each edge is counted



8 F. Aurenhammer and R. Kleintwice. Substituting this inequality together with c = 1 and f = n+ 1 yieldsv 6 2n� 2 and e 6 3n� 3:Adding up the numbers of edges contained in the boundaries of all n + 1 facesresults in 2e 6 6n� 6 because each edge is again counted twice. Thus, the averagenumber of edges in a region's boundary is bounded by (6n� 6)=(n + 1) < 6. Thesame bounds apply to V (S).Now we turn to the Delaunay tessellation. In general, a triangulation of S is aplanar graph with vertex set S and straight line edges, which is maximal in thesense that no further straight line edge can be added without crossing other edges.Each triangulation of S contains the edges of the convex hull of S. Its boundedfaces are triangles, due to maximality. Their number equals 2n � k � 2, where kdenotes the size of the convex hull. We call a subset of edges of a triangulation atessellation of S if it contains the edges of the convex hull, and if each point of Shas at least two adjacent edges.De�nition 2.2. The Delaunay tessellation DT(S) is obtained by connecting witha line segment any two points p; q of S for which a circle C exists that passes throughp and q and does not contain any other site of S in its interior or boundary. Theedges of DT(S) are called Delaunay edges.The following equivalent characterization is a direct consequence of lemma 2.1.Lemma 2.4. Two points of S are joined by a Delaunay edge i� their Voronoiregions are edge-adjacent.Since each Voronoi region has at least two neighbors, at least two Delaunay edgesmust emanate from each point of S. By the proof of lemma 2.2, each edge of theconvex hull of S is Delaunay. Finally, two Delaunay edges can only intersect attheir endpoints, because they allow for circumcircles whose respective closures donot contain other sites. This shows that DT(S) is in fact a tessellation of S.Two Voronoi regions can share at most one Voronoi edge, by convexity. Therefore,lemma 2.4 implies that DT(S) is the graph{theoretical dual of V (S), realized bystraight line edges.An example is depicted in �g. 4; the Voronoi diagram V (S) is drawn by solidlines, and DT(S) by dashed lines. Note that a Voronoi vertex (like w) need not becontained in its associated face of DT(S). The sites p; q; r; s are cocircular, givingrise to a Voronoi vertex v of degree 4. Consequently, its corresponding Delaunayface is bordered by four edges. This cannot happen if the points of S are in generalposition.Theorem 2.1. If no four points of S are cocircular then DT(S), the dual of theVoronoi diagram V (S), is a triangulation of S, called the Delaunay triangulation.Three points of S give rise to a Delaunay triangle i� their circumcircle does notcontain a point of S in its interior.



Voronoi Diagrams 9
DT(S)

V(S)
w

p

s

v
r

qFigure 4. Voronoi diagram and Delaunay tessellation.3. AlgorithmsIn this section we present several ways of computing the Voronoi diagram and itsdual, the Delaunay tesselation. For simplicity, we assume of the n point sites of Sthat no four of them are cocircular, and that no three of them are collinear. Accord-ing to theorem 2.1 we can then refer to DT(S) as to the Delaunay triangulation.All algorithms presented herein can be made to run without the general positionassumption. Also, they can be generalized to metrics other than the Euclidean, andto sites other than points. This will be discussed in subsections 4.5 and 4.4.Data structures well suited for working with planar graphs like the Voronoi dia-gram are the doubly connected edge list , DCEL, by Muller and Preparata [201], andthe quad edge structure by Guibas and Stol� [136]. In either structure, a record isassociated with each edge e that stores the following information: the names of thetwo endpoints of e; references to the edges clockwise or counterclockwise next to eabout its endpoints; �nally, the names of the faces to the left and to the right of e.The space requirement of both structures is O(n).Either structure allows to e�ciently traverse the edges adjacent to a given vertex,and the edges bounding a face. The quad edge structure o�ers the additional ad-vantage of describing, at the same time, a planar graph and its dual, so that it canbe used for constructing both the Voronoi diagram and the Delaunay triangulation.From the DCEL of V (S) we can derive the set of triangles constituing the Delaunaytriangulation in linear time. Conversely, from the set of all Delaunay triangles theDCEL of the Voronoi diagram can be constructed in time O(n). Therefore, eachalgorithm for computing one of the two structures can be used for computing theother one, within O(n) extra time.
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(n logn) lower bound for constructing the Voronoi diagram (i) by trans-formation from sorting, and (ii) by transformation from "-closeness.It is convenient to store structures describing the �nite Voronoi diagram, asintroduced before lemma 2.3, so that the convex hull of the point sites can be easilyreported by traversing the bounding curve �; see �g. 2.3.1. A lower boundBefore constructing the Voronoi diagram we want to establish a lower bound for itscomputational complexity.Suppose that n real numbers x1; : : : ; xn are given. From the Voronoi diagram ofthe point set S = fpi = (xi; xi2) j 1 6 i 6 ng one can derive, in linear time, thevertices of the convex hull of S, in counterclockwise order. From the leftmost pointin S on, this vertex sequence contains all points pi, sorted by increasing values ofxi; see �g. 5 (i).This argument due to Shamos [229] shows that constructing the convex hull and,a fortiori , computing the Voronoi diagram, is at least as di�cult as sorting n realnumbers, which requires �(n logn) time in the algebraic computation tree model.However, a �ne point is lost in this reduction. After sorting n points by theirx-values, their convex hull can be computed in linear time [101], whereas sortingdoes not help in constructing the Voronoi diagram. The following result has beenindependently found by Djidjev and Lingas [96] and by Zhu and Mirzaian [260].



Voronoi Diagrams 11Theorem 3.1. It takes time 
(n logn) to construct the Voronoi diagram of npoints p1; : : : ; pn whose x-coordinates are strictly increasing.Proof. By reduction from the "-closeness problem which is known to be in�(n logn). Let y1; : : : ; yn be positive real numbers, and let " > 0. The questionis if there exist i 6= j such that jyi � yj j < " holds. We form the sequence of pointspi = (i"=n; yi); 1 6 i 6 n, and compute their Voronoi diagram; see �g. 5 (ii). Intime O(n), we can determine the Voronoi regions that are intersected by the y-axis,in bottom-up order (such techniques will be detailed in subsection 3.3.)If, for each pi, its projection onto the y-axis lies in the Voronoi region of pi thenthe values yi are available in sorted order, and we can easily answer the question.Otherwise, there is a point pi whose projection lies in the region of some other pointpj. Because ofjyi � yj j 6 d((0; yi); pj) < d((0; yi); pi) = i"n 6 ";in this case the answer is positive.On the other hand, sorting n arbitrary point sites by x-coordinates is not madeeasier by their Voronoi diagram, as Seidel [223] has shown.With de�nition 2.1 in mind one could think of computing each Voronoi regionas the intersection of n� 1 halfplanes. This would take time �(n logn) per region,see [213]. In the following subsections we describe various algorithms that computethe whole Voronoi diagram within this time; due to theorem 3.1, these algorithmsare worst-case optimal.3.2. Incremental constructionA natural idea �rst studied by Green and Sibson [133] is to construct the Voronoidiagram by incremental insertion, i. e. to obtain V (S) from V (S nfpg) by insertingthe site p. As the region of p can have up to n� 1 edges, for n = jSj, this leads toa runtime of O(n2). Several authors �ne-tuned the technique of inserting Voronoiregions, and e�cient and numerically robust implementations are available nowa-days; see Ohya et al. [207] and Sugihara and Iri [240]. In fact, runtimes of O(n) canbe expected for well distributed sets of sites.The insertion process is, maybe, better described, and implemented in the dualenvironment, for the Delaunay triangulation: construct DTi = DT(fp1; : : : ; pi�1; pig)by inserting the site pi into DTi�1. The advantage over a direct construction ofV(S) is that Voronoi vertices that appear in intermediate diagrams but not in the�nal one need not be constructed and stored. We follow Guibas and Stol� [136]and construct DTi by exchanging edges, using Lawson's [175] original edge ippingprocedure, until all edges invalidated by pi have been removed.To this end, it is useful to extend the notion of triangle to the unbounded faceof the Delaunay triangulation. If pq is an edge of the convex hull of S we call
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C(q,r,t)Figure 6. If triangle T (q; r; t) is in conict with pi then former Delaunay edge qr must be replacedby pit.the supporting halfplane H not containing S an in�nite triangle with edge pq. Itscircumcircle is H itself, the limit of all circles through p and q whose center tendto in�nity within H; compare �g. 3. As a consequence, each edge of a Delaunaytriangulation is now adjacent to two triangles.Those triangles of DTi�1 (�nite or in�nite) whose circumcircles contain the newsite, pi, are said to be in conict with pi. According to theorem 2.1, they will nolonger be Delaunay triangles.Let qr be an edge of DTi�1, and let T (q; r; t) be the triangle adjacent to qrthat lies on the other side of qr than pi; see �g. 6. If its circumcircle C(q; r; t)contains pi then each circle through q; r contains at least one of pi; t; see �g. 3again. Consequently, qr cannot belong to DTi, due to de�nition 2.2. Instead, pitwill be a new Delaunay edge, because there exists a circle contained in C(q; r; t)that contains only pi and t in its interior or boundary. This process of replacingedge qr by pit is called an edge ip.The necessary edge ips can be carried out e�ciently if we know the triangleT (q; s; r) of DTi�1 that contains pi, see �g. 7. The line segments connecting pi toq; r, and s will be new Delaunay edges, by the same argument from above. Next,we check if e. g. edge qr must be ipped. If so, the edges qt and tr are tested, andso on. We continue until no further edge currently forming a triangle with, but notcontaining pi, needs to be ipped, and obtain DTi.Lemma 3.1. If the triangle of DTi�1 containing pi is known, the structural workneeded for computing DTi from DTi�1 is proportional to the degree d of pi in DTi.Proof. Continued edge ipping replaces d � 2 conicting triangles of DTi�1 by dnew triangles in DTi that are adjacent to pi; compare �g. 7.
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TFigure 7. UpdatingDTi�1 after inserting the new site pi. In (ii) the new Delaunayedges connectingpi to q; r; s have been added, and edge qr has already been ipped. Two more ips are necessarybefore the �nal state shown in (iii) is reached.Lemma 3.1 yields an obvious O(n2) time algorithm for constructing the Delau-nay triangulation of n points: we can determine the triangle of DTi�1 containingpi within linear time, by inspecting all candidates. Moreover, the degree of pi istrivially bounded by n.The last argument is quite crude. There can be single vertices in DTi that dohave a high degree, but their average degree is bounded by 6, as lemma 2.3 andlemma 2.4 show.This fact calls for randomization. Suppose we pick pn at random in S, then choosepn�1 randomly from S � fpng, and so on. The result is a random permutation(p1; p2; : : : ; pn) of the site set S.If we insert the sites in this order, each vertex of DTi has the same chance of beingpi. Consequently, the expected value of the degree of pi is O(1), and the expectedtotal number of structural changes in the construction of DTn is only O(n), due tolemma 3.1.In order to �nd the triangle that contains pi it is su�cient to inspect all trianglesthat are in conict with pi. The following lemma shows that the expected totalnumber of all conicting triangles so far constructed is only logarithmic.Lemma 3.2. For each h < i, let dh denote the expected number of triangles inDTh nDTh�1 that are in conict with pi. Then,i�1Xh=1 dh = O(log i):Proof. Let C denote the set of triangles of DTh that are in conict with pi. Atriangle T 2 C belongs to DTh nDTh�1 i� it has ph as a vertex. As ph is randomly



14 F. Aurenhammer and R. Kleinchosen in DTh, this happens with probability 3=h. Thus, the expected number oftriangles in C nDTh�1 equals 3 � jCj=h. Since the expected size of C is less than 6we have dh < 18=h, hence Pi�1h=1 dh < 18Pi�1h=1 1=h = �(log i).Suppose that T is a triangle of DTi adjacent to pi, see �g. 7 (iii). Its edge sr isin DTi�1 adjacent to two triangles: To its father , F , that has been in conict withpi; and to its stepfather , SF, who is still present in DTi. Any further site in conictwith T must be in conict with its father or with its stepfather, as illustrated by�g. 8.This property can be exploited for quickly accessing all conicting triangles. TheDelaunay tree due to Boissonnat and Teillaud [46] is a directed acyclic graph thatcontains one node for each Delaunay triangle ever created during the incrementalconstruction. Pointers run from fathers and stepfathers to their sons. The trianglesof DT3 are the sons of a dummy root node.When pi+1 must be inserted, a Delaunay tree including all triangles up to DTiis available. We start at its root and descend as long as the current triangle is inconict with pi+1. The above property guarantees that each conicting triangle ofDTi will be found.The expected number of steps this search requires is O(log i), due to lemma 3.2.Once DTi+1 has been computed, the Delaunay tree can easily be updated to includethe new triangles.Thus, we have the following result.Theorem 3.2. The Delaunay triangulation of a set of n points in the plane can beconstructed in expected time O(n logn), using expected linear space. The average istaken over the di�erent orders of inserting the n sites.As a nice feature, the insertion algorithm is on-line. That is, it is capable ofconstructing DTi from DTi�1 without knowledge of pi+1; : : : ; pn.Note also that we did not make any assumptions concerning the distribution ofthe sites in the plane; the incremental algorithm achieves its O(n logn) time boundfor every possible input set. Only under a \poor" insertion order can a quadraticnumber of structural changes occur, but this is unlikely.Randomized geometric algorithms are presented in more detail in a separatechapter of this book. Though conceptually simple, they tend to be tricky to analyze.Since Clarkson and Shor [74] introduced their technique, many researchers havebeen working on generalizing and simplifying the methods used. To mention but afew results, Boissonnat et. al. [43] and Guibas et. al. [135] have re�ned the methodsof storing the past in order to locate new conicts quickly, Clarkson et. al. [73] havegeneralized and simpli�ed the analytic framework, and Seidel [228] systematicallyapplied the technique of backward analysis �rst used by Chew [62]. The methodin [135] for storing the past is briey described in subsection 4.3.3 for constructinga generalized planar Voronoi diagram..If the set S of sites can be expected to be well distributed in the plane, bucketingtechniques for accessing the triangle that contains a new site pi have been used forspeed-up. Joe [152], who implemented Sloan's algorithm [236], and Su and Drys-
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s rFigure 8. The circumcirle of T is contained in the union of the circumcircles of F and SF.dale [238], who used a variant of Bentley et al.'s spiral search [36], report on fastexperimental runtimes.The arising issues of numerical stability have been addressed in Fortune [123],Sugihara [239], and J�unger et al. [153].A technique similar to incremental insertion is incremental search. It starts witha single Delaunay triangle, and then incrementally discovers new ones, by growingtriangles from edges of previously discovered triangles. This basic idea is used, e.g.,in Maus [188] and in Dwyer [103]. It leads to e�cient expected-time Delaunayalgorithms in higher dimensions; see [103].The paper [238] gives a thorough experimental comparison of available Delaunaytriangulation algorithms.3.3. Divide & conquerThe �rst deterministic worst-case optimal algorithm for computing the Voronoidiagram has been presented by Shamos and Hoey [230]. In their divide & conquerapproach, the set of point sites, S, is split by a dividing line into subsets L and Rof about the same sizes. Then, the Voronoi diagrams V (L) and V (R) are computedrecursively. The essential part is in �nding the split line, and in merging V (L) andV (R), to obtain V (S). If these tasks can be carried out in time O(n) then theoverall running time is O(n logn).



16 F. Aurenhammer and R. KleinDuring the recursion, vertical or horizontal split lines can be easily found if thesites in S are sorted by their x- and y-coordinates beforehand.The merge step involves computing the set B(L;R) of all Voronoi edges of V (S)that separate regions of sites in L from regions of sites in R.Suppose that the split line is vertical, and that L lies to its left.Lemma 3.3. The edges of B(L;R) form a single y-monotone polygonal chain. InV (S), the regions of all sites in L are to the left of B(L;R), whereas the regions ofthe sites of R are to its right.Proof. Let b be an arbitrary edge of B(L;R), and let l 2 L and r 2 R be the siteswhose regions are adjacent to b. Since l has a smaller x-coordinate than r, b cannotbe horizontal, and the region of l must be to its left.Thus, V (S) can be obtained by glueing together B(L;R), the part of V (L) to theleft of B(L;R), and the part of V (R) to its right; see �g. 9, where V (R) is depictedby dashed lines.The polygonal chain B(L;R) is constructed by �nding a starting edge at in�nity,and by tracing B(L;R) through V (L) and V (R).Due to Shamos and Hoey [230], an unbounded starting edge of B(L;R) can befound in O(n) time by determining a line tangent to the convex hulls of L and R,respectively. Here we describe an alternative method by Chew and Drysdale [66]since that method also works for generalized Voronoi diagrams (subsection 4.5.2).The unbounded regions of V (L) and V (R) are scanned simultaneously in cyclicorder. For each non{empty intersection VR(l; L) \ VR(r;R), we test if it containsan unbounded piece of B(l; r). If so, this must be an edge of B(L;R), by de�ni-tion 2.1. Since B(L;R) has two unbounded edges, by Lemma 3.3, this search willbe successful. It takes time jV (L)j + jV (R)j = O(n).Now we describe how B(L;R) is traced. Suppose that the current edge b ofB(L;R) has just entered the region VR(l; L) at point v while running withinVR(r;R), see �g. 10. We determine the points vL and vR where b leaves the regionsof l resp. of r. The point vL is found by scanning the boundary of VR(l; L) coun-terclockwise, starting from v. In our example, vR is closer to v than vL, so that itmust be the endpoint of edge b.From vR, B(L;R) continues with an edge b2 separating l and r2. Now we have todetermine the points vL;2 and vR;2 where b2 hits the boundaries of the regions ofl and r2. The crucial observation is that vL;2 cannot be situated on the boundarysegment of VR(l; L) from v to vL that we have just scanned; this can be inferedfrom the convexity of VR(l; S). Therefore, we need to scan the boundary of VR(l; L)only from vL on, in counterclockwise direction.The same reasoning applies to V (R); only here, region boundaries are scannedclockwise.Even though the same region might be visited by B(L;R) several times, noneof its edges is scanned more than once. The edges of V (L) that are scanned all lieto the right of B(L;R). This part of V (L), together with B(L;R), forms a planar
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Figure 9. Merging V (L) and V (R) into V (S).
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Figure 10. Computing the chain B(L;R).graph each of whose faces contains at least one edge of B(L;R) in its boundary.As a consequence of lemma 2.3, the size of this graph does not exceed the sizeof B(L;R), times a constant. The same holds for V (R). Therefore, the cost ofconstructing B(L;R) is bounded by its size, once a starting edge is given.This leads to the following result.Theorem 3.3. The divide & conquer algorithm allows the Voronoi diagram of npoint sites in the plane to be constructed within time O(n logn) and linear space,in the worst case. Both bounds are optimal.Of course, the divide & conquer paradigm can also be applied to the computationof the Delaunay triangulation DT(S). Guibas and Stol� [136] give an implementa-tion that uses the quad-edge data structure and only two geometric primitives, anorientation test and an in-circle test. Fortune [123] showed how to perform thesetests accurately with �nite precision.Dwyer's implementation [102] uses vertical and horizontal split lines in turn, andKatajainen and Koppinen's [156] merges square buckets in a quad-tree order. Bothpapers report on favorable results.Divide & conquer algorithms are candidates allowing for e�cient parallelization.Several theoretically e�cient algorithms for computing in parallel the Voronoi di-agram or the Delaunay triangulation have been proposed. We refer to the recentpaper by Blelloch et al. [41] for references and for a practical parallel algorithm



Voronoi Diagrams 19for computing DT (S). They highlight an algorithm by Edelsbrunner and Shi [116]that uses the lifting map for S (see subsection 3.5) to construct a chain of Delau-nay edges that divides S. They show experimentally that their implementation iscomparable in work to the best sequential algorithms.3.4. SweepThe well{known line sweep algorithm by Bentley and Ottmann [34] computes theintersections of n line segments in the plane by moving a vertical line,H, across theplane. The line segments currently intersected by H are stored in bottom-up order.This order must be updated whenever H reaches an endpoint of a line segment, oran intersection point. To discover the intersection points in time, it is su�cient tocheck, after each update of the order, those pairs of line segments that have justbecome neighbors on H.It is tempting to apply the same approach to Voronoi diagrams, by keeping trackof the Voronoi edges that are currently intersected by the vertical sweep line. Theproblem is in discovering new Voronoi regions in time. By the time the sweep linehits a new site it has been intersecting Voronoi edges of its region for a while.Fortune [125] was the �rst to �nd a way around this di�culty. He suggested aplanar transformation under which each point site becomes the leftmost point of itsVoronoi region, so that it will be the �rst point hit during a left{to{right sweep. Histransformation does not change the combinatorial structure of the Voronoi diagram.Later, Seidel [226] and Cole [75] have shown how to avoid this transformation.They consider the Voronoi diagram of the point sites to the left of the sweep lineH and of H itself, considered an additional site; see �g. 11. Because the bisector ofa line and a non{incident point is a parabola, the boundary of the Voronoi regionof H is a connected chain of parabola segments whose top- and bottommost edgestend to in�nity. This chain is called the wavefront , W .Let p be a point site to the left of H. Any point to the left of or on the parabolaB(p;H) is not farther to p than to H; hence, it is a fortiori closer to p than to anysite to the right of H. Consequently, as the sweep line moves on to the right, thewaves must follow because the sets D(pi;H) grow. On the other hand, each Voronoiedge to the left of W that currently separates the regions of two point sites pi; pjwill be (part of) a Voronoi edge in V (S).During the sweep, there are two types of events that cause the structure of thewavefront to change, namely when a new wave appears in W , or when an old wavedisappears. The �rst happens each time the sweep line hits a new site, e. g. p6 in�g. 11. At that very moment B(H; p6) is a horizontal line through p6, according tode�nition 2.1. A little later, its left haline unfolds into a parabola that must beinserted into the wavefront by glueing it onto the wave of p4 (which now contributestwo segments to W .)Let p; q be two point sites whose waves are neighbors inW . Their bisector, B(p; q),gives rise to a Voronoi edge to the left of W . Its prolongation into the region ofH is called a spike. In �g. 11 spikes are depicted as dashed lines; one can think of
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Figure 11. Voronoi diagrams of the sweep line, H , and of the points to its left.



