
SPASS: Combining Superposition,
Sorts and Splitting

Christoph Weidenbach
Max-Planck-Institute for Computer Science

http://spass.mpi-db.mpg.de

Presented by Mooly Sagiv

Bibliography
• SPASS: Combining Superposition, Sorts and Splitting

C. Weidenbach
Handboook of Automated Reasoning

• Refinements of Resolution H. de Nivelle

• Resolution for propositional logic A. Voronkov

• A Theory of Resolution L. Bachmair and H. Ganzinger
Handbook of Automated Reasoning

• A Machine Oriented Logic Based on the Resolution Principle
J.A. Robinson, JACM 1965

General

• The unsatisifiability problem for FOL is undecidable
– No terminating algorithm which says

yes ↔ the formula is non satisfiable

• The unsatisfiability problem is enumerable

• Resolution is such enumeration procedure

• Implemented in Otter, Spass, Bliksem, Vampire, …

• Succeed in proving interesting theorems
– Adapts to certain decidable logics

• But predictability is an issue

• Limited practical usage

Clauses

• A literal is an atom or its negation
– positive literal = atom
– negative literal = negated atom

• A clause is a finite multiset of literals

• The meaning of {A1, A2, …, An} is:
∀X1, X2, …, Xn: (A1 ∨ A2 ∨ … An)

• The goal is to refute a given finite set of clauses

• Prove that C1 ∧ C2 … ∧ Cn→ D by refuting
{C1, C2, …, Cn, ‘¬ D’}

Unifying Terms

• Substitution: A mapping σ from the set of
variables to the terms such that Xσ≠X only for
finitely many X

• Generalizes to terms and literals

• σ is a matcher for terms s and t if s σ = t

• σ is a unifier for terms s and t if s σ = t σ

• σ is the most general unifier (mgu) of s and t if:
– It is a unifier of s and t
– For every unifier τ of s and t there exists a

substitution λ such that λ σ= τ

Examples

Term 1 Term 2 Unifier

a X {X h a}
p(a, X) p(Y, b) {X h b,Y h a}
p(f(X), g(Z)) p(f(a), Y) {Xha, Y h g(Z)}

p(f(X), g(Z)) p(f(a), Y) {Xha, Y h g(a), Z h a}

mgu

Resolution

• C and D clauses w/o overlapping variables

• ∅≠ P ⊆ C with positive literals

• ∅≠ N ⊆ D with negative literals

• There exists a substitution σ
– P σ = {A}
– N σ = {¬A}

• Then: ((C – P)τ ∪ (D - N) τ)
– where τ = mgu(P, N)

Example

1:{¬p(X, Y), p(Y, X)}

2:{¬p(X, Y), ¬ p(Y, Z) , p(X, Z)}

3: {p(X, f(X))}

4: {¬p(a, a)}

Resolution and Factoring

• Two types of resolution
– Unify literals within one clause (factoring)
– Unify literals within different clauses

• Advantage of separation
– Reduce the cost of resolution
– Reduce the size of clauses

Resolution

Γ1, A → Δ1 Γ2→ Δ2 , B

 (Γ 1, Γ2 → Δ1 Δ2)σ
I

σ=mgu(A, B)

p(f(X)) → p(X)p(f(a), p(f(Y)) →

σ={X h f(Y)}

p(f(a), p(f(f(Y)) →

Factoring

Γ → Δ, A, B

(Γ → Δ, A)σ
I

σ=mgu(A, B)

Γ, A, B → Δ

(Γ , A → Δ) σ
I

1: {p(X), p(Y)}

2: {¬p(X), ¬P(Y)}

Observation

• Simple resolution is easy to implement but does
not get very far

• Often diverges due to the inherent complexity of
the problem of finding a proof
– Large possibly infinite search space

• Theorem provers implement refinements
(restrictions) to resolution

Refinements of resolution

• Block certain clauses
– Subsumption & Weight strategies

• Block certain literals in a clause
– Ordering

• Impose a structure on the resolution
– Hyperresolution
– Linear resolution

A refinement is complete if every unsatifiable set of
clauses has a derivation of the empty clause �

Subsumption

• Blocks complete clauses from being considered

• If two clauses C and D exist such that C ⊆ D
then any conclusion from D can also be
obtained from C

• Becomes even more important with equality

Subsumption Deletion

Γ1 → Δ1 Γ2→ Δ2

Γ 1 → Δ1

R

Γ1 σ ⊆ Γ2

and

Δ1 σ ⊆ Δ2

A Saturation Based Theorem Prover

• Start with an initial set of clauses

• Apply rules and add more clause until either
– No more clauses can be derives (saturation)

• The set of clauses is saturated w.r.t. to the inference rules

– The empty clause � is derived (refutation)

Simple SPASS rules

Γ1, A → Δ1 Γ2→ Δ2 , B

 (Γ 1, Γ2 → Δ1 Δ2)σ
I

σ=mgu(A, B)
Γ → Δ, Δ, B

(Γ → Δ, A)σ
I

Γ, Δ, B → Δ

(Γ , A → Δ) σ
I

Γ1 → Δ1 Γ2→ Δ2

Γ 1 → Δ1

R

Γ → Δ
R

A Simple Resolution Based TP

• A worklist algorithm

• Remember which inference rules have been
tried

• Prefer reductions over inferences

• Prefer small clauses

A Simple Resolution Based TP

ResolutionProver1(N)

