From L owenheim to PSL and SVA

Moshe Y. Vardi*

Rice University, Department of Computer Science, Rice Brsity, Houston, TX 77005-1892,
U.S.A., Email: vardi@cs.rice.edu, URht t p: / / www. ¢s. ri ce. edu/ ~var di

Two major themes of my research have bemthematical logi@and theautomata
theoreticapproach. | learned both subjects from Ya'akov Choueka, tabhght me
automata theory as an undergraduate student and matheah&dgic as a graduate
student. Little did | know then that these courses would Isah a profound impact
on my future research.

Abstract. One of the surprising developments in the area of prograrificeer

tion is how ideas introduced by logicians in the early parttef 20th Century
ended up vyielding by the 21 Century industrial-standargpery-specification
languages. This development was enabled by the equallkeiyntransformation
of the mathematical machinery of automata on infinite wonaspduced in the
early 1960s for second-order logic, into effective aldurit for model-checking
tools. This paper attempts to trace the tangled threadsofilvelopment.

1 Thread I: Classical Logic of Time

1.1 Monadic Logic

In 1902, Russell send a letter to Frege in which he pointedttmatt Frege’s logical
system was inconsistent. This inconsistency has becomerkasRussell’'s Paradox
Russell, together with Whitehead, publisi&ihcipia Mathematican an attempt to re-
solve the inconsistency, but the monumental effort did pot/ince mathematicians that
mathematics is indeed free of contradictions. This has inecknow as the “Founda-
tional Crisis.” In response to that Hilbert launched what bacome known as “Hilbert's
Program.” (See [1].)

One of the main points in Hilbert's program was the decidghbdf mathematic. In
1928, Hilbert and Ackermann published “Principles of Mattaical Logic”, in which
they posed the question of thigecision Problenfor first-order logic. This problem
was shown to be unsolvable by Church and Turing, indepehd@mtl936; see [2].
In response to that, logicians started the project of digssj the decidable fragments
of first-order logic [2, 3]. The earliest decidability resfdr such a fragment is for the
Monadic Classwhich is the fragment of first-order predicate logic whdt@eedicates,

* A earlier version of this paper, under the title “From Chuarid Prior to PSL", appeared in
theProc. 2006 Workshop on 25 Years of Model Checking, LecturesNio Computer Science,
Springer.

** Supported in part by NSF grants CCR-9988322, CCR-01240TR-0311326, and ANI-
0216467, by BSF grant 9800096, and by a gift from the IntelpGaation.

with the exception of the equality predicate, are requicebld monadic. This fragment
can express the classical sylogisms. For example the farmul

((Va)(H(z) — M(x)) A (Vo) (G(2) — H(z))) = (V2)(G(z) — M(z))

expresses the inference of: “if all humans are mortal an@edkeks are human, then all
Greeks are mortal.”

In 1915 Ldwenheim showed that the Monadic Class is decidfdjl His proof
technique was based on theunded-model propertproving that a monadic sentence
is satisfiable if it is satisfiable in a model of bounded sizeisEnables the reduction of
satisfiability testing to searching for a model of bounded si.”owenheim’s tecchnique
was extended by Skolem in 1919wnadic Second Order Logig which one can also
quantify over monadic predicates, in addition to quantifyover domain elements [5].
Skolem also used the bounded-model property. To prove tioigepty, he introduced
the technique ofjuantifier eliminationwhich is a key technique in mathematical logic
[2].

Recall, that the only binary predicate in Skolem’s monadmsd-order logic is the
equality predicate. One may wonder what happens if we alsavahequality predi-
cates. Such an extension is the subject of the next section.

1.2 Logic and Automata

Classical logic views logic as a declarative formalism, edhat the specification of
properties of mathematical objects. For example, the sente

(Va,y, z)(mult(z,y, 2) < mult(y,z, z))

expressed the commutativity of multiplication. Startinghie 1930s, a different branch
of logic focused on formalisms for describing computatiostarting with the intro-
duction of Turing machines in the 1930s, and continuing hit development of the
theory of finite-state machines in the 1950s. A surprisintirate, connection between
these two paradigms of logic emerged in the late 1950s.