Voronoi Diagrams 21them as tracks along which the waves are moving. A wave disappears fromW whenit arrives at the point where its two adjacent spikes intersect. Its former neighborsbecome now adjacent in the wavefront.In �g. 11, the wave of p3 would disappear at point v, if the new site, p6, did notexist. But after the wave of p6 has been inserted, there will be a previous event atv0, where the lower part of the wave of p4 disppears.While keeping track of the wavefront one can easily maintain the Voronoi diagramof H and of the point sites to its left. As soon as all point sites have been detectedand all spike intersections have been processed, V (S) is obtained by removing thewavefront and extending all spikes to in�nity.Even though one wave may contribute several segments to the wavefront, thefollowing holds.Lemma 3.4. The size of the wavefront is O(n).Proof. Since any two parabolic bisectors B(p;H); B(q;H) can cross at most twice,the size of the wavefront is bounded by �2(n) = 2n � 1, where �s(n) denotes themaximum length of a Davenport{Schinzel sequence over n symbols in which no twosymbols appear s times each in alternating positions; see [21].The wavefront can be implemented by a balanced binary tree that stores thesegments in bottom{up order. This enables us to insert a wave, or remove a wavesegment, in time O(logn).Before the sweep starts, the point sites are sorted by increasing x-coordinates andinserted into an event queue. After each update of the wavefront, newly adjacentspikes are tested for intersection. If they intersect at some point v, we insert into theevent queue the time, i. e. the position x of the sweep line, when the wave segmentbetween the two spikes arrives at v. Since the point v is a Voronoi vertex of V (S),there are only O(n) many events caused by spike intersections. In addition, eachof the n sites causes an event. For each active spike we need to store only its �rstintersection event. Thus, the size of the event queue never exceeds O(n). We obtainthe following result.Theorem 3.4. Plane sweep provides an alternative way of computing the Voronoidiagram of n points in the plane within O(n logn) time and linear space.McAllister et al. [190] have pointed out a subtle di�erence between the sweeptechnique and the two methods mentioned before. The divide & conquer algorithmcomputes �(n logn) many vertices, even though only a linear number of themappears in the �nal diagram. The randomized incremental construction methodperforms an expected �(n logn) number of conict tests. Both tasks, constructinga Voronoi vertex and testing a subset of sites for conict, are usually handled bysubroutines that deal directly with point coordinates, bisector equations etc. Theycan become quite costly if we consider sites more general than points, and distancemeasures more general than the Euclidean distance; see sections 4.4, 4.5, and 4.6.The sweep algorithm, on the other hand, processes only O(n) many spike events.
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Figure 12. Lifting circles onto the paraboloid.3.5. Lifting to 3-spaceThe following approach employs the powerful method of geometric transformation.Let P = f(x1; x2; x3) j x21 + x22 = x3g denote the paraboloid depicted in �g. 12.For each point x = (x1; x2) in the plane, let x0 = (x1; x2; x21 + x22) denote its liftedimage on P .Lemma 3.5. Let C be a circle in the plane. Then C0 is a planar curve on theparaboloid P .Proof. Suppose that C is given by the equationr2 = (x1 � c1)2 + (x2 � c2)2 = x21 + x22 � 2x1c1 � 2x2c2 + c21 + c22:By substituing x21 + x22 = x3 we obtainx3 � 2x1c1 � 2x2c2 + c21 + c22 � r2 = 0for the points of C0. This equation de�nes a plane in 3-space.This lemma has an interesting consequence. By the lower convex hull of a set ofpoints in 3-space we mean that part of the convex hull which is visible from the(x1; x2)-plane.Theorem 3.5. The Delaunay triangulation of S equals the projection onto the(x1; x2)-plane of the lower convex hull of S0.



Voronoi Diagrams 23Proof. Let p; q; r denote three point sites of S. By lemma 3.5, the lifted image, C 0,of their circumcircle C lies on a plane, E, that cannot be vertical. Under the liftingmapping, the points inside C correspond to the points on the paraboloid P that liebelow the plane E.By theorem 2.1, p; q; r de�ne a triangle of the Delaunay triangulation i� theircircumcircle contains no further site. Equivalently, no lifted site s0 is below theplane E that passes through p0; q0; r0. But this means that p0; q0; r0 de�ne a face ofthe lower convex hull of S0.Because there exist O(n logn) time algorithms for computing the convex hull ofn points in 3-space, see e. g. Preparata and Shamos [213], we have obtained anotheroptimal algorithm for the Voronoi diagram.The connection between Voronoi diagrams and convex hulls has �rst been studiedby Brown [49] who used the inversion transform. The simpler lifting mapping hasbeen used, e.g., in Edelsbrunner and Seidel [113]. We shall see several applicationsand generalizations in subsection 4.3. In [113] also the following fact is observed.For each point p of S, consider the paraboloid Pp = f(x1; x2; x3) j (x1 � p1)2 +(x2�p2)2 = x3g. If these paraboloids were opaque, and of pairwise di�erent colors,an observer looking from x3 = �1 upwards would see the Voronoi diagram V (S).In fact, the projection x = (x1; x2) of a point (x1; x2; x3) 2 Pp \ Pq belongs toB(p; q); and there is no site s closer to x than p and q i� (x1; x2; x3) lies below allparaboloids Ps.Instead of the paraboloids Pp one could use the surfaces f(x1; x2; f((x1 � p1)2 +(x2 � p2)2))g generated by any function f that is strictly increasing. For example,f(x) = px gives rise to cones of slope 45� with apices at the sites. This setting illus-trates the concept of circles expanding from the sites at equal speed, as mentionedafter the proof of lemma 2.1. Coordinate x3 represents time.In order to visualize a Voronoi diagram on a graphic screen one can feed the nsurfaces to a z-bu�er, and eliminate by brute force those parts not visible frombelow.Finally, we would like to mention a nice connection between the two waysof obtaining the Voronoi diagram by means of paraboloids explained above;it goes back to [113]. For a point w = (w1; w2; w3), let :w denote its mir-ror image (w1; w2;�w3). If we apply to 3-space the mapping which sends x to(x1; x2; x3 � (x1 � p1)2 � (x2 � p2)2) then each paraboloid Pp corresponds to thetangent plane of the paraboloid :P at the point :(p0); compare the plane equationderived in the proof of lemma 3.5, letting c = p and r = 0.4. Generalizations and structural properties4.1. Characterization of Voronoi diagramsThe process of constructing the Voronoi diagram for n point sites can be seen as anassignment of a planar convex region to each of the sites, according to the nearest-



24 F. Aurenhammer and R. Kleinneighbor rule. We now address the following, in some sense inverse, question: Givena partition of the plane into n convex regions (which are then neccessarily polyg-onal), do there exist sites, one for each region, such that the nearest-neighbor ruleis ful�lled? In other words, when is a given convex partition the Voronoi diagramof some set of sites?Whether a given set of sites induces a given convex partition as its Voronoi di-agram is, of course, easy to decide by exploiting symmetry properties among thesites. For the same reason, it is easy to check whether a given triangulation isDelaunay, by exploiting the empty circumcircle property of its triangles, stated intheorem 2.1. Conditions for a given graph to be isomorphic to the Delaunay triangu-lation of some set of sites are mentioned, e.g., in the survey article by Fortune [124].Below we concentrate on the recognition of Voronoi diagrams without knowing thesites.Questions of this kind arise in facility location and in the recognition of biologicalgrowth models (as report, e.g., in Suzuki and Iri [243]) and, in particular, in theso-called gerrymander problem mentioned in Ash and Bolker [20]: When the sitesare regarded as polling places and election law requires that each person votes atthe respective closest polling place, the election districts form a Voronoi diagram.If the legislature draws the district lines �rst, how can we tell whether election lawis satis�ed?Let Ri and Rj be two of the given regions. Assume that they share a commonedge, and let hij be the line containing that edge. Further, let �ij denote thereection at line hij.Lemma 4.1. A convex partition R1; : : : ; Rn of the plane de�nes a Voronoi diagramif and only if there exists a point pi for each region Ri such that(1) pi 2 Ri (containment condition),(2) �ij(pi) = pj (reection condition).Proof. If we do have a Voronoi diagram then its de�ning sites exist and obviouslyful�l (1) and (2). To prove the converse, assume that points p1; : : : ; pn ful�llingboth conditions exist. Take any region Ri and any point x therin. We show thatd(x; pi) is minimum.To get a contradiction, suppose pj, j 6= i, is closest to x. Consider an edge of Rjthat is intersected by xpj, and let Rk be the region adjacent to Rj at that edge;see �g. 13. Note that k = i may happen. By convexity of Rj and by (1), the linehjk separates pj from x. Hence by (2) we get d(x; pk) < d(x; pj), a contradiction.We conclude that pi is closest to x among p1; : : : ; pn which implies that Ri is theregion of pi in the Voronoi diagram V (fp1; : : : ; png).Based on lemma 4.1, the recognition problem can now be formulated as a linearprogramming problem; see Hartvigsen [138].We �rst exploit the reection conditionto get a system of linear equations.
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26 F. Aurenhammer and R. KleinReection at a line is an a�ne transformation, so we may write �ij(x) as Aijx+bij, for appropriate matrix Aij and vector bij. Let R1; : : : ; Rn be a permutationof the regions such that Ri and Ri+1 are adjacent, for 1 6 i < n. To get a linearsystem in x, setp1 = xp2 = A12x+ b12 := C2x+ d2p3 = A23(A12x+ b12) + b23 := C3x+ d3and so on. This expresses all points pi in terms of p1 by using n � 1 adjacenciesamong the regions. Each of the remaining adjacencies now gives an equation of theform Aij(Cix+ di) + bij = Cjx+ dj:This system has at most 3n�3� (n�1) = 2n�2 equations by lemma 2.3. If it hasno solution, or a unique solution, then we are done. In the former case, we cannothave a Voronoi diagram. In the latter, we get the coordinates of the �rst candidatesite pi = x. The corresponding other sites are obtained simply by reection. Itremains to test these sites for containment in their regions.Setting up the system, solving it, and testing for containment can be accom-plished in time O(n) by standard methods. Note that only the equations of thelines bounding the regions and the adjacency information among the regions areneeded. No coordinates of the region vertices are required. This is particularly in-teresting for the recognition problem in higher dimensions, to which the methodabove generalizes naturally.The solution space of the linear system above may have dimension 1 or 2. Fig. 14reveals that certain symmetries among the regions lead to situations of that kind.Now the containment condition is exploited to get, in addition, a set of inequalitiesfor x.Consider each region Ri as the intersection of all halfplanes bounded by the lineshij. Then pi 2 Ri gives a set of inequalities of the formpTi tij 6 aijwhich, by plugging in pi = Cix+ di, yields(CTi tij)x 6 aij � dTi tij:Finding a feasible solution of the corresponding linear program means �nding apossible site p1 = x for R1 which, by reection, gives all the desired sites. Since wedeal with a linear program with O(n) constraints and of constant dimension (actu-ally two), also only linear time (Megiddo [193]) is spent in this more complicatedcase.
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Figure 14. Sites might be taken in the polygonal areas.



28 F. Aurenhammer and R. KleinTheorem 4.1. Let C be a partition of 2-space into n convex regions, given by half-planes supporting the regions and by adjacencies among regions. O(n) time su�cesfor deciding whether C is a Voronoi diagram, and also for restoring a suitable setof sites in case of its existence.This result is clearly optimal, and the underlying method easy to program. A gen-eralization to higher dimensions is straightforward. Still, the method has to be usedwith care as even a slight deviation from the correct Voronoi diagram (stemmingfrom imprecise measurement or numerical errors) will cause the method to classifyC as non-Voronoi. Suzuki and Iri [243] give a completely di�erent method capableof approximating C by a Voronoi diagram.Lemma 4.1 extends to more general Voronoi-like partitions. The characterizingcon�guration of points is commonly called a reciprocal �gure. A nice survey onthis subject is Ash et al. [19]. Reciprocal �gures play a role in recognizing seem-ingly unrelated properties of a convex partition C, for instance checking equilibriumstates of C, see Crapo and Whiteley [77], and �nding polyhedra whose boundariesproject to C, see Aurenhammer [23]. The relationship between Voronoi diagramsand polyhedra in one dimension higher will be described in subsection 4.3.2.4.2. Optimization properties of Delaunay triangulationsThe Delaunay triangulation, DT(S), of a set S of n sites in 2-space possesses ahost of nice and useful properties many of which are well known and understoodnowadays. As being the geometric dual of the Voronoi diagram V (S), DT(S) com-prises the proximity information inherent to S in a compact manner. Apart fromthe present subsection, various properties of DT(S) and their applications are de-scribed in section 5 and, in particular, in subsection 5.2. Here we look at DT(S)as a triangulation per se and concentrate on parameters which are optimized byDT(S) over all possible triangulations of the point set S.Recall that a triangulation T of S is a maximal set of non-crossing line segmentsspanned by the sites in S. Let us call T locally Delaunay if, for each of its con-vex quadrilaterals Q, the corresponding two triangles have circumcircles empty ofvertices of Q. Clearly, DT(S) is locally Delaunay because all circumcircles for itstriangles are empty of sites; see theorem 2.1. Interestingly, the local property alsoimplies the global one.Theorem 4.2. If a triangulation of S is locally Delaunay then it equals DT(S).Proof. Let T be a triangulation of S and assume that T is locally Delaunay. Weshow that, for each triangle � of T , its circumcircle C(�) is empty of sites in S.Assuming the contrary, let s 2 C(�) for some s 2 S and some � in T . Observes =2 � and let e be the edge of � closest to s. Suppose, w.l.o.g., that (�; s; e)maximizes the angle at s spanned by e, for all such triples (triangle, site, edge).See �g. 15. Because of s, e cannot be an edge of the convex hull of S. Let triangle�0 be adjacent to � at e, and let s0 be the third vertex of �0. As T is locally
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Figure 15. Angle spanned by e cannot be maximum.Delaunay, s0 =2 C(�), hence s 6= s0. Further, observe s 2 C(�0), and let e0 be theedge of �0 closest to s. The angle at s spanned by e0 is larger than that spannedby e, which gives a contradiction.An edge ip in a triangulation T of S is the exchange of the two diagonals inone of T 's convex quadrilaterals; see subsection 3.2. Call an edge ip good if { afterthe ip { the triangulation inside the quadrilateral is locally Delaunay. Repeatedexchange of diagonals of the same quadrilateral always produces an alternatingsequence of good and not good ips. Theorem 4.2 now can be used to prove thatDT(S) optimizes various quality measures, by showing that each good ip increasesquality. Any sequence of good ips then terminates at the global optimum, theDelaunay triangulation.One of the most prominent quality measures concerns the angles occuring in atriangulation. Recall that the number of edges (and thus of triangles) does notdepend on the way of triangulating S , and let t be the number of triangles forS. The equiangularity of a triangulation is de�ned to be the sorted list of angles(�1; : : : ; �3t) of its triangles. A triangulation is called equiangular if it possesseslexicographically largest equiangularity among all possible triangulations for S.As a matter of fact, every good ip increases equiangularity. Fig. 16 gives ev-idence for this fact. Lawson [175] called a triangulation locally equiangular if noip can increase equiangularity. Locally equiangular thus is equivalent to locallyDelaunay. Sibson [233] �rst proved theorem 4.2, showing that locally equiangulartriangulations are Delaunay and hence unique. Edelsbrunner [104] observed thatDT(S) is equiangular (in the global sense) as the global property implies the local
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Figure 16. Equiangularity and empty circle property.one.In case of cocircularities among the sites, DT(S) is not a full triangulation; seesection 2. Mount and Saalfeld [200] showed that DT(S) can be completed by re-taining local equiangularity, in O(n logn) time.Theorem 4.3. Let S be a �nite set of sites in 2-space. A triangulation of S isequiangular only if it is a completion of DT(S).The equiangular triangulation obviously maximizes the minimum angle of all tri-angles. This property is desirable for applications to terrain modelling or to the�nite element method, as was �rst observed in Lawson [175] and McLain [191]. Bytheorem 4.3, such triangulations can be computed in O(n logn) time by Delaunaytriangulation algorithms, see section 3.Only recently, it has been observed that several other parameters are optimizedby DT(S). All the properties listed below can be proved by observing that everygood edge ip locally optimizes the respective parameter.Consider the smallest enclosing circle for each triangle in a triangulation, andmeasure coarseness by the largest such circle that arises. As a matter of fact,DT(S) minimizes coarseness among all possible triangulations for S. We may de�necoarseness also by taking smallest enclosing circles rather than circumcircles. (Notethat the smallest enclosing circle di�ers from the circumcircle i� the triangle isobtuse.) D'Azevedo and Simpson [79] proved that DT(S) minimizes coarseness inthis sense, and Rajan [215] showed that this property of Delaunay triangulations {unlike others { generalizes to higher dimensions.Similarly, fatness of a triangulation may be de�ned as the sum of inradii of itstriangles. Lambert [173] showed that DT(S) maximizes fatness, or equivalently, themean inradius.