Wo := ∅;

Us := taut(strictsub(N, N)) ;

while (Us ≠∅ and �∉Us) {

(Given, Us) = choose(Us) ;

Wo := Wo ∪{Given};

New := res(Given, Wo) ∪ fac({Given)};

New := taut(strictsub(New, New));

New := sub(sub(New, Wo), Us);

Wo := sub(Wo, New);

Us := sub(Us, New) ∪ New;

}

if (Us = ∅) then print “Completion Found” ;

If (�∈ Us) then print “Proof found”;

Input reduction

forward subsumption

backward subsumption

A Simple Example

1: → p(f(a)

2: p(f(X) → p(X)

3: p(f(a)), p(f(X))

Fair selection

• ResutionProver1 is complete when choose is fair
– No clauses stays in Us forever

• A simple fair selection
– Chose the lightest clause smaller size
– Finitely many clauses of a given size in a given

vocabulary

• Unfair selection may also be useful
– Ignore clauses which are too big
– Restart few times with larger bounds

Maintained Invariants

• Any inference conclusion (resolution, factoring)
from Wo is either a tautology or
contained/subsumed by a clause in Wo, Us

• Wo and Us are completely inter-reduced
– taut(Wo ∪Us) = Wo ∪Us
– strictsub(Wo ∪Us, Wo ∪Us) = Wo ∪Us

• Partial correctness
– Upon termination Wo is saturated or �∈ Us

Other properties of ResolutionProver1

• In case a N’ ⊆ N is known to be satisfiable,
initialized with
– Wo := N’;
– Us’ := (N – N’)

• The initial order of N may be important

Subsumption

• On non-trivial examples |Wo| ^ |Us|

• Subsumption test w.r.t. Us becomes the
bottleneck (95%)

A Second Resolution Based TP

ResolutionProver2(N)

Wo := ∅;

Us := taut(strictsub(N, N)) ;

while (Us ≠∅ and �∉Us) {

(Given, Us) = choose(Us);

if (sub(Given), Wo) ≠ ∅) {;

Wo := sub(Wo, {Given});

Wo := Wo ∪{Given};

New := res(Given, Wo) ∪ {Given};

New := taut(strictsub(New, New));

New := sub(New, Wo);

Us := Us ∪ New; }}

if (Us = ∅) then print “Completion Found” ;

If (�∈ Us) then print “Proof found”;

Maintained Invariants

• Any inference conclusion (resolution, factoring)
from Wo is either a tautology or
contained/subsumed by a clause in Wo, Us

• Wo is completely inter-reduced
– taut(Wo) = Wo
– strictsub(Wo, Wo) = Wo

• Partial correctness
– Upon termination Wo is saturated or �∈ Us

Ordering

• Block certain literals from consideration

• Impose an order < on literals

• Apply resolution/factoring only on maximal
literals

• Drastically reduces the number of applied rules

• Completeness may be an issue

• Can guarantee termination for certain decidable
class of logics

Resolution with ordering

Γ1, A → Δ1 Γ2→ Δ2 , B

 (Γ 1, Γ2 → Δ1 Δ2)σ
I

σ=mgu(A, B)

A is maximal in Γ1, A → Δ1

B is maximal in Γ2→ Δ2 , B

Propositional example

1: {a, b}

2: {a, ¬b}

3: {¬a, b}

4: {¬a, ¬b}

a < b < ¬a < ¬b

Completeness

• In the propositional case any order results in a complete
refinement (Theorem 2.7: De Nivelle)

• In predicate logic the situation is more complicated
C = {p(X), q(X), r(X)} where p(X)< q(X) < r(X)
D = {¬r(0)}

• An order is liftable if A < B implies A θ ≤ B θ

• An order < on literals is descending if
– A < B ⇒ Aθ1 < B θ2

– A θ < A when θ is not a renaming of A

• For liftable and descending orders resolution is complete

Orders in Spass

• Knuth-Benedix Ordering (KBO)
– Invented as part of the Knuth-Benedix completion

algorithm
– Based on orders on functions/predicates
– Total order on ground terms
– Useful with handling equalities

• Recursive path ordering with Status
[Dershowitz 82]
– Useful for orienting distributivity

Other rules in Spass

• Sort constraint resolution

• Hyperresolution

• Paramodulation

• Splitting

Missing

• The automatic Spass loop (Table 4)

• The overall loop with splitting (Table 7)

• Data structures and algorithms

Conclusion

• Resolution based decision procedures can prove
interesting theorems

• Refinements of resolution are essential

• Decidability of certain classes of first order logic is
possible

• Combing with specialized decision procedures is a
challenge

• Other issues:
– Scalability
– Counterexamples

	SPASS: Combining Superposition, Sorts and Splitting
	Bibliography
	General
	Clauses
	Unifying Terms
	Examples
	Resolution
	Example
	Resolution and Factoring
	Resolution
	Factoring
	Observation
	Refinements of resolution
	Subsumption
	Subsumption Deletion
	A Saturation Based Theorem Prover
	Simple SPASS rules
	A Simple Resolution Based TP
	A Simple Resolution Based TP
	A Simple Example
	Fair selection
	Maintained Invariants
	Other properties of ResolutionProver1
	Subsumption
	A Second Resolution Based TP
	Maintained Invariants
	Ordering
	Resolution with ordering
	Propositional example
	Completeness
	Orders in Spass
	Other rules in Spass
	Missing
	Conclusion