A nondeterministic finite automaton on wodW) A = (X, S, So, p, F) consists
of a finite input alphabekt, a finite state se$, an initial state ses;, C .S, a transition
relationp C S x X x S, and an accepting state s6tC S. An NFW runs over an
finite input wordw = ag,...,a,—1 € X*. A run of A onw is a finite sequence
r = So,...,S, Of states inS such thatsy € Sy, and(s;, a;, si+1) € p, for0 < i < n.
The runr is acceptingf s,, € F. The wordw is acceptedy A if A has an accepting
run onw. Thelanguageof A, denotedL(A), is the set of words accepted by The
class of languages accepted by NFWs forms the classgotar languages, which are
defined in terms of regular expressions. This class is exhlgrnbust and has numerous
equivalent representations [6].

Example 1.We describe graphically below an NFW that accepts all wokas the al-
phabet{0, 1} that end with an occurrence of 1. The arrow on the left desemthe
initial state, and the circle on the right designates an jgtaug state.

We now view a finite wordv = aq, ..., a,_1 Over an alphabel’ as a relational
structureM,,, with the domain of), ..., n — 1 ordered by the binary relatioq, and the
unary relationg P, : a € X'}, with the interpretation thaP, (i) holds precisely when
a; = a. We refer to such structures asrd structuresWe now use first-order logic
(FO) to talk about such words. For example, the sentence

B2)((Vy)(~(z <y)) A Pa())

says that the last letter of the worddsWe say that such a sentence is over the alphabet
M.

Going beyond FO, we obtaimonadic second-order logitMSO), in which we can
have monadic second-order quantifiers of the faifp, ranging over subsets of the
domain, and giving rise to new atomic formulas of the foftr). Given a sentence
v in MSO, its set of models modé€ls) is a set of words. Note that this logic extends
Skolem’s logic with the addition of the linear order

The fundamental connection between logic and automatavisgieen by the fol-
lowing theorem, discovered independently by Biichi, Elgad Trakhtenbrot.

Theorem 1. [7-12] Given an MSO sentenceover alphabet”, one can construct an
NFW A, with alphabety’ such that a wordw in X* is accepted byd,, iff ¢ holds
in the word structureM,,. Conversely, given an NF\WM with alphabetX’, one can
construct an MSO sentengey, over X' such thatp 4 holds in a word structuré\/,,, iff
w is accepted bw.

Thus, the class of languages defined by MSO sentences is@isettie class of regular
languages.

To decide whether a sentengeis satisfiable that is, whether modelg) # 0,
we need to check that(A,) # (. This turns out to be an easy problem. Lét=
(X, S, So, p, F') be an NFW. Construct a directed grafh = (S, E4), with S as the
set of nodes, an& 4 = {(s,t) : (s,a,t) € pforsomea € X}. The following lemma
is implicit in [7—10] and more explicitin [13].

Lemma 1. L(A) # 0 iff there are states, € Sy andt € F such that inG 4 there is a
path fromsg to t.

We thus obtain an algorithm for theaBisFIABILITY problem of MSO over word
structures: given an MSO sentengeconstruct the NFWA, and check whethdi(A) #
0 by finding a path from an initial state to an accepting statés Bipproach to satis-
fiability checking is referred to as treutomata-theoretic approagkince the decision

procedure proceeds by first going from logic to automata,thad searching for a path
in the constructed automaton.

There was little interest in the 1950s in analyzing the comaanal complexity
of the SATISFIABILITY problem. That had to wait until 1974. Define the function
exp(k,n) inductively as followsexp(0,n) = n andexp(k+1,n) = 2¢*P(k:7) We say
that a problem imionelementarif it can not be solved by an algorithm whose running
time is bounded byxp(k, n) for some fixedk > 0; that is, the running time cannot be
bounded by a tower of exponentials of a fixed height. It is potdifficult to observe
that the construction of the automatdr, in [7-10] involves a blow-up oéxzp(n,n),
wheren is the length of the MSO sentence being decided. It was shoyd#i 15] that
the SATISFIABILITY problem for MSO is nonelementary. In fact, the problem isatty
nonelementary for FO [15].

1.3 Reasoning about Sequential Circuits

The field of hardware verification seems to have been startedlittle known 1957
paper by Church, in which he described the use of logic toigpsequential circuits
[16]. A sequential circuit is a switching circuit whose outglepends not only upon its
input, but also on what its input has been in the past. A sd@leircuit is a particular
type of finite-state machine, which became a subject of stuthathematical logic and
computer science in the 1950s.

Formally, a sequential circuif® = (I,0, R, f,g,ro) consists of a finite sef of
Boolean input signals, a finite sétof Boolean output signals, a finite setof Boolean
sequential elements, a transition functipn 2/ x 2% — 2%, an output functiory :
2% _ 20 and an initial state, € 2%. (We refer to elements of U O U R ascircuit
elementsand assume thdt O, andR are disjoint.) Intuitively, a state of the circuitis a
Boolean assignment to the sequential elements. The isititd iscy. In a stater € 27,
the Boolean assignment to the output signalgi$. When the circuit is in state € 27
and it reads an input assignmeéng 27, it changes its state tf(i, r).

