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Two major themes of my research have beenmathematical logicand theautomata
theoreticapproach. I learned both subjects from Ya’akov Choueka, whotaught me
automata theory as an undergraduate student and mathematical logic as a graduate
student. Little did I know then that these courses would havesuch a profound impact
on my future research.

Abstract. One of the surprising developments in the area of program verifica-
tion is how ideas introduced by logicians in the early part ofthe 20th Century
ended up yielding by the 21 Century industrial-standard property-specification
languages. This development was enabled by the equally unlikely transformation
of the mathematical machinery of automata on infinite words,introduced in the
early 1960s for second-order logic, into effective algorithms for model-checking
tools. This paper attempts to trace the tangled threads of this development.

1 Thread I: Classical Logic of Time

1.1 Monadic Logic

In 1902, Russell send a letter to Frege in which he pointed outthat Frege’s logical
system was inconsistent. This inconsistency has become known asRussell’s Paradox.
Russell, together with Whitehead, publishedPrincipia Mathematicain an attempt to re-
solve the inconsistency, but the monumental effort did not convince mathematicians that
mathematics is indeed free of contradictions. This has become know as the “Founda-
tional Crisis.” In response to that Hilbert launched what has become known as “Hilbert’s
Program.” (See [1].)

One of the main points in Hilbert’s program was the decidability of mathematic. In
1928, Hilbert and Ackermann published “Principles of Mathematical Logic”, in which
they posed the question of theDecision Problemfor first-order logic. This problem
was shown to be unsolvable by Church and Turing, independently, in 1936; see [2].
In response to that, logicians started the project of classifying the decidable fragments
of first-order logic [2, 3]. The earliest decidability result for such a fragment is for the
Monadic Class, which is the fragment of first-order predicate logic where all predicates,
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with the exception of the equality predicate, are required to be monadic. This fragment
can express the classical sylogisms. For example the formula

((∀x)(H(x) →M(x)) ∧ (∀x)(G(x) → H(x))) → (∀x)(G(x) → M(x))

expresses the inference of: “if all humans are mortal and allGreeks are human, then all
Greeks are mortal.”

In 1915 Löwenheim showed that the Monadic Class is decidable [4]. His proof
technique was based on thebounded-model property, proving that a monadic sentence
is satisfiable if it is satisfiable in a model of bounded size. This enables the reduction of
satisfiability testing to searching for a model of bounded size. L”owenheim’s tecchnique
was extended by Skolem in 1919 toMonadic Second Order Logic, in which one can also
quantify over monadic predicates, in addition to quantifying over domain elements [5].
Skolem also used the bounded-model property. To prove this property, he introduced
the technique ofquantifier elimination, which is a key technique in mathematical logic
[2].

Recall, that the only binary predicate in Skolem’s monadic second-order logic is the
equality predicate. One may wonder what happens if we also allow inequality predi-
cates. Such an extension is the subject of the next section.

1.2 Logic and Automata

Classical logic views logic as a declarative formalism, aimed at the specification of
properties of mathematical objects. For example, the sentence

(∀x, y, x)(mult(x, y, z) ↔ mult(y, x, z))

expressed the commutativity of multiplication. Starting in the 1930s, a different branch
of logic focused on formalisms for describing computations, starting with the intro-
duction of Turing machines in the 1930s, and continuing withthe development of the
theory of finite-state machines in the 1950s. A surprising, intimate, connection between
these two paradigms of logic emerged in the late 1950s.

A nondeterministic finite automaton on words(NFW)A = (Σ,S, S0, ρ, F ) consists
of a finite input alphabetΣ, a finite state setS, an initial state setS0 ⊆ S, a transition
relationρ ⊆ S × Σ × S, and an accepting state setF ⊆ S. An NFW runs over an
finite input wordw = a0, . . . , an−1 ∈ Σ∗. A run of A on w is a finite sequence
r = s0, . . . , sn of states inS such thats0 ∈ S0, and(si, ai, si+1) ∈ ρ, for 0 ≤ i < n.
The runr is acceptingif sn ∈ F . The wordw is acceptedbyA if A has an accepting
run onw. The languageof A, denotedL(A), is the set of words accepted byA. The
class of languages accepted by NFWs forms the class ofregular languages, which are
defined in terms of regular expressions. This class is extremely robust and has numerous
equivalent representations [6].

Example 1.We describe graphically below an NFW that accepts all words over the al-
phabet{0, 1} that end with an occurrence of 1. The arrow on the left designates the
initial state, and the circle on the right designates an accepting state.
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We now view a finite wordw = a0, . . . , an−1 over an alphabetΣ as a relational
structureMw, with the domain of0, . . . , n−1 ordered by the binary relation<, and the
unary relations{Pa : a ∈ Σ}, with the interpretation thatPa(i) holds precisely when
ai = a. We refer to such structures asword structures. We now use first-order logic
(FO) to talk about such words. For example, the sentence

(∃x)((∀y)(¬(x < y)) ∧ Pa(x))

says that the last letter of the word isa. We say that such a sentence is over the alphabet
Σ.

Going beyond FO, we obtainmonadic second-order logic(MSO), in which we can
have monadic second-order quantifiers of the form∃Q, ranging over subsets of the
domain, and giving rise to new atomic formulas of the formQ(x). Given a sentence
ϕ in MSO, its set of models models(ϕ) is a set of words. Note that this logic extends
Skolem’s logic with the addition of the linear order<.

The fundamental connection between logic and automata is now given by the fol-
lowing theorem, discovered independently by Büchi, Elgot, and Trakhtenbrot.

Theorem 1. [7–12]Given an MSO sentenceϕ over alphabetΣ, one can construct an
NFWAϕ with alphabetΣ such that a wordw in Σ∗ is accepted byAϕ iff ϕ holds
in the word structureMw. Conversely, given an NFWA with alphabetΣ, one can
construct an MSO sentenceϕA overΣ such thatϕA holds in a word structureMw iff
w is accepted byA.

Thus, the class of languages defined by MSO sentences is precisely the class of regular
languages.

To decide whether a sentenceϕ is satisfiable, that is, whether models(ϕ) 6= ∅,
we need to check thatL(Aϕ) 6= ∅. This turns out to be an easy problem. LetA =
(Σ,S, S0, ρ, F ) be an NFW. Construct a directed graphGA = (S,EA), with S as the
set of nodes, andEA = {(s, t) : (s, a, t) ∈ ρ for somea ∈ Σ}. The following lemma
is implicit in [7–10] and more explicit in [13].

Lemma 1. L(A) 6= ∅ iff there are statess0 ∈ S0 andt ∈ F such that inGA there is a
path froms0 to t.

