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Introduction 11 IntroductionThe arrangement of a �nite collection � of geometric objects in Rd , denoted as A(�), isthe decomposition of the space into relatively open connected cells of dimensions 0; : : : ; dinduced by �, where each cell is a maximal connected set of points lying in the intersectionof a �xed subset of �. Besides being interesting in their own right, because of the richgeometric, combinatorial, algebraic, and topological structures that arrangements possess,they also lie at the heart of several geometric problems arising in a wide range of applicationsincluding robotics, computer graphics, molecular modeling, and computer vision. Beforeproceeding further, we present a few such examples.(a) Assume that we have a robot system B with d degrees of freedom, i.e., we can representeach placement of B as a point in Rd , and we call the space of all placements the con�gurationspace of B. Suppose the three-dimensional workspace of B is cluttered with polyhedralobstacles whose shapes and locations are known. B is allowed to move freely in a motionthat traces a continuous path in the con�guration space, but B has to avoid collisionwith the obstacles. For each combination of a geometric feature (vertex, edge, face) ofan obstacle and a similar feature (face, edge, vertex) of B, de�ne their contact surfaceas the set of all points in Rd that represent placements of B at which contact is madebetween these speci�c features. Let � be the set of all contact surfaces. Let Z be a pointcorresponding to a given initial free placement of B, i.e., a placement at which it doesnot intersect any obstacle. Then the set of all free placements of B that can be reachedfrom Z via a collision-free continuous motion corresponds to the cell containing Z in thearrangement of the contact surfaces. Thus, the problem of determining whether there existsa collision-free path from an initial con�guration I to a �nal con�guration F is equivalent todetermining whether I and F lie in the same cell of A(�). This close relationship betweenarrangements and motion planning has led to considerable work on arrangements; see, forexample, [22, 52, 196, 205, 221, 222, 228, 232, 304]. If we want to compute the set of allplacements reachable from the initial placement I, the combinatorial complexity of the cellin A(�) containing I, i.e., the total number of lower-dimensional faces appearing on itsboundary, serves as a trivial lower bound for the running time. It turns out that in manyinstances one can design motion-planning algorithms whose performance almost matchesthis bound.(b) A molecule can be modeled as an arrangement of spheres, where the radius of each spheredepends on the atom that it models and the position of each sphere depends on the molecularstructure. In the Van der Waals model, a molecule is a family of possibly overlappingspheres, where the radius of each sphere is determined by the van der Walls radius of thecorresponding atom in the molecule. Lee and Richards [229] proposed another model, calledsolvent accessible model, which is used to study the interaction between the protein andsolvent molecules. Also in this model, a molecule is modeled as a sphere, but the ballsrepresenting the solvent molecules are shrunk to points and the balls representing atoms inthe protein are in
ated by the same amount [289]. Even though these models ignore variousArrangements April 14, 1998



Introduction 2properties of molecules, they have been useful in a variety of applications. Many problemsin molecular modeling can be formulated as problems related to arrangements of spheres.For example, computing the \outer surface" of the molecule corresponds to computing theunbounded cell of the corresponding arrangement of spheres. See [135, 136, 200, 255] formore details on applications of arrangements in molecular biology.(c) Arrangements are also attractive because of their relationship with several other struc-tures. For example, using the duality transform, a point p = (p1; : : : ; pd) in Rd can bemapped to the hyperplane Pdi=1 xipi = 1, and vice versa. This facilitates the formulationof several problems related to point con�gurations in terms of arrangements of hyperplanes.See [132, 102] for a small sample of such problems. The Grassmann-Pl�ucker relation trans-forms k-
ats in Rd to hyperplanes or points in Ru , for u = �d+1k+1� � 1 [70, 208]; e.g., linesin R3 can be mapped to hyperplanes or points in R5 . Therefore many problems involv-ing lines in R3 have been solved using hyperplane arrangements in R5 [307, 279, 99, 127].The well-known combinatorial structure oriented matroids of rank k+1 are closely relatedto arrangements of pseudo-hyperplanes in Rk [70, 290], and zonotopes in Rd correspondto hyperplane arrangements in Rd�1 [132, 332]. Several applications of arrangements insingularity theory, algebraic group theory, and other �elds of mathematics can be foundin [266, 269].Study of arrangements of lines and hyperplanes has a long, rich history. The �rstpaper on this topic is perhaps by J. Steiner in 1826 [309], in which he obtained boundson the number of cells in arrangements of lines and circles in the plane and of planes andspheres in R3 . His results have since been extended in several ways [31, 32, 33, 82, 291,326, 330, 331]. A summary of early work on arrangements of hyperplanes can be foundin the monograph and the survey paper by Gr�unbaum [183, 184]. Most of the work onhyperplane arrangements until the 1980s dealt with the combinatorial structure of the entirearrangement or of a single cell in the arrangement (i.e., a convex polyhedron), and withthe algebraic and topological properties of the arrangement [165, 267, 268, 269]. Varioussubstructures and algorithmic issues of hyperplane arrangements, motivated by problemsin computational and combinatorial geometry, have received attention mostly during thelast �fteen years.Although hyperplane arrangements possess an immensely rich structure, many applica-tions (e.g., the motion-planning problem and molecular models described above) call for asystematic study of higher-dimensional arrangements of patches of algebraic surfaces. Formore than a century, researchers in algebraic geometry have studied arrangements of alge-braic surfaces, but their focus has largely been on algebraic and combinatorial issues ratherthan on algorithmic ones. Considerable progress has been made on all fronts during thelast �fteen years.It is beyond the scope of a survey paper, or even of a book, to cover all aspects ofarrangements. In this chapter we will survey combinatorial and algorithmic problems onarrangements of (hyper)surfaces (or of surface patches) in real a�ne space Rd . (HyperplaneArrangements April 14, 1998



Preliminaries 3arrangements in complex space have also been studied; see, e.g., [69, 269].) We will assumethat d is a small constant, that the surfaces are algebraic and their degree is bounded by aconstant, and that any surface patch is a semialgebraic set de�ned by a Boolean combinationof a constant number of polynomials of constant maximum degree. There has been somerecent work on combinatorial and algorithmic issues involving arrangements of more generalsurfaces, known as semi-pfa�an sets, which include graphs of trigonometric, exponential, orlogarithmic functions on bounded domains [175, 223]. We also note that a study of algebraicand topological problems on arrangements of algebraic surfaces can be found in [71]. In thissurvey we will mostly review the known results on the combinatorial complexity of varioussubstructures of arrangements, the known algorithms for computing these substructures,and the geometric applications that bene�t from these results. Many other combinatorialproblems related to arrangements are discussed in [70, 166, 178, 272, 271, 306, 332]. Anexcellent source on combinatorial and algorithmic results on arrangements of hyperplanesis the book by Edelsbrunner [132]. The book by the authors [304] covers some of the topicsdiscussed here in detail. Other survey papers on arrangements include [197, 190, 204, 302].This survey is organized as follows. In Section 2 we de�ne arrangements formally, statethe assumptions we will be making in this survey, and discuss the known bounds on thecomplexity of the entire arrangement. Sections 3{10 discuss combinatorial complexities ofvarious substructures of arrangements. Section 11 discusses several methods for representingarrangements. Section 12 describes algorithms for computing the entire arrangement, andSection 13 reviews algorithms for computing various substructures of arrangements. Wediscuss a few applications of arrangements in Section 14.2 PreliminariesLet � = f
1; : : : ; 
ng be a collection of n (hyper)surfaces or surface patches in Rd . The set� induces a decomposition of Rd into connected cells (or faces), called the arrangement of� and denoted A(�), so that each cell is a maximal connected subset of the intersection of a�xed (possibly empty) subset of surface patches that avoids all other surface patches. Thusa d-dimensional cell is a maximal connected region that does not meet any surface patchof �. The combinatorial complexity of A(�) is the total number of cells, of all dimensions,in A(�). The combinatorial complexity of a k-dimensional cell C in A(�) is the number ofcells of A(�) of dimension less than k that are contained in the boundary of C.We assume that � satis�es the following assumptions.(A1) Each 
i 2 � is a semialgebraic set of constant description complexity. The localdimension of every point in 
i is d� 1.11A subset of Rd is called a real semialgebraic set if it is obtained as a �nite Boolean combination of setsof the form ff = 0g or ff > 0g for d-variate polynomials f . A semialgebraic set has constant descriptioncomplexity if it can be described in terms of a constant number of polynomials, with a constant bound onthe degrees of the corresponding polynomials.Arrangements April 14, 1998



Preliminaries 4

Figure 1: An arrangement of lines.(A2) Each 
i 2 � is of the form (Qi = 0) ^ Fi(Pi1�i10; Pi2�i20; : : : ; Piu�iu0). Here u is aconstant; �ij 2 f�;�g; Fi is a Boolean formula; Qi; Pi1 ; : : : ; Piu 2 R[x1 ; : : : ; xd]; andthe degrees of Qi; Pij are at most b, for some constant b. Let Q = fQ1; : : : ; Qng.We will refer to semialgebraic sets satisfying (A1) and (A2) a (hyper)surface patch inRd . If 
i is simply the zero set of Qi, we will call 
i a (hyper)surface. Using a strati�cationalgorithm [71, 210], we can decompose each 
i into a constant number connected surfacepatches so that the interior of each patch is smooth and each of them satis�es (A1) and(A2) with a di�erent, possibly larger, value of b. We can also assume that each resultingpatch is monotone in x1; : : : ; xd�1 (i.e., any line parallel to the xd-axis intersects it in atmost one point). In some cases, the resulting collection may also include vertical surfacepatches, namely, patches whose projection on the hyperplane xd = 0 has dimension � d�2.However, in most of the presentation we will assume that no vertical patches exist.An arrangement of hyperplanes is called simple if any d of the hyperplanes intersectin exactly one point, and no d + 1 of them have a nonempty intersection. In a simplearrangement, a k-dimensional cell is contained in d � k hyperplanes. We will also needa similar concept for arrangements of surface patches. An arrangement A(�) satisfyingassumptions (A1) and (A2) is said to be in general position if the coe�cients of the polyno-mials de�ning the surface patches in � and their boundaries are algebraically independent2over the rationals; otherwise, A(�) is called degenerate. This condition ensures that nodegeneracy occurs among the surface patches, such as too many surface patches with acommon point, tangencies or overlaps between di�erent intersections of subsets of the sur-face patches, etc. We note that this de�nition of general position is quite strong (e.g.,surfaces de�ned by polynomials with integer coe�cients are not in general position). In allthe applications only a much weaker version of general position is required, which rules outa speci�c list of forbidden degenerate situations. If A(�) is in general position, then any dsurface patches of � intersect in at most s points for some constant s depending on d andb. By Bezout's theorem [208], s � bd.2A set fx1; : : : ; xkg of real numbers is algebraically independent (over the rationals) if no k-variatepolynomial with integer coe�cients vanishes at (x1; x2; : : : ; xk).Arrangements April 14, 1998



Preliminaries 5If A(�) is degenerate, we can perturb the coe�cients of the polynomials in Q by variousin�nitesimals so that the coe�cients of the perturbed polynomials are in extensions of thereals that are �elds of Puiseux Series in these in�nitesimals, and so that the resulting surfacepatches are in general position. Moreover, it can be shown that, as far as worst-case boundsare concerned, the perturbation may reduce the combinatorial complexity of any cell of thearrangement by at most a constant factor [304, 303, 283]. Actually, in many cases the sizeof a substructure of � has maximum complexity when A(�) is in general position. Thisobservation allows us to restrict our attention to arrangements in general position whileinvestigating the combinatorial complexity of substructures of arrangements.However, in order to achieve the general position de�ned above, the perturbation schemehas to introduce a di�erent in�nitismal for each coe�cient, which makes any algorithm basedon this perturbation scheme impractical. Fortunately, most of the algorithms involvingarrangements either work for any degenerate arrangement or require a considerably weakerde�nition of general position, e.g., the intersection of any k surface patches is either emptyor a (d� k)-dimensional set, all surface patches intersect \properly," etc. The perturbationscheme required by an algorithm depends on the degenerate situations that it wants to ruleout. Several constructive perturbation schemes have been proposed that use only a fewin�nitismals [66, 146, 159, 160, 167]. Although these schemes cannot handle all the cases,they work for a wide range of applications. The paper by Seidel [300] contains a detaileddiscussion on \linear" perturbations and its applications in geometric algorithms. Manyalgorithms have also been proposed to handle degeneracies directly without resorting toperturbations; see e.g. [59, 83]. We will, nevertheless, use the strong de�nition of generalposition, de�ned above, in order to simplify the exposition, and refer the reader to originalpapers for speci�c general-position assumptions required by di�erent algorithms.In the light of the preceding discussion, and since we are mainly interested in asymptoticbounds, we will make the following additional assumptions on the surface patches in �,without any real loss of generality, whenever required.(A3) Each surface patch in � is connected and monotone in x1; : : : ; xd�1, and its relativeinterior is smooth.(A4) The surface patches in � are in general position.(A5) Any d surface patches in � intersect in at most s points, for some constant s. (This isa consequence of the preceding assumptions, but is stated to introduce s explicitly.)Generally, we will be stating assumptions (A1) and (A2), but most of the proofs andalgorithms sketched in the survey will also make assumptions (A3){(A5).Assumptions (A1){(A3) imply that we can regard each surface patch 
 as the graphof a partially de�ned (d� 1)-variate function xd = 
(x1; : : : ; xd�1) of constant descriptioncomplexity. We will refer to the projection of 
 onto the hyperplane xd = 0 as the domain,denoted 
�, of 
 (over which the function 
 is de�ned). The boundary of 
�, called theArrangements April 14, 1998



Preliminaries 6domain boundary, is a collection of O(1) (d� 2)-dimensional surface patches in Rd�1 satis-fying assumptions corresponding to (A1){(A2). Abusing the notation slightly, we will notdistinguish between the surface patch 
 and the underlying function 
(x1; : : : ; xd�1).The most fundamental question in the combinatorial study of an arrangement A(�) ofsurfaces is to prove a bound on the combinatorial complexity, f(�), of A(�).In 1826, Steiner [309] studied the complexity of arrangements of lines and circles in R2and of planes and spheres in R3 . His results on arrangements of planes can be summarizedas follows. Let � be a set of n planes in R3 so that � can be decomposed into k parallelfamilies, containing n1; : : : ; nk planes in each respective family, and the parallel families arein general position. Steiner proved the following bounds on the number of vertices, edges,two-dimensional faces, and three-dimensional cells of A(�).�3 vertices,�2 + 3�3 edges,��2 + 3�3 bounded edges,�1 + 2�2 + 3�3 2-faces,�1 � 2�2 + 3�3 bounded 2-faces,1 + �1 + �2 + �3 3-cells,�1 + �1 � �2 + �3 bounded 3-cells.Here �1 =Pki=1 ni = n, �2 =Pi<j ninj, and �3 =Pi<j<k ninjnk. In particular, if ni = 1for 1 � i � k, i.e., � is a set of n = k planes in general position, then A(�) has �n3� vertices,�n2�+3�n3� edges, n2+3�n3� 2-faces, and 1+n+�n2�+�n3� 3-cells. Later Roberts [291] extendedSteiner's formula to count the number faces in arbitrary arrangements of planes (allowingall kinds of degeneracies) in R3 , using the inclusion-exclusion principle. Brousseau [81]used a plane-sweep argument to count the number of faces in arrangements of planes inR3 . (A similar argument was used by Hadwiger [194] to derive Euler's formula for convexpolytopes.) His method was later extended by Alexanderson and Wetzel [33].Buck [82] was the �rst to bound the combinatorial complexity of hyperplane arrange-ments in higher dimensions. In more recent work, Zaslavsky [330, 331] studied hyperplanearrangements; he used the M�obius inversion formula and lattice theory to count the numberof cells of all dimensions in (possibly degenerate) hyperplane arrangements. Let � be a setof n hyperplanes in Rd . Let 'k(�) denote the number of k-cells in A(�). Zaslavsky [330]and Las Vergnas [227] proved that for non-simple arrangements, 'k(�), depends on theunderlying matroid structure. There are several results on bounding 'k(�) in nonsimplehyperplane arrangements. For example, Fukuda et al. [173] proved that the mean numberof (k� 1)-cells bounding a k-cell in an arrangement of n hyperplanes is less than 2k, whichimmediately implies that �k(�) � �dk�'d(�). See [173, 252, 292] for some other results ofthis type.In summary, the following theorem gives a bound on the combinatorial complexity ofhyperplane arrangements.Arrangements April 14, 1998



Preliminaries 7Theorem 2.1 (Buck [82]) Let � be a set of n hyperplanes in Rd . For any 0 � k � d,'k(�) � � nd� k� kXi=0 �n� d+ ki �:The maximum is attained when A(�) is simple.Proof: We will prove the theorem for simple arrangements. Let 'k(n; d) denote the numberof k-cells in a simple d-dimensional arrangement of n hyperplanes. Let A(�) be a simplearrangement of a set � of n hyperplanes in Rd . Fix a subset R � � of d � k hyperplanes,and let � = Th2R h; � is a k-
at. Set �j� = fh \ � j h 2 H n Rg. The k-cells of A(�j�)are the same as the k-cells of A(�) that lie in �. Since A(�j�) is a simple k-dimensionalarrangement and there are � nd�k� subsets of � of size d� k, we obtain'k(�) = � nd� k�'k(n� d+ k; k):By Euler's relation for cell complexes in a�ne space (see e.g., [132]),dXk=0(�1)k'k(�) = (�1)d;therefore dXk=0(�1)k� nd� k�'k(n� d+ k; k) = (�1)d:The above equality can be rewritten asdXk=0(�1)k�nk�'d�k(n� k; d� k) = 1: (2.1)We claim that 'd(n; d) = dXi=0 �ni�; (2.2)which will complete the proof of the theorem.Since (2.1) is a recurrence with '0(n; 0) = 1, there is a unique solution to the recurrence.
Arrangements April 14, 1998