A traceover a set/’ of Boolean variables is an infinite word over the alphabét
i.e., an element of2")~. A trace of the sequential circuit is a trace ovef UO U R
that satisfies some conditions. Specifically, a sequenediy, ro, 0¢), (i1,r1,01), .. .,
wherei; € 2/, 0; € 29, andr; € 2%, is a trace ofC if r;+1 = f(ij,r;) ando; =
g(r;), for j > 0. Thus, in modern terminology, Church was following fireear-time
approach [17] (see discussion in Section 2.1). The set oésrafC is denoted by
tracegC).

We saw earlier how to associate relational structures wihda. We can similarly
associate with an infinite wor@ = ag, a1, . .. over an alphabet”, a relational struc-
ture M,, = (N, <, V), with the naturaldN as the domain, ordered By, and extended
by the setl” of unary predicates, wheree p, for p € V, precisely whermp holds(i.e.,
is assigned) in a;.r We refer to such structures asfinite word structuresWhen we
refer to thevocabularyof such a structure, we refer explicitly only 16, taking < for
granted.

! We overload notation here and trgsas both a Boolean variable and a predicate.

We can now specify traces using First-Order Logic (FO) serds constructed from
atomic formulas of the form: = y, 2 < y, andp(z) forp € V = T U RU 0.2 For
example, the FO sentence

(Vz)(3y)(z <y Ap(y))

says thap holds infinitely often in the trace. In a follow-up paper in63{18], Church
considered also specifying traces using monadic seconel-twgic (MSO), where in
addition to first-order quantifiers, which range over thaxaats ofN, we allow also
monadic second-order quantifiers, ranging over subsel$, @nd atomic formulas of
the formQ(z), where@ is a monadic predicate variable. (This logic is also cad
the “second-order theory of one successor function”.) kangple, the MSO sentence,

BP)(Vz)(vVy)((P(x) Ay =z + 1) — (=P(y)))A
(=P@) ANy =z + 1) — P(y)))A
(x=0— Px)) A (P(z) = q())),

wherex = 0 is an abbrevaition fof—(3z)(z < z)) andy = x + 1 is an abbreviation
for (y > = A—=(3z)(x < 2 Az < y)), says thay holds at every even point on the trace.
In effect, Church was proposing to use classical logic (F80) as a logic of time,
by focusing on infinite word structures. The set of infinitedets of an FO or MSO
sentencep is denoted by modelgy).

Church posed two problems related to sequential circuk [1

— The DecisioNproblem: Given circuitC and a sentencg, doesp hold in all traces
of C? That is, does tracé8) C modelgy) hold?

— The SYNTHESIS problem: Given setg and O of input and output signals, and a
sentencep over the vocabulary U O, construct, if possible, a sequential circgit
with input signalsl and output signal® such thaty holds in all traces of”. That
is, construcC such that tracé§’) C modelgy) holds.

In modern terminology, Church’s BCiSION problem is theMODEL-CHECKING
problem in the linear-time approach (see Section 2.2). Phiblem did not receive
much attention after [16, 18], until the introduction of nedahecking in the early
1980s. In contrast, they8ITHESISproblem has remained a subject of ongoing research;
see [19-23]. One reason that the@siIoN problem did not remain a subject of study,
is the easy observation in [18] that th&eDisioN problem can be reduced to the-
LIDITY problemin the underlying logic (FO or MSO). Given a sequardircuit C', we
can easily generate an FO sentengethat holds in precisely all structures associated
with traces ofC'. Intuitively, the sentence simply has to encode the transition and
output functions ofC, which are Boolean functions. Themholds in all traces of”
precisely whem¢c — ¢ holds in all word structures (of the appropriate vocabulary
Thus, to solve the BcisioN problem we need to solve theaiDITY problem over
word structures. As we see next, this problem was solved %219

2 We overload notation here and trgeas both a circuit element and a predicate symbol.

1.4 Reasoning about Infinite Words

Church’s DecisioN problem was essentially solved in 1962 by Biichi who showat! t
the VALIDITY problem over infinite word structures is decidable [24]. dadty, Bichi
showed the decidability of the dual problem, which is theriSFIABILITY problem
for MSO over infinite word structures. Biichi's approach sisted of extending the
automata-theoretic approach, see Theorem 1, which waslinted a few years earlier
for word structures, to infinite word structures. To that gBdchi extended automata
theory to automata on infinite words. For a nice introductmthe theory of automata
on infinite words, see [25].