We thus obtain an algorithm for the SATISFIABILITY problem of MSO over word
structures: given an MSO sentenceϕ, construct the NFWAϕ and check whetherL(A) 6=
∅ by finding a path from an initial state to an accepting state. This approach to satis-
fiability checking is referred to as theautomata-theoretic approach, since the decision



procedure proceeds by first going from logic to automata, andthen searching for a path
in the constructed automaton.

There was little interest in the 1950s in analyzing the computational complexity
of the SATISFIABILITY problem. That had to wait until 1974. Define the function
exp(k, n) inductively as follows:exp(0, n) = n andexp(k+1, n) = 2exp(k,n). We say
that a problem isnonelementaryif it can not be solved by an algorithm whose running
time is bounded byexp(k, n) for some fixedk ≥ 0; that is, the running time cannot be
bounded by a tower of exponentials of a fixed height. It is not too difficult to observe
that the construction of the automatonAϕ in [7–10] involves a blow-up ofexp(n, n),
wheren is the length of the MSO sentence being decided. It was shown in [14, 15] that
the SATISFIABILITY problem for MSO is nonelementary. In fact, the problem is already
nonelementary for FO [15].

1.3 Reasoning about Sequential Circuits

The field of hardware verification seems to have been started in a little known 1957
paper by Church, in which he described the use of logic to specify sequential circuits
[16]. A sequential circuit is a switching circuit whose output depends not only upon its
input, but also on what its input has been in the past. A sequential circuit is a particular
type of finite-state machine, which became a subject of studyin mathematical logic and
computer science in the 1950s.

Formally, a sequential circuitC = (I,O,R, f, g, r0) consists of a finite setI of
Boolean input signals, a finite setO of Boolean output signals, a finite setR of Boolean
sequential elements, a transition functionf : 2I × 2R → 2R, an output functiong :
2R → 2O, and an initial stater0 ∈ 2R. (We refer to elements ofI ∪ O ∪ R ascircuit
elements, and assume thatI,O, andR are disjoint.) Intuitively, a state of the circuit is a
Boolean assignment to the sequential elements. The initialstate isr0. In a stater ∈ 2R,
the Boolean assignment to the output signals isg(r). When the circuit is in stater ∈ 2R

and it reads an input assignmenti ∈ 2I , it changes its state tof(i, r).
A traceover a setV of Boolean variables is an infinite word over the alphabet2V ,

i.e., an element of(2V )ω. A trace of the sequential circuitC is a trace overI ∪ O ∪R
that satisfies some conditions. Specifically, a sequenceτ = (i0, r0,o0), (i1, r1,o1), . . .,
whereij ∈ 2I , oj ∈ 2O, andrj ∈ 2R, is a trace ofC if rj+1 = f(ij , rj) andoj =
g(rj), for j ≥ 0. Thus, in modern terminology, Church was following thelinear-time
approach [17] (see discussion in Section 2.1). The set of traces ofC is denoted by
traces(C).

We saw earlier how to associate relational structures with words. We can similarly
associate with an infinite wordw = a0, a1, . . . over an alphabet2V , a relational struc-
tureMw = (IN,≤, V ), with the naturalsIN as the domain, ordered by<, and extended
by the setV of unary predicates, wherej ∈ p, for p ∈ V , precisely whenp holds(i.e.,
is assigned1) in ai.1 We refer to such structures asinfinite word structures. When we
refer to thevocabularyof such a structure, we refer explicitly only toV , taking< for
granted.

1 We overload notation here and treatp as both a Boolean variable and a predicate.



We can now specify traces using First-Order Logic (FO) sentences constructed from
atomic formulas of the formx = y, x < y, andp(x) for p ∈ V = I ∪ R ∪ O.2 For
example, the FO sentence

(∀x)(∃y)(x < y ∧ p(y))

says thatp holds infinitely often in the trace. In a follow-up paper in 1963 [18], Church
considered also specifying traces using monadic second-order logic (MSO), where in
addition to first-order quantifiers, which range over the elements ofIN, we allow also
monadic second-order quantifiers, ranging over subsets ofIN, and atomic formulas of
the formQ(x), whereQ is a monadic predicate variable. (This logic is also calledS1S,
the “second-order theory of one successor function”.) For example, the MSO sentence,

(∃P )(∀x)(∀y)((((P (x) ∧ y = x+ 1) → (¬P (y)))∧
(((¬P (x)) ∧ y = x+ 1) → P (y)))∧
(x = 0 → P (x)) ∧ (P (x) → q(x))),

wherex = 0 is an abbrevaition for(¬(∃z)(z < x)) andy = x + 1 is an abbreviation
for (y > x∧¬(∃z)(x < z ∧ z < y)), says thatq holds at every even point on the trace.
In effect, Church was proposing to use classical logic (FO orMSO) as a logic of time,
by focusing on infinite word structures. The set of infinite models of an FO or MSO
sentenceϕ is denoted by modelsω(ϕ).

Church posed two problems related to sequential circuits [16]:

– The DECISIONproblem: Given circuitC and a sentenceϕ, doesϕ hold in all traces
of C? That is, does traces(C) ⊆ models(ϕ) hold?

– The SYNTHESIS problem: Given setsI andO of input and output signals, and a
sentenceϕ over the vocabularyI ∪O, construct, if possible, a sequential circuitC

with input signalsI and output signalsO such thatϕ holds in all traces ofC. That
is, constructC such that traces(C) ⊆ models(ϕ) holds.

In modern terminology, Church’s DECISION problem is theMODEL-CHECKING

problem in the linear-time approach (see Section 2.2). Thisproblem did not receive
much attention after [16, 18], until the introduction of model checking in the early
1980s. In contrast, the SYNTHESISproblem has remained a subject of ongoing research;
see [19–23]. One reason that the DECISION problem did not remain a subject of study,
is the easy observation in [18] that the DECISION problem can be reduced to theVA -
LIDITY problem in the underlying logic (FO or MSO). Given a sequential circuitC, we
can easily generate an FO sentenceαC that holds in precisely all structures associated
with traces ofC. Intuitively, the sentenceαC simply has to encode the transition and
output functions ofC, which are Boolean functions. Thenϕ holds in all traces ofC
precisely whenαC → ϕ holds in all word structures (of the appropriate vocabulary).
Thus, to solve the DECISION problem we need to solve the VALIDITY problem over
word structures. As we see next, this problem was solved in 1962.