Voronoi Diagrams 31Given an individual function value (height) h(p) for each site p 2 S, every tri-angulation T of S de�nes a triangular surface in 3-space. The roughness of such asurface may be measured byX�2T j�j(�2+ �2)with j�j being the area of �, and �, � being the slopes of the corresponding trianglein 3-space. In other words, roughness is the integral of the squared gradients. Ashas been shown by Rippa [218], roughness is minimum for the surface obtainedfrom DT(S), for any �xed heights h(p). For a simpler proof, see Powar [212].Let us mention that, in addition, DT(S) provides a means for smoothing the cor-responding triangular surface. As was shown in Sibson [234], each point x withinthe convex hull of S can be expressed as the weighted mass center of its Delaunayneighbors p in DT(S [ fxg). Weights wp(x) can be computed from area propertiesof the corresponding Voronoi diagram, and as functions of x, are continuously dif-ferentiable; see also Farin [121]. The corresponding interpolant to the spatial points(p; h(p)) is given by�(x) =Xp2S wp(x)h(p):This useful property of DT(S) is shown to generalizes to regular triangulations(duals of power diagrams for S, cf. subsection 4.3.2), and to higher-order Voronoidiagrams (subsection 4.3.3) in Aurenhammer [25].On the negative side, DT(S) in general fails to ful�ll optimization criteria similarto those mentionend above, such as minimizing the maximum angle, or minimizingthe longest edge. Edelsbrunner et al. [119] [117] give near-quadratic time algorithmsfor computing triangulations optimal in that sense. DT(S) is not even locally short ,in the sense that it does not always include the shorter diagonal for each of itsconvex quadrilaterals.Kirkpatrick [161] proved that DT(S) may di�er arbitrarily strongly from aminimum-weight triangulation, which is de�ned to have minimumtotal edge length.Computing a minimum-weight triangulation is an important and interesting prob-lem, whose complexity status is unknown; see Garey and Johnson [127]. Subsets ofedges of DT(S) which always have to belong to a minimum-weight triangulationare exhibited in subsection 5.2.3.On the other hand, the widely used greedy triangulation, which is obtained byinserting non-crossing edges in increasing length order, can be constructed fromDT(S) in O(n) time, by a recent result in Levcopoulos and Krznaric [184].Finally, let us mention that the Delaunay triangulation avoids an undesirableproperty that might be shared by other triangulations. Fix a point v in the plane,called the viewpoint. For two triangles � and �0 in a given triangulation, write� < �0 if � fully or partially hides �0 as seen from v. This de�nes a partialrelation, called the in-front/behind relation, on the triangles. De Floriani et al. [81]



32 F. Aurenhammer and R. Kleinobserved that this relation is acyclic if the triangulation is Delaunay. An exampleof a triangulation which is cyclic in spite of being minimum-weight can be found inAichholzer et al. [10].Edelsbrunner [105] generalized the result in [81] for regular triangulations in ddimensions, a class that includes Delaunay triangulations as a special case; see sub-section 4.3.2. An application stems from a popular algorithm in computer graphicsthat eliminates hidden objects by �rst partially ordering the objects according tothe in-front/behind relation and then displaying them from back to front, therebyoverpainting invisible parts. In particular, this algorithmwill work well for �-shapesin 3-space, discussed in subsection 5.2.2.For a systematic treatment of planar triangulations, the reader is refered to thetheses by Tan [244] and Lambert [174], respectively.4.3. Higher dimensions, power diagrams, and order-k diagramsIn order to meet practical needs, the concept of Voronoi diagram has been modi�edand generalized in many ways, for example by changing the underlying space, thedistance function used, or the shape of the sites. Subsections 4.3 to 4.6 give asystematic treatment of generalized Voronoi diagrams.The most obvious generalization is to d-space, for d > 3. Several nice propertiesof the Voronoi diagram are retained (e.g., the convexity of the regions) while othersare lost (e.g., the linear size). Voronoi diagrams in d-space are closely related togeometric objects in (d + 1)-space. These relationships, and their structural andalgorithmic implications, are discussed in the present subsection.4.3.1. Voronoi diagrams and Delaunay tesselations in 3-spaceLet us consider Voronoi diagrams in 3-space �rst. Let S be a set of n point sitesin 3-space. The bisector of two sites p; q 2 S is the perpendicular plane throughthe midpoint of the line segment pq. The region VR(p; S) of a site p 2 S is theintersection of halfspaces bounded by bisectors, and thus is a 3-dimensional convexpolyhedron. The boundary of VR(p; S) consists of facets (maximal subsets withinthe same bisector), of edges (maximal line segments in the boundary of facets), andof vertices (endpoints of edges). The regions, facets, edges, and vertices of V (S)de�ne a cell complex in 3-space. This cell complex is face-to-face: if two regionshave a non-empty intersection f , then f is a face (facet, edge, or vertex) of bothregions. As an appropriate data structure for storing a 3-dimensional cell complexwe mention the facet-edge structure in Dobkin and Laszlo [99].The number of facets of VR(p; S) is at most n � 1, at most one for each siteq 2 S n fpg. Hence, by the Eulerian polyhedron formula, the number of edges andvertices of VR(p; S) is O(n), too. This shows that the total number of componentsof the diagram V (S) in 3-space is O(n2). In fact, there are con�gurations S thatforce each pair of regions of V (S) to share a facet, thus achieving their maximumpossible number of �n2�; see, e.g., Dewdney and Vranch [89]. This fact sometimes



Voronoi Diagrams 33makes Voronoi diagrams in 3-space less useful compared to 2-space. On the otherhand, Dwyer [103] showed that the expected size of V (S) in d-space is only O(n),provided S is drawn uniformly at random in the unit ball. This result indicates thathigh-dimensional Voronoi diagrams will be small in many practical situations.In analogy to the 2-dimensional case, the Delaunay tesselation DT(S) in 3-spaceis de�ned as the geometric dual of V (S). It contains a tetrahedron for each vertex, atriangle for each edge, and an edge for each facet, of V (S). Equivalently, DT(S) maybe de�ned using the empty sphere property, by including a tetrahedron spanned byS as Delaunay i� its circumsphere is empty of sites in S. The circumcenters of theseempty spheres are just the vertices of V (S). DT(S) is a partition of the convex hullof S into tetrahedra, provided S is in general position, which will be assumed inthe sequel. Note that the edges of DT(S) may form the complete graph on S.Among the various proposed methods for constructing V (S) in 3-space, incre-mental insertion of sites (cf. subsection 3.2) is most intuitive and easy to implement.Basically, two di�erent techniques for integrating a new site p into V (S) have beenapplied. The more obvious method �rst determines all facets of the region of p inthe new diagram, V (S [ fpg), and then deletes the parts of V (S) interior to thisregion; see e.g. Watson [254], Field [122], and Tanemura et al. [245]. Inagaki etal. [148] describe a robust implementation of this method.In the dual environment, this amounts to detecting and removing all tetrahedra ofDT(S) whose circumspheres contain p, and then �lling the 'hole' with empty-spheretetrahedra with p as apex, to obtain DT(S [ fpg).Joe [151], Rajan [215], and Edelsbrunner and Shah [115] follow a di�erent andnumerically more stable approach. Like in the planar case, after having added asite to the current Delaunay tesselation, certain ips changing the local tetrahedralstructure are performed in order to achieve local Delaunayhood. The existence ofsuch a sequence of ips is less trivial, however. Joe [150] demonstrated that noipping sequence might exist that turns an arbitrary tetrahedral tesselation for Sinto DT(S).Let us focus on a single ip. Recall that in 2-space, there are exactly two waysof triangulating four sites in convex position, and a ip changes one into the other.In 3-space there are also two ways of tetrahedralizing �ve sites in convex position,and a ip per de�nition exchanges them. Note, however, that the ip will replacetwo tetrahedra by three or vice versa; see �g. 17. This indicates an importantdi�erence between triangulations in 2-space and tetrahedral tesselations in 3-space:The number of tetrahedra does depend on the way of tetrahedralizing S. It mayvary from �(n) to �(n2).After having added a site p 2 S to the current Delaunay tesselation, the tetra-hedron containing p is split into four tetrahedra with apex p, in the obvious way.The algorithm �rst considers the four triangles opposite to p, that is, the bases ofthe tetrahedra with apex p.Generally, each triangle � of the tesselation is shared by two tetrahedra T and T 0which, in turn, are spanned by �ve sites. Three of them span �, and the remainingtwo sites q and q0 belong to T and T 0, respectively. � is called locally Delaunay ifthe circumsphere of T does not enclose q0 (or, equivalently, if the circumsphere of
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Figure 17. Two{into{three tetrahedra ip for �ve sites.T 0 does not enclose q). A third tetrahedron might be spanned by these �ve sites.� is called ippable if the union of these two or three tetrahedra is convex.For each triangle � opposite to p, the algorithm now performs the ip that in-volves the �ve sites corresponding to �, provided � is ippable and not locallyDelaunay. Thereby, new triangles become opposite to p and possibly have to beipped, too. This seqence of ips terminates in the Delaunay tesselation that in-cludes p.The algorithm works locally and thus is elegant and relatively easy to under-stand. The runtime is O(n2) which is optimal in the worst case. Still, the incremen-tal approach has its drawbacks. It might construct quadratically large intermediatetesselations, in spite of the possibly linear size of the �nal tesselation. This unpleas-ant phenomenon even cannot be overcome by inserting the sites in random order.In fact, proving the existence of an { in this sense { e�cient insertion order is anopen problem.Another di�culty stems from �nding the starting tetrahedron that contains anewly inserted site. Search may be based on the construction history of the tesse-lation [115] or on bucketing techniques [152].The algorithm can be found in much more detail in [115], including correctnessproofs and a data structure for storing tetrahedral tesselations. Rajan [215] andEdelsbrunner and Shah [115] discuss the d-dimensional variant, and the latter pa-per generalizes the algorithm to so-called regular triangulations (subsection 4.3.2).Joe [152] provides an e�cient implementation in 3-space, and Cignoni et al. [70]propose a hybrid method that works in general d-space and e�ciently combinesinsertion, divide & conquer, and bucketing.



Voronoi Diagrams 354.3.2. Power diagrams and convex hullsVoronoi diagrams are intimately related to geometric objects in higher dimensions.This fact, along with one of its algorithmic applications, has already been addressedin subsection 3.5. Here, we base the discussion on a generalization of Voronoi dia-grams called power diagrams; the geometric correspondences to be described extendto that type in a natural manner. We refer to d dimensions in order to point outthe general validity of the results.Consider a set S of n point sites in d-space. Assume that each point in S hasassigned an individual weight w(p). In some sense, w(p) measures the capability ofp to inuence its neighborhood. This is expressed by the power functionpow(x; p) = (x� p)T (x� p)� w(p)of a point x in d-space with respect to a site p 2 S.A nice geometric interpretation is the following. For positive weights, a weightedsite p can be viewed as a sphere with center p and radius pw(p); for a point xoutside this sphere, pow(x; p) > 0, and ppow(x; p) expresses the distance of x tothe touching point of a line tangent to the sphere and through x.The locus of equal power with respect to two weighted sites p and q is a hyperplanecalled the power hyperplane of p and q. Let h(p; q) denote the closed halfspacebounded by this hyperplane and containing the points of less power with respectto p. The power cell of p is given bycell(p) = \q2Snfpg h(p; q):In analogy to the classical Voronoi regions, the power cells de�ne a partition of d-space into convex polyhedra, the so-called power diagram, PD(S), of S. See �g. 18for a planar example. PD(S) coincides with the Voronoi diagram of S if all weightsare the same. In contrast to Voronoi regions, power cells might be empty if generalweights are used; see cell(p) in �g. 18.PD(S) is a face-to-face cell complex in d-space that consists of polyhedral facesof various dimensions j, for 0 6 j 6 d. In the non-degenerate case, exactly d + 1edges, �d+12 � facets (faces of dimension d� 1), and d + 1 cells meet at each vertexof PD(S). For storing a d-dimensional cell complex, the cell-tuple structure inBrisson [48] seems appropriate. This data structure represents the incidence andordering information in a cell complex in a simple uniform way.When each weighted site p 2 S is interpreted as the sphere �p = (p;pw(p)),we can make the following nice observation. The part of �p that contributes to theunion of all these spheres, Sp2S �p, is just the part of �p within cell(p). This meansthat PD(S) de�nes a partition of this union into simply-shaped and algorithmicallytractable pieces. Several algorithms concerning the union (and also the intersection)of spheres are based on this partition; see Avis et al. [32], Aurenhammer [24], andEdelsbrunner [106].Power diagrams (and thus Voronoi diagrams) are, in a strong sense, equivalent to
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p

Figure 18. Power diagram for circles in the plane.



Voronoi Diagrams 37the boundaries of convex polyhedra in one dimension higher. This is a fact with far-ranging implications and has been observed in Brown [49], Klee [164], Edelsbrunnerand Seidel [113], Paschinger [211], and Aurenhammer [22]. The power functionpow(x; p) can be expressed by the hyperplane�(p) : xd+1 = 2xTp� pTp+w(p)in (d+1)-space, in the sense that a point x lies in cell(p) of PD(S) i�, at x, �(p) isvertically above all hyperplanes �(q) for q 2 S nfpg. Hence PD(S) corresponds, byvertical projection, to the upper envelope of these hyperplanes, which is the surfaceof a convex polyhedron, �(S), in (d+ 1)-space. Conversely, it is not di�cult to seethat every upper envelope of n non-vertical hyperplanes in (d+1)-space correspondsto the power diagram of n appropriately weighted sites in d-space.The following upper bound is a direct consequence of the upper bound theorem forconvex polyhedra proved in McMullen [192]. The bound is trivially sharp for powerdiagrams, but is achieved also for Voronoi diagrams, as was shown in Seidel [222].Theorem 4.4. Let S be a set of n point sites in d-space. Any power diagram for S,and in particular, the Voronoi diagram for S, realizes at most fj faces of dimensionj, for fj = aXi=0 �ij��n� d+ i � 2i �+ bXi=0 �d� i + 1j ��n� d+ i � 2i �;where a = dd2e and b = bd2c. The numbers fj are O(nd d2 e), for 0 6 j 6 d� 1.For algorithmic issues, power diagrams can be brought in connection to convexhulls in (d + 1)-space, by exploiting a duality (actually, polarity) between upperenvelopes of hyperplanes (or intersections of upper halfspaces) and convex hulls ofpoints. This connection is best described by generalizing the lifting map in subsec-tion 3.5 to weighted points. A site p 2 S with weight w(p) is transformed into thepoint �(p) = � ppTp� w(p)�in (d + 1)-space. There is a interelation called polarity between the transforms �and �. The point �(p) is called the pole of the hyperplane �(p) which, in turn, iscalled the polar hyperplane of �(p). Polarity de�nes a one-to-one correspondencebetween arbitrary points and non-vertical hyperplanes in (d + 1)-space. It is wellknown that polarity preserves the relative position of points and hyperplanes.To show the connection to convex hulls, consider an arbitrary face f of the polyhe-dron �(S). Let f be the intersection of m = d�j+1 hyperplanes �(p1); : : : ; �(pm),such that f is of dimension j. Each point x 2 f lies on these but above all otherhyperplanes �(q) de�ned by S. Hence the polar hyperplane of x has the points



38 F. Aurenhammer and R. Klein�(p1); : : : ; �(pm) on it and the remaining points �(q) above it. This shows that thepoints �(p1); : : : ; �(pm) span a face of dimension d � j of the convex hull of thepoint set f�(p) j p 2 Sg.We conclude that each j-dimensional face of �(S), and thus of PD(S), is rep-resented by a (d � j)-dimensional face of this convex hull. This implies a dualitybetween power diagrams in d-space and convex hulls in (d+ 1)-space.In the special case of an unweighted point set S in the plane, the parts of theconvex hull that are visible from the plane project to the vertices, edges, and trian-gles of the Delaunay triangulation of S, and we obtain theorem 3.5 of section 3.5. Atriangulation which can be obtained by projecting a convex hull is called a regulartriangulation in Edelsbrunner and Shah [115]. Regular triangulations are just thosebeing dual to planar power diagrams.Once the convex hull of f�(p) j p 2 Sg has been computed, the faces of PD(S), aswell as their incidence and ordering relations, can be obtained in time proportionalto the size of PD(S).Theorem 4.5. Let Cd+1(n) be the time needed to compute a convex hull of n pointsin (d + 1)-space. A power diagram (and in particular, the Voronoi diagram) of agiven n-point set in d-space can be computed in Cd+1(n) time.Worst-case optimal convex hull algorithms working in general dimensions havebeen designed by Clarkson and Shor [74], Seidel [227], and Chazelle [58], yieldingCd+1(n) = O(n logn+nd d2 e). So theorem 4.5 is asymptotically optimal in the worstcase. Note, however, that power diagrams in d-space may as well have a fairly smallsize, O(n), which emphasizes the use of output-sensitive convex hull algorithms.The algorithm in Seidel [224] achieves Cd+1(n) = O(n2 + f logf), where f is thetotal number of faces of the convex hull constructed. The latest achievements areC4 = O((n + f) log2 f) in Chan et al. [56] and C5 = O((n + f) log3 f) in Amatoand Ramos [15].Space constraints preclude our discussion of power diagrams. Still, some remarksare in order to point out their central role within the context of Voronoi diagrams.For a detailed discussion and references, see Aurenhammer and Imai [30].The regions of a Voronoi diagram are usually de�ned by a set of sites and adistance function. If the regions are polyhedral, then any such Voronoi diagramcan be shown to be the power diagram of a suitable set of weighted point sites.For instance, this is the case for the furthest site Voronoi diagram, whose regionsconsist of all points having the same furthest site in the given set.A polyhedral cell complex in d-space is called simple if exactly d + 1 cells meetat each vertex. For example, the Voronoi diagram of a set of point sites in d-spaceis simple if no d+ 2 sites are co-spherical. If d > 3, any simple cell complex can beshown to be a power diagram.The class of power diagrams is closed under taking cross-sections with a hyper-plane. That is, the diagram obtained from intersecting a power diagram in d-spacewith a hyperplane is again a power diagram, in (d � 1)-space. Moreover, the classof power diagrams is closed under the modi�cations to higher order de�ned insubsection 4.3.3.



Voronoi Diagrams 39Several generalized Voronoi diagrams in d-space have an embedding in a powerdiagram in (d + 1)-space, in the sense that they can be obtained by intersecting apower diagram with certain simple geometric objects and then projecting the inter-section. For example, the additively weighted Voronoi diagram (i.e., the closest-pointVoronoi diagram for spheres, or the Johnson-Mehl model), and the multiplicativelyweighted Voronoi diagram (or the Apollonius model) have this property.In all situations mentioned above, a set of weighted sites for the correspondingpower diagram can be computed easily. Thus general methods of handling Voronoidiagrams and cell complexes become available. For example, the Voronoi diagramfor spheres in 3-space, and the multiplicatively weighted Voronoi diagram in theplane, can both be computed in O(n2) time which is optimal. The latter diagramis investigated in detail in Aurenhammer and Edelsbrunner [28] and in Sakamotoand Takagi [221].4.3.3. Higher-order Voronoi diagrams and arrangementsHigher-order Voronoi diagrams are natural and useful generalizations of classicalVoronoi diagrams. Given a set S of n point sites in d-space, and an integer kbetween 1 and n�1, the order-k Voronoi diagram of S, Vk(S), partitions the spaceinto regions such that each point within a �xed region has the same k closest sites.V1(S) just is the classical Voronoi diagram of S.The regions of Vk(S) are convex polyhedra, as they arise as the intersection ofhalfspaces bounded by symmetry hyperplanes of the sites. A subset M of k sitesin S has a non-empty region in Vk(S) i� there is a sphere that encloses M but nosite in S nM . In fact, the region of M in Vk(S) just is the set of centers of all suchspheres.Fig. 19 illustrates a planar order-2 Voronoi diagram. Two di�erences to the clas-sical Voronoi diagram are apparent. A region need not contain its de�ning sites,and the bisector of two sites may contribute more than one facet.In the extreme case of k = n � 1, the furthest-site Voronoi diagram of S isobtained. It contains, for each site p 2 S, the region of all points x for which pis the furthest site in S. Exact upper bounds on the size of furthest-site Voronoidiagrams in d-space are derived in Seidel [225].The family of all higher-order Voronoi diagrams for a given set S of sites ind-space is closely related to an arrangement of hyperplanes in (d + 1)-space; seeEdelsbrunner and Seidel [113]. We describe this relationship in the more generalsetting of power diagrams, by de�ning an order-k power diagram, PDk(S), for aset S of weighted point sites in an analogous way. See Aurenhammer [22] [27] formore details.Recall from subsection 4.3.2 that the power function with respect to a site p 2 Scan be expressed by a hyperplane �(p) in (d+ 1)-space.The set of hyperplanes f�(p) j p 2 Sg dissects (d + 1)-space into a polyhedralcell complex called an arrangement . Arrangement cells are convex, and can beclassi�ed according to their relative position with respect to the hyperplanes inf�(p) j p 2 Sg. A cell C is said to be of level k if exactly k hyperplanes are
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Figure 19. Region of fp; qg in V2(S).