A nondeterministic Bchi automaton on worddNBW) A = (X, S, So, p,) con-
sists of a finite input alphabef, a finite state sef, an initial state se; C S, a
transition relatiorp C S x X' x S, and an accepting state $6tC S. An NBW runs
over an infinite input wordv = ag,a1,... € X“. Arun of A onw is an infinite se-
quence = sg, s1, . . . Of states inS such thatsy € Sy, and(s;, a;, s;+1) € p, fori > 0.
The runr is acceptingf F' is visited byr infinitely often; that is,s; € F' for infinitely
manyi’s. The wordw is acceptediy A if A has an accepting run an. Theinfinitary
languageof A, denotedL,(A), is the set of infinite words accepted by The class
of languages accepted by NBWs forms the class-ofgularlanguages, which are de-
fined in terms of regular expressions augmented with.tfpwer operatord” denotes
an infinitary iteration ok) [24].

Example 2.We describe graphically an NBW that accepts all words overtphabet
{0,1} that contain infinitely many occurrences of 1. The arrow omlgft designates
the initial state, and the circle on the right designatescejgting state. Note that this
NBW looks exactly like the NFW in Example 1. The only diffepenis that in Exam-
ple 1 we considered finite input words and here we are coneglgrfinite input words.

As we saw earlier, the paradigmatic idea of the automatarétie approach is that
we can compile high-level logical specifications into anieglent low-level finite-state
formalism.

Theorem 2. [24] Given an MSO sentengewith vocabularyl’, one can construct an
NBW A, with alphabe" such that a wordw in (2V)“ is accepted byl,, iff ¢ holds
in the word structureM,,. Conversely, given an NBW with alphabet2", one can

construct an MSO sentengey with vocabularyV such thaty 4 holds in an infinite
word structureM,, iff w is accepted b.

Thus, the class of languages defined by MSO sentences is@gethe class of-
regular languages.

To decide whether sentengeis satisfiable over infinite words, that is, whether
models,(¢) # 0, we need to check that,, (A,) # 0. Let A = (X, S, So, p, F) be
an NBW. As with NFWs, construct a directed graph = (S, E4), with S as the set
of nodes, andE4 = {(s,t) : (s,a,t) € pforsomea € X'}. The following lemma is
implicit in [24] and more explicit in [26].

Lemma 2. L, (A) # 0 iff there are states, € S° andt € F such thatinG4 there is
a path fromsg to ¢ and a path from to itself.

We thus obtain an algorithm for theaSISFIABILITY problem of MSO over in-
finite word structures: given an MSO sentengeconstruct the NBWA,, and check
whetherL,,(A) # () by finding a path from an initial state to an accepting stattan
cycle through that accepting state. Since thecBION problem can be reduced to the
SATISFIABILITY problem, this also solves theHgI1SION problem.

Neither Biuichi nor Church analyzed the complexity of theddsioN problem. The
non-elementary lower bound mentioned earlier for MSO overds can be easily ex-
tended to infinite words. The upper bound here is a bit mordesuor both finite and
infinite words, the construction of,, proceeds by induction on the structuregfwith
complementation being the difficult step. For NFW, complatagon uses thgubset
construction which involves a blow-up 02™ [13, 27]. Complementation for NBW is
significantly more involved, see [28]. The blow-up of compkntation is2€ (" log)
[29, 30]. This yields a blow-up oxp(n,nlogn) for the translation from MSO to
NBW.

2 Thread II: Temporal Logic

2.1 From Aristotle to Kamp

The history of time in logic goes back to ancient tinfesristotle pondered how to
interpret sentences such as “Tomorrow there will be a se& figh“Tomorrow there
will not be a sea fight.” Medieval philosophers also pondénedssue of timé.By the

3 For a detailed history of temporal logic from ancient timestte modern period, see [31].

4 For example, William of Ockham, 12881348, wrote (rathesavely for the modern reader):
“Wherefore the difference between present tense propaositand past and future tense propo-
sitions is that the predicate in a present tense propositammds in the same way as the subject,
unless something added to it stops this; but in a past tere duture tense proposition it
varies, for the predicate does not merely stand for thosggghconcerning which it is truly
predicated in the past and future tense propositions, sedalorder for such a proposition to
be true, it is not sufficient that that thing of which the prade is truly predicated (whether by
a verb in the present tense or in the future tense) is thathwthie subject denotes, although it
is required that the very same predicate is truly predicafetiat which the subject denotes,
by means of what is asserted by such a proposition.”