2 We overload notation here and treatp as both a circuit element and a predicate symbol.



1.4 Reasoning about Infinite Words

Church’s DECISIONproblem was essentially solved in 1962 by Büchi who showed that
the VALIDITY problem over infinite word structures is decidable [24]. Actually, Büchi
showed the decidability of the dual problem, which is the SATISFIABILITY problem
for MSO over infinite word structures. Büchi’s approach consisted of extending the
automata-theoretic approach, see Theorem 1, which was introduced a few years earlier
for word structures, to infinite word structures. To that end, Büchi extended automata
theory to automata on infinite words. For a nice introductionto the theory of automata
on infinite words, see [25].

A nondeterministic B̈uchi automaton on words(NBW) A = (Σ,S, S0, ρ, F ) con-
sists of a finite input alphabetΣ, a finite state setS, an initial state setS0 ⊆ S, a
transition relationρ ⊆ S × Σ × S, and an accepting state setF ⊆ S. An NBW runs
over an infinite input wordw = a0, a1, . . . ∈ Σω. A run of A onw is an infinite se-
quencer = s0, s1, . . . of states inS such thats0 ∈ S0, and(si, ai, si+1) ∈ ρ, for i ≥ 0.
The runr is acceptingif F is visited byr infinitely often; that is,si ∈ F for infinitely
manyi’s. The wordw is acceptedbyA if A has an accepting run onw. Theinfinitary
languageof A, denotedLω(A), is the set of infinite words accepted byA. The class
of languages accepted by NBWs forms the class ofω-regular languages, which are de-
fined in terms of regular expressions augmented with theω-power operator (eω denotes
an infinitary iteration ofe) [24].

Example 2.We describe graphically an NBW that accepts all words over the alphabet
{0, 1} that contain infinitely many occurrences of 1. The arrow on the left designates
the initial state, and the circle on the right designates an accepting state. Note that this
NBW looks exactly like the NFW in Example 1. The only difference is that in Exam-
ple 1 we considered finite input words and here we are considering infinite input words.
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As we saw earlier, the paradigmatic idea of the automata-theoretic approach is that
we can compile high-level logical specifications into an equivalent low-level finite-state
formalism.

Theorem 2. [24] Given an MSO sentenceϕ with vocabularyV , one can construct an
NBWAϕ with alphabet2V such that a wordw in (2V )ω is accepted byAϕ iff ϕ holds
in the word structureMw. Conversely, given an NBWA with alphabet2V , one can



construct an MSO sentenceϕA with vocabularyV such thatϕA holds in an infinite
word structureMw iff w is accepted byA.

Thus, the class of languages defined by MSO sentences is precisely the class ofω-
regular languages.

To decide whether sentenceϕ is satisfiable over infinite words, that is, whether
modelsω(ϕ) 6= ∅, we need to check thatLω(Aϕ) 6= ∅. Let A = (Σ,S, S0, ρ, F ) be
an NBW. As with NFWs, construct a directed graphGA = (S,EA), with S as the set
of nodes, andEA = {(s, t) : (s, a, t) ∈ ρ for somea ∈ Σ}. The following lemma is
implicit in [24] and more explicit in [26].

Lemma 2. Lω(A) 6= ∅ iff there are statess0 ∈ S0 andt ∈ F such that inGA there is
a path froms0 to t and a path fromt to itself.

We thus obtain an algorithm for the SATISFIABILITY problem of MSO over in-
finite word structures: given an MSO sentenceϕ, construct the NBWAϕ and check
whetherLω(A) 6= ∅ by finding a path from an initial state to an accepting state and a
cycle through that accepting state. Since the DECISION problem can be reduced to the
SATISFIABILITY problem, this also solves the DECISION problem.

Neither Büchi nor Church analyzed the complexity of the DECISION problem. The
non-elementary lower bound mentioned earlier for MSO over words can be easily ex-
tended to infinite words. The upper bound here is a bit more subtle. For both finite and
infinite words, the construction ofAϕ proceeds by induction on the structure ofϕ, with
complementation being the difficult step. For NFW, complementation uses thesubset
construction, which involves a blow-up of2n [13, 27]. Complementation for NBW is
significantly more involved, see [28]. The blow-up of complementation is2Θ(n log n)

[29, 30]. This yields a blow-up ofexp(n, n logn) for the translation from MSO to
NBW.

2 Thread II: Temporal Logic

2.1 From Aristotle to Kamp

The history of time in logic goes back to ancient times.3 Aristotle pondered how to
interpret sentences such as “Tomorrow there will be a sea fight,” or “Tomorrow there
will not be a sea fight.” Medieval philosophers also ponderedthe issue of time.4 By the

3 For a detailed history of temporal logic from ancient times to the modern period, see [31].
4 For example, William of Ockham, 1288–1348, wrote (rather obscurely for the modern reader):

“Wherefore the difference between present tense propositions and past and future tense propo-
sitions is that the predicate in a present tense propositionstands in the same way as the subject,
unless something added to it stops this; but in a past tense and a future tense proposition it
varies, for the predicate does not merely stand for those things concerning which it is truly
predicated in the past and future tense propositions, because in order for such a proposition to
be true, it is not sufficient that that thing of which the predicate is truly predicated (whether by
a verb in the present tense or in the future tense) is that which the subject denotes, although it
is required that the very same predicate is truly predicatedof that which the subject denotes,
by means of what is asserted by such a proposition.”



Renaissance period, philosophical interest in the logic oftime seems to have waned.
There were some stirrings of interest in the 19th century, byBoole and Peirce. Peirce
wrote:

“Time has usually been considered by logicians to be what is called ‘extra-
logical’ matter. I have never shared this opinion. But I havethought that logic
had not yet reached the state of development at which the introduction of tem-
poral modifications of its forms would not result in great confusion; and I am
much of that way of thinking yet.”

There were also some stirrings of interest in the first half ofthe 20th century, but
the birth of modern temporal logic is unquestionably credited to Prior. Prior was a
philosopher, who was interested in theological and ethicalissues. His own religious
path was somewhat convoluted; he was born a Methodist, converted to Presbytarianism,
became an atheist, and ended up an agnostic. In 1949, he published a book titled “Logic
and The Basis of Ethics”. He was particularly interested in the conflict between the
assumption offree will (“the future is to some extent, even if it is only a very small
extent, something we can make for ourselves”),foredestination(“of what will be, it has
now been the case that it will be”), andforeknowledge(“there is a deity who infallibly
knows the entire future”). He was also interested in modal logic [32]. This confluence of
interests led Prior to the development oftemporal logic. 5 His wife, Mary Prior, recalled
after his death:

“I remember his waking me one night [in 1953], coming and sitting on my bed,
. . ., and saying he thought one could make a formalised tense logic.”