Preliminaries 8By induction on d and substituting (2.2) in (2.1), we obtaindXk=0(�1)k� nd� k�"d�kXi=0 �n� ki �# = dXk=0 d�kXi=0(i� 1)k� nk + i��k + ik �= dXi=0 iXk=0(�1)k�ni�� ik�= 1 + dXi=1 �ni� iXk=0(�1)k�ik� = 1:This completes the proof of the theorem. 2For arrangements A(�) of a set � of surfaces satisfying assumptions (A1) and (A2),obtaining a bound on f(�) is not easy. If surfaces patches are in general position, in thesense de�ned above, it is easy to argue that f(�) = O(nd). However, it is not easy to arguethat the arrangements have maximum complexity when the surface patches are in generalposition (this is due to the complicated algebraic structures that can arise in degeneratesettings). Heintz et al. [211] proved that f(�) = (nb)O(d). A lower bound of 
((nb=d)d) isnot di�cult to prove. Warren [323] had proved that the number of d-dimensional cells inan arrangement of n hypersurfaces, each of degree � b, in Rd is O((nb=d)d). This boundalso follows from the results by Milnor [259], Petrovski�� and Ole��nik [281], and Thom [317].Using a perturbation argument, Pollack and Roy [283] generalized Warren's result andproved that the number of cells of all dimensions in an arrangement of n hypersurfaces isO((nb=d)d). An easy consequence of their result is the following theorem.Theorem 2.2 Let � be a set of n surface patches in Rd satisfying assumptions (A1)and (A2). Then f(�) = �O(nb)d �d :A recent result by Basu et al. [65] can be used to extend the above theorem as follows.Let � be a k-dimensional algebraic surface of degree at most b. Then the number of cellsin the subdivision of � induced by � is at most O(nkbd).Improved bounds on the complexity of the arrangement can be proved in some specialcases. For example, if � is a set of n (d� 1)-simplices in Rd that form the boundaries of kconvex polytopes, then f(�) = O(nbd=2ckdd=2e) [44]. See [121] for improved bounds in a fewother cases. A concept closely related to the combinatorial complexity of arrangements isthe number of realizable sign patterns of a family of polynomials. Let Q = fQ1; : : : ; Qngbe a set of d-variate polynomials as de�ned above, and let � be the family of the zero-setsArrangements April 14, 1998



Lower Envelopes 9of the polynomials in Q. We can de�ne �i(x), for a point x 2 Rd , as follows.�i(x) = 8<: �1 Qi(x) < 0;0 Qi(x) = 0;+1 Qi(x) > 0:Since �i(x) remains the same for all points x in a single cell of A(�), we can de�ne thesign sequence for each cell �(C) = h�1(x); �2(x); : : : ; �n(x)i for any point x 2 C. A signsequence � is realized by A(�) if there is a cell C 2 A(�) with � = �(C). A well-studiedquestion in algebraic geometry is to bound the number of sign sequences that can be realizedby a set of polynomials [34]. Obviously, f(�) is an upper bound on this quantity.3 Lower EnvelopesDe�nitions and preliminary results. In chapter DS-?? we reviewed lower envelopesof arcs in the plane and showed the relationship between such envelopes and Davenport{Schinzel sequences, which eventually led to the derivation of tight or almost tight boundson the complexity of these structures. In this section we study lower envelopes of surfacepatches in higher dimensions. Let � = f
1; : : : ; 
ng be a collection of surface patches in Rdsatisfying assumptions (A1){(A3). If we regard each surface patch as the graph of a partiallyde�ned function, the lower envelope of �, denoted L(�) (or L for brevity), is de�ned as thegraph of the partially de�ned functionL�(x) = min1�i�n 
i(x) ; x 2 Rd�1 ;
i(x) is set to +1 if x 62 
�i . The upper envelope U(�) of � is de�ned as the graph of thepartially de�ned function U�(x) = max1�i�n 
i(x) ; x 2 Rd�1 ;
i(x) is set to �1 if x 62 
�i . We can extend the de�nitions of lower and upper envelopes evenif � satis�es only (A1) and (A2). We can decompose each 
i into O(1) connected patches,each of which is monotone in x1; : : : ; xd�1 directions and satis�es (A1) and (A2). Let �0denote the resulting set of surface patches. We de�ne L(�) = L(�0) and U(�) = U(�0).L(�) induces a partition of Rd�1 into maximal connected ((d� 1)-dimensional) regionsso that L(�) is attained by a �xed (possibly empty) subset of � over the interior of eachsuch region. The boundary of such a region consists of points at which L(�) is attainedby at least two of the surface patches or by the relative boundary of at least one surface.LetM(�) denote this subdivision of Rd�1 , which we call the minimization diagram for thecollection �. A face of M(�) is a maximal connected region over which L(�) is attainedby the same set of functions and/or relative boundaries of function graphs in �. Notethat if a face f 2 M(�) lies on the boundary of the domain of a surface in �, then fArrangements April 14, 1998



Lower Envelopes 10

Figure 2: Lower envelope of triangles in R3 , as viewed from below.may not correspond to any face of L(�). However, if f lies in the relative interior of thedomains of all the relevant surface patches, f is the projection of a face f̂ of L(�). Thecombinatorial complexity of L(�), denoted �(�), is the number of faces of all dimensions inM(�). For an in�nite family G of surface patches satisfying assumptions (A1){(A2), wede�ne �(n; d;G) = max �(�), where the maximum is taken over all subsets � of G of size n.IfG is the set of all surface patches satisfying (A1){(A3) or ifG is obvious from the context,we will simply write �(n; d). The maximization diagram is de�ned as the subdivision ofRd�1 induced, in the same manner, by the upper envelope U(�) of �.As discussed in Chapter DS-??, the complexity of the lower envelope of n arcs in theplane, each pair of which intersects in at most s points, is at most �s+2(n), the maximumlength of an (n; s)-Davenport{Schinzel sequence (see also [304]). Extending to higher di-mensions, it was conjectured that the complexity of the lower envelopes of a family of nsurface patches satisfying (A1){(A2) is O(nd�2�q(n)) for a constant q � 0. If � is a setof n hyperplanes in Rd , then the Upper Bound Theorem implies that the complexity ofL(�) is �(nbd=2c) [332]. Let � be the set of all (d � 1)-simplices in Rd . Extending thelower-bound construction by Wiernik and Sharir [327] to higher dimensions, one can provethat �(n; d;�) = 
(nd�1�(n)). This suggests we cannot hope to aim for an o(nd�1) boundon �(n; d) for general surface patches. At the end of this section we will discuss some casesin which better bounds on �(n; d) can be proved.Using a divide-and-conquer approach, Pach and Sharir [273] proved that, for a set �of n simplices in Rd , the number of (d � 1)-dimensional faces in M(�) is O(nd�1�(n)).Roughly speaking, they divide � into subsets �1;�2, each of size at most dn=2e, and boundthe number of (d � 1)-dimensional faces of M(�1);M(�2) recursively. They prove thatthe number of (d � 1)-dimensional faces in M(�) is jM(�1)j + jM(�2)j + O(nd�1�(n)),thereby obtaining the claimed bound. Edelsbrunner [133] extended their result to give thesame asymptotic bound for the number of faces of all dimensions. Simpler proofs for thisbound were proposed by Sharir and Agarwal [304] and Tagansky [314]. Roughly speaking,both proofs proceed by induction on d, and they bound the change in the complexity of theminimization diagram as a simplex is inserted into �.Arrangements April 14, 1998



Lower Envelopes 11The main complexity bound. All the aforementioned proofs rely crucially on the factthat if � is a set of surface patches in general position, then any triple of surface patchesintersect in at most one point. These proofs do not extend to the case when a tripe intersectsin two or more points. Halperin and Sharir [202] proved a near-quadratic bound on �(n; 3)for the case when s � 2. Sharir [303] extended their approach to higher values of s and d.Their results are stated in the following theorem.Theorem 3.1 (Halperin and Sharir [202]; Sharir [303]) Let � be a set of n surface patchesin Rd satisfying assumptions (A1){(A2). Then �(n; d) = O(nd�1+"), for any " > 0. Theconstant of proportionality depends on "; d; b (and s).Proof: We will sketch the proof for a set of bivariate surface patches in R3 satisfyingassumptions (A1){(A5) with s = 2, i.e., a triple of surface patches intersect in at most twopoints. For a pair of surface patches 
i; 
j 2 �, let �ij denote the intersection arc 
i \ 
j . If�ij is not x1-monotone, we decompose it at its x1-extremal points; each intersection arc isthereby decomposed into O(1) pieces. If any of these points appears on the lower envelope,we regard it as a vertex on the envelope and its projection as a vertex on the minimizationdiagram.Since � is in general position, it su�ces to bound the number of vertices in M(�).Indeed, a higher dimensional face f ofM(�) must be incident to a vertex v ofM(�), andwe can charge f to v. By the general-position assumption, each vertex is charged only aconstant number of times. For a subset R � �, let ��(R) denote the number of vertices inM(R); set ��(r) = max��(R), where the maximum is taken over all subsets of � of size r.
C

e

e

Figure 3: Vertical cylinder Ce and the vertical cross-section �e of �.We call a vertex ofM(�) a boundary vertex if it lies on the boundary @
�i of the domainof a surface 
i; otherwise we call it an inner vertex. The number of boundary vertices isO(n�q(n)), where q is a constant depending on b, the maximum degree of surface patchesand their boundaries. Indeed, let Ce be the vertical cylinder erected on an edge e of theArrangements April 14, 1998



Lower Envelopes 12boundary @
�i , i.e., Ce = e � R. De�ne �e = f
 \ Ce j 
 2 � n f
igg, which is a collectionof O(n) arcs; see Figure 3. Each arc in �e satis�es assumptions (A1){(A3) (with d = 2,and with larger, but still constant, parameters b and s). It is easily seen that a boundaryvertex ofM(�) appearing on e is a vertex ofM(�e). If the arcs in �e intersect in at mostq � 2 points, O(�q(n)) boundary vertices lie on e. Summing over all O(n) edges of domainboundaries of �, we obtain the desired bound on the number of boundary vertices.We call an inner vertex regular if it is not an x1-extremal vertex of any of the threeintersection curves. The number of irregular vertices is obviously O(n2). For a subsetR � �, let �(R) denote the number of regular (inner) vertices in M(R), and let �(r) =maxjRj=r �(R). The above discussion implies that��(�) � �(�) +O(n�q(n)):Next, we derive a recurrence for �(�), which will solve to O(n2+"). Fix a regular vertexv of M(�). let v̂ be the corresponding vertex of L(�) (since v is an inner vertex, v̂ iswell de�ned). Suppose v̂ is one of the two intersection points of three surface patches,say, 
1; 
2; 
3. Assume, without loss of generality, that if j
1 \ 
2 \ 
3j = 2, then the x1-coordinate of the other intersection point of 
1; 
2, and 
3 is larger than that of v̂. Sincev̂ is a regular vertex, one of the three pairwise-intersection curves �ij , say �12, lies aboveL(�) in the halfspace x1 < x1(v) in a su�ciently small neighborhood of v̂. We mark on �12the intersection points of �12 with other surface patches of � and the points that lie abovethe boundaries of other surface patches in �.We �x a parameter t = t(") and follow �12 in the (�x1)-direction, starting from v̂, untilone of the following three events occurs:3(C1) we reach the left endpoint of �12;(C2) �12 appears on L(�); or(C3) we crossed t marked points on �12.We call v a vertex of type (Ci), for i = 1; 2; 3, if we �rst reach an event of type (Ci).If (C1) occurs, we charge v to the left endpoint of �12. Since each endpoint is charged atmost twice, the total number of regular vertices of type (C1) is O(n2). If (C2) occurs, thenwe must have passed above the boundary of 
3 while following �12 because �12 lies strictlyabove 
3 in the halfspace x1 < x1(v). Let w be the marked point on �12 that lies above @
�3and that we have visited. We charge v to w. Suppose w lies above an edge e of @
�3 . We cande�ne Ce and �e as above; then w is a vertex of A(�e). Since (C2) occurred before (C3),at most t marked points lie on �12 between v and w, which implies that less than t arcs of�e lie below w. As shown in [301], the number of vertices of A(�e) that lie above at most3If the x1-coordinate of the other intersection point of 
1; 
2, and 
3 were smaller than that of v̂, wewould have traced �12 in the (+x1)-direction.Arrangements April 14, 1998



Lower Envelopes 13t arcs is O(t�q(n)). Summing over all edges of domain boundaries, the number of markedpoints on intersection arcs to which a vertex of type (C2) is charged is O(nt�q(n)). Sinceeach marked point is charged O(1) times, the number of type (C2) vertices is O(nt�q(n)).Finally, if (C3) occurs, then we charge 1=t to each marked point on �12 that we visited.Each marked point will be charged only O(1=t) units, and each such marked point lies aboveat most t surface patches of �. Theorem 6.1 in Section 6 implies that the number of suchmarked points, summed over all intersection curves, is O(t3��(n=t)). The total number ofvertices of type (C3) is thusO(1=t) �O(t3��(n=t)) = O(t2�(n=t) + n�q(n)):Hence, we obtain the following recurrence for �(n):�(n) � At2��nt �+Btn�q(n);where A and B are constants (depending on b). The solution of the above recurrence is�(n) = O(tn1+logt A�q(n)):If t = t(") is chosen su�ciently large, then �(n) = O(n2+"). This proves the theorem ford = 3; s = 2.For s > 2, Sharir [301] introduces the notion of index of a regular vertex. The index ofa vertex v 2 T3i=1 
i is the number of points of T3i=1 
i whose x1 coordinates are less thanthat of v. For 0 � j < s, let �(j)(�) be the number of regular vertices in L(�) of index j.Then �(�) =Ps�1j=0 �(j)(�).Modifying the above argument slightly, Sharir derived a system of recurrences for thequantities �(j)(�), for j < s. There are three main di�erences. First, the tracing of �12is always done in the decreasing x1-direction. Second, the value of the parameter t nowdepends on j and is denoted by tj, Third, there is one more stopping criterion:(C4) �12 intersects 
3; let z be the (�rst) intersection point.Using the fact that the index of z is � j � 1 and that at most tj surface patches lie belowz, Sharir derives the following recurrence for �(j)(n) = maxj�j=n �(j)(�).�(j)(n) � Ajt2j��� ntj�+Bj �t3j�(j�1)� ntj�+ nt�q(n)� :By expanding this system of recurrences and by choosing the values of tj carefully, Sharirproved that the solution of this system satis�es��(n) = O(n2+"):The theorem is proved in higher dimensions by induction on d, using a similar chargingscheme. See the original paper by Sharir for details. 2Arrangements April 14, 1998



Lower Envelopes 14Open Problem 1 Let � be a set of n surface patches in Rd satisfying assumptions (A1)and (A2). Is �(n; d) = O(nd�2�q(n)), where q is a constant depending on d and b?Bounds in special cases. As noted above, sharper bounds are known on the complexityof lower envelopes in some special cases; see [294, 304]. For example, if � is a set of pseudo-planes in R3 , i.e., each triple of surfaces intersects in at most one point and the intersectionof a pair of surfaces in � is a single (closed or unbounded) Jordan curve, then �(�) = O(n).On the other hand, if � is a set of pseudo-spheres, i.e., each triple intersects in at most twopoints and the intersection curve of any pair is a single Jordan curve, then �(�) = O(n2).If � is a family of hypersurfaces in Rd , a sharper bound on �(�) can be proved using theso-called linearization technique. Here is a sketch of this technique.Let � = f
1; : : : ; 
ng be a collection of hypersurfaces of degree at most b, i.e., each 
iis the zero set of a d-variate polynomial Qi of degree at most b. Let Q = fQ1; : : : ; Qng.We say that � admits a linearization of dimension k if, for some p > 0, there exists a(d+ p)-variate polynomialg(x;a) =  0(a) +  1(a)'1(x) +  2(a)'2(x) + � � �+  k�1(a)'k�1(x) + 'k(x);for x 2 Rd , a 2 Rp , so that, for each 1 � i � n, we have Qi(x) = g(x;ai) for some ai 2 Rp .Here each  j(a), for 0 � j � k, is a p-variate polynomial, and each 'j(x), for 1 � j � k+1, isa d-variate polynomial. It is easily seen that such a polynomial representation always existsfor p � db+1|let the ''s be the monomials that appear in at least one of the polynomials ofQ, and let  j(a) = aj (where we think of a as the vector of coe�cients of the monomials).We de�ne a transform ' : Rd �! Rk that maps each point in Rd to the point'(x) = ('1(x); '2(x); : : : ; 'k(x));the image '(Rd ) is a d-dimensional algebraic surface � in Rk . For each function Qi(x) =g(x;ai), we de�ne a k-variate linear functionhi(y) =  0(ai) +  1(ai)y1 + � � � k�1(ai)yk�1 + yk:Let H = fhi = 0 j 1 � i � ng be a set of n hyperplanes in Rk . Let � be a vertex of L(�). If �is incident to 
1; : : : ; 
d, then Q1(�) = � � � = Qd(�) = 0 and Qd+1(�)�d+10; : : : ; Qn(�)�n0,where �i 2 f>;<g. By construction, Qi(�) = hi('(�)). Let Q 2 R[x1 ; : : : ; xd] be a d-variate polynomial. If we regard Q as a univariate polynomial in xd and the coe�cient ofthe leading term in Q is a positive constant, then we call Q a positive polynomial. If all Qi'sare positive, then, by the de�nition of lower envelopes, Qi(�) < 0 for every i > d. Hence,h1('(�)) = � � � hd('(�)) = 0 and hd+1('(�)) < 0; : : : ; hn('(�)) < 0. That is, '(�) is a vertexof L(H) \ �. Since each hi is a hyperplane in Rk and the degree of � depends only on dand b, the Upper Bound Theorem for convex polyhedra (see McMullen and Shephard [251]and Ziegler [332]) implies that the number of vertices in � \ L(H) is O(nbk=2c). Hence, wecan conclude the following.Arrangements April 14, 1998



Lower Envelopes 15Theorem 3.2 Let � be a collection of n hypersurfaces in Rd , of constant maximum degreeb. If � admits a linearization of dimension k and each surface � is the zero set of a positivepolynomial, then �(�) = O(nbk=2c), where the constant of proportionality depends on k; d,and b.We illustrate the linearization technique by giving an example. A sphere in Rd withcenter (a1; : : : ; ad) and radius ad+1 can be regarded as the zero set of the polynomialg(x;a), whereg(x; a1; : : : ; ad+1) = [a21 + � � �+ a2d � a2d+1]� [2a1 � x1]� [2a2 � x2]� � � � �[2ad � xd] + [x21 + � � � x2d]Thus, setting 0(a) = dXi=1 a2i � a2d+1;  1(a) = 2a1; � � �  d(a) = 2ad;  d+1(a) = �1;'1(x) = x1; � � � 'd(x) = xd; 'd+1(x) = dXi=1 x2i ;we obtain a linearization of dimension d+ 1. We can therefore conclude the following:Corollary 3.3 Let � be a set of n spheres in Rd . Then �(�) = O(ndd=2e).The overlay of minimization diagrams. Motivated by several applications, researchershave studied the complexity of the overlay of two minimization diagrams. That is, let � and�0 be two families of surface patches satisfying assumptions (A1){(A3); set n = j�j + j�0j.The overlay of M(�) and M(�0) is the decomposition of Rd�1 into maximal connectedregions so that each region lies within a �xed pair of faces of M(�) and M(�0). It isconjectured that the complexity of the overlay of the two diagrams is also close to O(nd�1).Although this conjecture is obviously true for the minimization diagrams of arcs in theplane, it is not intuitive even in R3 because the overlay of two planar maps with m edgeseach may have 
(m2) vertices. Edelsbrunner et al. [141] proved an O(nd�1�(n)) upperbound if � and �0 are sets of a total of n simplices in Rd .Agarwal et al. [21] proved that the overlay of two minimization diagrams, de�ned for atotal of n surface patches, in R3 has O(n2+") complexity, for any " > 0. Note that in R3 ,each vertex of the overlay is a vertex ofM(�), a vertex ofM(�0), or an intersection pointof an edge ofM(�) with an edge ofM(�0). The proof in [21] establishes an upper boundon the number of intersection points by generalizing the proof technique of Theorem 3.1.Open Problem 2 What is the complexity of the overlay of two minimization diagramsin R4?Arrangements April 14, 1998