Voronoi Diagrams 41vertically above C. For example, the upper envelope of f�(p) j p 2 Sg bounds theonly cell, �(S), of level 0. All cells of level 1 share some facet with �(S), so thattheir vertical projection gives the (order-1) power diagram PD(S).More generally, the cells of level k project to the regions of PDk(S), for each kbetween 1 and n � 1. To see this, let x be a point in some k-level cell C. Then khyperplanes �(p1); : : : ; �(pk) are above x, and n�k hyperplanes �(pk+1); : : : ; �(pn)are below x. That means that, for the vertical projection x0 of x onto d-space, wehave pow(x0; pi) < pow(x0; pj) for 1 6 i 6 k and k+ 1 6 j 6 n. Hence x0 is a pointin the region of fp1; : : : ; pkg in PDk(S).Hyperplane arrangements are well-investigated objects, concerning their combi-natorial as well as their algorithmic complexity; see Edelsbrunner et al. [112] [114].We obtain:Theorem 4.6. Let S be a set of n (weighted or unweighted) point sites in d-space.The family of all higher-order power diagrams (or Voronoi diagrams) for S realizesa total of �(nd+1) faces, and it can be computed in optimal �(nd+1) time.Clarkson and Shor [74] proved that the number of arrangement cells with levelsup to a given value of k is O(nbd=2ckdd=2e). The collection of these cells can beconstructed within this time for d > 4, with the algorithm in Mulmuley [202]. Amodi�cation by Agarwal et al. [2] achieves roughly O(nk2) time also in 3-space.An output-sensitive construction algorithm is given in Mulmuley [203]. All theseresults apply to families of order-k diagrams in one dimension lower.Most practical applications ask for the computation of a single order-k Voronoidiagram Vk(S) in the plane, for a given value of k. (Typically, k does not depend onjSj = n but is a small constant.) As for the classical Voronoi diagram V (S), edgesare pieces of perpendicular bisectors of sites. Vertices are centers of circles that passthrough three sites. However, these circles are no longer empty; they enclose eitherk � 1 or k � 2 sites. Lee [180] showed that this diagram has O(k(n � k)) regions,edges, and vertices. It is easy to see that the regions of V2(S) are in one-to-onecorrespondence with the edges of V (S). Hence V2(S) realizes at most 3n�6 regionsin the plane.Considerable e�orts have been made to compute the single planar order-k Voronoidiagram e�ciently. Di�erent approaches have been taken in Lee [180], Chazelle andEdelsbrunner [59], Aurenhammer [26], Clarkson [71], and Agarwal et al. [2]. In thelast two papers randomized runtimes of O(kn1+") and (roughly) O(k(n� k) logn)are achieved, respectively, which is close to optimal. Below we describe a (roughly)O(k2(n � k) logn) time randomized incremental algorithm by Aurenhammer andSchwarzkopf [31], that can be modi�ed to handle arbitrary on-line sequences of siteinsertions, site deletions, and k-nearest neighbor queries. Though not being mosttime e�cient, the algorithm pro�ts by its simplicity and exibility.The heart of the algorithm is a duality transform that relates the diagram Vk(S)to a certain convex hull in 3-space. This transform allows us to insert and also deletesites in a simple fashion by computing convex hulls. Let M � S be any subset of ksites. M is transformed into a point q(M ) in 3-space, by taking the centroid of M



42 F. Aurenhammer and R. Kleinand lifting it up vertically. More precisely,q(M ) = 1k 0@Xp2M p;Xp2M pTp1A :Now consider the set Qk(S) of all points that can be obtained from S in this way.That is, Qk(S) = fq(M ) jM � Sg.Lemma 4.2. The part of the convex hull of Qk(S) that is visible from the plane isdual to Vk(S).The lemma can be proved by �rst mapping each k-subset M of S into a non-vertical plane �(M ) in 3-space,�(M ) : x3 = 2k Xp2M xTp � 1k Xp2M pTp;and then considering the upper envelope �k(S) of all these planes. It is not di�cultto show that the facets of �k(S) project vertically to the regions of Vk(S). Thelemma follows from observing the polarity (cf. subsection 4.3.2) between the planes�(M ) and the points q(M ).To construct Vk(S), we could just compute Qk(S), determine its convex hull,and then dualize its triangles, edges, and vertices that are visible from the plane.However, Qk(S) contains a point for each k-subset of S, and thus has cardinality�nk� = �(nk). Only O(k(n � k)) points lie on the convex hull, as Vk(S) has thismany regions.We use randomized incremental insertion of sites in order to compute this convexhull e�ciently. Let S = fp1; : : : ; png, and let Ci denote the visible part of the convexhull of Qk(fp1; : : : ; pig), for k + 1 6 i 6 n. Points of Qk(S) lying on the triangularsurface Ci are called corners of Ci.We start by determining Ck+1. Qk(fp1; : : : ; pk+1g) contains k + 1 points whichcan be calculated in time O(k), so O(k logk) time su�ces. The generic step of thealgorithm is the insertion of site pi into Ci�1, for i > k + 2.(1) Identify all triangles of Ci�1 which are destroyed by pi and cut them out. LetB be the set of corners on the boundary of the hole.(2) Calculate the set P of all new corners created by pi.(3) Compute the convex hull of P [B, and �ll the hole with the visible part �i ofthis convex hull. This gives Ci.Each triangle � of Ci�1 is dual to a vertex of Vk(S). This vertex is the centerof a circle that passes through three sites in S. � will be destroyed if this circleencloses pi. The destroyed triangles of Ci�1 form a connected surface �i�1. Hence,



Voronoi Diagrams 43if we know one of them in advance, �i�1 can be identi�ed in time proportional tothe number ni of its triangles. Moreover, the set P of new corners can be calculatedeasily from the edges of �i�1, as each such edge gives rise to a unique corner.Lemma 4.3. Given Ci�1 we can construct Ci in time O(ni logni), provided weknow a triangle of Ci�1 that is destroyed by pi.When looking for a starting triangle of �i�1, we pro�t from another nice propertyof the duality transform: If the vertical projection �0 of a triangle � ofCi�1 containspi then � is destroyed by the insertion of pi. This leaves us with the problem oflocating pi in the triangulation given by the planar projection of Ci�1.In fact, we get the desired point-location structure nearly for free. Adapting atechnique used in Guibas et al. [135] for constructing Delaunay triangulations, wedo not remove the triangles of Ci�1 that get destroyed by the insertion of pi, butmark them as old. When marked old, each triangle gets a pointer to the newlyconstructed part �i of Ci. The next site then is located by scanning through the'construction history' of Ci. The structure for point location within each surface �j ,j 6 i, which is needed in addition, is a byproduct of the randomized incrementalconvex hull algorithm in [135], which we used for computing �j.In summary, the order-k Voronoi diagram for n sites in the plane can be com-puted in expected time O(k2(n � k)) logn + nk log3 n), and optimal O(k(n � k))deterministic space, by an online randomized incremental algorithm.Full details and the following extensions are given in [31]. Deletion of a site canbe done reversely to insertion, again by computing a convex hull. The history-basedpoint location structure used by the algorithm can be adapted to support k-nearestneighbor queries (see subsection 5.1.1). A dynamic data structure is obtained, al-lowing for insertions and deletions of sites in expected time O(k2 logn + k log2 n),and k-nearest neighbor queries in expected time O(k log2 n). This promises a sat-isfactory performance for small values of k.4.4. Generalized sitesIt is commonly agreed that most geometric scenarios can be modeled with su�-cient accuracy by polygonal objects. Two typical and prominent examples are thedescription of the workspace of a robot moving in the plane, and the geometricinformation contained in a geographical map. In both applications, robot motionplanning and geographical information systems, the availability of proximity in-formation for the scenario is crucial. This is among the reasons why considerableattention has been paid to the study of Voronoi diagrams for polygonal objects.Still, in some applications the scenario can be modeled more appropriately whencurved objects, for instance, circular arcs are also allowed. Many Voronoi diagramalgorithms working for line segments can be modi�ed to work for curved objects aswell.



44 F. Aurenhammer and R. Klein4.4.1. Line segment Voronoi diagram and medial axisLet G be a planar straight line graph on n points in the plane, that is, a set of non-crossing line segments spanned by these points. For instance, G might be a tree,or a collection of disjoint line segments or polygons, or a complete triangulation ofthe points. The number of segments of G is maximum, 3n� 6, in the last case. Wewill discuss several types of diagrams for planar straight line graphs in the presentand following subsections.The classical type is the (closest point) Voronoi diagram, V (G), of G. It consistsof all points in the plane which have more than one closest segment in G. V (G)is known under di�erent names in di�erent areas, for example, as the line Voronoidiagram or skeleton of G, or as the medial axis when G is a simple polygon. Appli-cations in such diverse areas as biology, geography, pattern recognition, computergraphics, and motion planning exist; see e.g. Kirkpatrick [160] and Lee [179] forreferences.See �g. 20. V (G) is formed by straight line edges and parabolically curved edges,both shown as dashed lines. Straight edges are part of either the perpendicularbisector of two segment endpoints, or of the angular bisector of two segments.Curved edges consist of points equidistant from a segment endpoint and a segment'sinterior. There are two types of vertices, namely of type 2 having degree two, and oftype 3 having degree three (provided G is in general position). Both are equidistantfrom a triple of objects (segment or segment endpoint), but for type-2 vertices thetriple contains a segment along with one of its endpoints.Together with G's segments, the edges of V (G) partition the plane into regions.These can be re�ned by introducing certain normals through segment endpoints(shown dotted in �g 20), in order to delineate faces each of which is closest to aparticular segment or segment endpoint. Two such normals start at each segmentendpoint where G forms a reex angle, and also at each terminal of G which is anendpoint belonging to only one segment in G. A normal ends either at a type-2vertex of V (G) or extends to in�nity.It is well known that the number of faces, edges and vertices of V (G) is linearin n, the number of segment endpoints for G. The number of vertices is shown tobe at most 4n� 3 in Lee and Drysdale [181]. An exact bound, that also counts the'in�nite' vertices at unbounded edges and segment normals, is given below.Lemma 4.4. Let G be a planar straight line graph on n points in the plane, andlet G realize t terminals and r reex angles. The number of (�nite and in�nite)vertices of V (G) is exactly 2n+ t+ r � 2.Proof. Suppose �rst that G consists of e disjoint segments (that do not touch attheir endpoints). Then there are e regions, and each type-3 vertex belongs to threeof them. By the Euler formula for planar graphs, there are exactly 2e � 2 suchvertices, if we also count those at in�nity. To count the number of type-2 vertices,observe that each segment endpoint is a terminal and gives rise to two segmentnormals each of which, in turn, yields one (�nite or in�nite) vertex of type 2. Hencethere are 4e such vertices, and 6e� 2 vertices in total.Now let G be a general planar straight line graph with e segments. We simulate
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Figure 20. Line segment Voronoi diagram



46 F. Aurenhammer and R. KleinG by disjoint segments, by shortening each segment slightly such that the segmentendpoints are in general position. Then we subtract from 6e � 2 the number ofvertices which have been generated by this simulation.Consider an endpoint p that is incident to d > 2 segments of G. Obviously, pgives rise to d copies in the simulation.The Voronoi diagram of these copies has d � 2 �nite vertices, which are newvertices of type 3. As the sum of the degrees d > 2 inG is 2e�t, we get 2e�t�2(n�t)new vertices in this way.Each convex angle at p gives rise to two new normals emanating at the respectivecopies of p, and thus to two (�nite) type-2 vertices. A possible reex angle at p givesrise to one (�nite or in�nite) type-3 vertex, on the perpendicular bisector of thecorresponding copies of p. There are r reex angles in G, and thus 2e� t� r convexangles. This gives r + 2(2e � t� r) new vertices in addition.The lemma follows by simple arithmetic.Surprisingly, the number of edges of G does not inuence the bound in lemma 4.4.The maximum number of vertices, 3n � 2, is achieved, for example, if G is a setof disjoint segments (t = n and r = 0), or if G is a simple polygon P (t = 0 andr = n).In the latter case, the majority of applications concerns the part of V (P ) interiorto P . This part is commonly called the medial axis of P . The medial axis of an n-gonwith r reex interior angles has a tree-like structure and realizes exactly n+ r � 2vertices and at most 2(n + r) � 3 edges. Lee [179] �rst mentioned this bound, andalso listed some applications of the medial axis. An interesting application to NCpocket machining is described in Held [139].Several algorithms for computing V (G), for general or restricted planar straightline graphs G, have been proposed and tested for practical e�ciency. V (G) can becomputed inO(n logn) time andO(n) space by divide & conquer (Kirkpatrick [160],Lee [179], and Yap [259]), plane sweep (Fortune [125]), and randomized incrementalinsertion (Boissonnat et al. [43] and Klein et al. [169]).Burnikel et al. [51] give an overview of existing methods, and discuss implemen-tation details of an algorithm in Sugihara et al. [241] that �rst inserts all segmentendpoints, and then all the segments, of G in random order. An algorithm of com-parable simplicity and practical e�ciency (though with a worst-case running timeof O(n2)) is given in Gold et al. [130]. They �rst construct a Voronoi diagram forpoint sites by selecting one endpoint for each segment, and then maintain the dia-gram while expanding the endpoints, one by one, to their corresponding segments.During an expansion, the resulting topological updates in the diagram can be car-ried out e�ciently. In fact, Voronoi diagrams for moving point sites are well-studiedconcepts; see e.g. Guibas et al. [134] and Roos [219].An e�cient O(n log2 n) work parallel algorithm for computing V (G) is givenin Goodrich et al. [132]. This is improved to O(logn) parallel (randomized) timeusing O(n) processors in Rajesekaran and Ramaswami [216]. (The latter result alsoimplies an optimal parallel construction method for the classical Voronoi diagram.)If G is a connected graph then V (G) can be computed in randomized time



Voronoi Diagrams 47O(n log� n); see Devillers [88]. Recently, O(n) time randomized, and determinis-tic, algorithms for the medial axis of a simple polygon have been designed by Kleinand Lingas [168] and Chin et al. [68], settling open questions of long standing. Thecase of a convex polygon is considerably easier; see subsection 4.4.3.Some of the algorithms above also work for curved objects. The plane-sweep algo-rithm in Fortune [125] elegantly handles arbitrary sets of circles (i.e., the additivelyweighted Voronoi diagram, or Johnson-Mehl model) without modi�cation from thepoint site case. Yap [259] allows sets of disjoint segments of arbitrary degree-twocurves. A randomized incremental algorithm for general curved objects is given inAlt and Schwarzkopf [12]. They show that complicated curved objects can be parti-tioned into 'harmless' ones by introducing new points. All these algorithms achievean optimal running time, O(n logn).In dimensions more than two, the known results are sparse. The complexity ofthe Voronoi diagram for n line segments in d-space may be as large as 
(nd�1),as was observed by Aronov [17]. By the relationship of Voronoi diagrams to lowerenvelopes of hypersurfaces (see subsection 4.6), the results in Sharir [232] imply anupper bound of roughly O(nd). No better upper bounds are known even for linesegments in 3-space.The Voronoi diagram for n spheres in d-space has a size of only O(nbd=2c+1), byits relationship to power diagrams proved in Aurenhammer and Imai [30].A case of particular interest in several applications is the medial axis M (P ) of a(generally non-convex) polyhedron P in 3-space. M (P ) contains pieces of parabolicand hyperbolic surfaces and thus has a fairly complicated structure. A practical andnumerically stable algorithm for computing M (P ) is proposed in Milenkovic [197].4.4.2. Straight skeletonsIn comparison to the Voronoi diagram for point sites, which is composed of straightedges, the occurrence of curved edges in the line segment Voronoi diagram V (G)is a disadvantage in the computer representation and construction, and sometimesalso in the application, of V (G).There have been several attempts to linearize and simplify V (G), mainly for thesake of e�cient point location and motion planning; see Canny and Donald [54],Kao and Mount [154], de Berg et al. [80], and McAllister et al. [190]. The compactVoronoi diagram in [190] is particularly suited to these applications. It is de�nedfor the case where G is a set of k disjoint convex polygons. Its size is only O(k),rather than O(n), and it can be computed in time O(k logn); see subsection 5.1.1for more details.As a di�erent alternative to V (G), we now describe the straight skeleton, S(G), ofa planar straight line graph G. This structure is introduced, and discussed in muchmore detail, in Aichholzer and Aurenhammer [9]. S(G) is composed of angularbisectors and thus does not contain curved edges. In general, its size is even lessthan that of V (G). Beside its use as a type of skeleton for G, S(G) applies, forexample, to the reconstruction of terrains from a given geographical map as will besketched later.



48 F. Aurenhammer and R. KleinS(G) is de�ned as the interference pattern of certain wavefronts propagated fromthe segments and segment endpoints of G. Let F be a connected component (calleda �gure) of G. Imagine F as being surrounded by a belt of (in�nitesimally small)width ". For example, a single segment s gives rise to a rectangle of length jsj+ 2"and width 2", and a simple polygon P gives rise to two homothetic copies of P withminimum distance 2". In general, if F partitions the plane into c connected facesthen F gives rise to c simple polygons called wavefronts for F .The wavefronts arising fromall the �gures ofG are now propagated simultanously,at the same speed, and in a self-parallel manner.Wavefront vertices move on angularbisectors of wavefront edges which, in turn, may increase or decrease in lengthduring the propagation. This situation continues as long as wavefronts do not changecombinatorially. Basically, there are two types of changes.(1) Edge event : A wavefront edge collapses to length zero. (The wavefront mayvanish due to three simultanous edge events.)(2) Split event : A wavefront edge splits due to interference or self-interference.In the former case, two wavefronts merge into one, whereas a wavefront splits intotwo in the latter case.After either type of event, we are left with a new set of wavefronts which arepropagated recursively.The edges of S(G) are just the pieces of angular bisectors traced out by wavefrontvertices. Each vertex of S(G) corresponds to an edge event or to a split event. S(G)is a unique structure de�ning a polygonal partition of the plane; see �g. 21.During the propagation, each wavefront edge e sweeps across a certain area whichwe call the face of e. Each segment of G gives rise to two wavefront edges and thusto two faces, one on each side of the segment. Each terminal of G (endpoint ofdegree one) gives rise to one face. Faces can be shown to be monotone polygonsand thus are simply connected. This gives a total of 2m + t = O(n) faces, if Grealizes m edges and t terminals. There is also an exact bound on the number ofvertices of S(G).Lemma 4.5. Let G be a planar straight line graph on n points, t of which areterminals. The number of (�nite and in�nite) vertices of S(G) is exactly 2n+ t�2.From lemma 4.4 in the previous subsection it is apparent that S(G) has r verticesless than V (G) if G has r reex angles. In particular, if G is a simple polygon withr reex interior angles, then the part of S(G) interior to G is a tree with only n�2vertices, whereas the medial axis of G has n + r � 2 vertices.A wavefront model similar to that yielding S(G) is sometimes used to de�ne theVoronoi diagram V (G) of G (cf. the expanding waves view in section 2). There,the propagation speed of all points on the wavefront is the same, whereas, in themodel for S(G), speed is controlled by the angle between wavefront edges. Thisbehaviour may make S(G) completely di�erent from the Voronoi diagram of G. Itcan be shown that, without prior knowledge of its structure, S(G) cannot be de�nedby means of distances from G. Moreover, S(G) does not �t into the framework ofabstract Voronoi diagrams described in subsection 4.6: The bisecting curve for twosegments of G would be the interference pattern of the rectangular wavefronts they
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Figure 21. Straight skeleton



50 F. Aurenhammer and R. Kleinsend out, but these curves do not ful�ll condition (ii) in de�nition 4.2.As a consequence, the well-developed machinery for constructing Voronoi dia-grams (see section 3) does not apply to S(G). An algorithm that simulates thewavefront propagation by maintaining a triangulation of the wavefront vertices isgiven in [9]. The method is simple and practically e�cient but has a worst-caserunning time of O(n2 logn).S(G) has a three-dimensional interpretation, obtained by de�ning the height ofa point x in the plane as the unique time when x is reached by a wavefront. In thisway, S(G) lifts up to a polygonal surface �G, where points on G have height zero.In a geographical application, G may delineate rivers, lakes, and coasts, and �Grepresents a corresponding terrain with �xed slope. �G has the nice property thatevery raindrop that hits a terrain facet f runs o� to the segment or terminal of Gde�ning f ; see Aichholzer et al. [8]. This may have applications in the study of rainwater fall and its impact on the oodings caused by rivers in a given geographicarea.The concept of S(G) can be generalized by tuning the propagation speed orangle of the individual wavefront edges, in order to achieve prescribed facet slopesfor �G, or individual elevations for the terrain points on G. The size of S(G), andits construction algorithm, remain una�ected.When restricted to the interior of a simple polygon P , �P is used in [8] asa canonical construction of a roof of given slope above P . For rectilinear (andaxis-aligned) polygons P , the medial axis of P in the L1-metric will do the job.S(P ) coincides with this structure for such polygons, and thus generalizes this roofconstruction technique to general shapes of P .Straight skeletons can be generalized to higher dimensions without much di�cul-ties. They retain their piecewise-linear shape and thus, for example, o�er a simpleralternative to the medial axis of a non-convex polyhedron in 3-space.4.4.3. Convex polygonsVoronoi diagrams for a single convex polygon have a particularly simple structure.Taylor-made algorithms for their construction have been designed.Let C be a convex n-gon in the plane. The medial axisM (C) of C is a tree whoseedges are pieces of angular bisectors of C's sides. In fact, M (C) coincides with thepart of the straight skeleton S(C) interior to C.M (C) realizes exactly n faces, n�2vertices, and 2n� 3 edges.There is a simple randomized incremental algorithm by Chew [62] that computesM (C) in O(n) time. The algorithm �rst removes, in random order, the halfplaneswhose intersection is C. Removing a halfplane means removing the correspondingside e, and extending the two sides adjacent to e so that they become adjacent inthe new convex polygon. This can be done in constant time per side. The adjacencyhistory of C is stored. That is, for each removed side e, one of its formerly adja-cent sides is recorded. In a second stage, the sides are put back in reversed (stillrandomized) order, and the medial axis is maintained during these insertions.Let us focus on the insertion of the i-th side ei. We have to integrate the face,