Prior lectured on his new work when he was the John Locke Lecturer at the Univer-
sity of Oxford in 1955–6, and published his book “Time and Modality” in 1957 [34].6

In this book, he presented a temporal logic that is propositional logic extended with two
temporal connectives,F andP , corresponding to “sometime in the future” and “some-
time in the past”. A crucial feature of this logic is that it has an implicit notion of “now”,
which is treated as anindexical, that is, it depends on the context of utterance for its
meaning. Both future and past are defined with respect to thisimplicit “now”.

It is interesting to note that thelinear vs.branchingtime dichotomy, which has been
a subject of some controversy in the computer science literature since 1980 (see [35]),
has been present from the very beginning of temporal-logic development. In Prior’s
early work on temporal logic, he assumed that time was linear. In 1958, he received a
letter from Kripke,7 who wrote

“In an indetermined system, we perhaps should not regard time as a linear se-
ries, as you have done. Given the present moment, there are several possibilities

5 An earlier term wastense logic; the termtemporal logicwas introduced in [33]. The technical
distinction between the two terms seems fuzzy.

6 Due to the arcane infix notation of the time, the book may not betoo accessible to modern read-
ers, who may have difficulties parsing formulas such asCKMpMqAMKpMqMKqMp.

7 Kripke was a high-school student, not quite 18, in Omaha, Nebraska. Kripke’s interest in modal
logic was inspired by a paper by Prior on this subject [36]. Prior turned out to be the referee of
Kripke’s first paper [37].



for what the next moment may be like – and for each possible next moment,
there are several possibilities for the moment after that. Thus the situation takes
the form, not of a linear sequence, but of a ‘tree’.”

Prior immediately saw the merit of Kripke’s suggestion: “the determinist sees time as
a line, and the indeterminist sees times as a system of forking paths.” He went on to
develop two theories of branching time, which he called “Ockhamist” and “Peircean”.
(Prior did not use path quantifiers; those were introduced later, in the 1980s. See Sec-
tion 3.2.)

While the introduction of branching time seems quite reasonable in the context of
trying to formalize free will, it is far from being simple philosophically. Prior argued
that the nature of the course of time is branching, while the nature of a course of events
is linear [38]. In contrast, it was argued in [33] that the nature of time is linear, but the
nature of the course of events is branching: “We have ‘branching in time,’ not ‘branch-
ing of time’.”8

During the 1960s, the development of temporal logic continued through both the
linear-time approach and the branching-time approach. There was little connection,
however, between research on temporal logic and research onclassical logics, as de-
scribed in Section 1. That changed in 1968, when Kamp tied together the two threads
in his doctoral dissertation.

Theorem 3. [39] Linear temporal logic with past and binary temporal connectives
(“strict until” and “strict since”) has precisely the expressive power of FO over the
ordered naturals (with monadic vocabularies).

It should be noted that Kamp’s Theorem is actually more general and asserts expressive
equivalence of FO and temporal logic over all “Dedekind-closed orders”. The introduc-
tion of binary temporal connectives by Kamp was necessary for reaching the expressive
power of FO;unary linear temporal logic, which has only unary temporal connectives,
is weaker than FO [40]. The theorem refers to FO formulas withone free variable,
which are satisfied at an element of a structure, analogouslyto temporal logic formulas,
which are satisfied at a point of time.

It should be noted that one direction of Kamp’s Theorem, the translation from tem-
poral logic to FO, is quite straightforward; the hard direction is the translation from FO
to temporal logic. Both directions are algorithmically effective; translating from tempo-
ral logic to FO involves a linear blowup, but translation in the other direction involves
a nonelementary blowup.

If we focus on FO sentences rather than FO formulas, then theydefine sets of traces
(a sentenceϕ defines models(ϕ)). A characterization of of the expressiveness of FO
sentences over the naturals, in terms of their ability to define sets of traces, was obtained
in 1979.

Theorem 4. [41] FO sentences over naturals have the expressive power of∗-freeω-
regular expressions.

8 One is reminded of St. Augustin, who said in hisConfessions: “What, then, is time? If no one
asks me, I know; but if I wish to explain it to some who should ask me, I do not know.”



Recall that MSO defines the class ofω-regular languages. It was already shown in [42]
that FO over the naturals is weaker expressively than MSO over the naturals. Theorem 4
was inspired by an analogous theorem in [43] for finite words.

2.2 The Temporal Logic of Programs

There were some early observations that temporal logic can be applied to programs.
Prior stated: “There are practical gains to be had from this study too, for example, in
the representation of time-delay in computer circuits” [38]. Also, a discussion of the ap-
plication of temporal logic to processes, which are defined as “programmed sequences
of states, deterministic or stochastic” appeared in [33].

The “big bang” for the application of temporal logic to program correctness oc-
curred with Pnueli’s 1977 paper [44]. In this paper, Pnueli,inspired by [33], advo-
cated using future linear temporal logic (LTL) as a logic forthe specification of non-
terminating programs; see overview in [45].

LTL is a temporal logic with two temporal connectives, “next” and “until”.9 In
LTL, formulas are constructed from a setProp of atomic propositions using the usual
Boolean connectives as well as the unary temporal connectiveX (“next”), and the bi-
nary temporal connectiveU (“until”). Additional unary temporal connectivesF (“even-
tually”), andG (“always”) can be defined in terms ofU . Note that all temporal connec-
tives refer to the future here, in contrast to Kamp’s “strictsince” operator, which refers
to the past. Thus, LTL is afuture temporal logic. For extensions with past temporal
connectives, see [46–48].

LTL is interpreted over traces over the setProp of atomic propositions. For a trace
τ and a pointi ∈ IN, the notationτ, i |= ϕ indicates that the formulaϕ holds at the
point i of the traceτ . Thus, the pointi is the implicit “now” with respect to which the
formula is interpreted. We have that

– τ, i |= p if p holds atτ(i),
– τ, i |= Xϕ if τ, i+ 1 |= ϕ, and
– τ, i |= ϕUψ if for somej ≥ i, we haveτ, j |= ψ and for all k,i ≤ k < j, we have
τ, k |= ϕ.

The temporal connectivesF andG can be defined in terms of the temporal connective
U ; Fϕ is defined astrue Uϕ, andGϕ is defined as¬F¬ϕ. We say thatτ satisfiesa
formulaϕ, denotedτ |= ϕ, iff τ, 0 |= ϕ. We denote by models(ϕ) the set of traces
satisfyingϕ.

As an example, the LTL formulaG(request→ F grant), which refers to the atomic
propositionsrequestandgrant, is true in a trace precisely when every state in the trace
in which requestholds is followed by some state in the (non-strict) future inwhich
grantholds. Also, the LTL formulaG(request→ (requestU grant)) is true in a trace
precisely if, wheneverrequestholds in a state of the trace, it holds until a state in which
grantholds is reached.