Single Cells 16The following problem is closely related to the overlay of minimization diagrams. Let�;�0 be two sets of surface patches in Rd satisfying (A1){(A2). Regarding each surface asthe graph of a partially de�ned function, de�neS(�;�0) = nx ��� L�0(x1; : : : ; xd�1) � xd � U�(x1; : : : ; xd�1)o ;i.e., S(�;�0) is the set of points lying above all surface patches of �0 and below all surface
Figure 4: S(�;�0); solid arcs are in �, and dashed arcs are in �0.patches of �; see Figure 4. It can be shown that the combinatorial complexity of S(�;�0)is proportional to the complexity of the overlay of the minimization diagram of � and themaximization diagram of �0. The result of Agarwal et al. [21] implies that S(�;�0) =O(n2+") in 3-space. In general, the complexity of the overlay of the minimization diagramof � and the maximization diagram of �0 may be larger than that of S(�;�0). As anapplication, which also illustrates this discrepancy, consider the following example. LetS = fS1; : : : ; Sng be a set of n spheres in R3 . A line in R3 can be parameterized by fourreal parameters. We can therefore de�ne the set of lines tangent to a sphere Si and lyingabove (resp. below) Si as a surface patch 
i (resp. 
0i) in R4 . De�ne � = f
i j 1 � i � ng and�0 = f
0i j 1 � i � ng. If the lines are parameterized carefully, Agarwal et al. [10] showedthat S(�;�0) is the set of lines intersecting all the spheres of S and that the combinatorialcomplexity of S(�;�0) is O(n3+"), for any " > 0. However, a construction of Pellegrini [278]implies that the combinatorial complexity of the overlay of the two diagrams can be 
(n4).4 Single CellsLower envelopes are closely related to other substructures in arrangements, notably cellsand zones. The lower envelope is a portion of the boundary of the bottommost cell ofthe arrangement, though the worst-case complexity of L(�) can be larger than that of thebottommost cell of A(�).) In two dimensions, it was shown in [191] that the complexity ofa single face in an arrangement of n arcs, each pair of which intersect in at most s points, isO(�s+2(n)), and so has the same asymptotic bound as the complexity of the lower envelopeof such a collection of arcs. The prevailing conjecture is that the complexity of a single cellin an arrangement of n surface patches in Rd satisfying the assumptions (A1) and (A2) isArrangements April 14, 1998



Single Cells 17close to O(nd�1). The Upper Bound Theorem implies that the complexity of a single cellin arrangement of hyperplanes in Rd is O(nbd=2c), and the linearization technique describedin Section 3 implies that the complexity of a single cell in an arrangement of n spheres isO(ndd=2e). However, the lower-bound construction for lower envelopes implies a lower boundof 
(nd�1�(n)) for a complexity of a single cell already for arrangements of simplices.
Figure 5: A single cell in an arrangement of segments.Pach and Sharir [273] were the �rst to prove a subcubic upper bound on the complexityof a single cell in arrangements of triangles in R3 . This bound was improved by Aronov andSharir [50] to O(n7=3), and subsequently to O(n2 logn) [52]. The latter approach extendsto higher dimensions; that is, the complexity of a single cell in an arrangement of n (d� 1)-simplices in Rd is O(nd�1 log n). A simpler proof was given by Tagansky [314]. Theseapproaches, however, do not extend to nonlinear surfaces even in R3 .Halperin [196] proved near-quadratic bounds on the complexity of a single cell in arrange-ment of certain classes of n bivariate surface patches, which arise in motion-planning appli-cations. One of the more signi�cant results in this direction is by Halperin and Sharir [205],who proved such a bound on the complexity of a single cell in an arrangement of the con-tact surfaces that arise in a rigid motion of a convex polygon amidst convex polygons in theplane, i.e., the surfaces that represent the placements of the polygon at which it touchesone of the obstacles. The proof borrows ideas from the proof of Theorem 3.1.A near optimal bound on the complexity of a single cell in the arrangement of anarbitrary collection of surface patches in R3 satisfying assumptions (A1) and (A2) was�nally proved by Halperin and Sharir [203]:Theorem 4.1 (Halperin and Sharir [203]) Let � be a set of surface patches in R3 satisfyingassumptions (A1) and (A2). For any " > 0, the complexity of a single cell in A(�) isO(n2+"), for any " > 0, where the constant of proportionality depends on " and on themaximum degree of the surface patches and of their boundaries.The proof proceeds along the same lines as the proof of Theorem 3.1. However, theyestablish the following two additional results to \bootstrap" the recurrences that the proofderives. Let C be the cell of A(�) whose complexity we want to bound.Arrangements April 14, 1998



Zones 18(a) There are only O(n2) vertices v of the cell C that are locally x-extreme (that is, thereis a neighborhood N of v and a connected component C 0 of the intersection of N withthe interior of C, such that v lies to the left (in the x-direction) of all points of C 0, orv lies to the right of all these points).(b) There are only O(n2+") vertices on popular faces of C, that is, 2-faces f for which Clies locally near f on both sides of f .Property (a) is proved by an appropriate decomposition of C into O(n2) subcells, in thestyle of a Morse decomposition of C (see [260]), so that each subcell has at most two pointsthat are locally x-extreme in C. Property (b) is proved by applying the machinery of theproof of Theorem 3.1, where the quantity to be analyzed is the number of vertices of popularfaces of C, rather than all inner vertices. Once these two results are available, the proof ofTheorem 3.1 can be carried through, with appropriate modi�cations, to yield a recurrencefor the number of vertices of C, whose solution is O(n2+"). We refer the reader to theoriginal paper for more details.It looks plausible that this proof can be extended to higher dimensions, to yield abound of O(nd�1+") on the complexity of a single cell in an arrangement of n surfacepatches in Rd satisfying assumptions (A1) and (A2). For this, appropriate extensions ofboth properties (a) and (b) have to be established. The extension of (a) appears to requiretopological considerations related to Morse theory, and the extension of (b) requires aninductive argument, in which bounds on the number of vertices of popular faces of alldimensions need to be derived, using induction on the dimension of the faces. Unfortunately,a complete proof is not yet available.The linearization technique in the previous section can be extended to bound the com-plexity of a cell as well, namely, one can prove the following.Theorem 4.2 Let � be a collection of n hypersurfaces in Rd , of constant maximum degreeb. If � admits a linearization of dimension k, then the combinatorial complexity of a cell ofA(�) is O(nbk=2c), where the constant of proportionality depends on k; d, and b.5 ZonesLet � be a set of n surfaces in Rd . The zone of a surface � (not belonging to �), denotedas zone(�; �), is de�ned to be the set of d-dimensional cells in A(�) that intersect �. Thecomplexity of zone(�; �) is de�ned to be the sum of complexities of the cells of A(�) thatbelong to zone(�; �), where the complexity of a cell in A(�) is the number of faces of alldimensions that are contained in the closure of the cell.The complexity of a zone was �rst studied by Edelsbrunner et al. [147]; see also [102].The `classical' zone theorem [132, 149] asserts that the maximum complexity of the zoneArrangements April 14, 1998



Zones 19of a hyperplane in an arrangement of n hyperplanes in Rd is �(nd�1), where the constantof proportionality depends on d. The original proof given by Edelsbrunner et al. [147]had some technical problems. A correct, and simpler, proof was given by Edelsbrunner etal. [149]. Their technique is actually quite general and can also be applied to obtain severalother interesting combinatorial bounds involving arrangements. For example, the proof byAronov and Sharir for the complexity of a single cell in arrangements of simplices [52] useda similar approach. Other results based on this technique can be found in [4, 48, 49]. Wetherefore describe the technique, as applied in the proof of the zone theorem:Theorem 5.1 (Edelsbrunner, Seidel, and Sharir [149]) The maximum complexity of the zoneof a hyperplane in an arrangement of n hyperplanes in Rd is �(nd�1).This result is easy to prove for d = 2; see Chapter DS-??. For a set � of n hyperplanesin Rd and another hyperplane b, let �k(b; �) denote the total number of k-faces containedon the boundary of cells in zone(b; �); each such k-face is counted once for each cell that itbounds. Let �k(n; d) = max �k(b; �) ;where the maximum is taken over all hyperplanes b and all sets � of n hyperplanes in Rd .The maximum complexity of zone(b; �) is at mostPdk=0 �k(n; d). Thus the following lemmaimmediately implies the upper bound in Theorem 5.1.Lemma 5.2 For each d and 0 � k � d,�k(n; d) = O(nd�1) ;where the constants of proportionality depend on d and k.Proof: We use induction on d. As just noted, the claim holds for d = 2. Assume that theclaim holds for all d0 < d, let � be a set of n hyperplanes in Rd , and let b be some otherhyperplane. Without loss of generality, we can assume that the hyperplanes in � [ fbg arein general position. We de�ne a k-border to be a pair (f;C), where f is a k-face incidentto a (full-dimensional) cell C of A(�). Thus �k(b; �) is the total number of k-borders (f;C)for which C 2 zone(b; �).We pick a hyperplane 
 2 � and count the number of all k-borders (f;C) in zone(b; �)such that f is not contained in 
. If we remove 
 from �, then any such k-border is containedin a k-border (f 0; C 0) of zone(b; � n f
g) (i.e., f � f 0 and C � C 0). Our strategy is thus toconsider the collection of k-borders in zone(b; � n f
g) and to estimate the increase in thenumber of k-borders as we add 
 back to �. Observe that we do not count k-borders thatlie in 
.Let �j
 = f
0 \ 
 j 
0 2 � n f
gg; the set �j
 forms a (d � 1)-dimensional arrangementof n � 1 hyperplanes within 
. Let (f;C) be a k-border of zone(b; � n f
g), and considerwhat happens to it when we reinsert 
. The following cases may occur:Arrangements April 14, 1998



Zones 20
 \ C = ;: In this case the k-border (f;C) gives rise to exactly one k-border in zone(b; �),namely itself.
 \ C 6= ;, 
 \ f = ;: Let 
+ be the open half-space bounded by 
 that contains f , and letC+ = C \ 
+. If C+ intersects b, then (f;C) gives rise to one k-border in zone(b; �),namely (f;C+) (this is the case for the edge f = e in Figure 6); otherwise it gives riseto no k-border in zone(b; �).
 \ f 6= ;: Let 
+ and 
� be the two open half-spaces bounded by 
 and let C+ = C \ 
+and C� = C \
�. If the closure of only one of C+ and C� intersects b, say, C+, then(f;C) gives rise to only one k-border in zone(b; �), namely (f \ 
+; C+) (this is thecase for the edge f = e0 in Figure 6). If both C+ and C� intersect b, then (f;C) givesrise to two k-borders in zone(b; �), namely (f \ 
+; C+) and (f \ 
�; C�) (this is thecase for the edge f = e00 in Figure 6). In this case, however, we can charge uniquelythis increase in the number of k-borders to (f \ 
;C \ 
), which, as easily seen, is a(k � 1)-border in zone(b \ 
; �j
).
e’

e’’

e

a

h

b

Figure 6: Inserting 
 into zone(b; � n f
g).If we repeat this process over all k-borders of zone(b; � n f
g), we obtain that the totalnumber of k-borders (f;C) in zone(b; �), for f not contained in 
, is at most�k(b; � n f
g) + �k�1(b \ 
; �j
) � �k(n� 1; d) + �k�1(n� 1; d� 1)= �k(n� 1; d) +O(nd�2) ;where the last inequality follows from the induction hypothesis. Repeating this analysis forall hyperplanes 
 2 �, summing up the resulting bounds, and observing that each k-borderof zone(b; �) is counted exactly n� d+ k times, we obtain�k(n; d) � nn� d+ k ��k(n� 1; d) +O(nd�2)� :Edelsbrunner et al. [149] showed that this recurrence solves to O(nd�1) for k � 2. UsingEuler's formula for cell complexes, one can show that �k(n; d) = O(nd�1) for k = 0; 1 aswell. This completes the proof of the theorem. For the lower bound, it is easily checked thatArrangements April 14, 1998



Zones 21the complexity of the zone of a hyperplane b in an arrangement of n hyperplanes in Rd ingeneral position is 
(nd�1). In fact, the complexity of the cross-section of the arrangementwithin b is already 
(nd�1). 2The above technique can be extended to bound the quantity PC2A(�) jCj2, where �is a set of hyperplanes, C ranges over all d-dimensional cells of the arrangement, and jCjdenotes the number of lower-dimensional faces incident to C. For d � 3, an easy applicationof the zone theorem (see Edelsbrunner [132]) implies that PC jCj2 = O(nd); this boundis obviously tight if the lines or planes of � are in general position. For d > 3, the sameapplication of the zone theorem yields only PC jCjfC = O(nd), where fC is the number ofhyperplanes of � meeting the boundary of C. Using the same induction scheme as in theproof of Theorem 5.1, Aronov et al. [48] showed thatXC2A(�) jCj2 = O(nd logb d2 c�1 n):It is believed that the right bound is O(nd). Note that such a result does not hold forarrangements of simplices or of surfaces because the complexity of single cell can be 
(nd�1).The zone theorem for hyperplane arrangements can be extended as follows.Theorem 5.3 (Aronov, Pellegrini, and Sharir [49]) Let � be a set of n hyperplanes in Rd .Let � be a p-dimensional algebraic hypersurface of some �xed degree, or the relative boundaryof any convex set with a�ne dimension p+1, for 0 � p � d. The complexity of the zone(�; �)is O(nb(d+p)=2c log
 n), where 
 = d + p(mod 2), and the bound is almost tight (up to thelogarithmic factor) in the worst case.In particular, for p = d� 1, the complexity of the zone is O(nd�1 logn), which is almostthe same as the complexity of the zone of a hyperplane in such an arrangement.The proof proceeds along the same lines of the inductive proof of Theorem 5.1. However,when a hyperplane 
 2 � is removed and then reinserted, and splits a face f of zone(�; � nf
g) into two subfaces, both lying in zone(�; �), the charging scheme used in the proof ofTheorem 5.1 becomes inadequate, because f \
 need not belong to the zone of �\
 in thed-dimensional cross-section of A(�) along 
. What is true, however, is that f \ 
 is a faceincident to a popular facet of zone(�; �) along 
, that is, a facet g � 
 whose two incidentcells belong to the zone. Thus the induction proceeds not by decreasing the dimension ofthe arrangement (as was done in the proof of Theorem 5.1), but by reapplying the samemachinery to bound the number of vertices of popular facets of the original zone(�; �). Thisin turn requires similar bounds on the number of vertices of lower-dimensional popular faces.We refer the reader to Aronov et al. [49] for more details.In general, the zone of a surface in an arrangement of n surfaces in Rd can be transformedto a single cell in another arrangement of O(n) surface patches in Rd . For example, LetArrangements April 14, 1998



Levels 22� be a set of n (d � 1)-simplices in Rd , and let � be a hyperplane. We split each 
 2 �into two polyhedra at the intersection of � and � (if the intersection is nonempty), pushthese two polyhedra slightly away from each other, and, if necessary, retriangulate eachpolyhedron into a constant number of simplices. In this manner, we obtain a collection�0 of O(n) simplices, and all cells of the zone of � in A(�) now fuse into a single cell ofA(�0). Moreover, by the general position assumption, the complexity of the zone of � in �is easily seen to be dominated by the complexity of the new single cell of A(�0). (The sametechnique has been used earlier in [140], to obtain a near-linear bound on the complexity ofthe zone of an arc in a 2-dimensional arrangement of arcs.) Hence, the following theoremis an easy consequence of the result by Aronov and Sharir [52].Theorem 5.4 The complexity of the zone of a hyperplane in an arrangement of n (d� 1)-simplices in Rd is O(nd�1 log n).Using a similar argument one can prove the following.Theorem 5.5 (Halperin and Sharir [203]) Let � be a collection of n surface patches in R3 ,satisfying assumptions (A1) and (A2). The combinatorial complexity of the zone in A(�)of an algebraic surface � of some �xed degree is O(n2+"), for any " > 0, where the constantof proportionality depends on ", on the maximum degree of the given surfaces and theirboundaries, and on the degree of �.Once the bound on the complexity of a single cell in an arrangement of general algebraicsurfaces is extended to higher dimensions, it should immediately yield, using the samemachinery, to a similar bound for the zone of a surface in such an arrangement.6 LevelsThe level of a point p 2 Rd in an arrangement A(�) of a set � of monotone surfaces satisfying(A1){(A2) is the number of surfaces of � lying vertically below p. For 0 � k < n, we de�nek-level (resp. �k-level), denoted by Ak(�) (resp. A�k(�)), to be the closure of all pointson the surfaces of � whose level is k (resp. at most k). A face of Ak(�) or A�k(�) is amaximal connected portion of a face of A(�) consisting of points having a �xed subset ofsurfaces lying below them. For fully de�ned functions, any such face coincides with a faceof A(�). Note that A0(�) is the same as L(�). If the surfaces in � are graphs of totallyde�ned functions, then the level of all points on a face of A(�) is the same and Ak(�) isa connected monotone surface; otherwise Ak(�) may have discontinuities. See Figure 7 foran example of levels in arrangements of lines and segments.Levels in hyperplane arrangements in Rd are closely related to k-sets of point sets inRd . Let S be a set of n points in Rd , and let S� be the set of hyperplanes dual to S. AArrangements April 14, 1998



