
ON COMPUTAMBLE NUMBERS,
WITH AN APPLICATION TO THE

ENTSCHENIDUGSPROBLEM

Turing 1936

Where are We?

Ignoramus et

ignorabimus

We do not know

We shall not know

Wir mussen wissen

Wir werden wissen

We must know

We will know

The right side is where we wish to be, but
sometimes we are on the left side.

Entscheidungsproblem
(“Decision Problem”)

The Entscheidungsproblem asks for
an algorithm that takes as input a statement of
a first-order-logic (possibly with a finite number
of axioms beyond the usual axioms of first-order
logic) and answers "Yes" or "No" according to
whether the statement is universally valid.

Turing will later show this problem is undecidable.

Some Definitions

• Σ - is a finite set of symbols

• “First Kind Symbols” – 1/0

• “Second Kind Symbols”- special symbols (#,*,@,% etc.)

• M(x) – a machine a.k.a “turing-machine”. (x) is the
machine input

• a-machine - “automatic-machine” is a deterministic
turing-machine. For the scope of this lecture any
‘machine’ is an a-machine.

• c-machine - “choice-machine” is a non-deterministic
turing-machine

More Definitions

• “Circle-free machine”- prints an infinite number
of symbols of the first kind

• “Circular machine”- prints a finite number of
symbols of the first kind

• We shall assume a machine prints only a finite
number of symbols of the second kind therefore
a machine halts iff its circular.

• “Computable sequence” – the sequence of 1/0s
written by the machine. Can be either finite or
infinite. It represents a “Computable number”.

S.D and D.N

• S.D is the “standard description” of a machine. Basically
it is a shortened version of the table that represents the
machine’s transition function.

• D.N is the “description number” of a machine. It is a
natural number that can be obtained directly from the
machine S.D.

• The mapping between a machine to it’s S.D to it’s D.N is
both one to one and onto. Therefore the set of all
machines is enumerable.

• <M> - a notation for the D.N of M where M is a machine.

The Universal Machine

• We use the notation U(<M>,x) to represent
the “Universal Machine”.

• Basically its an a-machine that, given <M> and
an input x, can simulate the run of M on x.

• U obtains a full description M from its D.N and
performs the required actions to run M on x
as described.

• One can think of U as a ‘computer’ that can
run any ‘computer program’ M on any input x.

The Set of Computable Sequences
is Enumerable

For each computable sequence 𝛼 we can match 𝑆𝛼 a non-
empty set of the D.Ns of the machines that compute 𝛼.

We know that 𝑆𝛼 is not empty because 𝛼 is a computable
sequence and therefore there is at least one machine that
computes 𝛼.

Moreover for each 𝛼1 ≠ 𝛼1: 𝑆𝛼1
∩ 𝑆𝛼2

= ∅. This is
because a deterministic machine cannot compute more
then one sequence.

We already showed that the set of all machines is
enumerable. Therefore the set of all computable
functions is enumerable.

HALT is Undecidable
 “Proof in Two Minutes”

• Using common, university course, notations.

• Assume for the sake of obtaining a
contradiction that there is a machine
H(<M>,x) that outputs 1 iff M halts on x.

• We define a machine D(x) that given any
input x runs H(<D>,x). If H(<D>,x)=1, D goes
into an infinite loop. Otherwise D halts.

• What will D(<D>) do? Will it halt?

HALT is Undecidable (cont. I)

• We will prove that determining whether a
machine is circular or circle-free is undecidable.

• Previously we showed that the set of computable
sequences is enumerable. It can be easily shown
that set of infinite computable sequences (i.e. the
set of sequences computed by circle free
machines) is also enumerable. Let 𝜑𝑛 𝑛 be such
enumeration whereas 𝜑𝑛 is the n-th sequence.

HALT is Undecidable (cont. II)

• We show that the diagonal of this enumeration 𝛽
is not computable.

• Otherwise for every 𝑛 ∈ 𝑁 we could have
obtained 𝛽′ 𝑛 = 1 − 𝛽 𝑛 . Clearly 𝛽′ is
computable from 𝛽 and therefore there must be
𝑘 ∈ 𝑁 s.t 𝜑𝑘 = 𝛽′

• But then of course 𝜑𝑘 (𝑘) ≠ 𝛽′ 𝑘 thus
obtaining a contradiction to the enumerability of
the set of computable sequences. Therefore 𝛽
isn’t computable sequence.