Voronoi Diagrams 51f(ei), of ei into the medial axis of the i� 1 sides that have been inserted before ei.From the adjacency history, we already know a sides e0 of the current polygon thatwill be adjacent to ei after its insertion. Hence we know that the angular bisectorof ei and e0 will contribute an edge to f(ei).Having a starting edge available in O(1) time, the face f(ei) now can be con-structed in time proportional to its size. We construct f(ei) edge by edge, by simplytracing and deleting parts of the old medial axis interior to f(ei). As the medialaxis of an i-gon has 2i� 3 edges, and each edge belongs to two faces, the expectednumber of edges of a randomly chosen face is less than 4. Thus f(ei) can be con-structed in constant expected time, which gives an O(n) randomized algorithm forcomputing M (C).The same technique also applies to the Voronoi diagram for the vertices of aconvex n-gon C, that is, to the Voronoi diagram of a set S of n point sites in convexposition. By lemma 2.2, all regions in V (S) are unbounded, and the edges of V (S)form a tree. Hence V (S) has the same numbers of edges and (�nite) vertices as themedial axis of C.For each p 2 S, its region VR(p; S) shares an unbounded edge with the regionsVR(p0; S) and VR(p00; S), where p0 and p00 are adjacent to p on the convex hull ofS (which is the polygon C). An adjacency history can be computed in O(n) time,by removing the sites in random order and maintaining their convex hull. For eachsite that is re-inserted, the expected number of edges is less than 4. So an O(n)randomized construction algorithm is obtained.The diagrams V (S) and M (C) can also be computed in deterministic lineartime; see Aggarwal et al. [4]. The details of this algorithm are much more involved,however.4.4.4. Constrained Voronoi diagrams and Delaunay triangulationsIn certain situations, unconstrained proximity among a set of sites is not enoughinformation to meet practical needs. There might be reasons for not considering twosites as neighbors although they are geometrically close to each other. For example,two cities that are geographically close but separated by high mountains might befar from each other from the point of view of a truck driver. The concepts describedbelow have been designed to model constrained proximity among a set of sites.Let S be a set of n point sites in the plane, and let L be a set of non-crossing linesegments spanned by S. Note that jLj 6 3n� 6. The segments in L are viewed asobstacles: we de�ne the bounded distance between two points x and y in the planeas b(x; y) = (d(x; y) if xy \ L = ;1 otherwisewhere d stands for the Euclidean distance. In the resulting bounded Voronoi diagramV (S; L), regions of sites that are close but not visible from each other are clippedby segments in L. Regions of sites being segment endpoints are nonconvex near the



52 F. Aurenhammer and R. Klein
Figure 22. Bounded Voronoi diagram extended, and its dualcorresponding segment; see �g. 22.The dual of V (S; L) is not a full triangulation of S, even if the segments in L areincluded. However, V (S; L) can be modi�ed to dualize into a triangulation whichincludes L and, under this restriction, is as much 'Delaunay' as possible.The modi�cation is simple but nice. For each segment ` 2 L, the regions clippedby ` from the right are extended to the left of `, as if only the sites of theseregions were present. The regions clipped by ` from the left are extended similarly;see �g. 22. Of course, extended regions may overlap now, so they fail to de�ne apartition of the plane. If we dualize now by connecting sites of regions that sharean edge, a full triangulation that includes L is obtained: the constrained Delaunaytriangulation DT(S; L). It is clear that the number of edges of DT(S; L) is at most3n � 6, and that, in general, the number of edges of V (S; L) is even less. Henceboth structures have a linear size.The original de�nition of DT(S; L) in Lee and Lin [182] is based on a modi�cationof the empty circle property: DT(S; L) contains L and, in addition, all edges betweensites p; q 2 S that have b(p; q) <1 and that lie on a circle enclosing only sites r 2 Swith at least one of b(r; p); b(r; q) =1.Algorithms for computing V (S; L) and DT(S; L) have been proposed in Lee andLin [182], Chew [63], Wang and Schubert [253], Wang [252], Seidel [226], and Kaoand Mount [155]. The last two methods seem best suited to implementation. For



Voronoi Diagrams 53an application of DT(S; L) to quality mesh generation see Chew [65].We sketch the O(n logn) time plane sweep approach in [226]. If only V (S; L) isrequired then the plane sweep algorithm described in subsection 3.4 can be appliedwithout much modi�cation. If DT(S; L) is desired then the extensions of V (S; L)as described above are computed in addition. To this end, an additional sweep iscarried out for each segment ` 2 L. The sweep starts from the line through ` in bothdirections. It constructs, on the left side of this line, the (usual) Voronoi diagram ofthe sites whose regions in V (S; L) are clipped by ` from the right, and vice versa.The special case where S and L are the sets of vertices, and sides, of a simplepolygon has received special attention, mainly because of its applications to visibil-ity problems in polygons. The bounded Voronoi diagram V (S; L) is constructablein O(n) randomized time in this case; see Klein and Lingas [166]. If the L1-metricinstead of the Euclidean metric is used to measure distances, the same authors[168] give a deterministic linear time algorithm. Both algorithms, as well as thelinear time medial axis algorithms in [167] and in [68], �rst decompose the poly-gon into smaller parts called histograms. These are polygons whose vertices, whenconsidered in cyclic order, appear in sorted order in some direction.An alternative concept that forces a set L of line segments spanned by S intoDT(S) is the conforming Delaunay triangulation. For each segment ` 2 L that doesnot appear in DT(S), new sites on ` are added such that ` becomes expressible asthe union of Delaunay edges in DT(S [ C), where C is the total set of addedsites. For several site adding algorithms, jCj depends on the size as well as on thegeometry of L. See, e.g., the survey article by Bern and Eppstein [37] and referencestherein. Edelsbrunner and Tan [118] show that jCj = O(k2n) is always su�cient,and construct a set of sites with this size in time O(k2n+ n2), for k = jLj.A di�erent, and more complicated, type of constrained Voronoi diagram is thegeodesic Voronoi diagram. Here, the distance between a point site p and a point xin the plane is equal to the length of the shortest obstacle-avoiding path betweenp and x. The obstacles are usually modeled by a set of non-crossing line segments.If all segment endpoints are sites then the bounded Voronoi diagram is obtained.However, this is typically not the case. The fact that computing geodesic distancesis not a constant-time operation complicates the construction of geodesic Voronoidiagrams. The only known subquadratic algorithm is by Mitchell [198]. An O((n+k) log(n + k)) time algorithm for the geodesic Voronoi diagram of k sites inside asimple n-gon is given in Papadopoulou and Lee [210], improving over an earlierapproach in Aronov [16].4.5. Generalized spaces and distancesSo far we have maily discussed Voronoi diagrams of sites in d-space, that are de�nedwith respect to the Euclidean distance function. Now we want to generalize boththe space in which the sites are situated and the distance measure used; but weshall only discuss the case of point sites.The main questions are which of the structural properties the standard Voronoi



54 F. Aurenhammer and R. Kleindiagram enjoys will be preserved, and will the remaining properties be strongenough to apply one of the algorithmic approaches for computing the Voronoi dia-gram introduced in section 3.4.5.1. Generalized spacesSince the surface of earth is not at, it seems very natural to ask about Voronoidiagrams of point sites on curved surfaces in 3-space. The distance between twopoints on the surface is the minimumEuclidean length of a curve that connects thepoints and runs entirely inside the surface. Such a curve will be called a shortestpath.Brown [50] has addressed the Voronoi diagram of points on the surface of the two-dimensional sphere. Here great circles play the role of lines in the Euclidean plane. Infact, the bisector of two points is a great circle, and the shortest paths are segmentsof great circles, too. (One can show that the only other metric space in which allbisector segments are shortest paths is the hyperbolic space; see Busemann [52]).For each pair of antipodal points on the sphere there is a continuum of shortestpaths connecting them. But this does not a�ect the Voronoi diagram of n points;it can be computed in optimal O(n logn) time and linear space, by adaption of thealgorithms mentioned in section 3.Quite di�erent is the situation on the surface of a cone. In order to determine thebisector of two points, p and q, we can cut the cone along a haline emanating fromthe apex, and unfold it; in �g. 23 the haline diametrically opposed to p has beenchosen. Since curve length does not change in this process, each shortest path onthe cone that does not cross the cut is transformed into a shortest path in the plane,i. e. into a line segment. In order to represent those shortest paths that cross thecut, we add to the unfolded cone two more copies, as shown in �g. 23 (ii). Now theshortest path on the cone from some point x to site q corresponds to the shortestone of the line segments qx, q0x, and q00x. This explains why the unfolded bisectorB(p; q) consists of segments of the planar bisectors of p; q and p; q0.In spite of this strong connection to the plane, the Voronoi diagram of pointson a cone has structural properties surprisingly di�erent from the planar Voronoidiagram. If the unfolded cone forms a wedge of angle less than 180� then the bisectorof two points can be a closed curve. If three points p; q; r are placed, in this order,on a haline emanating from the apex of such a cone, the bisector B(q; r) fullyencircles B(p; q) which in turn encircles the apex. This causes the Voronoi regionof q in V (fp; q; rg) to be not simply connected.Also, the closures of two Voronoi regions can have more than one Voronoi edge incommon. Such a situation is shown in �g. 24, on the unfolded cone. The bisectorsof the three points cross twice, at the Voronoi vertices v and w; the latter happensto lie on the cut. (It is interesting to observe that none of these phenomena occurson the sphere, although there, too, bisectors are closed curves and cross twice.)Despite these fundamental di�erences to the plane, the Voronoi diagram of npoints on the surface of a cone can be constructed in optimal time and space, usinga sweep circle that expands from the apex; see Dehne and Klein [83]. This approach
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56 F. Aurenhammer and R. Kleinworks without unfolding the cone.Maz�on and Recio [189] have independently pointed out the algebraic backgroundof the unfolding procedure illustrated by �g. 23 (i), and obtained the followinggeneralization. Let P denote the Euclidean plane or two-dimensional sphere, andlet G be a discrete group of motions on P : a group of bijections that leave thedistance between any pair of points of P invariant, such that for each point p 2 Pthere exists a constant c satisfyingp 6= g(p) =) jp� g(p)j > cfor all motions g 2 G.Examples in the plane are the group generated by a rotation of rational angleabout some given point, or the group generated by two translations that move eachpoint a �xed distance to the right and a �xed distance upwards, respectively. In the19th century, mathematicians have completely classi�ed all discrete groups.Two points p; p0 2 P are equivalent if there exists a motion in G that takes p top0; the equivalence class, [p], of p is called the orbit of p. The quotient space, P=G,consists of all orbits. In order to geometrically represent P=G one starts with aconnected subset of P that contains a representative out of every orbit; equivalentpoints must be on the boundary. Such a set is called a fundamental domain, if itis convex. The following lemma provides a nice way of obtaining a fundamentaldomain; a proof can be found in Ehrlich and Im Hof [120].Lemma 4.6. Let p be a point of P that is left �xed only by the unit element of G.Then its Voronoi region VR(p; [p]) is a fundamental domain.In �g. 23 (ii), for example, the point set fp; p0; p00g is the orbit of p under aclockwise rotation by 120�. The Voronoi region VR(p; fp; p0; p00g) equals the mastercopy of the unfolded cone, as drawn by solid lines. Each interior point x is the onlypoint of [x] contained in this region, only the points on the boundary (i. e. the cut)of the unfolded cone are mapped into each other by rotation. If we identify thesetwo halines we obtain the cone depicted in �g. 23 (i), a model of the quotientspace of the Euclidean plane over the cyclic group of order 3.In a similar way we would obtain a rectangle as fundamental domain of the groupof two translations mentioned above, and identifying opposite edges would resultin a torus.If we want to compute the Voronoi diagram of a set S of point sites on a surfaceassociated with such a quotient space P=G, we can proceed as follows. Let S0 denotea set of representatives of S in a fundamental domain D � P . First, we computethe Voronoi diagram V ([S0]), where [S0] denotes the union of the orbits of theelements of S0, an in�nite but periodic set. Due to [189], V ([S0]) can be obtainedby applying the motions in G to the Voronoi diagram of a �nite set of points of S0and translated copies of S0.Theorem 4.7. There exists a �nite subset U of [S0] such that V ([S0]) = [V (U )\D]holds.



Voronoi Diagrams 57If one removes from V ([S0]) all Voronoi edges that separate points of the sameorbit and intersects the resulting structure with the fundamental domain D, thedesired diagram V (S) results, after identifying equivalent points. Although the setS0 can be constructed e�ectively, it seems hard to establish an upper bound for thee�ciency of this step.To mention a few other spaces considered, Ehrlich and Im Hof [120] have studied,from a di�erential geometrist's point of view, structural properties of the Voronoidiagram in such Riemannian manifolds where any two points are connected by aunique shortest path.In order to compute the Voronoi diagram of n points on a polyhedral surface in3-space containing m vertices, one can make use of its discrete structure and applythe continuous Dijkstra technique usually employed for computing shortest paths.It allows the Voronoi diagram to be computed in O(N2 logN ) time and O(N2)space, where N = max(m;n); see Mitchell et al. [199].4.5.2. Convex distance functionsIn numerous applications does the Euclidean metric not provide an appropriate wayof measuring distance. In the following subsections we consider the Voronoi diagramof point sites under distance measures di�erent from the Euclidean metric. We startwith convex distance functions, a concept that generalizes the Euclidean distancebut slightly. Whereas this generalization does not cause serious di�culties in theplane, surprising changes will occur as we move to 3-space.Let C denote a compact, convex set in the plane that contains the origin in itsinterior. Then a convex distance function can be de�ned in the following way. Inorder to measure the distance from a point p to some point q, the set C is translatedby the vector p. The half line from p through q intersects the boundary of C at aunique point q0; see �g. 25. Now one putsdC(p; q) = d(p; q)d(p; q0) :By de�nition, C equals the unit circle of d, that is, the set of all points q satisfyingdC(0; q) 6 1. The value of dC(p; q) does not change if both p and q are translatedby the same vector. One can show that the triangle inequality dC(p; r) 6 dC(p; q)+dC(q; r) is ful�lled, with equality holding for collinear points p; q; r. In general, wehave dC(p; q) = dC0(q; p), where C0 denotes the reected image of C about theorigin. We can de�ne the Voronoi diagram based on an arbitrary convex distancefunction by associating with each site p all points x of the plane such that dC(p; x) <dC(q; x) holds for all other sites q.If the set C is symmetric about the origin then dC is called a symmetric convexdistance function. This is equivalent to saying that the function q 7! dC(0; q) is anorm in the plane.Well-known is the family of Lp (or: Minkowski) norms, 1 6 p < 1, de�ned by
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o p q'

qFigure 25. By dC(p; q) = d(p;q)d(p;p0) a convex distance function dC with unit circle C is de�ned.
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B(p,q)(iii)Figure 26. Unit circle and bisectors of the Manhattan distance L1.the equationLp(q; r) = pqjq1� r1jp + jq2 � r2jp for q = (q1; q2); r = (r1; r2):Whereas L2 is the Euclidean distance, L1(q; r) = jq1� r1j+ jq2� r2j is called theManhattan distance of q and r, because it equals the minimumlength of a path fromq to r that follows a rectangular grid. Its unit circle is shown in �g. 26 (i). If indexp tends to 1, the value of Lp(q; r) converges to L1(q; r) = max(jq1� r1j; jq2� r2j):The unit circle of L1 equals the aligned square [�1; 1]2; therefore, L1 and L1 arerelated by a 45� rotation of the plane.In �g. 26 (ii) the bisector of two points under the Manhattan distance L1 isshown. Another possible situation can be obtained by rotating picture (ii) by 90�.If p and q are the diagonal vertices of an aligned square then their bisector B(p; q)is no longer a curve: it consists of two quarterplanes connected by a line segment;see �g. 26 (iii).In general, if the unit circle C is strictly convex , that is, if its boundary containsno line segment, this phenomenon cannot occur. For a strictly convex distance



Voronoi Diagrams 59function dC, each bisector B(p; q) is a curve homeomorphic to a line. Also, thestrict triangle inequality holds: We have dC(p; r) < dC(p; q) + dC(q; r) unless p; q; rare collinear. Moreover, two circles with respect to dC intersect in at most twopoints, and two bisectors B(p; q); B(p; r) intersect in at most one point; proofs canbe found in Icking et al. [146].If C is not strictly convex then there are points p; q whose bisector contains two-dimensional pieces. In this case one can choose from the set B(p; q) a curve thatseparates p and q, and use this curve as the bisector. In �g. 26 (iii), for example,one could proceed as if p and q were slightly moved apart in y-direction and usethe curve drawn by solid lines as their bisector. In general, bisecting curves can bechosen as follows. We assume that the point sites in S are linearly ordered. If p < qthen the common boundary of D(q; p) and B(p; q) is chosen, i. e. the set B(p; q)is added to the region of p with respect to q. This choice leads to a consistentde�nition of the Voronoi diagram.Voronoi regions based on convex distance functions are in general not convex,as the example of the Manhattan distance shows. But they are still star-shaped ,as seen from their sites: For each point x 2 D(p; q), the line segment px is alsocontained in D(p; q). This follows from a more general fact shown in lemma 4.8below.The star-shapedness of the Voronoi regions, together with the convexity of thecircles, is a property strong enough for applying the divide & conquer algorithm;cf. subsection 3.3. Hwang [145], Lee [178], and Lee and Wong [183] have studiedthe Voronoi diagram based on Lp norms; they provided algorithms that run withinO(n logn) many steps. Here and in the sequel, a step not only denotes a singleoperation of a Real Random Access Machine (cf. [213]) but also an elementaryoperation like computing the intersection of two bisector curves.Widmayer et al. [256] have described an optimal algorithm for computing theVoronoi diagramof a distance function based on a convexm-gon,C. This generalizesthe Manhattan distance to an environment where motions are restricted to a �niteset of orientations given by the rays from the origin through the vertices of C.Eventually, Chew and Drysdale [66] have shown how to construct, in O(n logn)many steps, the Voronoi diagram based on an arbitrary convex distance functionin the plane, using divide & conquer. One crucial point is in the merge step. If weuse a split line to subdivide the site set S into subsets L and R, the set B(L;R) ofall Voronoi edges of V (S) that separate L-regions from R-regions need not be con-nected, but it must be acyclic. Each of its connected components is an unboundedchain, not a loop. Therefore, a starting edge of each component can be found atin�nity, as in the Euclidean case.Skyum [235] has shown how to construct the dual of the Voronoi diagram basedon a convex distance function using the sweep line approach, in O(n logn) manysteps.It is well known that each symmetric convex distance function dC is equivalentto the Euclidean distance d, in the sense that for suitable constants a and A, the
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p
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Figure 27. Four point sites whose Voronoi diagrams based on the Manhattan and the Euclideandistance have a di�erent combinatorial structure.inequalities a � d(p; q) 6 dC(p; q) 6 A � d(p; q)hold for all points p; q. In particular, a sequence of points pi converges to somelimit point p under dC i� it does so under the Euclidean distance. One mightwonder if these similarities cause the Voronoi diagrams of d and dC to have similarcombinatorial structures. A counterexample is shown in �g. 27; the regions of p andq are adjacent under L2 but not under L1.Corbal�an et al. [76] have provided systematic answers to the above question.Let dC; dD denote two symmetric, strictly convex distance functions whose unitcircles are smooth. If for each set S of at most 4 points in the plane, VdC (S)and VdD (S) have the same structure as embedded planar graphs, then D must bea scaled version of C. More generally, if for each set S of at most 4 points theVoronoi diagram VdC (S) has the same combinatorial structure as VdD (f(S)), forsome bijection f of the plane, then f is linear and f(C) = D holds, up to scaling.Conversely, if f is a linear bijection of the plane then the Voronoi diagram of f(S)with respect to the convex set f(C) can be obtained by applying f to VdC (S), foreach site set S.The image of the Euclidean circle under a linear bijection is an ellipse. Theabove result implies that convex distance functions based on ellipses are the only
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(i) (ii)Figure 28. The graph shown in (i) is not a Euclidean Delaunay tessellation. In (ii) we have� + �0 < � i� r lies outside the circle. Equality holds i� r lies on the circle.ones whose Voronoi diagrams can be obtained from the Euclidean Voronoi diagramof a transformed set of sites. The following theorem gives an even stronger reasonwhy such a reduction is not possible for unit circles other than ellipses.Theorem 4.8. Let C be a strictly convex, compact set, symmetric about the origin,which is not an ellipse. Then there exists a set of 9 points in the plane whoseVoronoi diagram with respect to dC has a structure no Euclidean Voronoi diagramcan achieve.In the proof given in [76] a Voronoi diagram based on dC is constructed whosedual is either of the topological shape shown in �g. 28 (i), or of similar type. Let usassume that it can be realized by a Euclidean Delaunay tessellation; cf. section 2.Since r lies outside the circumcircle of q; s; z we have � + �0 < �; see �g. 28 (ii).Similarly, � + �0 < � holds. Since p lies on the circumcircle of w; q; z we have�+ �0 = �, and  + 0 = � holds for the same reason. The primed angles at z addup to 2�. Therefore, we obtain�+ � +  + � < 2�:But this is impossible because the points di�erent from z must be in convex position(the convex hull of a point set equals the boundary of the unbounded face of itsDelaunay triangulation) so that each of the angles at p; r; t; v includes an angle ofthe rectangle drawn by dashed lines. These angles add up to 2�.The de�nitions of a convex distance function and of the Lp-norms stated abovecan easily be extended to dimensions higher than 2. In the remainder of this sub-section we study convex distance functions in 3-space. Such a distance function is



62 F. Aurenhammer and R. Kleinbased on a convex, compact set C in 3-space which contains the origin in its interior.We call such a unit sphere C good if it is, in addition, strictly convex, symmetric,and smooth.Some of the pleasant properties of 2-dimensional convex distance functions havetheir counterparts in 3-space. For example, the bisector B(p; q) of two points is asurface homeomorphic to the plane, and two such bisector surfaces B(p; q); B(p; r)have an intersection homeomorphic to the line, or empty. In these aspects, convexdistance functions in 3-space do not di�er from the 3-dimensional Euclidean dis-tance. But whereas a Euclidean sphere is uniquely determined by four points inspace, this is no longer true for convex distance functions. In Icking et al. [146] thefollowing result has been shown.Theorem 4.9. For each n > 0 there exist a good convex set C and 4 points in3-space such that there are 2n+1 homothetic copies of C containing these points intheir boundaries. This number does not decrease as the 4 points are independentlymoved within small neighborhoods.The center v of a scaled and translated copy of C containing p; q; r; s in itsboundary is of the same dC distance to each of these points. Hence, v is a Voronoivertex in the diagram VdC (fp; q; r; sg). Therefore, theorem 4.9 implies that thereexists no upper bound to the number of vertices of the Voronoi diagram of 4 pointsin 3-space, that holds for arbitrary convex distance functions.If it is known that for a particular convex distance function dC no more thank homothetic copies of C can pass through any four points in general position,then the complexity of the Voronoi diagram of n points based on dC is in O(kn4),because at least 4 Voronoi regions meet at a Voronoi vertex. As an explicit functionof k and n, nothing better than this trivial bound seems to be known, which isconjectured to be far o�. For the Euclidean distance, for example, k = 1 holds, andthe true complexity is �(n2); see subsection 4.3.1.Since the Lp norms are de�ned by algebraic equations of degree p, it is possibleto say more about their Voronoi diagrams. From a general result by Sharir [232] onlower envelopes it follows that the complexity of the Voronoi diagram of n pointsin d-space under Lp is in O(nd+"). However, the constant in O tends to 1, as pgrows.Lê [176] has obtained the following result on the number of Lp spheres that canpass through a set of given points. The proof uses results from the theory of additivecomplexity, see Benedetti and Risler [33]. This and the subsequent results requirethat the sites be in general position.Theorem 4.10. There exists an upper bound to the number of Lp spheres in d-space that can pass through d + 1 given points, which depends only on d but noton p.More is known only for special cases. Recently, Boissonnat et. al. [45] have shownthe following.