Levels 23
(i) (ii)Figure 7: The 2-level in (i) an arrangement of lines, and (ii) in an arrangement of segments.subset A � S is called a k-set if jAj = k and A can be strictly separated from S n A by ahyperplane h. The level of point h�, dual to h, in A(S�) is k or n� k. The k-set problemis to bound the maximum number of k-sets of S (in terms of k and n). It is easy to seethat the maximum number of k-sets in a set of n points in Rd is bounded by the maximumnumber of facets in the k-level and the (n� k)-level in an arrangement of n hyperplanes inRd .Let  k(�) (resp.  �k(�)) be the total number of faces in Ak(�) (resp. A�k(�)). Let Gbe a (possibly in�nite) family of surfaces in Rd satisfying assumptions (A1) and (A2). Wede�ne  k(n; d;G) = max k(�) and  �k(n; d;G) = max �k(�), where the maximum inboth cases is taken over all subsets � � G of size n. If G is not important or follows fromthe context, we will omit the argument G.The following theorem follows from a result by Clarkson and Shor [111].Theorem 6.1 (Clarkson and Shor [111]) Let G be an in�nite family of surfaces satisfyingassumptions (A1){(A3). Then for any 0 � k < n� d, �k(n; d;G) = O�(k + 1)d�� nk + 1 ; d;G�� ;where �(n; d;G) is the maximum complexity of the lower envelope of n surfaces in G.Proof: Let � � G be a set of n surface patches satisfying assumptions (A1){(A5). For asubset X � � and an integer 0 � k � jXj�d, let Vk(X) denote the set of vertices at level kin A(�). As is easily seen,  �k(�) is proportional to Pkj=0 jVj(�)j, which we thus proceedto bound. We bound below only the number of vertices in the �rst k levels that lie in theinterior of d surface patches; the other types of vertices are easier to analyze, and the samebound applies to them as well. We choose a random subset R � � of size r = bn=(k + 1)cand bound the expected number of vertices in V0(R). A vertex v 2 Vj(�) is in V0(R) if andonly if the d surfaces de�ning v are in R and none of the j surfaces of � lying below v arechosen in R, so the probability that v 2 V0(R) is �n�j�dr�d �=�nr�. Hence, easy manipulation ofArrangements April 14, 1998



Levels 24binomial coe�cients implies thatE�jV0(R)j] = n�dXj=0 jVj(�)j�n�j�dr�d ��nr�� kXj=0 jVj(�)j�n�j�dr�d ��nr�= 
� 1(k + 1)d� kXj=0 jVj(�)j:Thus kXj=0 jVj(�)j � c(k + 1)dE�jV0(R)j�; (6.1)for some constant c. Since every vertex in V0(R) lies on the lower envelope of R, theassertion now follows from the de�nition of �. 2Corollary 6.2 (i)  �k(n; d) = O((k + 1)1�"nd�1+").(ii) Let H be the set of all hyperplanes in Rd . Then  �k(n; d;H) = �(nbd=2c(k + 1)dd=2e).Proof: Part (i) follows from Theorems 3.1 and 6.1. Part (ii) follows from the fact that�(n; d;H) = �(nbd=2c). 2If � is a set of n lines in the plane, then there is even a tighter upper bound of kn+ 1on  �k(�) for k � n=2 [36, 277]; see also [176].In contrast to these bounds on the complexity of �k-levels, which are tight or almosttight in the worst case, much less is known about the complexity of a single k-level, evenfor the simplest case of arrangements of lines in the plane. For example, Corollary 6.2(ii),for d = 2, implies that the complexity of an average level in an arrangement of lines inthe plane is linear, but no upper bound that is even close is known. For a set � of n linesin the plane, Lov�asz [236] proved that  bn=2c(�) = O(n3=2).4 Erd}os et al. [163] extendedhis argument to prove that  k(�) = O(npk + 1). Since the original proof many di�erentproofs have been proposed for obtaining the same bound on  k(�) [8, 193]. Goodmanand Pollack [177] proved a similar bound on the maximum complexity of the k-level in anarrangement of pseudo-lines. Erd}os et al.'s bound was slightly improved by Pach et al. [276]to o(npk + 1), using a rather complicated argument. Erd}os et al. [163] constructed, for anyn and 0 � k < n, a set � of n lines so that  k(�) = 
(n log(k + 1)); see Edelsbrunner and4According to L. Lov�asz [236], the (n=2)-set problem was originally posed by A. Simmons, and E. Strausshad constructed a set of points in the plane in which the number of (n=2)-sets was 
(n log n).Arrangements April 14, 1998



Levels 25Welzl for another construction that gives the same lower bound [153]. Klawe et al. [225]constructed a set � of n pseudo-lines so that  n=2(�) has n2
(plogn) vertices.A major breakthrough in this direction was recently made by Dey who obtained thefollowing improvement.Theorem 6.3 (Dey [124]) Let � be a set of n lines in the plane. Then for any 0 � k < n, k(�) = O(n(k + 1)1=3).Dey's proof is quite simple and elegant. It uses the following result on geometric graphs,which was independently proved by Ajtai et al. [30] and by Leighton [230].5Lemma 6.4 Let G be a geometric graph with n vertices and m � 4n edges. Then there are
(m3=n2) pairs of edges in G whose relative interiors cross.Proof of Theorem 6.3: For simplicity we assume that n is even and prove the bound fork = n=2. We argue in the dual plane, where we have a set S of n points in general positionand we wish to establish the asserted bound for the number of halving segments of S, wherea halving segment is a straight segment connecting a pair of points u; v 2 S so that the linepassing through u and v has exactly (n=2) � 1 points of S below it. Let H denote the setof halving segments.
Figure 8: A set of 14 points with 14 halving segments, split into 7 convex x-monotone chainsThe segments in H are decomposed into n=2 convex x-monotone chains as follows. Letuv be an edge of H, with u lying to the right of v. We rotate the line that passes throughu and v clockwise about v and stop as soon as the line overlaps another halving segmentvw incident to v. It is easy to check that w lies to the right of v and that uvw is a rightturn. We now rotate about w, and continue in this manner until our line becomes vertical.We apply the same procedure `backwards' by turning the line uv counterclockwise aroundu and keep iterating until the line becomes vertical. The halving segments that we have5A geometric graph G = (V;E) is a graph drawn in the plane so that its vertices are points and its edgesare straight segments connecting pairs of these points. A geometric graph need not be planar.Arrangements April 14, 1998



Levels 26encountered during the whole process constitute one convex polygonal chain. By applyingthis procedure repeatedly, we obtain the desired decomposition of the entire H into convexx-monotone polygonal chains. Using the properties of halving segments proved by Lov�asz,we can conclude that the segments are partitioned into n=2 convex chains. (These convexchains are in a certain sense dual to the concave chains in the dual line arrangement thatwere de�ned by Agarwal et al. [8]; see also [193].)The number of crossing points between two convex chains is bounded by the numberof upper common tangents between the same two chains. Any line passing through twopoints of S is an upper common tangent of at most one pair of chains. Thus there areO(n2) crossings between the segments in H. By Lemma 6.4, any graph with n verticesand crossing number O(n2) has at most O(n4=3) edges, so S has at most O(n4=3) halvingsegments. A similar, slightly more detailed, argument proves the bound for arbitrary valuesof k. 2Tamaki and Tokuyama generalized Dey's proof to prove a similar bound on the com-plexity of the k-level in arrangements of pseudo-lines [315]. Combining the ideas from an oldresult of Welzl [325] with Dey's proof technique, one can obtain the following generalization.See also [41] for some other generalizations of Dey's result.Corollary 6.5 Let � be a set of n lines in the plane. Then for any 0 � k < n, 0 < j < n�k,we have k+jXt=k  t(�) = O(n(k + 1)1=3j2=3):B�ar�any and Steiger proved a linear upper bound on the expected number of k-sets ina random planar point set [63]; the points are chosen uniformly from a convex region.Edelsbrunner et al. [152] proved that if S is a set of points in the plane so that the ratio ofthe maximum and the minimum distance in S is at most cpn (a so-called dense set), thenthe number of k-sets in S is O(cpn k(cpn)). Applying Dey's result, the number of k-setsin a dense point set is O(n7=6). Recently Alt et al. [37] have proved that if the points in Slie on a constant number of pairwise disjoint convex curves, then the number of k-sets in Sis O(n).The following question is related to the complexity of levels in arrangements of lines:Let � be a set of n lines in the plane. Let � be a x-monotone path whose vertices are thevertices of A(�) and whose edges are contained in the lines of �. What is the maximumnumber of vertices in �? Matou�sek [239] proved that there exists a set � of n lines inthe plane that contains a x-monotone path with 
(n5=3) vertices. No subquadratic upperbound is known for this problem.Agarwal et al. [8] proved a nontrivial upper bound on the complexity of the k-level inan arrangement of segments. Combining their argument with that of Dey, one can provethat the maximum complexity of the k-level in a planar arrangement of n segments isArrangements April 14, 1998



Many Cells and Incidences 27O(n(k + 1)1=3�(n=(k + 1))). Very little is known on the complexity of a single level in anarrangement of n arcs in the plane. Recently, Tamaki and Tokuyama [316] proved thatthe complexity of any level in an arrangement of parabolas, each with a vertical axis, isO(n23=12). (Their bound actually applies to pseudo-parabolas, i.e., graphs of continuous,totally de�ned, univariate functions, each pair of which intersect at most twice.)Open Problem 3 (i) What is the maximum complexity of a level in an arrangement of nlines in the plane?(i) What is the maximum complexity of a level in an arrangement of n x-monotoneJordan arcs, each pair of which intersect in at most s points, for some constant s > 1?B�ar�any et al. [62] proved an O(n3�
) bound on the complexity of the k-level in arrange-ments of n planes in R3 , for any k, for some absolute constant 
 > 0. The bound wasimproved by Chazelle et al. [45] and Eppstein [161] to O(n8=3polylogn), and then by Deyand Edelsbrunner [125] to O(n8=3). The best bound known, due to Agarwal et al. [8], isO(n(k+1)5=3). They also proved a bound on the complexity of the k-level for arrangementsof triangles in R3 . A nontrivial bound on the complexity of the k-level in an arrangementof n hyperplanes in d > 3 dimensions, of the form O(nd�"d), for some constant "d that de-creases exponentially with d, was obtained in [35, 322]. This has later been slightly improvedto O(nbd=2ckdd=2e�"d) in [8]. Table 1 summarizes the known upper bounds on k-levels.Objects Bound SourceLines in R2 O(n(k + 1)1=3) [124]Segments in R2 O(n(k + 1)1=3�(n=(k + 1))) [8, 124]Planes in R3 O(n(k + 1)5=3) [8]Triangles in R3 O(n2(k + 1)5=6�(n=(k + 1))) [8]Hyperplanes in Rd O(nbd=2ckdd=2e�"d) [322]Parabolas in R2 O(n23=12) [316](Vertical axis)Table 1: Upper bounds on k-levels.7 Many Cells and IncidencesIn the previous two sections we bounded the complexity of families of d-dimensional cells inA(�) that satis�ed certain conditions (e.g., cells intersected by a surface, the cells of levelat most k). We can ask a more general question: What is the complexity of any m distinctcells in A(�)? A single cell in an arrangement of lines in the plane can have n edges, butcan the total complexity of m cells in an arrangement of lines be 
(mn)? This is certainlyfalse for m = 
(n2).Arrangements April 14, 1998



Many Cells and Incidences 28We can also formulate the above problem as follows: Let P be a set of m points and �a set of n surfaces in Rd satisfying assumptions (A1) and (A2). De�ne C(P;�) to be the setof cells in A(�) that contain at least one point of P . De�ne �(P;�) = PC2C(P;�) jCj and�(m;n;G) = max�(P;�), where the maximum is taken over all sets P of m points andover all sets � of n surfaces in a given class G.Let L be the set of all lines in the plane. Canham [84] proved that �(m;n;L) =O(m2 + n), from which it easily follows that �(m;n;L) = O(mpn + n). Although thisbound is optimal for m � pn, it is weak for larger values of m. Clarkson et al. [108] provedthat �(m;n;L) = �(m2=3n2=3+n). Their technique, based on random sampling, is generaland constructive. It has led to several important combinatorial and algorithmic results onarrangements [108, 189, 190]. For example, following a similar, but considerably more in-volved, approach, Aronov et al. [46] proved that �(m;n;E) = O(m2=3n2=3+m log n+n�(n)),where E is the set of all line segments in the plane. Hershberger and Snoeyink [213] provedan O(m2=3n2=3+n) upper bound on the complexity of m distinct cells in the arrangementsof n segments in the plane where the segments satisfy certain additional conditions.Although Clarkson et al. [108] proved nontrivial bounds on the complexity of m distinctcells in arrangements of circles (see Table 2 below), no tight bound is known.Open Problem 4 What is the maximum complexity of m distinct cells in an arrangementof n circles in the plane?Objects Complexity SourceLines in R2 �(m2=3n2=3 + n) [108]Segments in R2 O(m2=3n2=3 + n�(n) + n logm) [46]Unit circles in R2 �(m2=3n2=3 + n) [108]Circles in R2 O(m3=5n4=5 + n) [108]Arcs in R2 O(mp�q(n)) [140]Planes in R3 �(m2=3n) [7]Unit Spheres in R3 O(m3=4n3=4 + n) [108]Hyperplanes in Rd , d � 4 O(m1=2nd=2 log
 n) [48]
 = (bd=2c � 1)=2Table 2: Complexity of many cells.Complexity of many cells in hyperplane arrangements in higher dimensions was �rststudied by Edelsbrunner and Haussler [145]. Let H be the set of all hyperplanes in Rd .They proved that the maximum number of (d � 1)-dimensional faces in m distinct cells inan arrangement of n hyperplanes in Rd is O(m1=2nd=2 + nd�1). Re�ning an argument byEdelsbrunner et al. [143], Agarwal and Aronov [7] improved this bound to O(m2=3nd=3 +nd�1). By a result of Edelsbrunner and Haussler [145], this bound is tight in the worst case.Aronov et al. [48] proved that �(m;n;H) = O(m1=2nd=2 log
 n), where 
 = (bd=2c � 1)=2.Arrangements April 14, 1998



Many Cells and Incidences 29They also proved several lower bounds on �(m;n;H): For odd values of d and m � n,�(m;n;H) = �(mnbd=2c); for m of the form �(nd�2k) where 0 � k � bd=2c is an integer,�(m;n;H) = 
(m1=2nbd=2c); and for arbitrary values of m, �(m;n;H) = 
(m1=2nd=2�1=4).Agarwal [4], Guibas et al. [186], and Halperin and Sharir [201] obtained bounds on \special"subsets of cells in hyperplane arrangements.A problem closely related to, but somewhat simpler than, the many-cells problem is theincidence problem. Here is a simple instance of this problem: Let � be a set of n lines andP a set of m points in the plane. De�ne I(P;�) =P`2� jP \ `j; set I(m;n) = max I(P;�),where the maximum is taken over all sets P of m distinct points and over all sets � of ndistinct lines in the plane. Of course, this problem is interesting only when the lines in� are in highly degenerate position. If n = m2 +m + 1, then a �nite projective plane oforder m has n points and n lines and each line contains m + 1 = 
(n1=2) points, so thenumber of incidences between n points and n lines is 
(n3=2). Sz�emeredi and Trotter [311]proved that such a construction is infeasible in R2 . In a subsequent paper, Sz�emeredi andTrotter [312] proved that I(m;n) = O(m2=3n2=3 +m + n). Their proof is, however, quiteintricate, and an astronomic constant is hidden in the big-O notation. Their bound isasymptotically tight in the worst case, as shown in [155]. A considerably simpler proof,with a small constant of proportionality in the bound, was given by Clarkson et al. [108],based on the random-sampling technique. In fact, the bound on many cells in arrangementsof lines immediately yields a similar bound on I(m;n) [108], but the proof can be somewhatsimpli�ed for the incidence problem. Here we present an even more elegant and simplerproof, due to Sz�ekely [310], for the bound on I(m;n) using Lemma 6.4:Theorem 7.1 (Sz�emeredi and Trotter [312]) Let � be a set of n lines and P a set of mpoints in the plane. Then I(P;�) = O(m2=3n2=3 +m+ n):Proof: We construct a geometric graph G = (V;E) whose vertices are the points of P . Weconnect two vertices p; q by an edge if the points p and q are consecutive along a line in �.Each edge of G is a portion of a line of �, and no two edges overlap. Therefore at most �n2�pairs of edges cross each other. Note that I(P;�) � jEj+ n.If jEj � 4m, there is nothing to prove. Otherwise, by Lemma 6.4,�n2� � jEj3cjV j2 � 1cm2 (I(P;�)� n)3;which implies that I(P;�) = O(m2=3n2=3 + n). 2Valtr [319] has studied the incidence problem and its generalization for dense point sets,where the ratio of the maximum and the minimum distances in P is at most O(pn).Arrangements April 14, 1998



Generalized Voronoi Diagrams 30The incidence problem has been studied for other curves as well. Of particular interestis the number of incidences between points and unit circles in the plane [308, 108] becauseof its close relationship with the following major open problem in combinatorial geometry,which was originally introduced by Erd}os in 1946 [162]: Let S be a set of n points in theplane. How many pairs of points in S are at distance 1? Spencer et al. [308] had proved, bymodifying the proof of Sz�emeredi and Trotter [312], that the number of incidences betweenm points and n unit circles is O(m2=3n2=3 +m + n). The proofs by Clarkson et al. [108]and by Sz�ekely [310] have been extended to this case. The incidence bound implies thatthe number of unit distances between the points of S is O(n4=3). However, the best-knownlower bound is only n1+
((log log n)= logn) [162] (see also [272]).Open Problem 5 How many pairs of points in a given planar set of points are at distance1? F�uredi [174] showed that if points in S are in convex position, then the number of pairsat distance 1 is O(n logn); the best-known lower bound is 7n � 12 by Edelsbrunner andHajnal [144]. The best-known upper bound on the unit distances in R3 is O(n3=2) [108].Let S be a set of n points in R3 so that no four points of P lie on a circle, then the numberof pairs of points in S at unit distance is O(n10=7) [189].We can state the incidence problem in higher dimensions. If we do not make anyadditional assumptions on points and surfaces, the maximum number of incidences betweenm points and n planes is obviously mn: take a set of n planes passing through a commonline and place m points on this line. Agarwal and Aronov [7] proved that if � is a set ofn planes and P is a set of m points in R3 so that no three points in P are collinear, thenI(P;�) = O(m3=5n4=5 +m+ n). Edelsbrunner and Sharir [150] showed that if � is a set ofn unit spheres in R3 and P is a set of m points so that none of the points in P lies in theinterior of any sphere, then I(P;�) = O(m2=3n2=3+m+n). See [189, 275] for other resultson incidences in higher dimensions.8 Generalized Voronoi DiagramsAn interesting application of the new bounds on the complexity of lower envelopes is togeneralized Voronoi diagrams in higher dimensions. Let S be a set of n pairwise-disjointconvex objects in Rd , each of constant description complexity, and let � be some metric.The Voronoi diagram Vor�(S) of S under the metric � (sometimes also simply denoted asVor(S)) is a partition of Rd into maximal connected cells of various dimensions, where eachcell C has the following property. There is a subset SC � S so that for any x 2 CSC = fs 2 S : �(x; s) = mins02S �(x; s0)g:Let 
i be the graph of the function xd+1 = �(x; si). Set � = f
i j 1 � i � ng. Edelsbrunnerand Seidel [148] observed that Vor�(S) is the minimization diagram of �.Arrangements April 14, 1998