HALT is Undecidable (cont. III)

• Assuming the existence of a machine ‘H’ that can
decide given the D.N of another machine ‘M’
whether ‘M’ is circle-free or circular we will show
a machine ‘D’ that computes 𝛽 thus obtaining a
contradiction.

• D will run in sections 1…N… each time computing
R(N) which is the number of D.Ns describing a
circle-free machine in the range 1…N. In section N
D will consult with H whether N is the D.N of a
circular or a circle-free machine.

HALT is Undecidable (cont. IV)

• If M(N) is circular R(N)=R(N-1) and D will continue
to the N+1 section.

• Otherwise R(N)=R(N-1)+1 and D computes the
R(N) digit of the sequence computed by M(N) and
writes it on the tape.

• Now it is clear that D computes 𝛽 on it’s tape.
Therefore ‘D’ cannot exist and so also ‘H’.

• We showed that there can be no machine that
decides whether some other machine is circular
or circle-free.

Why talk about ‘Computability’?

• The definition captures the essence of
computation. This is arguable yet convincing.

• Many things are computable according to our
definition. For example 𝜋,e are computable, and
so are the roots of any polynom with rational
coefficients - “algebraic numbers”.

• It was shown that other computational models
(for example λ-calculus and definable sequences)
are equivalent in power to a turing-machine .

‘Definable’ is also ‘Computable’

• We introduce another definition for computability
using concepts of mathematical logic.

• Let α be a sequence of 0/1s. Let 𝜎 be a signature .
𝜎 includes ‘F’- the successor function, ‘u’- a constant
symbol and 𝐺𝛼 𝑡 - a predicate that evaluates to TRUE
iff the ν[𝑡] digit of α is 1 (assuming our domain is N).
We will say that α is ‘definable’ if there exists some
provable formula ‘U’ over 𝜎 s.t for every 𝑛 ∈ 𝑁 exactly
one of the following two formulae is provable:

𝐴𝑛 ≔ 𝑈&𝐹 𝑛 → 𝐺𝛼(𝑢 𝑛)

 𝐵𝑛 ≔ 𝑈&𝐹 𝑛 → −𝐺𝛼(𝑢 𝑛)

‘Definable’ is also ‘Computable’
(cont. I)

• Now we want to show that any ‘definable’
sequence α is also ‘computable’.

• A sketch of the proof. Let α be a definable
sequence. Let ‘n’ be an arbitrary positive integer.
We wish to compute α (n), the n-th digit of α.

• In order to do so we need to prove either 𝐴𝑛 or
𝐵𝑛. We know that exactly one of them is provable
(by definition of computable sequence). We set
about to find its proof.

• Finding the proof is straight forward. We
enumerate over all the proofs of W.F.F over 𝜎 .

‘Definable’ is also ‘Computable’
(cont. II)

• First we obtain proofs of length 1. These are
simply the axioms. Then we obtain proofs of
length 2 by trying to apply all the derivation rules
on each of the axioms. And so on.

• We already know that either 𝐴𝑛 or 𝐵𝑛 is provable
by a proof sequence of some length K. Sooner or
later we will find all the proofs of length K. One of
them will be the proof of either 𝐴𝑛 or 𝐵𝑛.

• It can be easily shown (from the definition of 𝐺𝛼)
that α (n)==1 iff 𝐴𝑛 is provable.

Back to Entscheidungsproblem

• In the last section of the article Turing shows
that the “Decision Problem” is undecidable.

• It is shown that E. P ≥ 𝐻𝐴𝐿𝑇. This is called
‘reduction’ and it is used extensively
throughout the article.

• “If E.P is decidable then so is HALT. We know
that HALT is undecidable and therefore E.P is
also undecidable. “

Relation to Incompleteness Theorem

• Godel Incompleteness Theorem states that:
“Any effectively generated theory capable of
expressing elementary arithmetic cannot be
both consistent and complete.”

• It was later shown by Stephen Kleene that the
existence of a complete effective theory of
arithmetic with certain consistency properties
would force the halting problem to be
decidable, a contradiction.