9 Unlike Kamp’s “strict until” (“p strict until q” requiresq to hold in the strict future), Pnueli’s
“until” is not strict (“p until q” can be satisfied byq holding now), which is why the “next”
connective is required.



The focus on satisfaction at 0, calledinitial semantics, is motivated by the desire to
specify computations at their starting point. It enables analternative version of Kamp’s
Theorem, which does not require past temporal connectives,but focuses on initial se-
mantics.

Theorem 5. [49] LTL has precisely the expressive power of FO over the orderednatu-
rals (with monadic vocabularies) with respect to initial semantics.

As we saw earlier, FO has the expressive power of star-freeω-regular expressions
over the naturals. Thus, LTL has the expressive power of star-freeω-regular expressions
(see [50]), and is strictly weaker than MSO. An interesting outcome of the above theo-
rem is that it lead to the following assertion regarding LTL [51]: “The corollary due to
Meyer – I have to get in my controversial remark – is that that [Theorem 5] makes it
theoretically uninteresting.” Developments since 1980 have proven this assertion to be
overly pessimistic on the merits of LTL.

Pnueli also discussed the analog of Church’s DECISION problem: given a finite-
state programP and an LTL formulaϕ, decide ifϕ holds in all traces ofP . Just like
Church, Pnueli observed that this problem can be solved by reduction to MSO. Rather
than focus on sequential circuits, Pnueli focused on programs, modeled as (labeled)
transition systems[52]. A transition systemM = (W,W0, R, V ) consists of a setW
of states that the system can be in, a setW0 ⊆ W of initial states, a transition relation
R ⊆W 2 that indicates the allowable state transitions of the system, and an assignment
V : W → 2Prop of truth values to the atomic propositions in each state of the system.
(A transition system is essentially a Kripke structure [53].) A pathin M thatstarts atu
is a possible infinite behavior of the system starting atu, i.e., it is an infinite sequence
u0, u1 . . . of states inW such thatu0 = u, and(ui, ui+1) ∈ R for all i ≥ 0. The
sequenceV (u0), V (u1) . . . is a traceof M thatstarts atu. It is the sequence of truth
assignments visited by the path. Thelanguageof M , denotedL(M), consists of all
traces ofM that start at a state inW0. Note thatL(M) is a language of infinite words
over the alphabet2Prop. The languageL(M) can be viewed as an abstract description
of the systemM , describing all possible traces. We say thatM satisfiesan LTL formula
ϕ if all traces inL(M) satisfyϕ, that is, ifL(M) ⊆ models(ϕ). WhenW is finite, we
have a finite-state system, and can apply algorithmic techniques.

What about the complexity of LTL reasoning? Recall from Section 1 that satisfia-
bility of FO over trace structures is nonelementary. In contrast, it was shown in [54–60]
that LTL SATISFIABILITY is elementary; in fact, it is PSPACE-complete. It was also
shown that the DECISION problem for LTL with respect to finite transition systems
is PSPACE-complete [56–58]. The basic technique for proving these elementary up-
per bounds is thetableautechnique, which was adapted fromdynamic logics[61] (see
Section 3.1). Thus, even though FO and LTL are expressively equivalent, they have dra-
matically different computational properties, as LTL reasoning is in PSPACE, while FO
reasoning is nonelementary.

The second “big bang” in the application of temporal logic toprogram correctness
was the introduction ofmodel checkingby Clarke and Emerson [62] and by Queille
and Sifakis [63]. The two papers used two different branching-time logics. Clarke and
Emerson used CTL (inspired by the branching-time logic UB of[64]), which extends



LTL with existential and universal path quantifiersE andA. Queille and Sifakis used
a logic introduced by Leslie Lamport [17], which extends propositional logic with the
temporal connectivesPOT (which corresponds to the CTL operatorEF ) andINEV
(which corresponds to the CTL operatorAF ). The focus in both papers was on model
checking, which is essentially what Church called the DECISIONproblem: does a given
finite-state program, viewed as a finite transition system, satisfy its given temporal spec-
ification. In particular, Clarke and Emerson showed that model checking transition sys-
tems of sizem with respect to formulas of sizen can be done in time polynomial inm
andn. This was refined later toO(mn) (even in the presence offairnessconstraints,
which restrict attention to certain infinite paths in the underlying transition system) [65,
66]. We drop the term “DECISION problem” from now on, and replace it with the term
“M ODEL-CHECKING problem”.10

It should be noted that the linear complexity of model checking refers to the size of
the transition system, rather than the size of the program that gave rise to that system.
For sequential circuits, transition-system size is essentially exponential in the size of
the description of the circuit (say, in some Hardware Description Language). This is re-
ferred to as the “state-explosion problem” [68]. In spite ofthe state-explosion problem,
in the first few years after the publication of the first model-checking papers in 1981-2,
Clarke and his students demonstrated that model checking isa highly successful tech-
nique for automated program verification [69, 70]. By the late 1980s, automated verifi-
cation had become a recognized research area. Also by the late 1980s,symbolicmodel
checking was developed [71, 72], and the SMV tool, developedat CMU by McMillan
[73], was starting to have an industrial impact. See [74] formore details.

The detailed complexity analysis in [65] inspired a similardetailed analysis of linear
time model checking. It was shown in [75] that model checkingtransition systems of
sizem with respect to LTL formulas of sizen can be done in timem2O(n). (This again
was shown using a tableau-based technique.) While the boundhere is exponential inn,
the argument was thatn is typically rather small, and therefore an exponential bound is
acceptable.

2.3 Back to Automata

Since LTL can be translated to FO, and FO can be translated to NBW, it is clear that
LTL can be translated to NBW. Going through FO, however, would incur, in general, a
nonelementary blowup. In 1983, Wolper, Sistla, and I showedthat this nonelementary
blowup can be avoided.

Theorem 6. [76, 77]Given an LTL formulaϕ of sizen, one can construct an NBWAϕ

of size2O(n) such that a traceσ satisfiesϕ if and only ifσ is accepted byAϕ.

It now follows that we can obtain a PSPACE algorithm for LTL SATISFIABILITY :
given an LTL formulaϕ, we constructAϕ and check thatAϕ 6= ∅ using the graph-

10 The model-checking problem is analogous to database query evaluation, where we check the
truth of a logical formula, representing a query, with respect to a database, viewed as a finite
relational structure. Interestingly, the study of the complexity of database query evaluation
started about the same time as that of model checking [67].



theoretic approach described earlier. We can avoid using exponential space, by con-
structing the automatonon the fly[76, 77].