Generalized Voronoi Diagrams 31In the classical case, in which � is the Euclidean metric and the objects in S are sin-gletons (points), the graphs of these distance functions can be replaced by a collection of nhyperplanes in Rd+1 , using the linearization technique, without a�ecting the minimizationdiagram. Hence the maximum possible complexity of Vor(S) is O(ndd=2e), which actuallycan be achieved (see, e.g., [226, 297]). In more general settings, though, this reduction isnot possible. Nevertheless, the bounds on the complexity of lower envelopes imply that,under reasonable assumption on � and on the objects in S, the complexity of the diagramis O(nd+"), for any " > 0. While this bound is nontrivial, it is conjectured to be tooweak. For example, this bound is near-quadratic for planar Voronoi diagrams, but thecomplexity of almost every planar Voronoi diagram is only O(n), although there are certaindistance functions for which the corresponding planar Voronoi diagram can have quadraticcomplexity [57].In three dimensions, the above-mentioned bound for point sites and Euclidean metric is�(n2). It has been a long-standing open problem to determine whether a similar quadraticor near-quadratic bound holds in 3-space for more general objects and metrics (here thenew results on lower envelopes only give an upper bound of O(n3+")). The problem statedabove calls for improving this bound by roughly another factor of n. Since we are aimingfor a bound that is two orders of magnitude better than the complexity of A(�), it appearsto be a considerably more di�cult problem than that of lower envelopes. The only hope ofmaking progress here is to exploit the special structure of the distance functions �(x; s).Fortunately, some progress on this problem was made recently. It was shown by Chew etal. [107] that the complexity of the Voronoi diagram is O(n2�(n) log n) for the case wherethe objects of S are lines in R3 and the metric � by a convex distance function induced bya convex polytope with a constant number of facets (see [107] for more details). Note thatsuch a distance function is not necessarily a metric, because it will fail to be symmetric if thede�ning polytope is not centrally symmetric. The L1 and L1 metrics are special cases ofsuch distance functions. The best-known lower bound for the complexity of the diagram inthis special case is 
(n2�(n)). Dwyer [130] has shown that the expected complexity of theVoronoi diagram of a set of n random lines in R3 is O(n3=2). In another recent paper [75], itis shown that the maximum complexity of the L1-Voronoi diagram of a set of n points in R3is �(n2). Finally, it is shown in [313] that the complexity of the three-dimensional Voronoidiagram of point sites under a general polyhedral convex distance function (induced by apolytope with O(1) facets) is O(n2 log n).Open Problem 6 (i) Is the complexity of the Voronoi diagram of a set S of n lines underthe Euclidean metric in R3 close to n2?(ii) Is the complexity of the Voronoi diagram of a set S of pairwise disjoint convexpolyhedra in R3 , with a total of n vertices, close to n2 under the polyhedral convex distancefunctions?An interesting special case of these problems involves dynamic Voronoi diagrams forArrangements April 14, 1998



Union of Geometric Objects 32moving points in the plane. Let S be a set of n points in the plane, each moving along someline at some �xed velocity. The goal is to bound the number of combinatorial changes of theEuclidean Vor(S) over time. This dynamic Voronoi diagram can easily be transformed intoa three-dimensional Voronoi diagram, by adding the time t as a third coordinate. The pointsbecome lines in 3-space, and the metric is a distance function induced by a horizontal disk(that is, the distance from a point p(x0; y0; t0) to a line ` is the Euclidean distance from p tothe point of intersection of ` with the horizontal plane t = t0). Here too the open problemis to derive a near-quadratic bound on the complexity of the diagram. Cubic or near-cubicbounds are known for this problem, even under more general settings [170, 188, 303], butsubcubic bounds are known only in some very special cases [106].Next, consider the problem of bounding the complexity of generalized Voronoi diagramsin higher dimensions. As mentioned above, when the objects in S are n points in Rd andthe metric is Euclidean, the complexity of Vor(S) is O(ndd=2e). As d increases, this be-comes signi�cantly smaller than the naive O(nd+1) bound or the improved bound, O(nd+"),obtained by viewing the Voronoi diagram as a lower envelope in Rd+1 . The same boundof O(ndd=2e) has recently been obtained in [75] for the complexity of the L1-diagram of npoints in d-space (it was also shown that this bound is tight in the worst case). It is thustempting to conjecture that the maximum complexity of generalized Voronoi diagrams inhigher dimensions is close to this bound. Unfortunately, this was recently shown by Aronovto be false [43], by presenting a lower bound of 
(nd�1). The sites used in this constructionare convex polytopes, and the distance is either Euclidean or a polyhedral convex distancefunction. For d = 3, this lower bound does not contradict the conjecture made above, thatthe complexity of generalized Voronoi diagrams should be at most near-quadratic in thiscase. Also, in higher dimensions, the conjecture mentioned above is still not refuted whenthe sites are singleton points. Finally, for the general case, the construction by Aronov stillleaves a gap of roughly a factor of n between the known upper and lower bounds.9 Union of Geometric ObjectsLet K = fK1; : : : ;Kng be a set of n connected d-dimensional sets in Rd . In this section, wewant to study the complexity of K = Sni=1Ki. Most of the work to date on this problemhas been in two or three dimensions.Union of planar objects. Let us assume that each Ki is a Jordan region, boundedby a closed Jordan curve 
i. Kedem et al. [220] have proved that if any two boundaries
i intersect in at most two points, then @K contains at most 6n � 12 intersection points(provided n � 3), and that this bound is tight in the worst case. An immediate corollaryof their result is that the number of intersection points on the boundary of the union of acollection of homothets of some �xed convex set is linear, because the boundaries of any twosuch homothetic copies in general position can intersect in at most two points. The boundArrangements April 14, 1998



Union of Geometric Objects 33also holds when the homothets are not in general position. On the other hand, if pairs ofboundaries may intersect in four or more points, then @K may contain 
(n2) intersectionpoints in the worst case; see Figure 9.

Figure 9: Union of Jordan regions.This raises the question of what happens if any two boundaries intersect in at most threepoints. Notice that in general this question is meaningless, since any two closed curves mustintersect in an even number of points (assuming nondegenerate con�gurations). To makethe problem interesting, let � be a collection of n Jordan arcs, such that both endpoints ofeach arc 
i 2 � lie on the x-axis, and such that Ki is the region between 
i and the x-axis.Edelsbrunner et al. [139] have shown that the maximum combinatorial complexity of theunion K is �(n�(n)). The upper bound requires a rather sophisticated analysis of thetopological structure of K, and the lower bound follows from the construction by Wiernikand Sharir for lower envelopes of segments [327].Next, consider the case when each Ki is a triangle in the plane. If the triangles arearbitrary, then a simple modi�cation of the con�guration shown in Figure 9 shows thatK may have quadratic complexity in the worst case. But in this example the triangleshave to be \thin," that is, some of their angles are very small. Matou�sek et al. [248]have shown that if the given triangles are all fat, meaning that each of their angles is atleast some �xed constant �0, then their union K has only a linear number of holes (i.e.,connected components of Kc), and that the combinatorial complexity of K is O(n log log n);the constants of proportionality in these bounds depend on �0. Alt et al. [38] proved thatthe complexity of the union of n fat wedges is O(n). See [38, 320, 156] for other results onthe union of fat objects. M. Bern asked the following related question.Open Problem 7 Let � = f�1; : : : ;�ng be a set of n triangles in the plane. Let ai bethe aspect ratio of the smallest rectangle enclosing �i. Suppose Pni=1 ai = O(n). What isthe complexity of Sni=1�i?Recently, Efrat and Sharir [158] considered the case in which K is a collection of nfat convex regions in the plane, each pair of whose boundaries intersect in at most someArrangements April 14, 1998



Union of Geometric Objects 34constant number s of points. Here fatness means that there exists a constant � such thatfor each object of S the ratio between the radii of its smallest enclosing disk and its largestinscribed disk is at most �. They showed that the complexity of the union K is O(n1+"),for any " > 0, where the constant of proportionality depends on ", s, and �. Their proofrequires as an initial but important substep an analysis of the number of regular vertices ofthe union: these are vertices of the union that are incident to two boundaries that intersectexactly twice. In fact, the analysis by Efrat and Sharir can only handle directly the irregularvertices of the union. Nevertheless, motivated by this problem, Pach and Sharir [274] haveshown that, for an arbitrary collection of n convex regions, each pair of whose boundariescross in a constant number of points, one has R � 2I + 6n � 12, where R (resp. I) isthe number of regular (resp. irregular) vertices on the boundary of the union. This resulthas been used in [158] to obtain their near-linear bound. Nevertheless, regular vertices areinteresting in their own right, and some additional results concerning them have recentlybeen obtained by Aronov et al. [47]. First, if there are only regular vertices (i.e., everypair of boundaries intersect at most twice), then the inequality obtained by [274] impliesthat the complexity of the union in this case is at most 6n� 12, so the result by Pach andSharir extends the older results of [220]. In general, though, I can be quadratic, so theabove inequality only yields a quadratic upper bound on the number of regular vertices ofthe union. However, it was shown in [47] that in many cases R is subquadratic. This is thecase when the given regions are such that every pair of boundaries cross at most a constantnumber of times. If in addition all the regions are convex, the upper bound is close toO(n3=2).Aronov and Sharir [53] proved that the complexity of the union of n convex polygonsin R2 with a total of s vertices is O(n2 + s�(n)).Union in three and higher dimensions. Little is known about the complexity of theunion in higher dimensions. It was recently shown in [75] that the maximum complexity ofthe union of n axis-parallel hypercubes in Rd is �(ndd=2e), and this improves to �(nbd=2c)if all the hypercubes have the same size. However, the following problem remains open.Open Problem 8 What is the complexity of the union of n congruent cubes in R3?Aronov and Sharir [51] proved that the complexity of the union of n convex polyhedrain R3 with a total of s faces is O(n3 + sn log2 n). The bound was improved by Aronov etal. [55] to O(n3 + sn log s).Unions of objects also arise as subproblems in the study of generalized Voronoi diagrams,as follows. Let S and � be as in the previous section (say, for the 3-dimensional case).Let K denote the region consisting of all points x 2 R3 whose smallest distance from asite in S is at most r, for some �xed parameter r > 0. Then K = Ss2S B(s; r), whereB(s; r) = fx 2 R3 j �(x; s) � rg. We thus face the problem of bounding the combinatorialcomplexity of the union of n objects in R3 (of some special type). For example, if S is a set ofArrangements April 14, 1998



Decomposition of Arrangements 35lines and � is the Euclidean distance, the objects are n congruent in�nite cylinders in R3 . Ingeneral, if the metric � is a distance function induced by some convex body P , the resultingobjects are theMinkowski sums s�(�rP ), for s 2 S, where A�B = fx+y j x 2 A; y 2 Bg.Of course, this problem can also be stated in any higher dimension.Since it has been conjectured that the complexity of the whole Voronoi diagram in R3should be near-quadratic , the same conjecture should apply to the (simpler) structure K(whose boundary can be regarded as a level curve of the diagram at height r; it does indeedcorrespond to the cross-section at height r of the lower envelope in R4 that represents thediagram). Recently, this conjecture was con�rmed by Aronov and Sharir in [54], in thespecial case where both P and the objects of S are convex polyhedra. They specializedtheir analysis of the union of convex polytopes to obtain an improved bound in the specialcase in which the polyhedra in question are Minkowski sums of the form Ri � P , wherethe Ri's are n pairwise-disjoint convex polyhedra, P is a convex polyhedron, and the totalnumber of faces of these Minkowski sums is s. The improved bounds are O(ns logn) and
(ns�(n)). They are indeed near-quadratic, as conjectured.Recently, Agarwal and Sharir [26] showed that if S is a set of n lines and P is a spherein R3 , i.e., K is a set of n congruent cylinders, then the complexity of K is O(n8=3+"), forany " > 0. Their proof works even if S is a set of segments in R3 .Open Problem 9 Let � be a set of pairwise disjoint triangles in R3 and let B be a unit-radius ball. What is the complexity of the Minkowski sum of � and B?10 Decomposition of ArrangementsMany applications call for decomposing each cell of the arrangement into constant size cells;see Sections 12 and 13 for a sample of such applications. In this section we describe a fewgeneral schemes that have been proposed for decomposition of arrangements.10.1 Triangulating hyperplane arrangementsEach k-dimensional cell in an arrangement of hyperplanes is a convex polyhedron, so wecan triangulate it into k-simplices. If the cell is unbounded, some of the simplices in thetriangulation will be unbounded. A commonly used scheme to triangulate a convex polytopeP is the so-called bottom-vertex triangulation, denoted Pr. It recursively triangulates everyface of P as follows. An edge is a one-dimensional simplex, so there is nothing to do.Suppose we have triangulated all j-dimensional cells of P for j < k. We now triangulate ak-dimensional cell C as follows. Let v be the vertex of C with the minimum xd-coordinate.For each (k � 1)-dimensional simplex � lying on the boundary of C but not containingv (� was constructed while triangulating a (k � 1)-dimensional cell incident to C), weextend � to a k-dimensional simplex by taking the convex hull of � and v; see Figure 10(i).Arrangements April 14, 1998



Decomposition of Arrangements 36(Unbounded cells require some care in this de�nition; see [110]). The number of simplicesin Pr is proportional to the number of vertices in P.If we want to triangulate the entire arrangement or more than one of its cells, wecompute the bottom-vertex triangulation fr for each face f in the increasing order of theirdimension. Let Ar(�) denote the bottom-vertex triangulation of A(�). A useful propertyof Ar(�) is that each simplex � 2 Ar(�) is de�ned by a set D(�) of at most d(d + 3)=2hyperplanes of �, in the sense that � 2 Ar(D(�)). Moreover, if K(�) � � is the subset ofhyperplanes intersecting �, then � 2 Ar(R), for a subset R � �, if and only if D(�) � Rand K(�)\R = ;. A disadvantage of bottom-vertex triangulation is that some vertices mayhave large degree. Methods for obtaining low-degree triangulations have been proposed intwo and three dimensions [128].
Figure 10: (i) Bottom vertex triangulation of a convex polygon; (ii) vertical decompositionof a cell in an arrangement of segments.10.2 Vertical decompositionUnfortunately, the bottom-vertex triangulation scheme does not work for arrangements ofsurfaces. Collins [114] described a general decomposition scheme, called cylindrical alge-braic decomposition, that decomposes A(�) into (bn)2O(d) cells, each semialgebraic of con-stant description complexity (however, the maximum algebraic degree involved in de�ninga cell grows exponentially with d) and homeomorphic to a ball of the appropriate dimen-sion. Moreover, his algorithm produces a cell complex, i.e., closures of any two cells areeither disjoint or their intersection is the closure of another lower-dimensional cell of thedecomposition. This bound is quite far from the known trivial lower bound of 
(nd), whichis a lower bound on the size of the arrangement. A signi�cantly better scheme for decom-posing arrangements of general surfaces is their vertical decomposition. Although verticaldecompositions of polygons in the plane have been in use for a long time, it was extendedto higher dimensions only in the late 1980s. We describe this method brie
y.Let C be a d-dimensional cell in A(�). The vertical decomposition, C jj, is computed asfollows. We erect a vertical `wall' up and down (in the xd-direction) within C from each(d � 2)-dimensional face of C and from points of vertical tangencies (i.e., the points atArrangements April 14, 1998



Decomposition of Arrangements 37which the tangent planes are parallel to the xd-direction), and extend these walls until theyhit another surface (or, failing this, all the way to �1). This results in a decompositionof C into subcells so that each subcell has a unique top facet and a unique bottom facet,and every vertical line cuts the subcell in a connected (possibly empty) interval. We nextproject each resulting subcell � on the hyperplane xd = 0. Let C� be the projected cell.We apply recursively the same technique to C� and compute its vertical decomposition C jj� .(We continue the recursion in this manner until we reach d = 1.) We then \lift" C jj� backinto Rd , by extending each subcell c 2 C jj� into the vertical cylinder c� R, and by clippingthe cylinder within � . Using a standard argument, it can be shown that each cell of C jj issemialgebraic set of constant description complexity. In fact, they have the same structureas the Collins cells, but the number of subcells in C jj is much smaller than that in theCollins decomposition of C. Applying the above step to each cell of A(�), we obtain thevertical decomposition Ajj(�) of A(�). Note Ajj(�) is not a cell complex.It is easily seen that the complexity of the vertical decomposition of a cell in the planeis proportional to the number of edges in the cell. However, this is no longer the casein higher dimensions: Already for the case of a convex polytope with n facets in R3 , thevertical decomposition may have complexity 
(n2).Theorem 10.1 (Chazelle et al. [95, 96]) The number of cells in the vertical decompositionAjj(�) of the arrangement A(�), for a set � of n surface patches in Rd satisfying (A1){(A2),is O(n2d�4�q(n)).The only known lower bound on the size of Ajj(�) is the trivial 
(nd), so there is aconsiderable gap here, for d > 3; for d = 3 the two bounds nearly coincide. Improving theupper bound appears to be very challenging. This problem has been open since 1989; itseems di�cult enough to preempt, at the present state of knowledge, any speci�c conjectureon the true maximum complexity of the vertical decomposition of arrangements in d > 3dimensions.Open Problem 10 What is the complexity of the vertical decomposition of the arrange-ment of n surfaces in R4 satisfying assumptions (A1){(A2)?The bound stated above applies to the vertical decomposition of an entire arrangementof surfaces. In many applications, however, one is interested in the vertical decompositionof only a portion of the arrangement, e.g., a single cell, the lower envelope, the zone ofsome surface, a speci�c collection of cells of the arrangement, etc. Since, in general, thecomplexity of such a portion is known (or conjectured) to be smaller than the complexityof the entire arrangement, one would like to conjecture that a similar phenomenon appliesto vertical decompositions. Recently, it was shown by Schwarzkopf and Sharir [295] thatthe complexity of the vertical decomposition of a single cell in an arrangement of n surfacepatches in R3 , as above, is O(n2+"), for any " > 0. A similar near-quadratic bound has beenArrangements April 14, 1998