Voronoi Diagrams 63Theorem 4.11. The Voronoi diagram of n points in 3-space based on the L1 normis of complexity �(n2). The Voronoi diagrams of n points in d-space based on L1or on a simplex as the unit sphere are both of complexity �(ndd=2e).The unit spheres for the L1 and L1 norm are hypercubes and crosspolytopes(i. e. duals of hypercubes), respectively. In contrast to hypercubes, crosspolytopeshave a large number of facets in high dimensions, which partially explains why tightbounds for L1-diagrams are only available for dimensions up to three.Whereas for the complexity of the Voronoi diagram of a set of lines in 3-spaceunder the Euclidean distance only an O(n3+") upper bound is known (see [232]),Chew et. al. [67] were able to provide a smaller bound for lines under a polyhedralconvex distance function.Theorem 4.12. Let C denote a convex polyhedron of constant complexity in3-space. Then the Voronoi diagram of n lines based on dC is of complexityO(n2�(n) logn). A lower bound is given by 
(n2�(n)).Here �(n) denotes the extremely slowly growing inverse of the Ackermann func-tion.4.5.3. Nice metricsConvex distance functions do not apply to environments where the distance be-tween two points can change under translations. This happens in the presence ofobstacles, or in cities whose streets do not form a regular grid. In order to modelsuch environments in a realistic way we can use the concept of a metric.In this subsection we consider point sites in the plane, and Voronoi diagrams thatare based on a metric, m. It associates with any two points, p and q, a non-negativereal number m(p; q) which equals 0 i� p = q. Moreover, m(p; q) = m(q; p), and thetriangle inequality m(p; r) 6 m(p; q) +m(q; r) holds.General metrics are quite a powerful modeling tool. Suppose there is an air-liftbetween two points a; b in the plane. Thenm(p; q) = min8><>:d(p; q)d(p; a) + f + d(b; q)d(p; b) + f + d(a; q)describes how fast one can travel from p to q; we assume that going by car takestime equal to the Euclidean distance, d, whereas the ight takes time f < d(a; b).It is easy to verify that the function m is a metric in the plane (we could warp theplane so that a and b have Euclidean distance f in 3-space, and glue on a straighthandle connecting them; the function m describes the lengths of shortest paths inthe resulting space).Voronoi regions with respect to this metric m need not be connected. Supposesite q lies on the line segment ab, as shown in �g. 29. In order to construct theVoronoi diagram of the two sites a and q we use the expanding waves approach
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aFigure 29. If there is an air line connecting a and b, the Voronoi region of a with respect to q isdisconnected.mentioned in section 2, and let two Euclidean circles expand from a and q at thesame speed. Their intersections form the Euclidean bisector B(a; q). As soon asthe radius of these circles has reached f , the duration of the ight from a to b, anew circle starts growing from b. Subsequently, its radius is always by f smallerthan the radius r of the other two circles. The intersections of the circles expandingfrom q and from b form a hyperbola, H; it is the locus of all points x satisfyingd(q; x)� f = d(b; x).Such Voronoi diagrams of points with additive weights are also known as theJohnson-Mehl model or Voronoi diagrams of circles; compare the end of subsec-tion 4.4.1. They have been studied e. g. by Lee and Drysdale [181] and Sharir [231].Fortune [125] has shown how to construct them in time O(n logn) using the sweepline approach.Clearly, the region of a with respect to metric m, Dm(a; q), consists of the twoparts shaded in �g. 29; they are not connected. In order to exclude such phenomenawe restrict ourselves to a subclass of metrics introduced in Klein and Wood [170].De�nition 4.1. A metric m in the plane is called nice if it enjoys the followingproperties.(i) A sequence pi converges to p under m i� this holds under the Euclideandistance; the case p =1 is included.(ii) For any two points p; r there exists a point q di�erent from p and r suchthat m(p; r) = m(p; q) +m(q; r) holds.(iii) For any two points p; q is the common boundary of Dm(q; p) and Bm(p; q)a curve homeomorphic to the line. It is called a bisector curve, Jm(p; q).(iv) The intersection of two bisector curves Jm(p; q); Jm(p; r) consists of only�nitely many connected components.Each symmetric, strictly convex distance function is a nice metric. Conversely, if



Voronoi Diagrams 65a nice metric m is invariant under translations, and if m(p; r) = m(p; q) +m(q; r)holds for any three consecutive points p; q; r on a line, then m is a convex distancefunction.Whereas in de�nition 4.1 properties (iii) and (iv) are of technical nature, (i) and(ii) have an important structural consequence, due to results by Menger [196].Lemma 4.7. Let m be a nice metric in the plane. Then for any two points p; rthere exists a path � connecting them, such that for each point q on � the equalitym(p; r) = m(p; q) +m(q; r) holds.Such paths are called m-straight ; they are true generalizations of straight lines inthe Euclidean distance: If one de�nes the m-length of a path � in a way analogous tothe Euclidean path length (i. e., by adding up the m-distances between consecutivepoints on �, making the resolution arbitrarily �ne) then the m-straight paths fromp to r are precisely the paths of minimumm-length, which equals m(p; r).Voronoi diagrams based on nice metrics have a nice structural property.Lemma 4.8. Let m be a nice metric. Then each Voronoi region VRm(p; S) isconnected: Each m-straight path � from p to some point x 2 VRm(p; S) is fullycontained in VRm(p; S). That is, the Voronoi regions under a nice metric m arem-star-shaped as seen from their sites.Proof. Suppose that some point y on � does not belong to VRm(p; S). Then theremust be a site q 2 S di�erent from p such that m(q; y) 6 m(p; y) holds, and by thestraightness of � we obtainm(p; x) =m(p; y) +m(y; x)>m(q; y) +m(y; x) > m(q; x);a contradiction to the fact that x lies in the Voronoi region of p. This shows that �is in fact contained in VRm(p; S). Lemma 4.7 ensures that for each x in the regionof p at least one such m-straight path from p to x exists. Consequently, VRm(p; S)is a connected set.Clearly, in the example of the air-lift metric, property (ii) of de�nition 4.1 isviolated: All points q satisfying m(a; b) = m(a; q) + m(q; b) that are not equal toone of the two airports, a and b, are in mid air!Examples of nice metrics are composite metrics that result from assigning di�er-ent convex distance functions to the regions of a planar subdivision, or the Karlsruhe(or: Moscow) metric; see Klein [165]. Here a center point, 0, is �xed and only suchpaths are allowed that consist of pieces of circles around 0 and of pieces of radiifrom 0. The Karlsruhe metric m(p; q) denotes the minimumEuclidean length of anallowed path from p to q.It depends on the angle between p and q if the shortest connecting path runsthrough the center, or around it; see �g. 30 (i). The bisector of two points consistsof up to eight segments that are pieces of straight lines or hyperbolae if written in
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0Figure 30. The shortest path in the Karlsruhemetric runs through the center i� the angle betweenp and q exceeds 114;59 : : :�. In (ii) a Voronoi diagram in the Karlsruhe metric is shown.
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yFigure 31. The unique shortest path between x and y does not stay within the region of q.polar coordinates. In (ii), the Voronoi diagram of 8 point sites under the Karlsruhemetric is shown.Whereas the star-shapedness of the Voronoi regions is preserved, the example ofthe Karlsruhe metric m shows that the convexity of the Euclidean Voronoi regionshas no counterpart in nice metrics. In �g. 31 the Voronoi diagram of 4 point sites onthe same radius is shown. There exists exactly one m-straight path connecting thepoints x; y of the Voronoi region of q, but this path is not contained in the regionof q.That the Voronoi regions under a nice metric m are m-star-shaped is a propertystrong enough for computing the Voronoi diagram e�ciently. The following has



Voronoi Diagrams 67been shown by Dehne and Klein [84].Theorem 4.13. The Voronoi diagram of n point sites under a nice metric in theplane can be constructed within O(n logn) many steps, using the sweep line ap-proach.It is also possible to apply the randomized incremental construction methodintroduced in subsection 3.2, or the divide & conquer technique. With the lattera new di�culty arises: If we use a line to subdivide S into subsets L and R thenthe set Bm(L;R) of Voronoi edges separating L-regions from R-regions can containcycles that would not be detected during the merge phase.In [165] two criteria have been introduced for Bm(L;R) to be acyclic. For ex-ample, if the m-circles are simply-connected we can use, as a divider of S, anycurve l homeomorphic to the line whose intersection with all m-circles is connected(possibly empty). This generalizes a result by Chew and Drysdale [66] on convexdistance functions, where each straight line possesses this property.4.6. General Voronoi diagramsOne might wonder if there exist some intrinsic properties most Voronoi diagramshave in common, and if these properties are a foundation strong enough for aunifying approach to the de�nition and to the construction of Voronoi diagrams.Edelsbrunner and Seidel [113] have introduced a very general approach. It doesnot explicitly use the concepts of sites and distance functions. Rather, the site set,S, is a mere set of indices fp; q; : : :g. A �xed domain,X, is given, and for each p 2 Sa real-valued function fp : X ! R. The graphHp = f(x; fp(x)) j x 2 Xgof fp can be considered a hypersurface in the space X�R. Now the Voronoi diagramof (S; ffp j p 2 Sg) is de�ned to be the projection onto X of the lower envelopeL = f(x;minp2S fp(x)) j x 2 Xgof the arrangement fHp j p 2 Sg of hypersurfaces.At the end of subsection 3.5 we have already studied an example of this ap-proach: If S denotes a set of points in D = R2, and if the functions fp are de�nedby fp(x) = d(p; x), we obtain an arrangement of cones whose lower envelope projectsonto the Euclidean Voronoi diagram of S. More importantly, subsection 4.3.2 showsthat linear functions fp exist whose envelope projects onto the Voronoi (or power)diagram of S. Moreover, the order-k Voronoi (or power) regions of S are the pro-jections of certain cells of the corresponding arrangement, see subsection 4.3.3.To establish this connection between Voronoi diagrams and arrangements of hy-persurfaces in a space one dimension higher is one of the great advantages of this ap-



68 F. Aurenhammer and R. Kleinproach. As one implication, an upper bound of O(nd+") on the combinatorial com-plexity of general classes of Voronoi diagrams follows from a result in Sharir [232]on envelopes of hypersurfaces; see subsections 4.4.1 and 4.5.2.A di�erent approach to planar Voronoi diagrams has been suggested inKlein [165]. Again, there are no physical sites but an index set, S. Instead of dis-tance functions or their graphs in 3-space, bisecting curves are used as primaryobjects.Let us assume that for any two di�erent indices p; q in S, a bisecting curveJ(p; q) = J(q; p) homeomorphic to the line is given, which cuts the plane into twounbounded, open domains, D(p; q) and D(q; p). In the subsequent pictures, theindex p denotes the \halfplane" D(p; q).As in de�nition 2.1, the Voronoi region VR(p; S) is de�ned as the intersectionof the open domains D(p; q), where q 2 S n fpg. The Voronoi diagram V (S) offJ(p; q) j p; q 2 S and p 6= qg is de�ned as the union of all boundaries at least twoVoronoi regions have in common. V (S) is called the abstract Voronoi diagram withrespect to the bisecting curves J(p; q).De�nition 4.2. The system J = fJ(p; q) j p; q 2 S and p 6= qg) is called ad-missible i� for each subset S0 of S of size at least 3 the following conditions areful�led.(i) The Voronoi regions VR(p; S0) are pathwise connected.(ii) Each point of the plane lies in a Voronoi region VR(p; S0), or on the Voronoidiagram V (S0).(iii) The intersection of two curves J(p; q) and J(p; r) consists of only �nitelymany components.From these conditions important structural properties of \concrete" Voronoi di-agrams can be derived, as the following example shows. For simplicity, we assumethat two bisecting curves cross transversally wherever they intersect.Lemma 4.9. Let J be an admissible system, and suppose that J(p; q) and J(p; r)cross at the point x. Then J(q; r) also passes through x, in the way shown in �g. 32.Proof. In a suitable neighborhood of x the curves J(p; q) and J(p; r) run as depictedin �g. 32 (i). Let S0 = fp; q; rg. Precisely the shaded area belongs to VR(p; S0), byde�nition of the abstract Voronoi diagram. Point y is not contained in VR(r; S0)because it lies in D(p; r). By moving y a little we can make sure that it is noton the curve J(q; r). Now condition (ii) of de�nition 4.2 implies y 2 VR(q; S0).Similarly, z must belong to the Voronoi region of r. But if, in each neighborhoodof x, points of VR(q; S0) � D(q; r) and of VR(r; S0) � D(r; q) can be found in thewedges containing y and z, respectively, then J(q; r) must run through x in the wayshown in picture (ii) of �g. 32.The �nite abstract Voronoi diagram (i. e. the result of encircling it with a closedcurve �, as proposed in section 2) is a 2-connected planar graph with at most n+1
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(ii)(i)Figure 32. Where two related bisecting curves J(p; q); J(p; r) meet, the third one, J(q; r), alsopasses through, like in a Euclidean Voronoi diagram.faces, all of whose vertices have degree at least 3 (exactly 3 for the vertices on �).Each such graph can be obtained as an abstract Voronoi diagram.One can show that de�nition 4.2 holds for all subsets S0 of S if it is satis�edfor each subset S0 of size 3. The conditions are met, for example, by the bisectorsof power diagrams (subsection 4.3.2), of sites with respect to a nice metric in theplane (subsection 4.5.3), of sites with additive weights, and of non-intersecting linesegments or convex polygons (subsection 4.4.1); see Meiser [195]. Not covered bythis approach are e. g. non-convex polygonal sites, or point sites with multiplicativeweights (the Apollonius model); in either case the bisector curves can be closed,rather than homeomorphic to the line.Another example has been provided by Abellanas et al. [1]. They studied disjointcompact, convex sites in the plane and their Hausdor� Voronoi diagram based ona convex distance function dC, which puts each point x in the Voronoi region of the�rst site that is fully contained in a circle C expanding from x; cf. subsection 4.5.2.It can be shown that the resulting regions are pathwise connected. If, in addition, allconvex sets have semi-algebraic boundaries then also property (iii) in de�nition 4.2is ful�led.Of the four algorithmic methods mentioned in section 3 for computing the Eu-clidean Voronoi diagram, two have been adapted to abstract Voronoi diagrams. Howto generalize the divide & conquer approach has been shown in [165]. As in the caseof nice metrics (subsection 4.5.3) one has to assume that the index set, S, can recur-
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Figure 33. If J(p; q2) ran like this, the disconnected shaded areas would both belong toVR(p; fp; p1; q2g), a contradiction! Therefore, the �rst point, vL;2, on the boundary of VR(p;L)can still be found by scanning the boundary from vL on counterclockwise.sively be split into subsets L and R such that B(L;R), the set of edges separatingL- from R-regions, contains no cycle, in order to �nd the starting edges of B(L;R)at in�nity. Once a starting edge has been found, B(L;R) can be traced e�ciently,because abstract Voronoi regions are pathwise connected; no stronger properties,like star-shapedness or convexity, are needed. This is illustrated in �g. 33, whichshould be compared to �g. 10.It has been shown in Mehlhorn et al. [194] and in Klein et al. [169] that onecan, without further assumptions, apply the randomized incremental constructiontechnique to abstract Voronoi diagrams.Theorem 4.14. The abstract Voronoi diagram of an admissible system J =fJ(p; q) j p; q 2 S and p 6= qg), where jSj = n, can be constructed within ex-pected O(n logn) many steps and expected space O(n), by randomized incrementalconstruction.This algorithm provides a universal tool that can be used for computing all typesof concrete Voronoi diagrams whose bisector curves have the properties requiredin de�nition 4.2. To adapt the algorithm to a special type one has to implementonly certain elementary operations on bisector curves. For example, it is su�cientto have a subroutine that accepts 5 elements of S as input, and returns the graphstructure of their abstract Voronoi diagram. All numerical computations can bekept to this subroutine.
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pFigure 34. An inverse abstract Voronoi diagram. The region of p is not connected.It seems di�cult to apply the sweep approach to abstract Voronoi diagrams. Onereason is the absence of sites whose detection by the sweep line could indicate thata new region must be started.Abstract Voronoi diagrams can also be thought of as lower envelopes, in the sensementioned at the beginning of this subsection. Namely, for each point x not situatedon a bisecting curve, the relationp <x q, x 2 D(p; q)de�nes a total ordering on S. If we construct a set of surfaces Hp, p 2 S, in 3-space such that Hp is below Hq i� p <x q holds, then the projection of their lowerenvelope equals the abstract Voronoi diagram.The concept of abstract Voronoi diagrams has been generalized to 3-space inLê [177], under structural restrictions; for example, any two bisecting surfacesJ(p; q); J(p; r) must have an intersection homeomorphic to a line, or empty. Theseassumptions apply e. g. to convex distance functions whose unit sphere is an ellip-soid; compare subsection 4.5.2.Rasch [217] has introduced abstract inverse (or: furthest-site, order n�1) Voronoidiagrams in the plane; cf. subsection 4.3.3. Here the region of p is de�ned as theintersection of all open domains D(q; p), where q 2 S n fpg. In contradistinction tothe Euclidean case, the resulting regions are in general not pathwise connected; asituation that could also arise in the concrete furthest site diagram of line segmentsis shown in �g. 34.If the admissible system J is such that none of the regular abstract Voronoiregions is empty then the inverse diagram with respect to J is a tree of complexityO(n). It can be constructed within expected O(n logn) many steps and expectedlinear storage.



72 F. Aurenhammer and R. Klein5. Geometric applicationsThis section is devoted to some of the numerous applications of the Voronoi diagramV (S) and its dual, the Delaunay triangulation DT(S), in solving geometric prob-lems. Some applications have been mentioned previously in this chapter, mostlyalong with generalizations of the classical type. Applications in relation to opti-mization properties of the Delaunay triangulation can be found in subsection 4.2.Whereas distance is implicitly involved in almost all applications of the Voronoidiagram, we start with some examples of \pure" distance problems. These distanceproblems are, apart from their direct use in practical applications that will bementioned occasionally, frequently arising subroutines in more involved geometricalgorithms.5.1. Distance problemsUnless otherwise stated, the following problems address point sites in the planeunder the standard Euclidean distance. However, most solutions can be generalized,at least to convex distance functions; see subsection 4.5.2.5.1.1. Post o�ceOur �rst example is the post o�ce (or: nearest neighbor) problem mentioned in theseminal paper [230] by Shamos and Hoey. Given a set of n sites (post o�ces) in theplane, determine, for an arbitrary query point x, the post o�ce closest to x.The Voronoi diagram of the post o�ces represents the locus approach to the posto�ce problem: it partitions the plane into regions whose points x have identicalnearest post o�ces.It remains to quickly determine the region that contains the query point, x. Thispoint location problem has received a lot of interest in computational geometry;it is the topic of a separate chapter of this book the reader is refered to. Here wesketch an elementary solution �rst mentioned in Dobkin and Lipton [100], calledthe slab method .Through each Voronoi vertex a horizontal line is drawn. These extra lines parti-tion the Voronoi regions into triangles and trapezoids. By construction, no horizon-tal \slab" between two consecutive lines contains a Voronoi vertex in its interior,so that all crossing Voronoi edges are ordered within the slab. To locate a querypoint, x = (x1; x2), we use one binary search for x2 among the slabs, and anotherone for x1 among the edge segments of the slab found. This gives us O(logn) querytime, at quadratic storage cost.There are more e�cient techniques like e. g. Kirkpatrick [162] or Edelsbrunneret al. [109] that need only linear storage and can be derived in linear time from theVoronoi diagram. Together with any of the optimal Voronoi diagram algorithmspresented in section 3 this yields the following solution to the post o�ce problem.