What about model checking? We know that a transition systemM satisfies an LTL
formulaϕ if L(M) ⊆ models(ϕ). It was then observed in [78] that the following are
equivalent:

– M satisfiesϕ
– L(M) ⊆ models(ϕ)
– L(M) ⊆ L(Aϕ)
– L(M) ∩ ((2Prop)ω − L(Aϕ)) = ∅
– L(M) ∩ L(A¬ϕ) = ∅
– L(M ×A¬ϕ) = ∅

Thus, rather than complementingAϕ using an exponential complementation construc-
tion [24, 79, 80], we complement the LTL property using logical negation. It is easy to
see that we can now get the same bound as in [75]: model checking programs of sizem
with respect to LTL formulas of sizen can be done in timem2O(n). Thus, the optimal
bounds for LTL satisfiability and model checking can be obtained without resorting to
ad-hoc tableau-based techniques; the key is the exponential translation of LTL to NBW.

One may wonder whether this theory is practical. Reduction to practice took over a
decade of further research, which saw the development of

– an optimized search algorithm for explicit-state model checking [81, 82],
– a symbolic, BDD-based11 algorithm for NBW nonemptiness [71, 72, 84],
– symbolic algorithms for LTL to NBW translation [71, 72, 85],and
– an optimized explicit algorithm for LTL to NBW translation [86].

By 1995, there were two model-checking tools that implemented LTL model checking
via the automata-theoretic approach: Spin [87] is an explicit-state LTL model checker,
and Cadence’s SMV is a symbolic LTL model checker.12 See [88] for a description
of algorithmic developments since the mid 1990s. Additional tools today areVIS [89],
NuSMV[90], andSPOT[91].

It should be noted that Kurshan developed the automata-theoretic approach inde-
pendently, also going back to the 1980s [92–94]. In his approach (as also in [95, 77]),
one uses automata to represent both the system and its specification [96].13 The first im-
plementation of COSPAN, a model-checking tool that is basedon this approach [97],
also goes back to the 1980s; see [98].

2.4 Enhancing Expressiveness

Can the development of LTL model checking [75, 78] be viewed as a satisfactory so-
lution to Church’s DECISION problem? Almost, but not quite, since, as we observed

11 To be precise, one should use the acronym ROBDD, for Reduced Ordered Binary Decision
Diagrams [83].

12 Cadence’s SMV is also a CTL model checker. See
www.cadence.com/webforms/cbl\_software/index.aspx.

13 The connection to automata is somewhat difficult to discern in the early papers [92, 93].



earlier, LTL is not as expressive as MSO, which means that LTLis expressively weaker
than NBW. Why do we need the expressive power of NBWs? First, note that once
we add fairness to transitions systems (sse [65, 66]), they can be viewed as variants of
NBWs. Second, there are good reasons to expect the specification language to be as
expressive as the underlying model of programs [99]. Thus, achieving the expressive
power of NBWs, which we refer to asω-regularity, is a desirable goal. This motivated
efforts since the early 1980s to extend LTL.

The first attempt along this line was made by Wolper [59, 60], who defined ETL
(for Extended Temporal Logic), which is LTL extended with grammar operators. He
showed that ETL is more expressive than LTL, while its SATISFIABILITY problem can
still be solved in exponential time (and even PSPACE [56–58]). Then, Sistla, Wolper
and I showed how to extend LTL with automata connectives, reaching ω-regularity,
without losing the PSPACE upper bound for the SATISFIABILITY problem [76, 77].
Actually, three syntactical variations, denoted ETLf , ETLl, and ETLr were shown to
be expressively equivalent and have these properties [76, 77].

Two other ways to achieveω-regularity were discovered in the 1980s. The first
is to enhance LTL with monadic second-order quantifiers as inMSO, which yields a
logic, QPTL, with a nonelementary SATISFIABILITY problem [100, 80]. The second is
to enhance LTL with least and greatest fixpoints [101,102], which yields a logic,µLTL,
that achievesω-regularity, and has a PSPACE upper bound on its SATISFIABILITY and
MODEL-CHECKING problems [102]. For example, the (not too readable) formula

(νP )(µQ)(P ∧X(p ∨Q)),

whereν andµ denote greatest and least fixpoint operators, respectively, is equivalent to
the LTL formulaGFp, which says thatp holds infinitely often.

3 Thread III: Dynamic and Branching-Time Logics

3.1 Dynamic Logics

In 1976, a year before Pnueli proposed using LTL to specify programs, Pratt proposed
usingdynamic logic, an extension of modal logic, to specify programs [103].14 In modal
logic 2ϕ means thatϕ holds in all worlds that are possible with respect to the current
world [53]. Thus,2ϕ can be taken to mean thatϕ holds after an execution of a program
step, taking the transition relation of the program to be thepossibility relation of a
Kripke structure. Pratt proposed the addition of dynamic modalities [e]ϕ, wheree is
a program, which asserts thatϕ holds in all states reachable by an execution of the
programe. Dynamic logic can then be viewed as an extension of Hoare logic, sinceψ →
[e]ϕ corresponds to the Hoare triple{ψ}e{ϕ} (see [109]). See [108] for an extensive
coverage of dynamic logic.

In 1977, a propositional version of Pratt’s dynamic logic, called PDL, was pro-
posed, in which programs are regular expressions over atomic programs [110, 111].
It was shown there that the SATISFIABILITY problem for PDL is in NEXPTIME and

14 See discussion of precursor and related developments, suchas [104–107], in [108].



EXPTIME-hard. Pratt then proved an EXPTIME upper bound, adapting tableau tech-
niques from modal logic [112, 61]. (We saw earlier that Wolper then adapted these
techniques to linear-time logic.)

Pratt’s dynamic logic was designed for terminating programs, while Pnueli was
interested in nonterminating programs. This motivated various extensions of dynamic
logic to nonterminating programs [113–116]. Nevertheless, these logics are much less
natural for the specification of ongoing behavior than temporal logic. They inspired,
however, the introduction of the (modal)µ-calculusby Kozen [117, 118]. Theµ-calculus
is an extension of modal logic with least and greatest fixpoints. It subsumes expres-
sively essentially all dynamic and temporal logics [119]. Kozen’s paper was inspired
by previous papers that showed the usefulness of fixpoints incharacterizing correctness
properties of programs [120, 121] (see also [122]). In turn,theµ-calculus inspired the
introduction ofµLTL, mentioned earlier. Theµ-calculus also played an important role
in the development of symbolic model checking [71, 72, 84].