Decomposition of Arrangements 38obtained by Agarwal et al. [9] for the vertical decomposition of the region enclosed betweenthe envelope and the upper envelope of two sets of bivariate surface patches. Another recentresult by Agarwal et al. [14] gives a bound on the complexity of the vertical decompositionof A�k(�) for a set � of surfaces in R3 , which is only slightly larger that the worst-casecomplexity of A�k(�).Open Problem 11 What is the complexity of the vertical decomposition of the minimiza-tion diagram of n surfaces in R4 satisfying assumptions (A1){(A2)?Agarwal and Sharir [25] proved a near-cubic upper bound on the complexity of the verti-cal decomposition in the special case when the surfaces are graphs of trivariate polynomialsand the intersection surface of any pair of surfaces is xy-monotone. In fact, their boundholds for a more general setting; see the original paper for details.An interesting special case of vertical decomposition is that of hyperplanes. For sucharrangements, the vertical decomposition is a too cumbersome construct, because, as de-scribed above, one can use the bottom-vertex triangulation (or any other triangulation)to decompose the arrangement into �(nd) simplices. Still, it is probably a useful exer-cise to understand the complexity of the vertical decomposition of an arrangement of nhyperplanes in Rd . A recent result by Guibas et al. [187] gives an almost tight bound ofO(n4 log n) for this quantity in R4 , but nothing signi�cantly better than the general boundis known for d > 4. Another interesting special case is that of triangles in 3-space. Thishas been studied by [120, 314], where almost tight bounds were obtained for the case of asingle cell (O(n2 log2 n)), and for the entire arrangement (O(n2�(n) log n + K), where Kis the complexity of the undecomposed arrangement). The �rst bound is slightly betterthan the general bound of [295] mentioned above. Tagansky [314] also derives sharp com-plexity bounds for the vertical decomposition of many cells in an arrangement of simplices,including the case of all nonconvex cells.Objects Bound SourceSurfaces in Rd , d � 3 O(n2d�4�q(n)) [95, 304]Triangles in R3 O(n2�(n) log n+K) [120, 314]Surfaces in R3 , single cell O(n2+") [295]Triangles in R3 , zone w.r.t. �(n2 log2 n) [314]an algebraic surfaceSurfaces in R3 , (� k)-level O(n2+"k) [14]Hyperplanes in R4 O(n4 logn) [187]Table 3: Combinatorial bounds on the maximum complexity of the vertical decompositionof n surfaces. In the second row, K is the combinatorial complexity of the arrangement.
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Decomposition of Arrangements 3910.3 Other decomposition schemesLinearization, de�ned in Section 3, can be used to decompose the cells of the arrangementA(�) into cells of constant description complexity as follows. Suppose � admits a lineariza-tion of dimension k, i.e., there is a transformation ' : Rd �! Rk that maps each pointx 2 Rd to a point '(x) 2 Rk , each surface 
i 2 � to a hyperplane hi � Rk , and Rd to ad-dimensional surface � � Rk . Let H = fhi j 1 � i � ng. We compute the bottom-vertextriangulation Ar(H) of A(H). For each simplex � 2 Ar(H), let � = � \ �, and let�� = '�1(�) be the back projection of � onto Rd ; �� is a semialgebraic cell of constantdescription complexity. Set � = f�� j � 2 Ar(H)g. � is a decomposition of A(�) into cellsof constant description complexity. If a simplex � 2 Ar(H) intersects �, then � lies in thetriangulation of a cell in zone(�;H). Therefore, by Theorem 5.3, j�j = O(nb(d+k)=2c log
 n),where 
 = (d+ k)(mod 2). Hence, we can conclude the following.Theorem 10.2 Let � be a set of hypersurfaces in Rd of degree at most b. If � admits alinearization of dimension k, then A(�) can be decomposed into O(nb(d+k)=2c log
 n) cells ofconstant description complexity, where 
 = d+ k (mod 2).As shown in Section 3, spheres in Rd admit a linearization of dimension d + 1, therefore,the arrangement of n spheres in Rd can be decomposed into O(nd logn) cells of constantdescription complexity.Aronov and Sharir [50] proposed another scheme for decomposing arrangements of tri-angles in R3 by combining vertical decomposition and triangulation. They �rst decomposeeach three-dimensional cell of the arrangement into convex polyhedron, using an incremen-tal procedure, and then they compute a bottom-vertex triangulation of each polyhedron.Other specialized decomposition schemes in R3 have been proposed in [205, 249].10.4 CuttingsAll the decomposition schemes described in this section decompose Rd into cells of constantdescription complexity, so that each cell lies entirely in a single face of A(�). In many ap-plications, however, it su�ces to decompose Rd into cells of constant description complexityso that each cell intersects only a few surfaces of �. Such a decomposition lies at the heartof divide-and-conquer algorithms for numerous geometric problems.Let � be a set of n surfaces in Rd satisfying assumptions (A1){(A2). For a parameterr � n, a family � = f�1; : : : ;�sg of cells of constant description complexity with pairwisedisjoint interiors is called a (1=r)-cutting of A(�) if the interior of each cell in � is crossedby at most n=r surfaces of � and � covers Rd . If � is a set of hyperplanes, then � is typicallya set of simplices. Cuttings have led to e�cient algorithms for a wide range of geometricproblems and to improved bounds for several combinatorial problems. For example, theArrangements April 14, 1998



Representation of Arrangements 40proof by Clarkson et al. [108] on the complexity of m distinct cells in arrangements of linesuses cuttings; see the survey papers [3, 243] for a sample of applications of cuttings.Clarkson [109] proved that a (1=r)-cutting of size O(rd logd r) exists for a set of hy-perplanes in Rd . The bound was improved by Chazelle and Friedman [100] to O(rd); seealso [1, 237, 241]. An easy counting argument shows that this bound is optimal for anynondegenerate arrangement. There has been considerable work on computing optimal (1=r)-cuttings e�ciently [1, 93, 207, 237, 241]. Chazelle [93] showed that a (1=r)-cutting for a setof n hyperplanes in Rd can be computed in time O(nrd�1).Using Haussler and Welzl's result on "-nets [209], one can show that if, for any subsetR � �, there exists a canonical decomposition of A(R) into at most g(jRj) cells of constantdescription complexity, then there exists a (1=r)-cutting of A(�) of size O(g(r log r)). Bythe result of Chazelle et al. [95] on the vertical decomposition of A(�), there exists a (1=r)-cutting of size O((r log r)2d�3+") of A(�). On the other hand, if � admits a linearization ofdimension k, then there exists a (1=r)-cutting of size O((r log r)b(d+k)=2c log r).11 Representation of ArrangementsBefore we begin to present algorithms for computing arrangements and their substructures,we need to describe how we represent arrangements and their substructures. Planar ar-rangements of lines can be represented using any standard data structure for representingplanar graphs such as quad-edge or winged-edge data structures [192, 324]. However, rep-resentation of arrangements in higher dimensions is challenging because the topology ofcells may be rather complex. Exactly how an arrangement is represented largely dependson the speci�c application for which we need to compute it. For example, representationsmay range from simply computing a representative point within each cell, or the verticesof the arrangement, to storing various spatial relationships between cells. We �rst reviewrepresentations of hyperplane arrangements and then discuss surface arrangements.Hyperplane arrangements. A simple way to represent a hyperplane arrangement A(�)is by storing its 1-skeleton [131]. That is, we construct a graph (V;E) whose nodes are thevertices of the arrangement. There is an edge between two nodes vi; vj if they are endpointsof an edge of the arrangement. Using the 1-skeleton of A(�), we can traverse the entirearrangement in a systematic way. The incidence relationship of various cells in A(�) can berepresented using a data structure called incidence graph. A k-dimensional cell C is calleda subcell of a (k + 1)-dimensional cell C 0 if C lies on the boundary of C 0; C 0 is called thesupercell of C. We assume that the empty set is a (�1)-dimensional cell of A(�), which isa subcell of all vertices of A(�); and Rd is a (d+1)-dimensional cell, which is the supercellof all d-dimensional cells of A(�). The incidence graph of A(�) has a node for each cell ofA(�), including the (�1)-dimensional and (d + 1)-dimensional cells. There is a (directed)arc from a node C to another node C 0 if C is a subcell of C 0; see Figure 11. Note that theArrangements April 14, 1998



Representation of Arrangements 41incidence graph forms a lattice. Many algorithms for computing the arrangement constructthe incidence graph of the arrangement.A disadvantage of 1-skeletons and incidence graphs is that they do not encode orderinginformation of cells. For examples, in planar arrangements of lines or segments, there is anatural ordering of edges incident to a vertex or of the edges incident to a two-dimensionalface. The quad-edge data structure encodes this information for planar arrangements.Dobkin and Laszlo [129] extended the quad-edge data structure to R3 , which was laterextended to higher dimensions [78, 233, 234]. Dobkin et al. [126] described an algorithm forrepresenting a simple polygon as a short Boolean formula, which can be used to store facesof segment arrangements to answer various queries e�ciently.Surface arrangements. Representing arrangements of surface patches is considerablymore challenging than representing hyperplane arrangements because of the complex topol-ogy that cells in such an arrangement can have. A very simple representation of A(�) is tostore a representative point from each cell of A(�) or to store the vertices of A(�). An evencoarser representation of arrangements of graphs of polynomials is to store all realizablesign sequences. It turns out that this simple representation is su�cient for some appli-cations [34, 72]. The notion of 1-skeleton can be generalized to arrangements of surfaces.However, all the connectivity information cannot be encoded by simply storing verticesand edges of the arrangement. Instead we need a �ner one-dimensional structure, knownas the roadmap. Road maps were originally introduced by Canny [85, 87] to represent asemialgebraic set. We can extend the notion of roadmaps to entire arrangements. Roughlyspeaking, a roadmap R(�) of A(�) is a one-dimensional semialgebraic set that satis�es thefollowing two conditions.(R1) For every cell C in A(�), C \R(�) is nonempty and connected.(R2) Let Cw be the cross-section of a cell C 2 A(�) at the hyperplane x1 = w. For anyw 2 R and for cell C 2 A(�), Cw 6= ; implies that every connected component of Cwintersects R(�).Intuitively, a roadmap adds new arcs so that all the cells are connected and one can traversethe entire arrangement. same connected component of S. We can also de�ne a roadmap ofa substructure of the arrangement. See [66, 85] for details on roadmaps.A roadmap does not represent \ordering" of cells in the arrangement or adjacency rela-tionship among various cells. If we want to encode the adjacency relationship among higherdimensional cells of A(�), we can compute the vertical decomposition or the cylindricalalgebraic decomposition of A(�) and compute the adjacency relationship of cells in thedecomposition [42, 293]. Brisson [78] describes the cell-tuple data structure that encodestopological structures, ordering among cells, the boundaries of cells, and other informationfor cells of surface arrangements.Arrangements April 14, 1998



Computing Arrangements 42Many query-type applications (e.g., point location, ray shooting) call for preprocessingA(�) into a data structure so that various queries can be answered e�ciently. In thesecases, instead of storing various cells of an arrangement explicitly, we can store the arrange-ment implicitly, e.g., using cuttings. Chazelle et al. [96] have described how to preprocessarrangements of surfaces for point-location queries; Agarwal et al. [9] have described datastructures for storing lower envelopes in R4 for point-location queries.12 Computing ArrangementsWe now review algorithms to compute the arrangement A(�) of a set � of n surface patchessatisfying assumptions (A1){(A2). As in Chapter DS-??, we need to assume here an appro-priate model of computation in which various primitive operations on a constant numberof surfaces can be performed in constant time. We will assume an in�nite-precision realarithmetic model in which the roots of any polynomial of constant degree can be computedexactly in constant time.Constructing arrangements of hyperplanes and simplices. Edelsbrunner et al. [147]describe an incremental algorithm that computes in time O(nd) the incidence graph of A(�),for a set � of n hyperplanes in Rd . Roughly speaking, their algorithm adds the hyperplanesof � one by one and maintains the incidence graph of the arrangement of the hyperplanesadded so far. Let �i be the set of hyperplanes added in the �rst i stages, and let 
i+1 bethe next hyperplane to be added. In the (i+ 1)st stage, the algorithm traces 
i+1 throughA(�i). If a k-face f of A(�i) does not intersect 
i, then f remains a face of A(�i+1). Iff intersects 
i+1, then f 2 zone(
i+1; �i) and f is split into two k-faces f+; f�, lying inthe two open halfspaces bounded by 
i+1, and a (k � 1)-face f 0 = f \ 
i+1. The algorithmtherefore checks the faces of zone(
i+1; �i) whether they intersect 
i+1. For each such in-tersecting face, it adds corresponding nodes in the incidence graph and updates the edgesof the incidence graph. The (i + 1)st stage can be completed in time proportional to thecomplexity of zone(
i+1; �i), which is O(id�1); see [132, 147]. Hence, the overall runningtime of the algorithm is O(nd).A drawback of the algorithm just described is that it requires O(nd) \working" storagebecause it has to maintain the entire arrangement constructed so far in order to determinewhich of the cells intersect the new hyperplane. An interesting question is whether A(�) canbe computed using only O(n) working storage. Edelsbrunner and Guibas [138] proposedthe topological sweep algorithm that can construct the arrangement of n lines in O(n2) timeusing O(n) working storage. Their algorithm, which is a generalization of the sweep-linealgorithm of Bentley and Ottmann [68], sweeps the plane by a pseudo-line. The algorithmby Edelsbrunner and Guibas can be extended to enumerate all vertices in an arrangement ofn hyperplanes in Rd in O(nd) time using O(n) space. See [40, 56, 151] for other topological-sweep algorithms. Avis and Fukuda [59] developed an algorithm that can enumerate inArrangements April 14, 1998
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(ii)(i)Figure 11: (i) Incidence graph of the arrangement of 2 lines. (ii) Adding a new line;incremental changes in the incidence graph as the vertex v, the edge 5 and the face A0 areadded.O(n2k) time, using O(n) space, all k vertices of the arrangement of a set � of n hyperplanesin Rd in which every vertex is incident to d hyperplanes. Their algorithm is useful whenthere are many parallel hyperplanes in �. See also [60, 172] for some related results.Using the random-sampling technique, Clarkson and Shor [111] developed an O(n log n+k) expected time algorithm for constructing the arrangement of a set � of n line segmentsin the plane; here k is the number of vertices in A(�); see also [262, 263]. Chazelle andEdelsbrunner [94] developed a deterministic algorithm that can construct A(�) in timeO(n log n+k), using O(n+k) storage. The space complexity was improved to O(n), withouta�ecting the asymptotic running time, by Balaban [61]. If � is a set of n triangles in R3 ,Ajj(�) can be constructed in O(n2 logn+k) expected time using a randomized incrementalalgorithm [95, 304].Chazelle and Friedman [101] describe an algorithm that can preprocess a set � of nhyperplanes into a data structure of size O(nd= logd n) so that a point-location query canbe answered in O(log n) time. Their algorithm was later simpli�ed by Matou�sek [245]and Chazelle [93]. Mulmuley and Sen [265] developed a randomized dynamic data struc-ture of size O(nd) for point location in arrangements of hyperplanes that can answera point-location query in O(log n) expected time and can insert or delete a hyperplanein O(nd�1 log n) expected time. comCheck the bound.ment Hagerup et al. [195] describe a  �randomized parallel algorithm for constructing the arrangement of hyperplanes under theCRCW model. Their algorithm runs in O(log n) time using O(nd= log n) expected numberArrangements April 14, 1998



Computing Arrangements 44of processors. A deterministic algorithm under the CREW model with the same worst-caseperformance was proposed by Goodrich [179].There has been some work on constructing arrangements of lines and segments using
oating-point (�nite precision) arithmetic. Milenkovic [257] developed a general techniquecalled double-precision geometry that can be applied to compute arrangements of linesand segments in the plane. For example, if the coe�cients of each line in a set � ofn lines are represented using at most b bits, then his technique can compute A(�) inO(n3 log n) time using at most b + 20 bits of precision. A careful implementation of thealgorithm by Edelsbrunner et al. requires 3b bits of precision. Because of �nite-precisionarithmetic, Milenkovic's technique computes the coordinates of vertices approximately, andtherefore produces a planar geometric graph, which is an arrangement of pseudolines. If theapproximate arithmetic used by his algorithm makes relative error ", then the maximumerror in the coordinates of vertices ofA(�) computed by his algorithm isO(p"). Fortune andMilenkovic [168] showed that the sweep-line and incremental algorithms can be implementedso that the maximum error in the coordinates of vertices is at most O(n"). For all practicalpurposes this approach is better than the one described in [257]. See [182, 185, 256, 258]for a few additional results on constructing arrangements using 
oating-point arithmetic.Constructing arrangements of surfaces. The algorithm by Edelsbrunner et al. [147]for computing hyperplane arrangements can be extended to computing the vertical decom-position Ajj(�) for a set � of n arcs in the plane. In the (i+1)st step, the algorithm traces
i+1 through zone(
i+1; �i) and updates the trapezoids of Ajj(�i) that intersect 
i+1. Therunning time of the (i+1)st stage is O(�s+2(i)), where s is the maximum number of inter-section points between a pair of arcs in �. Hence, the overall running time of the algorithmis O(n�s+2(n)). Suppose � is a set of arcs in the plane in general position. If the arcs in �are added in a random order and a \history dag," as described in Chapter DS-??, is usedto e�ciently �nd the trapezoids of Ajj(�i) that intersect 
i+1, the expected running time ofthe algorithm can be improved to O(n log n+k), where k is the number of vertices in A(�).Very little is known about computing the arrangement of a set � of surfaces in higherdimensions. Chazelle et al. [95] have shown that Ajj(�) can be computed in randomizedexpected time O(n2d�3+"), using the random-sampling technique. Their algorithm can bemade deterministic without increasing its asymptotic running time, but the deterministicalgorithm is considerably more complex.There has been some work for computing arrangements under the more realistic modelof precise rational arithmetic model used in computational real algebraic geometry [71].Canny [88] had described an (nb)O(d)-time algorithm for computing a sample point fromeach cell of the arrangement of a set of n hypersurfaces in Rd , each of degree at most b.The running time was improved by Basu et al. [67] to nd+1bO(d). Basu et al. [66] describedan nd+1bO(d2)-time algorithm for computing the roadmap of a semialgebraic set de�ned byn polynomials, each of degree at most b. Although their goal is to develop the road map ofArrangements April 14, 1998



Computing Substructures in Arrangements 45a semialgebraic set, their algorithm �rst constructs the road map of the entire arrangementof the surfaces de�ning the semialgebraic set and then outputs the appropriate portion ofthe map.13 Computing Substructures in Arrangements13.1 Lower envelopesLet � be a set of surface patches satisfying assumptions (A1){(A3). We want to compute theminimization diagramM(�) of �. We described in Chapter DS-?? algorithms for computingthe minimization diagram of a set of arcs in the plane. In this chapter we will focus onminimization diagrams of sets of surface patches in higher dimensions. There are againseveral choices, depending on the application, as to what exactly we want to compute. Thesimplest choice is to compute the vertices or the 1-skeleton ofM(�). A more di�cult task isto compute all the faces ofM(�) and represent them using any of the mechanisms describedin the previous section. Another challenging task, which is required in many applications,is to store � into a data structure so that L�(x), for any point x 2 Rd�1 , can be computede�ciently.For collections � of surface patches in R3 , the minimization diagramM(�) is a planarsubdivision. In this case, the latter two tasks are not signi�cantly harder than the �rst one,because we can preprocessM(�) using any optimal planar point-location algorithm [122].Several algorithms have been developed for computing the minimization diagram of bivari-ate (partial) surface patches [9, 73, 74, 118, 303]. Some of these techniques use randomizedalgorithms, and their expected running time is O(n2+"), which is comparable with the max-imum complexity of the minimization diagram of bivariate surface patches. The simplestalgorithm is probably the deterministic divide-and-conquer algorithm presented by Agar-wal et al. [21]. It partitions � into two subsets �1;�2 of roughly equal size, and computesrecursively the minimization diagrams M1, M2 of �1 and �2, respectively. It then com-putes the overlay M� of M1 and M2. Over each face f of M� there are only (at most)two surface patches that can attain the �nal envelope (the one attaining L(�1) over f andthe one attaining L(�2) over f), so we compute the minimization diagram of these twosurface patches over f , replace f by this re�ned diagram, and repeat this step for all facesof M�. We �nally merge any two adjacent faces f; f 0 of the resulting subdivision if thesame surface patches attain L(�) over both f and f 0. It is easy to see that the cost of thisstep is proportional to the number of faces of M�. By the result of Agarwal et al. [21],M� has O(n2+") faces. This implies that the complexity of the above divide-and-conqueralgorithm is O(n2+"). If � is a set of triangles in R3 , the running time of the algorithm isO(n2�(n)) [141]. This divide-and-conquer algorithm can also be used to compute S(�;�0),the region lying above all surface patches of one collection �0 and below all surface patchesof another collection �, in time O(n2+"), where n = j�j+ j�0j [21].Arrangements April 14, 1998