Voronoi Diagrams 73Theorem 5.1. Given a set S of n point sites in the plane, one can, withinO(n logn) time and linear storage, construct a data structure that supports nearestneighbor queries: for an arbitrary query point x, its nearest neighbor in S can befound in time O(logn).Storing the history of the Voronoi diagram during incremetal insertion (cf. sub-section 3.2) even obviates the need of processing the diagram for point location.Guibas et al. [135] showed that nearest neighbor queries are supported in (expected)time O(log2 n) by the resulting structure.Analogously, the order-k Voronoi diagram introduced in subsection 4.3.3 can beused for �nding the k nearest neighbors in S of a query point x. Aurenhammer andSchwarzkopf [31] generalized the practical approach in [135], obtaining a dynamicstructure with expected query time O(k log2 n), that allows both insertion anddeletion of sites, at a space requirement of O(k(n � k)); see also subsection 4.3.3.A sophisticated technique of compacting order-k Voronoi diagrams in Aggarwal etal. [5] achieves optimal query time O(k + logn) and space O(n), but with highconstants.The locus approach also works for more general sites and distance measures. Letus assume that the site set, S, consists of k non-intersecting convex polygons withn edges in total. The bisector of two sites is composed of O(n) many straight orparabolic segments; if we also count the endpoints of such segments as vertices (ofdegree 2), then the Voronoi diagram of the k convex polygons is of complexity �(n),as lemma 4.4 shows. It could be constructed in time O(n logn) by �rst computingthe line segment Voronoi diagram of the polygon edges (see subsection 4.4.1), andthen joining those regions that belong to parts of the same convex polygon.A more e�cient structure for solving the post o�ce problem of k disjoint convexpolygons has been introduced in McAllister et al. [190]. Using only O(k) many linesegments, it partitions the plane into regions bounded by at most 6 edges each.With each region one or two sites are associated: for any point x in the region, oneof them is the nearest neighbor of x in S.This planar straight line graph can be de�ned quite easily. Its vertices are the O(k)original Voronoi vertices de�ned by the k polygonal sites, plus, for each Voronoivertex v of 3 sites, the closest points to v on their respective boundaries. Straightline edges run from each vertex v to its closest points and, around the boundaryof each site, between the points closest to its Voronoi vertices; see �g. 35. For eachsite C in extreme position, a haline to in�nity is added all of whose points havethe same closest point on the boundary of C.Theorem 5.2. Given a set S of k disjoint convex polygonal sites in the plane witha total of n edges, one can, within O(k logn) time and O(k) storage, constructa data structure that allows nearest neighbor queries to be answered within timeO(logn).The essential task is in constructing the O(k) many original Voronoi vertices of thek polygons spending only O(logn) time on each vertex. This can be achieved bya clever adaption of the sweep line approach described in subsection 3.4, and by
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Figure 35. A linear subdivision of size O(k) for solving the post o�ce problem of convex polygons.
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Figure 36. The nearest neighbor graph of 11 points.means of a subroutine that computes, in O(logn) time, the Voronoi vertex of threeconvex polygons. The subroutine uses the tentative prune and search techniquedescribed in Kirkpatrick and Snoeyink [159].The same approach works for convex distance functions; see subsection 4.5.2.5.1.2. Nearest neighbors and the closest pairAnother distance problem the Voronoi diagram directly solves is the all nearestneighbors problem: For each point site in the set S, a nearest neighbor in S isrequired. An example is shown in �g. 36; arrows are pointing from each site towardsits nearest neighbor. For sites in general position the resulting nearest neighborgraph is a forest of trees each of whose vertices is of outdegree 1 and indegree atmost 6.The solution o�ered by the Voronoi diagram is based on the following fact.Lemma 5.1. Let S = P [Q be a disjoint decomposition of the point set S, and letp0 2 P and q0 2 Q be such thatd(p0; q0) = minp2P;q2Q d(p; q):Then the Voronoi regions of p0 and q0 are edge-adjacent in V (S).



76 F. Aurenhammer and R. KleinProof. Otherwise, the line segment p0q0 contains a point z that belongs to theclosure of some Voronoi region VR(r; S), where r 6= p0; q0. Let us assume that rbelongs to Q; the case r 2 P is symmetric. From z 2 VR(r; S) follows d(z; r) 6d(z; q0), henced(p0; r)6 d(p0; z) + d(z; r)6 d(p0; z) + d(z; q0) = d(p0; q0) 6 d(p0; r)by minimality of d(p0; q0). Hence, equality must hold, and we obtain d(p0; r) =d(p0; q0) and d(z; r) = d(z; q0).But since p0 lies on the bisector B(q0; r), each point z in the interior of q0p0 isstrictly closer to q0 than to r, a contradiction.If we apply lemma 5.1 to the subsets fpg and S n fpg it follows that the nearestneighbor of p is sitting in a neighboring Voronoi region (i. e. it is a Delaunayneighbor). Therefore, it is su�cient to inspect, for each p 2 S, all neighbors of p inthe Voronoi diagram, and select the closest of them. This way, each edge of V (S)will be accessed twice. Since their total number is linear, due to lemma 2.3, we cansolve the all nearest neighbor problem by constructing the Voronoi diagram.Theorem 5.3. Given a set S of n points in the plane, O(n logn) time and linearspace are su�cient for determining, for each p 2 S, a nearest neigbor in S.Once for each p its nearest neighbor in S is known, we can easily determine apair of points whose distance is a minimum.Corollary 5.1. The closest pair among n points in the plane can be determinedwithin O(n logn) time and linear space.Hinrichs et al. [142] have shown that it su�ces to maintain certain parts of theVoronoi diagram by a sweep algorithm (cf. subsection 3.4), in order to detect theclosest pair.Whereas �nding the closest pair seems an easier task than constructing theVoronoi diagram, it still has an 
(n logn) lower bound, by reduction from the"-closeness problem; compare theorem 3.1.In dimension d, constructing the Voronoi diagram is no longer the method ofchoice for �nding the closest pair, due to its exponentially increasing size; see sub-section 4.3.2. Already in 1976, Bentley and Shamos [35] provided an O(n logn)algorithm for arbitrary �xed dimensions. Golin et al. [131] showed that randomiza-tion plus use of the oor fuction (which is forbidden in the algebraic decision treemodel of computation) allows the closest pair of n points in d-space to be foundwithin expected O(n) time, for any �xed d.The problem of �nding the closest pair of n points can be generalized to reportingthe k closest pairs in S, for some number k 6 �n2�. A brute-force solution would sortall interpoint distances in time O(n2 logn) and then report the k smallest. TimeO(n2) is su�cient if one uses the selection method for �nding, in time O(m), the



Voronoi Diagrams 77k-th smallest of m objects. Smid [237] has shown how to enumerate the O(n2=3)smallest distances in time O(n logn) and linear space.A simple yet elegant solution using the Delaunay triangulation DT(S) of S hasbeen provided by Dickerson et al. [90]. Their approach is as follows.The closest pair in S corresponds to the shortest edge of the Delaunay triangu-lation DT(S), as lemma 5.1 shows. But the k-th closest pair (p; q) need not de�nean edge of DT(S), not even for small values of k. However, there exists a path ofDelaunay edges connecting p and q that are of length smaller than d(p; q) each.This can be used for proving the following elegant algorithm correct. It maintainsa queue Q of pairs of points by distance. Initially,Q contains all Delaunay neighbors.In the i-th step, the closest pair (p; q) in Q is removed and reported i-th closest.Then, for all Delaunay edges op satisfying d(o; p) 6 d(p; q), the pair (o; q) is insertedinto Q; similarly, each pair (p; r) is added to Q where qr is a Delaunay edge of lengthat most d(p; q).The performance of this algorithm is stated in the next theorem.Theorem 5.4. The k closest pairs of a set S of n points can be computed in timeO((n+ k) logn) and space O(n+ k).A similar approach even works e�ciently in higher dimensions. Dickerson andEppstein [91] showed that several interdistance enumeration problems for a pointset S in d-space can be solved by means of DT(S). The prohibitive size of DT(S) ind-space is reduced by augmenting S to have a linear-size, bounded degree Delaunaytriangulation, with the method of Bern et al. [38].5.1.3. Largest empty and smallest enclosing circleSuppose someone wants to build a new residence within a given area, as far awayas possible from each of n sources of disturbance.If the area is modeled by a convex polygon A over m vertices, and the disturbingsites by a point set S, we are looking for the largest circle with center in A thatdoes not contain a point of S. The task of determining this circle has been namedthe largest empty circle problem.Shamos and Hoey [230] observed that this circle must have its center at a Voronoivertex of V (S), or at the intersection of a Voronoi edge with the boundary of A, orat a vertex of P . For, if a circle C with center x 2 A contains no p 2 S, not even onits boundary, we blow it up until it does. If its boundary now contains three sitesthen x is a Voronoi vertex; see lemma 2.1. If there are two sites on its boundary, xlies on a Voronoi edge. In this case we move x along their bisector away from thetwo sites until the expanding circle hits a third site, or x hits the boundary of A.If, in the beginning, only one point site p 2 S lies on the boundary of C then weexpand C, while keeping its boundary in contact with p, until x reaches a vertexof A, or one of the before-mentioned events occurs.This observation leads to the following result.Theorem 5.5. The largest circle not containing a point of S, whose center lies



78 F. Aurenhammer and R. Kleininside a convex polygon A, can be found within O((m + n) logn) time and linearspace. Here, m denotes the number of vertices of A, and n is the size of S.Proof. We spend O(n logn) time on constructing the Voronoi diagram V (S) anda point location structure, as mentioned in subsection 5.1.1, so that O(m logn)total time is su�cient for �nding, for each vertex of A, its nearest neighbor in S.The largest empty circles centered at the Voronoi vertices can be determined inconstant time each. Finally, we can trace the convex boundary of A through theVoronoi diagram, in order to detect its intersections with the Voronoi edges, in timeO(n+m).The smallest enclosing circle problem asks for the circle of minimum radius thatencloses a given set S of n points in the plane. Applications are the placement ofa least powerful transmitter station that can reach a given set of locations, or theplacement of a plant that minimizes the maximum distance to the customers.As was observed in Bhattacharya and Toussaint [40], there are two cases. Eitherthe smallest enclosing circle contains three points of S on its boundary, or it runsthrough two antipodal points whose distance equals the diameter of S.From the convex hull of S its diameter, together with a pair of points realizing it,can be derived in linear time; then it can be checked if the smallest circle throughthese points contains S.Otherwise, the center v of the smallest enclosing circle C must be a vertex ofthe furthest site (or: order n � 1) Voronoi diagram introduced in subsection 4.3.3.Namely, the three sites on the boundary of C are furthest from v.This yields an O(n logn) algorithm for computing the smallest enclosing circle.The linear programming technique by Megiddo [193] is more e�cient: For �xeddimension d it allows the smallest sphere enclosing n points in d-space to be con-structed in time O(n). A more practical way of achieving linear (randomized) timeis the elegant minidisk algorithm by Welzl [255]; here the constant in O has beenshown to be a subexponential function of d by Matou�sek et al. [186].5.2. Subgraphs of Delaunay triangulationsThe Delaunay triangulation DT(S) of a set S of n point sites contains, as subgraphs,various structures with diverse applications. One example, the nearest-neighborgraph of S, has already been discussed in subsection 5.1.2. E�cient algorithms forcomputing these structures follow from the fact that DT(S) has size O(n), and canbe constructed in O(n logn) time, in the plane. This positive e�ect is partially lostin higher dimensions as DT(S) may be the complete graph on S.5.2.1. Minimum spanning trees and cyclesA minimum spanning tree, MST(S), of S is a planar straight line graph on S whichis connected and has minimum total edge length. This structure plays an important



Voronoi Diagrams 79role, for instance, in transportation problems, pattern recognition, and clustering.Shamos and Hoey [230] �rst observed the connection to Delaunay triangulations.Lemma 5.2. MST(S) is a subgraph of DT(S).Proof. Let e be an edge of MST(S). Removal of e splits MST(S) into two subtrees,and S into two subsets S1 and S2. Clearly, e is the shortest edge connecting S1 andS2. A shorter edge, if existent, would lead to a spanning tree shorter than MST(S).It follows that the circle C with diameter e is empty of sites in S. A site enclosedby C would have to belong to either S1 or S2, leading to a connection between S1and S2 shorter than e. By de�nition 2.2 in section 2, C proves e Delaunay.We thus can select the n�1 edges of MST(S) from the O(n) edges of DT(S), ratherthan from all the �n2� edges spanned by S, by standard application of Kruskal's [171]or Prim's [214] greedy algorithms. Edges are considered in increasing length order,and an edge is classi�ed as a tree edge if it does not violate acyclicity. An O(n logn)time algorithm for computing MST(S) is obtained.Lemma 5.2 generalizes to metrics di�erent from the Euclidean (for example L1,see Hwang [145]), and to higher dimensions. When staying in the plane, equallye�cient algorithms result. In higher dimensions, however, DT(S) may not be ofmuch use for the construction of MST(S), because of the possibly quadratic size.Subquadratic worst-case time algorithms for computing MST(S) in d-space exist(Yao [257] and Agarwal et al. [3]), but it still remains open whether an O(n logn)time algorithm can be developed, at least for 3-space.A traveling salesman tour , TST(S), for a set S of point sites in the plane is aminimum length cycle passing through all the sites. It is known that TST(S) is nosubgraph of DT(S), in general. Dillencourt [92] showed that DT(S) need not evencontain any cycle through all sites in S (a Hamiltonian cycle), and that �ndingHamiltonian cycles in Delaunay triangulations is NP-complete [94]. He also gives apartial explanation for the fact that DT(S) is Hamiltonian in most cases [93].Another optimization graph which is known to be not part of DT(S) is a mini-mum length matching for S; see Akl [11]. However, DT(S) is guaranteed to containsome perfect matching, see Dillencourt [93], a property not shared by all triangu-lations of S.Finding a traveling salesman tour has been shown to be NP-complete in Pa-padimitriou [209], but a factor-2 length approximation of TST(S) can be foundeasily using MST(S). Let A(S) be a cycle through S that results from traversingMST(S) in preorder. Rosenkrantz et al. [220] observed the following. Let jXj bethe total length of a set X of edges.Lemma 5.3. jA(S)j < 2 � jTST(S)j.Proof. When traversing each edge of MST(S) twice, a tour longer than A(S) isobtained. Hence jA(S)j < 2 � jMST(S)j. To see jMST(S)j < jTST(S)j, note thatremoving an edge from TST(S) leaves a path which is some, but not neccessarilythe minimum, spanning tree of S.



80 F. Aurenhammer and R. KleinA(S) can be constructed in linear time from MST(S). A more sophisticated con-struction of a spanning cycle by means of MST(S) is given in Christo�des [69].An approximation factor of 1.5 is achieved, at an expense of roughly O(n2pn) inconstruction time.Another NP-complete problem, which has a factor-2 approximation by means ofMST(S), is the construction of optimal radii graphs; see Huang [143]. Let R be areal-valued vector that associates each site p 2 S with an individual radius rp > 0.The corresponding radii graph, GR(S), contains an edge between two sites p; q 2 Si� d(p; q) 6 minfrp; rqg. The optimization problem now asks for a radii vector R�such that GR�(S) is connected and jR�j =Pp2S r�p is minimum. Radii graphs haveapplications in the design of radio networks.Consider the vector R that takes, as a radius for each site p 2 S, the length ofthe longest edge of MST(S) incident to p. Then GR(S) is connected; it containsMST(S) as a subgraph.Lemma 5.4. jRj < 2 � jR�jProof. Let e = (p; q) be some edge of MST(S). Then e appears at most twice asa radius in R, namely if e is the longest edge incident to p and the longest edgeincident to q. This gives jRj < 2 � jMST(S)j.To verify jMST(S)j 6 jR�j, let us consider GR�(S). As being connected, thisgraph contains some spanning tree, T . We may orient the edges of T such that eachsite p 2 S (except one) has a unique edge ep of T pointing at it. As ep is also anedge of GR�(S), we have r�p > jepj. Hence jR�j > jT j > jMST(S)j.Lemma 5.4 remains true for more general measures jRj = Pp2S f(rp), for anyincreasing function f . This is because MST(S) also minimizesPe2T f(jej), for allspanning trees T of S. The case f(r) = r2 is relevant to the application mentionedabove, as the received power of a radio terminal decreases with the square of thedistance.5.2.2. �-shapesExtracting the shape of a given set S of point sites in the plane is a problem thatarises, for example, in data visualization and pattern recognition. To some extent,the shape of S is reected by the convex hull of S. The edges of the convex hullare part of the Delaunay triangulation DT(S). The concept of �-shape, introducedin Edelsbrunner et al. [110] (see also [104]), generalizes the convex hull of S for thesake of better shape approximation, while still remaining a subgraph of DT(S).For � > 0, the �-shape �(S) of S is de�ned to contain an edge between sitesp; q 2 S i� there is some disc of radius � that avoids S and has p and q on itsboundary. By de�nition 2.2 in section 2, �(S) is always part of DT(S) and thus hasonly O(n) edges.For � being su�ciently large, the convex hull of S is obtained. The smaller is thevalue of �, the �ner is the level of resolution of the shape of S; see �g. 37. �(S)



Voronoi Diagrams 81
Figure 37. �-shapes for di�erent values of �.contains no edges if � is smaller than the distance of the closest pair in S.The de�nition of �(S) can be extended to negative values of �, by requiring thatthe discs of radius �� fully contain S. In this case, approximations of the shape of Smore crude than the convex hull are obtained, and the edges of �(S) appear in thedual triangulation of the furthest-site Voronoi diagram of S; see subsection 4.3.3.It follows that all the edges of the whole family of �-shapes for S, for �1 < � <1, are contained in two triangulations of size O(n). For each triangulation edge e,an interval of activity can be speci�ed, containing all values of � such that �(S)contains e. These activity intervals can be computed in O(n logn) time, and allowus to extract �(S) for an input value � in O(n) time.Another nice feature of �-shapes is their exibility. The notion of �-shape, alongwith its relationship to Delaunay triangulations, nicely generalizes to higher dimen-sions. �-shapes in 3-space are of particular interest, and implementations have beenused in several areas of science and engineering; see Edelsbrunner and M�ucke [111].Also, the concept of �-shape can be generalized to represent di�erent levels of de-tail at di�erent parts of space; see Edelsbrunner [107]. This is achieved by weightingthe sites in the given set S individually. The corresponding weighted �-shapes aresubgraphs of the regular triangulation for the weighted set S which, in turn, is thedual of the power diagram for this set; see subsection 4.3.2. The combinatorial andalgorithmic properties of weighted �-shapes are similar to that of their unweightedcounterparts.A di�erent approach for reconstructing shapes in 3-space by means of Delaunaytriangulations is persued in Boissonnat and Geiger [44]. They exploit additional in-formation on the sites available in certain applications, namely that S is contained in
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Figure 38. �-skeleton for � = 1:2k parallel planes (corresponding to cross sections of the object to be reconstructed).The Delaunay edges connecting sites in neighbored planes can be computed in anoutput-sensitive manner; see Boissonnat et al. [42]. The edges describing the �nalshape are selected according to several criteria. Geiger [128] reports that satisfactoryshapes are produced even for complicated medical images.5.2.3. �-skeletonsAnother family of graphs, de�ned by empty discs and thus consisting of subgraphsof DT(S), is the family of �-skeletons of a set S of point sites. �-skeletons havebeen introduced in Kirkpatrick and Radke [163] as a class of empty neighborhoodgraphs, and have recently received increased attention because of their relation tominimum-weight triangulations. Actually, in [163] both a circle-based and a lune-based version of �-skeletons are proposed. Here we will consider only the former,as de�ned below.In contrast to �-shapes, the radii of the empty discs de�ning a �-skeleton are not�xed but depend on the interpoint distances in S. Let p; q 2 S. For � > 1, the edge(p; q) is included in the �-skeleton �(S) i� the two discs of diameter � � d(p; q) thatpass through both p and q are empty of sites in S. See �g. 38.Note that �(S) is a subgraph of �0(S) if � > �0. For � = 1, the Gabriel graph ofS is obtained. Whereas �(S) may be disconnected for any � > 1, the Gabriel graphis always connected as it contains the minimum spanning tree of S as a subgraph;