3.2 Branching-Time Logics

Dynamic logic provided a branching-time approach to reasoning about programs, in
contrast to Pnueli’s linear-time approach. Lamport was thefirst to study the dichotomy
between linear and branching time in the context of program correctness [17]. This was
followed by the introduction of the branching-time logic UB, which extends unary LTL
(LTL without the temporal connective “until” ) with the existential and universal path
quantifiers,E andA [64]. Path quantifiers enable us to quantify over different future
behavior of the system. By adapting Pratt’s tableau-based method for PDL to UB, it
was shown that its SATISFIABILITY problem is in EXPTIME [64]. Clarke and Emerson
then added the temporal conncetive “until” to UB and obtained CTL [62]. (They did not
focus on the SATISFIABILITY problem for CTL, but, as we saw earlier, on its MODEL-
CHECKING problem; the SATISFIABILITY problem was shown later to be solvable in
EXPTIME [123].) Finally, it was shown that LTL and CTL have incomparable expres-
sive power, leading to the introduction of the branching-time logic CTL∗, which unifies
LTL and CTL [124,125].

The key feature of branching-time logics in the 1980s was theintroduction of ex-
plicit path quantifiers in [64]. This was an idea that was not discovered by Prior and his
followers in the 1960s and 1970s. Most likely, Prior would have found CTL∗ satisfac-
tory for his philosophical applications and would have seenno need to introduce the
“Ockhamist” and “Peircean” approaches.

3.3 Combining Dynamic and Temporal Logics

By the early 1980s it became clear that temporal logics and dynamic logics provide two
distinct perspectives for specifying programs: the first isstatebased, while the second
is actionbased. Various efforts have been made to combine the two approaches. These
include the introduction ofProcess Logic[126] (branching time),Yet Another Process
Logic [127] (branching time),Regular Process Logic[128] (linear time),Dynamic LTL
[129] (linear time), andRCTL [130] (branching time), which ultimately evolved into
Sugar[131]. RCTL/Sugar is unique among these logics in that it didnot attempt to



borrow the action-based part of dynamic logic. It is a state-based branching-time logic
with no notion of actions. Rather, what it borrowed from dynamic logic was the use of
regular-expression-based dynamic modalities. Unlike dynamic logic, which uses reg-
ular expressions over program statements, RCTL/Sugar usesregular expressions over
state predicates, analogously to the automata of ETL [76, 77], which run over sequences
of formulas.

4 Thread IV: From LTL to ForSpec, PSL, and SVA

In the late 1990s and early 2000s, model checking was having an increasing indus-
trial impact. That led to the development of three industrial temporal logics based on
LTL: ForSpec, developed by Intel, andPSLandSVA, developed by industrial standards
committees.

4.1 From LTL to ForSpec

Intel’s involvement with model checking started in 1990, when Kurshan, spending a
sabbatical year in Israel, conducted a successful feasibility study at the Intel Design
Center (IDC) in Haifa, using COSPAN, which at that point was aprototype tool; see
[98]. In 1992, IDC started a pilot project using SMV. By 1995,model checking was used
by several design projects at Intel, using an internally developed model checker based
on SMV. Intel users have found CTL to be lacking in expressivepower and the Design
Technology group at Intel developed its own specification language, FSL. The FSL
language was a linear-time logic, and it was model checked using the automata-theoretic
approach, but its design was rather ad-hoc, and its expressive power was unclear; see
[132].

In 1997, Intel’s Design Technology group at IDC embarked on the development
of a second-generation model-checking technology. The goal was to develop a model-
checking engine from scratch, as well as a new specification language. A BDD-based
model checker was released in 1999 [133], and a SAT-based model checker was released
in 2000 [134].

I got involved in the design of the second-generation specification language in 1997.
That language, ForSpec, was released in 2000 [135]. The firstissue to be decided was
whether the language should be linear or branching. This ledto an in-depth examination
of this issue [35]15 and the decision was to pursue a linear-time language. An obvious
candidate was LTL; we saw that by the mid 1990s there were bothexplicit-state and
symbolic model checkers for LTL, so there was no question of feasibility. I had numer-
ous conversations with L. Fix, M. Hadash, Y. Kesten, and M. Sananes on this issue. The
conclusion was that LTL is not expressive enough for industrial usage. In particular,
many properties that are expressible in FSL are not expressible in LTL. Thus, it turned
out that the theoretical considerations regarding the expressiveness of LTL, i.e., its lack
of ω-regularity, had practical significance. I offered two extensions of LTL; as we saw
earlier both ETL andµLTL achieveω-regularity and have the same complexity as LTL.

15 See [136] for another study of this issue.



Neither of these proposals was accepted, due to the perceived difficulty of usage of
such logics by Intel validation engineers, who typically have only basic familiarity with
automata theory and logic.

These conversations continued in 1998, now with A. Landver.Avner also argued
that Intel validation engineers would not be receptive to the automata-based formalism
of ETL. Being familiar with RCTL/Sugar and its dynamic modalities [131, 130], he
asked me about regular expressions, and my answer was that regular expressions are
equivalent to automata [6], so the automata of ETLf , which extends LTL with automata
onfinitewords, can be replaced by regular expressions over state predicates. This lead to
the development ofRELTL, which is LTL augmented by the dynamic regular modalities
of dynamic logic (interpreted linearly, as in ETL). Insteadof the dynamic-logic notation
[e]ϕ, ForSpec uses the more readable (to engineers)(e triggers ϕ), wheree is a regular
expression over state predicates (e.g.,(p∨q)∗, (p∧q)), andϕ is a formula. Semantically,
τ, i |= (e triggers ϕ) if, for all j ≥ i, if τ [i, j] (that is, the finite wordτ(i), . . . , τ(j))
“matches”e (in the intuitive formal sense), thenτ, j |= ϕ; see [137]. Using theω-
regularity of ETLf , it is now easy to show that RELTL also achievesω-regularity [135].

While the addition of dynamic modalities to LTL is sufficientto achieveω-regularity,
we decided to also offer direct support to two specification modes often used by ver-
ification engineers at Intel:clocksandresets. Both clocks and resets are features that
are needed to address the fact that modern semiconductor designs consist of interacting
parallel modules. While clocks and resets have a simple underlying intuition, defining
their semantics formally is quite nontrivial. ForSpec is essentially RELTL, augmented
with features corresponding to clocks and resets, as we now explain.