Computing Substructures in Arrangements 46A more di�cult problem is to devise output-sensitive algorithms for computingM(�),whose complexity depends on the actual combinatorial complexity of the envelope. Arather complex algorithm is presented by De Berg [117] for the case of triangles in R3 , whoserunning time is O(n4=3+"+n4=5+"k4=5), where k is the number of vertices inM(�). comCheck  �the bound.ment If the triangles in � are pairwise disjoint, the running time can be improvedto O(n1+" + n2=3+"k2=3) [17, 117].The algorithm by Edelsbrunner et al. [141] can be extended to compute in O(nd�1�(n))time all faces of the minimization diagram of (d � 1)-simplices in Rd for d � 4. However,little is known about computing the minization diagram of more general surface patches ind � 4 dimensions. Let � be a set of surface patches in Rd satisfying assumptions (A1){(A2).Agarwal et al. [9] showed that all vertices, edges and 2-faces ofM(�) can be computed inrandomized expected time O(nd�1+"). We sketch their algorithm below.Assume that � satis�es assumptions (A1){(A5). Fix a (d� 2)-tuple of surface patches,say 
1; : : : ; 
d�2, and decompose their common intersection Td�2i=1 
i into smooth, x1x2-monotone, connected patches, using a strati�cation algorithm. Let � be one such piece.Each surface 
i, for i � d�1, intersects � at a curve �i, which partitions � into two regions.If we regard each 
i as the graph of a partially de�ned (d�1)-variate function, then we cande�ne Ki � � to be the region whose projection on the hyperplane H : xd = 0 consists ofpoints x at which 
i(x) � 
1(x) = � � � = 
d�2(x). The intersection Q = Ti�d�1Ki is equalto the portion of � that appears along the lower envelope L(�). We repeat this procedurefor all patches of the intersection Td�2i=1 
i and for all (d� 2)-tuples of surface patches. Thiswill give all the vertices, edges and 2-faces of L(�).Since � is x1x2-monotone 2-manifold, computing Q is essentially the same as computingthe intersection of n� d+ 2 planar regions. Q can thus be computed using an appropriatevariant of the randomized incremental approach [118, 98]. It adds �i = 
i\� one by one in arandom order (� may consist of O(1) arcs), and maintains the intersection of the regions Kifor the arcs added so far. Let Qr denote this intersection after r arcs have been added. Wemaintain the \vertical decomposition" of Qr (within �), and represent Qr as a collectionof pseudo-trapezoids. We maintain additional data structures, including a history dag anda union-�nd structure, and proceed exactly as in [118, 98] (See DS-??). We omit here thedetails.We de�ne the weight of a pseudo-trapezoid � to be the number of surface patches 
i,for i � d � 1, whose graphs either cross � or hide � completely from the lower envelope(excluding the up to 4 function graphs whose intersections with � de�ne �). The cost ofthe above procedure, summed over all (d� 2)-tuples of �, is proportional to the number ofpseudo-trapezoids that are created during the execution of the algorithm, plus the sum oftheir weights, plus an overhead term of O(nd�1) needed to prepare the collections of arcs�i over all two-dimensional patches �. Modifying the analysis in the papers cited above,Agarwal et al. prove the following.Theorem 13.1 (Agarwal et al. [9]) Let � be a set of n surface patches in Rd satisfyingArrangements April 14, 1998



Computing Substructures in Arrangements 47assumptions (A1){(A2). The vertices, edges, and 2-faces of M(�) can be computed inrandomized expected time O(nd�1+"), for any " > 0.For d = 4, the above algorithm can be extended to compute the incidence graph (orcell-tuple structure) of M(�). Their approach, however, falls short of computing suchrepresentations for d > 4. Agarwal et al. also show that the three-dimensional point-location algorithm by Preparata and Tamassia [284] can be extended to preprocess a setof trivariate surface patches in time O(n3+") into a data structure of size O(n3+") so thatL�(x), for any point x 2 R3 , can be computed in O(log2 n) time.Open Problem 12 Let � be a set of n surface patches in Rd , for d > 4, satisfying as-sumptions (A1){(A3). How fast can � be preprocessed, so that L�(x), for a query pointx 2 Rd�1 , can be computed e�ciently?13.2 Single cellsComputing a single cell in an arrangement of n hyperplanes in Rd is equivalent, by duality,to computing the convex hull of a set of n points in Rd and is therefore a widely studied prob-lem; see, e.g., [132, 299] for a summary of known results. For d � 4, an O(nbd=2c) expected-time algorithm for this problem was proposed by Clarkson and Shor [111] (see also [298]),which is optimal in the worst case. By derandomizing this algorithm, Chazelle [21] devel-oped an O(nbd=2c)-time deterministic algorithm. A somewhat simpler algorithm with thesame running time was later proposed by Br�onnimann et al. [80]. This result implies thatthe Euclidean Voronoi diagram of a set of n points in Rd can be computed in time O(ndd=2e).Since the complexity of a cell may vary between O(1) and O(nbd=2c), output-sensitive al-gorithms have been developed for computing a single cell in hyperplane arrangements [103,224]. For d � 3, Clarkson and Shor [111] gave randomized algorithms with expected timeO(n log h), where h is the complexity of the cell, provided that the planes are in general po-sition. Simple deterministic algorithms with the same worst-case bound were developed byChan [90]. Seidel [296] proposed an algorithm whose running time is O(n2+h log n); the �rstterm can be improved to O(n2�2=(bd=2c+1) logc n) [244] or to O((nh)1�1=(bd=2c+1) logc n) [91].Chan et al. [92] described another output-sensitive algorithm whose running time is O((n+(nf)1�1=dd=2e+fn1�2=dd=2e) logc n). Avis et al. [58] described an algorithm that can computein O(nf) time, using O(n) space, all f vertices of a cell in an arrangement of n hyperplanesin Rd ; see also [77, 171]. All these output-sensitive bounds hold only for simple arrange-ments. Although many of these algorithms can be extended to nonsimple arrangements,the running time increases.As mentioned in Chapter DS-??, Guibas et al. [191] developed an O(�s+2(n) log2 n)-timealgorithm for computing a single face in an arrangement of n arcs, each pair of which inter-sect in at most s points. Later a randomized algorithm with expected time O(�s+2(n) log n)was developed by Chazelle et al. [98]. Since the complexity of the vertical decomposition ofArrangements April 14, 1998



Computing Substructures in Arrangements 48a single cell in an arrangement of n surface patches in R3 is O(n2+") [295], an applicationof the random-sampling technique yields an algorithm for computing a single cell in timeO(n2+") in an arrangement of n surface patches in R3 [295]. If � is a set of triangles, therunning time can be improved to O(n2 log3 n) [118]. Halperin [196] developed faster algo-rithms for computing a single cell in arrangements of \special" classes of bivariate surfacesthat arise in motion-planning applications.13.3 LevelsConstructing the �k-level. Let � be a set of n arcs in the plane, each pair of whichintersect in at most s points. A�k(�) can be computed by a simple divide-and-conqueralgorithm as follows [301]. Partition � into two subsets �1;�2, each of size at most dn=2e,compute recursively A�k(�1);A�k(�2), and then use a sweep-line algorithm to computeA�k(�) from A�k(�1) and A�k(�2). The time spent in the merge step is proportional tothe number of vertices in A�k(�1);A�k(�2) and the number of intersections points betweenthe edges of two subdivisions, each of which is a vertex of A(�) whose level is at most 2k.Using Theorem 6.1, the total time spent in the merge step is O(�s+2(n)k log n). Hence,the overall running time of the algorithm is O(�s+2(n)k log2 n). If we use a randomizedincremental algorithm that adds arcs one by one in a random order and maintains A�k(�i),where �i is the set of arcs added so far, the expected running time of the algorithm isO(�s+2(n)k log(n=k)); see, e.g., [264]. Everett et al. [164] showed that if � is a set of n lines,the expected running time can be improved to O(n logn+nk). Recently Agarwal et al. [13]gave another randomized incremental algorithm that can compute A�k(�) in expected timeO(�s+2(n)(k + log n)).In higher dimensions, little is known about computing A�k(�), for collections � of sur-face patches. For d = 3, Mulmuley [264] gave a randomized incremental algorithm forcomputing the �k-level in an arrangement of n planes whose expected running time isO(nk2 log(n=k)). The expected running time can be improved to O(n log3 n + nk2) usingthe algorithm by Agarwal et al. [13]. There are, however, several technical di�culties inextending this approach to arrangements of surface patches. Using the random-samplingtechnique, Agarwal et al. [14] developed an O(n2+"k) expected-time algorithm for comput-ing A�k(�), for a collection � of n surface patches in R3 . Their algorithm can be derandom-ized without a�ecting the asymptotic running time. For d � 4, Mulmuley's algorithm cancompute the �k-level in arrangements of n hyperplanes in expected time O(nbd=2ckdd=2e).No e�cient algorithm is known for computing the �k-level in surface arrangements becauseno nontrivial bound is known for the complexity of the vertical decomposition of A�k(�)in d � 4 dimensions.Constructing a single level. Edelsbrunner and Welzl [154] gave an O(n log n+b log2 n)-time algorithm to construct the k-level in an arrangement of n lines in the plane, whereb is the number of vertices of the k-level. This bound was slightly improved by Cole etArrangements April 14, 1998



Computing Substructures in Arrangements 49al. [113] to O(n logn+ b log2 k). However, these algorithms do not extend to computing thek-level in arrangements of curves. The approach by Agarwal et al. [13] can compute thek-level in an arrangement of lines in randomized expected time O(n log2 n+nk1=3 log2=3 n),and it extends to arrangements of curves and to arrangements of hyperplanes. Agarwaland Matou�sek [19] describe an output-sensitive algorithm for computing the k-level in anarrangement of planes. The running time of their algorithm, after a slight improvementby Chan [91], is O(n log b + b1+"), where b is the number of vertices of the k-level. Theiralgorithm can compute the k-level in an arrangement of hyperplanes in Rd in timeO(n log b+(nb)1�1=(bd=2c+1)+"+bn1�2=(bd=2c+1)+"). As in the case of single cells, all the output-sensitivealgorithms assume that the hyperplanes are in general position.13.4 Marked cellsLet � be a set of n lines in the plane and S a set of m points in the plane. Edelsbrunner etal. [142] presented a randomized algorithm, based on the random-sampling technique, forcomputing C(S;�), the set of cells in A(�) that contain at least one point of S, whoseexpected running time is O(m2=3�"n2=3+2" logn +m log n + n log n logm), for any " > 0.A deterministic algorithm with running time O(m2=3n2=3 logc n + n log3 n + m logn) wasdeveloped by Agarwal [2]. However, both algorithms are rather complicated. A simplerandomized divide-and-conquer algorithm, with O((mpn+n) log n) expected running time,was recently proposed by Agarwal et al. [20]. Using random sampling, they improved theexpected running time to O(m2=3n2=3 log2=3(n=pm)+(m+n) log n). If we are interested incomputing the incidences between � and S, the best-known algorithm is by Matou�sek whoseexpected running time is O(m2=3n2=32O(log�(m+n))+(m+n) log(m+n)) [246]. His algorithmcan be extended to higher dimensions. The number of incidences between m points and nhyperplanes in Rd can be counted in time O((mn)1�1=(d+1)2O(log�(m+n)) + (m+ n) log(m+n)) [246].The above algorithms can be modi�ed to compute marked cells in arrangements ofsegments in the plane. The best-known randomized algorithm is by Agarwal et al. [20] whoserunning time is O(m2=3n2=3 log2=3(n=pm)�1=3(n=pm)+(m+n log n) log n). Little is knownabout computing marked cells in arrangements of arcs in the plane. Using a randomizedincremental algorithm, C(S;�) can be computed in expected time O(�s+2(n)pm log n),where s is the maximum number of intersection points between a pair of arcs in � [304].If � is a set of n unit-radius circles and S is a set of m points in the plane, the incidencesbetween � and S can be computed using Matou�sek's algorithm [246].Randomized incremental algorithms can be used to construct marked cells in arrange-ments of hyperplanes in higher dimensions in time close to their worst-case complexity.For example, if � is a set of n planes in R3 and S is a set of m points in R3 , then theincidence graph of cells in C(S;�) can be computed in expected time O(nm2=3 log n) [118].For d � 4, the expected running time is O(m1=2nd=2 log
 n), where 
 = (bd=2c � 1)=2. DeBerg et al. [123] describe an e�cient point-location algorithm in the zone of a k-
at in anArrangements April 14, 1998



Applications 50arrangement of hyperplanes in Rd . Their algorithm can answer a query in O(logn) timeusing O(nb(d+k)=2c log
 n) space, where 
 = d+ k (mod 2).13.5 Union of objectsLet � be a set of n semialgebraic simply connected regions in the plane, each of constantdescription complexity. The union of � can be computed in O(f(n) log2 n) time by a divide-and-conquer technique, similar to that described in Section 13.3 for computing A�k(�).Here f(m) is the maximum complexity of the union of a subset of � of sizem. Alternatively,S� can be computed in O(f(n) log n) expected time using the lazy randomized incrementalalgorithm by De Berg et al. [118]. As a consequence, the union of n convex fat objects,each of constant description complexity, can be computed in O(n1+") time, for any " > 0;see Section 9.Aronov et al. [55] modi�ed the approach by Agarwal et al. [9] so that the union ofn convex polytopes in R3 with a total of s vertices can be computed in expected timeO(sn logn log s+n3). The same approach can be used to compute the union of n congruentcylinders in time O(n8=3+"). (Again, consult Section 9 for the corresponding bounds on thecomplexity of the union.)Many applications call for computing the volume or surface area of S� instead of itscombinatorial structure. Overmars and Yap [270] showed that the volume of the union ofn axis-parallel boxes in Rd can be computed in O(nd=2 logn) time. Edelsbrunner [134] gavean elegant formula for the volume and the surface area of the union of n balls in Rd , whichcan be used to compute the volume e�ciently.14 ApplicationsIn this section we present a sample of applications of arrangements. We discuss a fewspeci�c problems that can be reduced to bounding the complexity of various substructuresof arrangements of surfaces or to computing these substructures. We also mention a fewgeneral areas that have motivated several problems involving arrangements and in whicharrangements have played an important role.14.1 Range searchingA typical range searching problem is de�ned as follows: Preprocess a set S of n points inRd , so that all points of S lying in a query region can be reported (or counted) quickly. Aspecial case of range searching is halfspace range searching, in which the query region is ahalfspace. Because of numerous applications, range searching has received much attentionduring the last twenty years. See [16, 247] for recent surveys on range searching and itsArrangements April 14, 1998



Applications 51applications.If we de�ne the dual of a point p = (a1; : : : ; ad) to be the hyperplane p� : xd = �a1x1�� � � � ad�1xd�1 + ad, and the dual of a hyperplane h : xd = b1x1 + � � � + bd�1xd�1 + bdto be the point h� = (b1; : : : bd), then p lies above (resp. below, on) h if and only if thehyperplane p� lies above (resp. below, on) the point h�. Hence, halfspace range searchinghas the following equivalent \dual" formulation: Preprocess a set � of n hyperplanes inRd so that the hyperplanes of H lying below a query point can be reported quickly, or thelevel of a query point can be computed quickly. Using the point-location data structurefor hyperplane arrangements given in [93], the level of a query point can be computed inO(log n) time using O(nd= logd n) space. This data structure can be modi�ed to reportall t hyperplanes lying below a query point in time O(log n + t). Chazelle et al. [102]showed, using results on arrangements, that a two-dimensional halfspace range reportingquery can be answered in O(log n+ t) time using O(n) space [102]. In higher dimensions,by constructing (1=r)-cuttings for A�k(�), Matou�sek [242] developed a data structure thatcan answer a halfspace range reporting query in time O(log n + t) using O(nbd=2c logc n)space, for some constant c. He also developed a data structure that can answer a queryin time O(n1�1=bd=2c logc n + t) using O(n log log n) space [242]. See also [6, 104]. Usinglinearization, a semialgebraic range-searching query, where one wants to report all pointsof S lying inside a semialgebraic set of constant description complexity, can be answerede�ciently using some of the halfspace range-searching data structures [18, 329].Point-location in hyperplane arrangements can be used for simplex range searching [105],ray shooting [17, 18, 249], and several other geometric searching problems [28].14.2 Terrain visualizationLet � be a polyhedral terrain in R3 with n edges; that is, � is the graph of a continuouspiecewise-linear bivariate function, so it intersects each vertical line in exactly one point.The orthographic view of � in direction b 2 S2 is the decomposition of �, a plane normalto the direction b and placed at in�nity, into maximal regions so that the rays emerging indirection b from all points in such a region hit the same face of �, or none of them hit �. Theperspective view of � from a point a 2 R3 is the decomposition of S2 into maximal connectedregions so that, for each region R � S2 and for all points b 2 R, either the �rst intersectionpoint of � and the ray r emanating from a in direction b lie in the same face of � (whichdepends on R), or none of these rays meet �. The orthographic (resp. perspective) aspectgraph of � represents all topologically di�erent orthographic (resp. perspective) views of �.For background and a survey of recent research on aspect graphs, see [76]. Here we willshow how the complexity bounds for lower envelopes can be used to derive near-optimalbounds on the aspect graphs of polyhedral terrains.A pair of parallel rays (�1; �2) is called critical if for each i = 1; 2, the source pointof �i lies on an edge ai of �, �i passes through three edges of � (including ai), and �idoes not intersect the (open) region lying below �. It can be shown that the number ofArrangements April 14, 1998