Voronoi Diagrams 83cf. the proof of lemma 5.2. It is easy to see that the Gabriel graph just consists ofthose edges of DT(S) that cross their dual Voronoi edges. This observation yieldsan O(n logn) algorithm for its construction. In fact, general �-skeletons can beconstructed from DT(S) in linear time; see Jaromczyk et al. [149] and Lingas [185].Gabriel graphs have proved useful in the processing of geographical data; see Gabrieland Sokal [126] and Matula and Sokal [187].Recently it has been realized that, for � large enough, �(S) is contained in theminimum-weight triangulation, MWT(S), of S (a triangulation having minimumtotal edge length). The original bound � > p2 in Keil [157] has been improved inCheng and Xu [61] to � > 1:1768, which is close to the value 2=p3 for which acounterexample is known. Apart from the edges of the convex hull of S, only theshortest edge in S has been known to be part of MWT(S) before.One of the heuristics for the intriguing problem of constructing MWT(S) �rstcomputes �(S), for the smallest admissable value of �. The obtained k connectedcomponents of �(S) then can be completed length-optimally to a triangulation,using dynamic programming, in O(nk+2) time; see Cheng et al. [60]. Thus, if �(S)is connected or has only a constant number of components, MWT(S) can be con-structed in polynomial time. Unfortunately, k tends to be linear in n.A slight modi�cation of the empty neighborhood of an edge in S gives rise to theclass of relative neighborhood graphs for S. Applications in pattern recognition arereported in Toussaint [247]. These graphs are also constructable in O(n logn) timeby exploiting their containment in DT(S); see Supowit [242] and Kirkpatrick andRadke [163].5.2.4. Shortest pathsLet S be a set of n point sites in the plane. A (connected) planar straight line graphG on S is said to have dilation t if, for any p; q 2 S, the length of the shortest pathin G between p and q is at most t � d(p; q). In this case, G is also called a t-spanner(of the complete Euclidean graph) for S. Sparse t-spanners that have only O(n)edges are of special interest in the �eld of robotics.The minimum spanning tree MST(S), though being optimally sparse, may havedilation �(n). In contrast, DT(S) is sparse but 'su�ciently connected' to exhibitconstant dilation, independently from the size n of S. Consequently, good spannersfor S can be constructed in O(n logn) time. A dilation of t � 5 for DT(S) is provedin Dobkin et al. [98], a result which has been strengthened to t � 2:5 in Keil andGutwin [158]. An easy lower bound is t > �=2.Surprisingly, better upper bounds can be achieved by taking the Delaunay dualof generalized Voronoi diagrams. The convex distance function (subsection 4.5.2)whose unit circle is an equilateral triangle leads to a triangulation with t = 2. Thiswas shown in Chew [64], along with the following result concerning the constrainedDelaunay triangulation (subsection 4.4) for the L1-metric: There is always a pathbetween two given sites, whose length is at most p10 times the geodesic distancewith respect to the constraining line segments. This yields an O(n logn) time algo-rithm for computing constant approximations of optimal paths in the presence of



84 F. Aurenhammer and R. Kleinpolygonal obstacles.Alternative triangulations of S are known to exhibit good spanner properties.Examples are the greedy triangulation and the minimum-weight triangulation; seeDas and Joseph [78]. However, only for DT(S) are there algorithms available thatare worst-case e�cient and easy to implement.In higher dimensions, DT(S) may loose its sparseness and thus is of minor interestfor computing spanners. Di�erent techniques have been used with success; see e.g.Vaidya [249] and Chandra et al. [57].5.3. Geometric clusteringClustering a set of data means �nding subsets (called clusters) whose in-class mem-bers are similar, and whose cross-class members are dissimilar, according to a pre-de�ned similarity measure. Data clustering is important in diverse areas of science,and various techniques have been developed; see e.g. Hartigan [137]. In many sit-uations, similarity of objects has a geometric interpretation in terms of distancesbetween points in d-space.The rôle of Voronoi diagrams in the context of clustering is manyfold. For certainapplications, the relevant cluster structure among the objects is well reected, in adirect manner, by the structure of the Voronoi diagram of the corresponding pointsites; see e.g. Ahuja [7]. For instance, dense subsets of sites give rise to Voronoiregions of small area (or volume). Regions of sites in a homogeous cluster willhave similar shape. For clusters having a direction-sensitive density, the regionswill exhibit an extreme width in the corresponding direction.Perhaps more important is the fact that numerous types of optimal clusteringsare induced by Voronoi diagrams, and/or can be computed by �rst computing aVoronoi diagram, for a certain set of sites. This set need not coincide with the setof points to be clustered.A general distiction is between o�-line and on-line clustering methods. The for-mer methods assume the availability of the whole data set before starting, whereasthe latter cluster the data upon arrival, according to an on-line classi�cation rule.Though Voronoi diagrams play a role in on-line clustering, see e.g. Hertz et al. [140],we restrict attention to o�-line methods below.5.3.1. Partitional clusteringsLet P be a set of n points in d-space. A k-clustering of P is a partition of P intok subsets (clusters) C1; : : : ; Ck. The dissimilarity of a single cluster C is measuredby an appropriate intra-cluster criterion �(C), which may be variance, diameter,radius, etc. The dissimilarity of the whole clustering, in turn, is expressed as a(usually monotone) function f of �(C1); : : : ; �(Ck), called the inter-cluster crite-rion. Common examples for f are the maximum or the sum. C1; : : : ; Ck is calledoptimal if f(�(C1); : : : ; �(Ck)) is minimal for all possible k-clusterings of P .If k is part of the input, the problem of �nding an optimal k-clustering is NP-



Voronoi Diagrams 85complete in general, even in the plane; see Capoyleas et al. [55] for references. For�xed k, polynomial-time algorithms are known for various criteria. This is due tothe fact that optimal clusters are separable in a certain sense, and in several casesare induced by the regions of (generalized) Voronoi diagrams. This approach was�rst systematically used in [55].A common intra-cluster criterion is variance,�(C) = 1jCj Xp;q2C d(p; q)2:Variance can be rewritten asPp2C d(p; s(C))2, with s(C) being the centroid (masscenter) of C. Note that s(C) is the point x in d-space that minimizes the squareddistance Pp2C d(p; x)2 to C. Hence, if the inter-cluster criterion f is sum, theclustering problem is equivalent to the k-centroid problem: Given a set P of points tobe clustered, �nd a set S of k sites (cluster centroids) that minimizesPp2P d(p; S)2,where d(p; S) is the distance from p to the closest site in S. This implies that theoptimal k-clustering C�1 ; : : : ; C�k has the following nice property; see Boros andHammer [47]. For 1 6 i 6 k, C�i is contained in the region of s(C�i ) in the Voronoidiagram of S = fs(C�1 ); : : : ; s(C�k)g.The candidates for an optimal k-clustering of P thus are the possible partitionsof P induced by a Voronoi diagram of k point sites. The number of such partitionsis nO(dk) in d-space; see Inaba et al. [147]. This implies a polynomial-time algorithmfor computing an optimal k-clustering for �xed k, which proceeds by enumeratingall candidate solutions and comparing their dissimilarities.The problem becomes considerably easier when a set S of k 'cluster centers' is�xed in advance. A clustering minimizing the sum of the squared distances of theclusters to their centers is easily found by constructing the Voronoi diagram of S.Of more interest is the case where the sizes of the k clusters are prescribed. Nowa corresponding optimal clustering is induced by a power diagram of S (subsec-tion 4.3.2), a fact which leads to an algorithm with roughly O(k2n) runtime if P isa set of n points in the plane; see Aurenhammer et al. [29].In Inaba et al. [147], optimal k-clusterings for the intra-cluster measure �(C) =Pp;q2C d(p; q)2 (like variance, but without division by jCj) are considered. Again,these clusterings are induced by a kind of power diagram of the cluster centroids,weighted additively by jCj and multiplicatively by �(C).Another popular measure �(C) is the radius of the smallest sphere enclosing C. Ifmaximum is taken as the inter-cluster criterion, the k-center problem is obtained:Find a set S of k centers such that rS = maxp2P d(p; S) is minimized. In otherwords, choose a set S of centers such that P can be covered by k spheres of minimumradius rS . (This simpli�es to the smallest enclosing sphere problem for k = 1; seesubsection 5.1.3). It is easy to see that the Voronoi diagram of S gives rise to optimalclusters. Capoyleas et al. [55] observed that an optimal k-clustering for �, for anymonotone increasing inter-cluster criterion f , is induced by the power diagram ofthe enclosing spheres.For both intra-cluster measures � above, polynomial-time algorithms for �xed k



86 F. Aurenhammer and R. Kleinresult from considering the nO(dk) candidate clusterings.For k = 2, the 'Voronoi property' of the 2-centroid or 2-center problem just meanslinear separability of the two optimal clusters. However, linear separability for allpairs of clusters in a given clustering does not always imply that this clustering has arealization by means of Voronoi or power diagrams. An example is the intra-clustercriterion diameter in 2-space [55].The problem of constructing linearly (or circularly) separable clusterings in theplane, where each cluster C of P is separable by a straight line (or circle) from P nC,is addressed in Dehne and Noltemeier [85] and Heusinger and Noltemeier [141]. Theygive a polynomial-time algorithm for deciding the existence, and �nding an opti-mal clustering, with prescribed cluster sizes. A correspondence between separableclusters and regions of higher-order Voronoi diagrams for P (subsection 4.3.3) isexploited.The order-k Voronoi diagram, Vk(P ), of P is also useful for selecting from Pa k-sized cluster C� of minimal dissimilarity �(C�). This approach is persued inDobkin et al. [97] and Aggarwal et al. [6]. For instance, if � is variance, C� has anon-empty region in Vk(P ). If � is diameter, C� is contained in a subset of P havinga non-empty region in V3k�3(P ). These properties hold in arbitrary d-space and, inthe plane, lead to e�cient cluster selection algorithms. Moreover, if �(C) measuresthe perimeter of the axis-aligned enclosing square, or rectangle, of a cluster C,higher-order Voronoi diagrams in the L1-metric (subsection 4.5.2) yield improvedsolutions. Except for the diameter case, the running time of all these algorithms isdominated by the cost of computing an order-k diagram in the plane.5.3.2. Hierarchical clusteringsHierarchical methods are based solely on a given inter-cluster distance �. Theycluster a set S of n points as follows. Initially, each point is considered to be acluster itself. As long as there are two or more clusters, a pair C;C 0 of clusters isjoined into one cluster if �(C;C 0) is minimum for all cluster pairs.A frequently used inter-cluster distance is the single-linkage distance�(C;C 0) = minfd(p; q) j p 2 C; q 2 C0g:As was pointed out in Shamos and Hoey [230], constructing the single-linkage hi-erarchy for S just means simulating the greedy algorithm of Kruskal [171] for com-puting the minimum spanning tree MST(S) of S . We thus obtain a time bound ofO(n logn) in the plane, and subquadratic bounds in d-space; see subsection 5.2.1.After having performed n � k steps in constructing the hierarchy (that is, afterhaving added the n � k shortest edges to MST(S)), the intermediate k-clusteringC1; : : : ; Ck is optimal in the following sense; see Asano et al. [18]: It maximizes theminimum single-linkage distance between the clusters, for all possible k-clusteringsof S.The practical value of single-linkage clusterings is, however, restricted by the factthat the produced clusters tend to exhibit large dissimilarity in terms of variance,



Voronoi Diagrams 87radius, and diameter. To remedy this de�ciency, other inter-cluster distances havebeen used. Among them is the complete-linkage distance�(C;C 0) = maxfd(p; q) j p 2 C; q 2 C0g:Constructing the complete-linkage hierarchy for S e�ciently is much more elusive.A direct approch leads to an O(n3) time and O(n) space algorithm in general d-space. (The frequently cited O(n2) time insertion algorithm in Defays [82] onlyapproximates the hierarchy. Its output depends on the insertion order.)In the plane, it seems of advantage to use, as an auxiliary structure, the Voronoidiagram of the intermediate clusters C1; : : : ; Ck, de�ned by the Hausdor� distanceh(x;C) = maxfd(x; p) j p 2 Cg of a point x to a cluster C; see e.g. Edelsbrunneret al. [108] and Huttenlocher et al. [144]. Unfortunately, the closest pair of clustersdoes not necessarily yield adjacent regions in this diagram.Recently, anO(n log2 n) time algorithmhas been given in Krznaric and Levcopou-los [172]. Among other structures, they use the Delaunay triangulation DT(S) andthe furthest-site Voronoi diagram of the points in the intermediate clusters Ci.They also show that approximations of the complete-linkage hierarchy for S can beobtained from DT(S) in O(n) time.5.4. Motion planningSuppose that for a disc-shaped robot centered at some start point, s, a motionto some target point, t, must be planned in the presence of n line segments asobstacles. We assume that the line segments are pairwise disjoint, and that thereare four line segments enclosing the scene, as shown in �g. 39. While the robot isnavigating through a gap between two line segments, l1 and l2, at each position xits \clearence", i. e. its distanced(x; li) = minfd(x; y); y 2 ligto the obstacles, should be a maximum. This goal is achieved if the robot maintainsthe same distance to either segment! In other words, the robot should follow thebisector B(l1; l2) of the line segments l1 and l2 until its distance to another obstaclegets smaller than d(x; li).Roughly, this observation implies that the robot should walk along the edges ofthe Voronoi diagram V (S) of the line segments in S = fl1; : : : ; lng. This diagram isconnected, due to the four surrounding line segments.If start and target point are both lying on V (S), the motion planning task im-mediately reduces to a discrete graph problem: After labeling each edge of V (S)with its minimum distance to its two sites, and adding s and t as new vertices toV (S), a breadth �rst search from s will �nd, within O(n) time, a path to t in V (S)whose minimum label is a maximum. If this value exceeds the robot's radius, acollision-free motion has been found.
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ss'Figure 39. Moving a disk from s to t in the presence of barriers is faciliated by their Voronoidiagram.If the target point, t, does not lie on V (S), we �rst determine the line segment l(t)whose Voronoi region contains t; to this end, point location techniques as mentionedin subsection 5.1.1 can be applied. Next, we �nd the point z(t) on l(t) that is closestto t; see �g. 39. If its distance to t is less than the robot's radius then the robotcannot be placed at t and no motion from s to t exists. Otherwise, we consider theray from z(t) through t. It hits a point t0 on V (S) which serves as an intermediatetarget point.Similarly a point s0 can be de�ned if the original start point, s, does not lie onV (S).Theorem 5.6. The robot can move from s to t without collision i� its radius doesnot exceed one of the distances d(z(t); t) and d(z(s); s), and if there exists a collision-free motion from s0 to t0 along edges of the Voronoi diagram V (S).Proof. Suppose the conditions are ful�led. Then the straight motion from s to s0does not cause a collision since the robot's distance to its closest obstacle is everincreasing. The same holds for t and t0. Combining these pieces with a safe motionfrom s0 to t0 yields the desired result. Conversely, let us assume that a path � from sto r exists along which the robot can move without hitting one of the line segments.The mapping f : t 7! t0 can be extended not only to s but to all points x of thescene (leaving �xed exactly the points of V (S)). One can show that f is continuous.Consequently, path � is mapped by f onto a path �0 in V (S) that runs from s0 tot0. For each point x on � its corresponding point x0 on �0 is even farther away fromits closest obstacle.



Voronoi Diagrams 89This \retraction" approach has �rst been taken by �O'D�unlaing and Yap [206].The Voronoi diagram of n line segments plus a structure suitable for point locationin V (S) can be preprocessed in time O(n logn) time. Afterwards, for each pair(s; t) of start and target point, the above method can �nd a safe motion from s tot within time O(n), if it exists, or report otherwise.If approximating the robot's shape by a disc is not accurate enough, a compactconvex set C can be used, with some �xed reference point in its interior. As long asonly translational motions are considered, the retraction approach still works; onlythe Voronoi diagram of the obstacles must now be based on the convex distancefunction de�ned by the convex set C� that results from reecting C about thereference point; compare subsection 4.5.2.If the scene consists of polygonal obstacles the same situation occurs as in thepost o�ce problem; see subsection 5.1.1: Even though the number k of obstaclesmay be small, the complexity of their Voronoi diagram increases in proportion withtheir total number n of edges. Again, the piecewise-linear approximation of theVoronoi diagram by McAllister et al. [190] comes to the rescue; it is of complexityO(k) and can be constructed within time O(k logn) for the Euclidean distance, andin time O(k logn logm) for a distance function based on a convex m-gon (that is,for solving the translational motion planning problem of a convex robot with medges).If the robot is also allowed rotational motions, Voronoi diagrams can still beapplied. �O'D�unlaing et al. [204, 205] have studied the problem of moving a linesegment amidst polygonal obstacles.Further results on the use of Voronoi diagrams in motion planning can be foundin the surveys [13, 14] by Alt and Yap, in Yap [258], and in Canny [53, 54].6. Concluding remarks and open problemsAlthough this chapter is quite long and, as we believe, reasonably comprehensive,we are aware that we did not cover all aspects of the Voronoi diagram and relatedtopics. Below are some topics that we feel are important and interesting but thathave not been treated in detail here.A signi�cant stream of research concerns the stochastic properties of Voronoidiagrams for randomly distributed sites. Motivation stems from their relevance inthe natural and social sciences. The interested reader is refered to chapters 5 and8 of Okabe et al. [208] for a comprehensive treatment. Also, the survey paper [27]could be consulted for a brief overview. In the present chapter, randomization entersonly in the design of e�cient construction algorithms. We decided not to includemore stochastic aspects because their relevance to computational geometry is lessstrong.In view of the large scope of applications of Voronoi diagrams, fast constructionis an important issue. Parallelization is a tool to reach this goal. We did not discussparallel methods for constructing Voronoi diagrams in detail; a separate chapterof this book, devoted to parallel computational geometry, will partially cover this



90 F. Aurenhammer and R. Kleingap.Though a host of applications of the Voronoi diagram has been covered, applica-tions in the natural and social sciences have been mentioned only marginally in thechapter. The book by Okabe et al. [208] puts strong emphasis on these applications,which led us, as being no experts in these areas, to refer to this book instead.Finally let us mention, out of many interesting open problems concerning Voronoidiagrams, a few that seem most important to us in view of their practical applica-tions.Among the few algorithmic problems for planar Voronoi diagrams that have notbeen solved in a satisfactory manner is the computation of the geodesic Voronoidiagram (subsection 4.4.4). Apart from the instance of simple polygons [210], theonly known subquadratic solution is [198]. Is there a simple and practically e�cientconstruction method, with a good theoretical bound, O(n logn)?The insert & ip algorithms for computing Delaunay triangulations in 3-space(subsection 4.3.1) in [151], [215], and [115] are simple and elegant, but su�er fromthe fact that intermediate triangulations might be quite large compared to the �nalresult. This cannot happen if the set of sites to be inserted is well distributed, butthis requirement need not be met in typical applications like contour modeling.Does there always exist an 'output-sensitive' insertion order not running into theabove problem?Despite its importance in practice, the minimum spanning tree in 3-space (sub-section 5.2.1) has eluded e�cient construction so far. The existing subquadraticsolutions [257], [3], are far from easy implementation. A partial answer are the e�-cient expected-time and approximation algorithms in [72], [248]. Is there a practicaland worst-case e�cient algorithm for computing exact minimum spanning trees in3-space?References[1] M. Abellanas, G. Hernandez, R. Klein, V. Neumann-Lara, and J. Urrutia. Voronoi diagramsand containment of families of convex sets on the plane. In Proc. 11th Annu. ACM Sympos.Comput. Geom., pages 71{78, 1995.[2] P. K. Agarwal, M. de Berg, J. Matou�sek, and O. Schwarzkopf. Constructing levels in ar-rangementsand higher order Voronoi diagrams. In Proc. 10th Annu. ACM Sympos. Comput.Geom., pages 67{75, 1994.[3] P. K. Agarwal, H. Edelsbrunner, O. Schwarzkopf, and E. Welzl. Euclidean minimum span-ning trees and bichromatic closest pairs. Discrete Comput. Geom., 6(5):407{422, 1991.[4] A. Aggarwal, L. J. Guibas, J. Saxe, and P. W. Shor. A linear-time algorithm for computingthe Voronoi diagram of a convex polygon. Discrete Comput. Geom., 4(6):591{604, 1989.[5] A. Aggarwal, M. Hansen, and T. Leighton. Solving query-retrieval problems by compactingVoronoi diagrams. In Proc. 22nd Annu. ACM Sympos. Theory Comput., pages 331{340,1990.[6] A. Aggarwal, H. Imai, N. Katoh, and S. Suri. Finding k points with minimum diameter andrelated problems. J. Algorithms, 12:38{56, 1991.[7] N. Ahuja. Dot pattern processing using Voronoi polygons as neighborhoods. IEEE Trans.Pattern Anal. Mach. Intell., 4:336{343, 1982.
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