Today’s semiconductor designs are still dominated by synchronous circuits. In syn-
chronous circuits, clock signals synchronize the sequential logic, providing the designer
with a simple operational model. While the asynchronous approach holds the promise
of greater speed (see [138]), designing asynchronous circuits is significantly harder
than designing synchronous circuits. Current design methodology attempts to strike a
compromise between the two approaches by using multiple clocks. This results in ar-
chitectures that are globally asynchronous but locally synchronous. The temporal-logic
literature mostly ignores the issue of explicitly supporting clocks. ForSpec supports
multiple clocks via the notion ofcurrent clock. Specifically, ForSpec has a construct
change on c ϕ, which states that the temporal formulaϕ is to be evaluated with re-
spect to the clockc; that is, the formulaϕ is to be evaluated in the trace defined by the
high phases of the clockc. The key feature of clocks in ForSpec is that each subformula
may advance according to a different clock [135].

Another feature of modern designs’ consisting of interacting parallel modules is the
fact that a process running on one module can be reset by a signal coming from another
module. As noted in [139], reset control has long been a critical aspect of embedded
control design. ForSpec directly supports reset signals. The formula accept on a ϕ

states that the propertyϕ should be checked only until the arrival of the reset signala,
at which point the check is considered to havesucceeded. In contrast,reject on r ϕ

states that the propertyϕ should be checked only until the arrival of the reset signalr, at
which point the check is considered to havefailed. The key feature of resets in ForSpec



is that each subformula may be reset (positively or negatively) by a different reset signal;
for a longer discussion see [135].

ForSpec is an industrial property-specification language that supports hardware-
oriented constructs as well as uniform semantics for formaland dynamic validation,
while at the same time it has a well understood expressiveness (ω-regularity) and com-
putational complexity (SATISFIABILITY and MODEL-CHECKING problems have the
same complexity for ForSpec as for LTL) [135]. The design effort strove to find an ac-
ceptable compromise, with trade-offs clarified by theory, between conflicting demands,
such as expressiveness, usability, and implementability.Clocks and resets, both im-
portant to hardware designers, have a clear intuitive semantics, but formalizing this
semantics is nontrivial. The rigorous semantics, however,not only enabled mechani-
cal verification of various theorems about the language, butalso served as a reference
document for the implementors. The implementation of modelchecking for ForSpec
followed the automata-theoretic approach, usingalternatingautomata as advocated in
[140] (see [141]).

4.2 From ForSpec to PSL and SVA

In 2000, the Electronic Design Automation Association instituted a standardization
body calledAccellera.16 Accellera’s mission is to drive worldwide development and
use of standards required by systems, semiconductor and design tools companies. Ac-
cellera decided that the development of a standard specification language is a require-
ment for formal verification to become an industrial reality(see [98]). Since the focus
was on specifying properties of designs rather than designsthemselves, the chosen term
was “property specification language” (PSL). The PSL standard committee solicited in-
dustrial contributions and received four language contributions:CBV, from Motorola,
ForSpec, from Intel,Temporale, from Verisity [142], and Sugar, from IBM.

The committee’s discussions were quite fierce.17 Ultimately, it became clear that
while technical considerations play an important role, industrial committees’ decisions
are ultimately made for business considerations. In that contention, IBM had the upper
hand, and Accellera chose Sugar as the base language for PSL in 2003. At the same
time, the technical merits of ForSpec were accepted and PSL adopted all the main
features of ForSpec. In essence, PSL (the current version 1.1) is LTL, extended with
dynamic modalities (referred to as theregular layer), clocks, and resets (calledaborts).
PSL did inherit the syntax of Sugar, and does include a branching-time extension as an
acknowledgment to Sugar.18

There was some evolution of PSL with respect to ForSpec. After some debate on
the proper way to define resets [144], ForSpec’s approach wasessentially accepted
after some reformulation [145]. ForSpec’s fundamental approach to clocks, which is
semantic, was accepted, but modified in some important details [146]. In addition to
the dynamic modalities, borrowed from dynamic logic, PSL also has weak dynamic

16 Seehttp://www.accellera.org/.
17 Seehttp://www.eda-stds.org/vfv/.
18 See [143] and language reference manual athttp://www.eda.org/vfv/docs/
PSL-v1.1.pdf.



modalities [147], which are reminiscent of “looping” modalities in dynamic logic [113,
148]. Today PSL 1.1 is an IEEE Standard 1850–2005, and continues to be refined by
the IEEE P1850 PSL Working Group.19

Practical use of ForSpec and PSL has shown that the regular layer (that is, the dy-
namic modalities), is highly popular with verification engineers. Another standardized
property specification language, calledSVA(for SystemVerilog Assertions), is based, in
essence, on that regular layer [149]. Today SystemVerilog is an IEEE Standard 1800-
2005.

5 Contemplation

This evolution of ideas, from Löwenheim and Skolem to PSL and SVA, seems to me
to be an amazing development. It reminds me of the medieval period, when building a
cathedral spanned more than a mason’s lifetime. Many masonsspend their whole lives
working on a cathedral, never seeing it to completion. We arefortunate to see the com-
pletion of this particular “cathedral”. Just like the medieval masons, our contributions
are often smaller than we’d like to consider them, but even small contributions can have
a major impact. Unlike the medieval cathedrals, the scientific cathedral has no archi-
tect; the construction is driven by a complex process, whoseoutcome is unpredictable.
Much that has been discovered is forgotten and has to be rediscovered. It is hard to
fathom what our particular “cathedral” will look like in 50 years.

Acknowledgments

I am grateful to E. Clarke, A. Emerson, R. Goldblatt, A. Pnueli, P. Sistla, P. Wolper for
helping me trace the many threads of this story, to D. Fisman,C. Eisner, J. Halpern,
D. Harel and T. Wilke for their many useful comments on earlier drafts of this paper,
and to S. Nain, K. Rozier, and D. Tabakov for proofreading earlier drafts. I’d also like
to thank K. Rozier for her help with graphics.

References

1. Davis, M.: Engines of Logic: Mathematicians and the Origin of the Computer. Norton
(2001)
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24. Büchi, J.: On a decision method in restricted second order arithmetic. In: Proc. Int. Congress
on Logic, Method, and Philosophy of Science. 1960, StanfordUniversity Press (1962) 1–12

25. Choueka, Y.: Theories of automata onω-tapes: A simplified approach. Journal of Computer
and Systems Science8 (1974) 117–141

26. Trakhtenbrot, B., Barzdin, Y.: Finite Automata. North Holland (1973)
27. Sakoda, W., Sipser, M.: Non-determinism and the size of two-way automata. In: Proc. 10th

ACM Symp. on Theory of Computing. (1978) 275–286



28. Vardi, M.Y.: The Büchi complementation saga. In: Proc.24th Sympo. on Theoretical As-
pects of Computer Science. Volume 4393 of Lecture Notes in Computer Science., Springer
(2007) 12–22
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