Applications 52topologically di�erent orthographic views of � is O(n5) plus the number of critical pairsof parallel rays. Fix a pair a1; a2 of edges of �. Agarwal and Sharir [23] de�ne, for eachpair (a1; a2) of edges of �, a collection Fa1;a2 of n trivariate functions, so that every pair(�1; �2) of critical rays, where �i emanates from a point on ai (for i = 1; 2), corresponds toa vertex of M(Fa1;a2). They also show that the graphs of the functions in Fa1;a2 satisfyassumptions (A1){(A2). Using Theorem 3.1 and summing over all pairs of edges of �, wecan conclude that the number of critical pairs of rays, and thus the number of topologicallydi�erent orthographic views of �, is O(n5+"). Using a more careful analysis, Halperin andSharir [202] proved that the number of di�erent orthographic views is n52O(plog n). DeBerg et al. [121] have constructed a terrain for which there are 
(n5) topologically di�erentorthographic views. If � is an arbitrary polyhedral set with n edges, the maximum possiblenumber of topologically di�erent orthographic views of � is �(n6) [282]. De Berg et al. [121]showed that if � is a set of k pairwise-disjoint convex polytopes with a total of n vertices,then the number of orthographic views is O(n4k2); the best-known lower bound is 
(n2k4).Agarwal and Sharir extended their approach to bound the number of perspective viewsof a terrain. They argue that the number of perspective views of � is proportional to thenumber of triples of rays emanating from a common point, each of which passes throughthree edges of � before intersecting the open region lying below �. Following a similarapproach to the one sketched above, they reduce the problem to the analysis of lowerenvelopes of O(n3) families of 5-variate functions, each family consisting of O(n) functionsthat satisfy assumptions (A1){(A2). This leads to an overall bound of O(n8+") for thenumber of topologically di�erent perspective views of �. This bound is also known to bealmost tight in the worst case, as follows from another lower-bound construction given byDe Berg et al. [121]. Again, in contrast, If � is an arbitrary polyhedral set with n edges, themaximum possible number of topologically di�erent perspective views of � is �(n9) [282].14.3 TransversalsLet S be a set of n compact convex sets in Rd . A hyperplane h is called a transversal of Sif h intersects every member of S. Let T (S) denote the space of all hyperplane transversalsof S. We wish to study the structure of T (S). To facilitate this study, we apply the dualtransform described in Section 14.1. Let h : xd = a1x1+ � � �+ad�1xd�1+ad be a hyperplanethat intersects a set s 2 S. Translate h up and down until it becomes tangent to s. Denotethe resulting upper and lower tangent hyperplanes byxd = a1x1 + � � �+ ad�1xd�1 + Us(a1; : : : ; ad�1)and xd = a1x1 + � � �+ ad�1xd�1 + Ls(a1; : : : ; ad�1);respectively. Then we haveLs(a1; : : : ; ad�1) � ad � Us(a1; : : : ; ad�1):Arrangements April 14, 1998



Applications 53Now if h is a transversal of S, we must havemaxs2S Ls(a1; : : : ; ad�1) � ad � mins2S Us(a1; : : : ; ad�1):In other words, if we de�ne � = fUs j s 2 Sg and �0 = fLs j s 2 Sg, then T (S) isS(�;�0), the region lying above the lower envelope of � and below the upper envelope of�0. The results of Agarwal et al. [21] imply that if each set in S has constant descriptioncomplexity, then the complexity of T (S) is O(n2+"), for any " > 0 in R3 . The results in [21]concerning the complexity of the vertical decomposition of S(�;�0) imply that T (S) can beconstructed in O(n2+") time. No sharp bounds are known on T (S) in higher dimensions.However, in four dimensions, using the algorithm by Agarwal et al. [9] for point location inthe minimization diagram of trivariate functions, we can preprocess S into a data structureof size O(n3+") so that we can determine in O(log n) time whether a hyperplane h is atransversal of S.The problem can be generalized by considering lower-dimensional transversals. Forexample, in R3 we can also consider the space of all line transversals of S (lines that meetevery member of S). By mapping lines in R3 into points in R4 , and by using an appropriateparametrization of the lines, the space of all line transversals of S can be represented as theregion in R4 enclosed between the upper envelope and the lower envelope of two respectivecollections of surfaces. Pellegrini and Shor [280] showed that if S is a set of triangles inR3 , then the space of line transversals of S has n32O(plog n) complexity. The bound wasslightly improved by Agarwal [4] to O(n3 logn). He reduced the problem to bounding thecomplexity of a family of cells in an arrangement of O(n) hyperplanes in R5 . Agarwal etal. [10] proved that the complexity of the space of line transversals for a set of n balls inR3 is O(n3+"). Their argument works even if S is a set of homothets of a convex region ofconstant description complexity in R3 .14.4 Geometric optimizationIn the past few years, many problems in geometric optimization have been attacked bytechniques that reduce the problem to constructing and searching in various substructuresof surface arrangements. Hence, the area of geometric optimization is a natural extension,and a good application area, of the study of arrangements. See [24] for a recent survey ongeometric optimization.One of the basic techniques for geometric optimization is the parametric searching tech-nique, originally proposed by Megiddo [253]. This technique reduces the optimization prob-lem to a decision problem, where one needs to compare the optimal value to a given param-eter. In most cases, the decision problem is easier to solve than the optimization problem.The parametric searching technique proceeds by a parallel simulation of a generic versionof the decision procedure with the (unknown) optimum value as an input parameter. Inmost applications, careful implementation of this technique leads to a solution of the opti-mization problem whose running time is larger than that of the decision algorithm only byArrangements April 14, 1998



Applications 54a polylogarithmic factor. See [24] for a more detailed survey of parametric searching andits applications.Several alternatives to parametric searching have been developed during the past decade.They use randomization [240, 25, 89], expander graphs [217], and searching in monotonematrices [169]. Like parametric searching, all these techniques are based on the availabilityof an e�cient procedure for the decision problem. When applicable, they lead to algorithmswith running times that are similar to, and sometimes slightly better than, those yieldedby parametric searching.These methods have been used to solve a wide range of geometric optimization problems,many of which involve arrangements. We mention a sample of such results.Slope selection. Given a set S of n points in R2 and an integer k, �nd the line with thekth smallest slope among the lines passing through pairs of points of S. If we dualize thepoints in S to a set � of lines in R2 , the problem becomes that of computing the kth leftmostvertex of A(�). Cole et al. [112] developed a rather sophisticated O(n logn)-time algorithmfor this problem, which is based on parametric searching. (Here the decision problem isto count the number of vertices of the arrangement that lie to the left of a given verticalline.) A considerably simpler algorithm, based on (1=r)-cuttings, was later proposed byBr�onnimann and Chazelle [79]. See also [240, 216].Distance selection. Given a set S of n points in R2 and a parameter k � �n2�, �nd thek-th largest distance among the points of S [12, 217]. The corresponding decision problemreduces to point location in a set of congruent disks in R2 . Speci�cally, given a set � ofm congruent disks in the plane, we wish to count e�ciently the number of containmentsbetween disks of � and points of S. This problem can be solved using parametric searching[12], expander graphs [217], or randomization [240]. The best-known deterministic algo-rithm, given by Katz and Sharir [217], runs in O(n4=3 log3+" n) time.Segment center. Given a set S of n points in R2 and a line segment e, �nd a placementof e that minimizes the largest distance from the points of S to e [15, 157]. The decisionproblem reduces to determining whether given two families � and �0 of bivariate surfaces,S(�;�0), the region lying between L� and U�0 , is empty. Exploiting the special propertiesof � and �0, Efrat and Sharir [157] show that the complexity of S(�;�0) is O(n log n).They describe an O(n1+")-time to determine whether S(�;�0) is empty, which leads to anO(n1+")-time algorithm for the segment-center problem.Extremal polygon placement. Given a convex m-gon P and a closed polygonal en-vironment Q with n vertices, �nd the largest similar copy of P that is fully containedin Q [305]. Here the decision problem is to determine whether P , with a �xed scalingArrangements April 14, 1998



Applications 55factor, can be placed inside Q; this is a variant of the corresponding motion planningproblem for P inside Q, and is solved by constructing an appropriate representation ofthe 3-dimensional free con�guration space, as a collection of cells in a corresponding 3-dimensional arrangement of surfaces. The running time of the whole algorithm is onlyslightly larger than the time needed to solve the �xed-size placement problem. The bestrunning time is O(mn�6(mn) log3mn log2 n) [11]; see also [222, 305]. If Q is a convex n-gon,the largest similar copy of P that can be placed inside Q can be computed in O(mn2 logn)time [5];Diameter in 3D. Given a set S of n points in R3 , determine the maximum distancebetween a pair of points in S. The problem is reduced to determining whether S lies in theintersection of a given set � of n congruent balls. A randomized algorithm with O(n logn)expected time was proposed by Clarkson and Shor [111]. A series of papers [97, 250, 286, 285]describe near-linear-time deterministic algorithms. The best-known deterministic algorithmruns in O(n log2 n) time [285].Width in 3D. Given a set S of n points in R3 , determine the smallest distance betweentwo parallel planes enclosing S between them. This problem has been studied in a series ofpapers [9, 25, 97], and the currently best known randomized algorithms computes the widthin O(n3=2+") expected time [25]. The technique used in attacking the decision problems forthis and the two following problems reduce them to point location in the region above thelower envelope of a collection of trivariate functions in R4 .Biggest stick in a simple polygon: Compute the longest line segment that can �tinside a given simple polygon with n edges. The current best solution is O(n3=2+") [25] (seealso [9, 27]).Minimum-width annulus: Compute the annulus of smallest width that encloses a givenset of n points in the plane. This problem arises in �tting a circle through a set of pointsin the plane. Again, the current best solution is O(n3=2+") [25] (see also [9, 27]).Geometric matching. Consider the problem where we are given two sets S1, S2 of npoints in the plane, and we wish to compute a minimum-weight matching in the completebipartite graph S1�S2, where the weight of an edge (p; q) is the Euclidean distance betweenp and q. One can also consider the analogous nonbipartite version of the problem, whichinvolves just one set S of 2n points, and the complete graph on S. The goal is to explorethe underlying geometric structure of these graphs, to obtain faster algorithms than thoseavailable for general abstract graphs. Vaidya [318] had shown that both the bipartite andthe nonbipartite versions of the problem can be solved in time close to O(n5=2). A fairlyArrangements April 14, 1998



Applications 56sophisticated application of vertical decomposition in three-dimensional arrangements, givenin [14], has improved the running time for the bipartite case to O(n2+").Center point. A center point of a set S of n points in the plane is a point � 2 R2 sothat each line ` passing through � has the property that at least bn=3c points lie in eachhalfplane bounded by `. It is well known that such a center point always exists [132]. If wedualize S to a set � of n lines in the plane, then ��, the line dual to �, lies between Abn=3c(�)and Ad2n=3e(�). Cole et al. [113] described an O(n log3 n)-time algorithm for computing acenter point of S, using parametric searching. The problem of computing the set of allcenter points reduces to computing the convex hull of Ak(�) for a given k. Matou�sek [238]described an O(n log2 n)-time algorithm for computing the convex hull of Ak(�) for anyk � n; recall, in contrast, that the best known upper bound for Ak(�) is O(n(k + 1)1=3).Ham sandwich cuts. Let S1; S2; : : : ; Sd be d sets of points in Rd , each containing npoints. Suppose n is even. A ham sandwich cut is a hyperplane h so that each openhalfspace bounded by h contains at most n=2 points of Si, for i = 1; : : : ; d. It is known[132, 328] that such a cut always exists. Let �i be the set of hyperplanes dual to Si. Thenthe problem reduces to computing a vertex of the intersection of An=2(�1) and An=2(�2).Megiddo [254] developed a linear-time algorithm for computing a ham sandwich cut in theplane if S1 and S2 can be separated by a line. For arbitrary point sets in the plane, a linear-time algorithms was later developed by Lo etal [235]. Lo et al.also described an algorithmfor computing a ham sandwich cut in R3 whose running time is O( n=2(n) log2 n), where k(n) is the maximum complexity of the k-level in an arrangement of n lines in the plane.By Dey's result on k-levels [124], the running time of their algorithm is O(n4=3 log2 n).14.5 RoboticsAs mentioned in the introduction, motion planning for a robot system has been a majormotivation for the study of arrangements. Let B be a robot system with d degrees of free-dom, which is allowed to move freely within a given two or three-dimensional environmentcluttered with obstacles. Given two placements I and F of B, determining whether thereexists a collision-free path between these placements reduces to determining whether I andF lie in the same cell of the arrangement of the family � of \contact surfaces" in Rd , re-garded as the con�guration space of B (see the introduction for more details). If I and F liein the same cell, then a path between I and F in Rd that does not intersect any surface of �corresponds to a collision-free path of B in the physical environment from I to F . If d is apart of the input, the problem is known to be PSPACE-complete [86, 288]. Canny [85, 87]gave an nO(d)-time algorithm to compute the roadmap of a single cell in an arrangementA(�) of a set � of n surfaces in Rd provided that the cells in A(�) form a Whitney regularstrati�cation of Rd (see [180] for the de�nition of Whitney strati�cation). Using a pertur-bation argument, he showed that his approach can be extended to obtain a Monte CarloArrangements April 14, 1998



Applications 57algorithm to determine whether two points lie in the same cell of A(�). The algorithmswas subsequently extended and improved by many researchers see [66, 212, 181]. The best-known algorithm, due to Basu et al. [66], can compute the roadmap in time nd+1bO(d2).Much work has been done on developing e�cient algorithms for robots with a small num-ber of degrees of freedom, say, two or three [196, 205, 221]. The result by Schwarzkopfand Sharir [295] gives an e�cient algorithm for computing a collision-free path between twogiven placements for a fairly general robot system with three degrees of freedom.It is impractical to compute the roadmap, or any other explicit representation, of a singlecell in A(�) if d is large. A general Monte Carlo algorithm for computing a probabilisticroadmap of a cell in A(�) is described by Kavraki et al. [218]. This approach avoidscomputing the cell explicitly. Instead, it samples a large number of random points in thecon�guration space and only those con�gurations that lie in the free con�guration space(FP ) are retained (they are called milestones); we also add I and F as milestones. Thealgorithm then builds a `connectivity graph' whose nodes are these milestones, and whoseedges connect pairs of milestones if the line segment joining them in con�guration space liesin FP (or if they satisfy some other \local reachability" rule). Various strategies have beenproposed for choosing random con�gurations [39, 64, 215, 219]. The algorithm returns apath from I to F if they lie in the same connected component of the resulting network. Notethat this algorithm may fail to return a collision-free path from I to F even if there existsone. This technique nevertheless has been successful in several real-world applications.Assembly planning is another area in which the theory of arrangements has led to e�-cient algorithms. An assembly is a collection of objects (called parts) placed rigidly in somespeci�ed relative positions so that no two objects overlap. A subassembly of an assemblyA is a subset of objects in A in their relative placements in A. An assembly operationis a motion that merges some subassemblies of A into a new and larger subassembly. Anassembly sequence for A is a sequence of assembly operations that starts with the individ-ual parts separated from each other and ends up with the full assembly A. The goal ofassembly planning is to compute an assembly sequence for a given assembly. A classicalapproach to assembly sequencing is disassembly sequencing, which separates an assemblyinto its individual parts [214]. The reverse order of a sequence of disassemblying operationsyields an assembly sequence. Several kinds of motion have been considered in separatingparts of an assembly, including translating a subassembly along a straight line, arbitrarytranslational motion, rigid motion, etc. A common approach to generate a disassemblysequence is the so-called non-directional blocking graph approach. It partitions the space ofall allowable motions of separation into a �nite number of cells so that within each cell theset of \blocking relations" between all pairs of parts remains �xed. The problem is thenreduced to computing representative points in cells of the arrangement of a family of sur-faces. This approach has been successful in many instances, including polyhedral assemblywith in�nitesimal rigid motion [186]; see also [199, 198].Other problems in robotics that have exploited arrangements include �xturing [287],MEMS (micro electronic mechanical systems) [72], path planning with uncertainty [119],Arrangements April 14, 1998



Applications 58and manufacturing [29].14.6 Molecular modelingIn the introduction, we described the Van der Waals model, in which a molecule M isrepresented as a collection � of spheres in R3 . (See [115, 135, 255] for other geometricmodels of molecules.) Let � = @(S�). The boundary of � is called the \surface" ofM . Many problems in molecular biology, especially those which study the interaction of aprotein with another molecule, involve computing the molecular surface, a portion of thesurface (e.g., the so-called active site of a protein), or various features of the molecularsurface [137, 200, 231, 321]. We brie
y describe two problems in molecular modeling thatcan be formulated in terms of arrangements.The chemical behavior of solute molecules in a solution is strongly dependent on theinteractions between the solute and solvent molecules. These interactions are critically de-pendent on those molecular fragments that are accessible to the solvent molecules. Supposewe use the Van der Waals model for the solute molecule and model the solvent by a sphereS. By rolling S on the molecular surface �, we obtain a new surface �0, described by thecenter of the rolling sphere. If we enlarge each sphere of � by the radius of S, �0 is theboundary of the union of the enlarged spheres.As mentioned above, several mthods have been proposed to model the surface of amolecule. The best choice of the model depends on the chemical problem the molecularsurface is supposed to represent. For example, the Van der Waal model represents thespace requirement of molecular conformations, while isodensity contours and molecularelectrostatic potential contour surfaces [255] are useful in studying molecular interactions.An important problem in molecular modeling is to study the interrelations among variousmolecular surfaces of the same molecule. Let � = f�1; : : : ;�mg be a family of molecularsurfaces of the same molecule. We may want to compute the arrangement A(�), or we maywant to compute the subdivision of �i induced by f�j \ �i j 1 � j 6= i � mg.Researchers have also been interested in computing \connectivity" of a molecule, e.g.,computing voids, tunnels, and pockets of �. A void of � is a bounded component of R3 n�;a tunnel is a hole through � that is accessible from the outside, i.e., an \inner" part of anon-contractible loop in R3 n �; and a pocket is a depression or cavity on the boundary of�. Pockets are not holes in the topological sense and are not well de�ned; see [116, 137] forsome of the de�nitions proposed so far.E�cient algorithms have been developed for computing �, connectivity of �, and thearrangement A(�) [135, 200, 321]. Halperin and Shelton [206] describe an e�cient per-turbation scheme to handle degeneracies while constructing A(�) or �. Some applicationsrequire computing the measure of di�erent substructures of A(�), including the volume of�, the surface area of �, or the volume of a void of �. Edelsbrunner et al. [136] describean e�cient algorithm for computing these measures; see also [134, 135].Arrangements April 14, 1998



Conclusions 5915 ConclusionsIn this survey we reviewed a wide range of topics on arrangements of surfaces. We mentioneda few old results, but the emphasis of the survey was on the tremendous progress made inthis area during the last �fteen years. We discussed combinatorial complexity of arrange-ments and their substructures, representation of arrangements, algorithms for computingarrangements and their substructures, and several geometric problems in which arrange-ments play pivotal roles. Although the survey covered a broad spectrum of results, manytopics on arrangements were either not included or very brie
y touched upon. For example,we did not discuss arrangements of pseudo-lines and oriented matroids, we discussed alge-braic and topological issues very brie
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