Renaissance period, philosophical interest in the logitinoé seems to have waned.
There were some stirrings of interest in the 19th centuryBbgle and Peirce. Peirce
wrote:

“Time has usually been considered by logicians to be whatiled ‘extra-
logical’ matter. | have never shared this opinion. But | héwaeught that logic
had not yet reached the state of development at which thedinttion of tem-
poral modifications of its forms would not result in great fuion; and | am
much of that way of thinking yet.”

There were also some stirrings of interest in the first halthef 20th century, but
the birth of modern temporal logic is unquestionably credlito Prior. Prior was a
philosopher, who was interested in theological and ethigsles. His own religious
path was somewhat convoluted; he was born a Methodist, deaM® Presbytarianism,
became an atheist, and ended up an agnostic. In 1949, helpedbl book titledLogic
and The Basis of EthitsHe was particularly interested in the conflict between the
assumption ofree will (“the future is to some extent, even if it is only a very small
extent, something we can make for ourselvefgijedestinatior{“of what will be, it has
now been the case that it will be”), afikeknowledgé“there is a deity who infallibly
knows the entire future”). He was also interested in modzitl{32]. This confluence of
interests led Prior to the developmentefporal logic® His wife, Mary Prior, recalled
after his death:

“I remember his waking me one night [in 1953], coming andrsitbn my bed,
..., and saying he thought one could make a formalised tense’logi

Prior lectured on his new work when he was the John Locke lcecat the Univer-
sity of Oxford in 1955—-6, and published his bodkrhe and Modalityin 1957 [34]8
In this book, he presented a temporal logic that is propmsitilogic extended with two
temporal connectived; and P, corresponding to “sometime in the future” and “some-
time in the past”. A crucial feature of this logic is that itdan implicit notion of “now”,
which is treated as aimdexical that is, it depends on the context of utterance for its
meaning. Both future and past are defined with respect tarttphcit “now”.

Itis interesting to note that tHmear vs. branchingtime dichotomy, which has been
a subject of some controversy in the computer science fitesasince 1980 (see [35]),
has been present from the very beginning of temporal-logietbpment. In Prior's
early work on temporal logic, he assumed that time was liHeat958, he received a
letter from Kripke! who wrote

“In an indetermined system, we perhaps should not regarel isna linear se-
ries, as you have done. Given the present moment, therewaabpossibilities

5 An earlier term wagense logicthe termtemporal logicwas introduced in [33]. The technical
distinction between the two terms seems fuzzy.

8 Due to the arcane infix notation of the time, the book may nabbeccessible to modern read-
ers, who may have difficulties parsing formulas sucl@ds MpMqAM KpMqM K qMp.

7 Kripke was a high-school student, not quite 18, in Omahayaiia. Kripke’s interest in modal
logic was inspired by a paper by Prior on this subject [36loRurned out to be the referee of
Kripke’s first paper [37].

for what the next moment may be like — and for each possiblé mexnent,
there are several possibilities for the moment after thlatisithe situation takes

the form, not of a linear sequence, but of a ‘tree’.

Prior immediately saw the merit of Kripke’s suggestion:ettleterminist sees time as
a line, and the indeterminist sees times as a system of fpikaths.” He went on to
develop two theories of branching time, which he called “Rakist” and “Peircean”.
(Prior did not use path quantifiers; those were introducéest,lén the 1980s. See Sec-
tion 3.2.)

While the introduction of branching time seems quite reabdain the context of
trying to formalize free will, it is far from being simple plbisophically. Prior argued
that the nature of the course of time is branching, while tieire of a course of events
is linear [38]. In contrast, it was argued in [33] that theuratof time is linear, but the
nature of the course of events is branching: “We have ‘bramyoin time,’ not ‘branch-
ing of time’.”8

During the 1960s, the development of temporal logic comththrough both the
linear-time approach and the branching-time approachrélas little connection,
however, between research on temporal logic and researchaesical logics, as de-
scribed in Section 1. That changed in 1968, when Kamp tiedthay the two threads
in his doctoral dissertation.

Theorem 3. [39] Linear temporal logic with past and binary temporal conmees
(“strict until” and “strict since”) has precisely the expresive power of FO over the
ordered naturals (with monadic vocabularies).

It should be noted that Kamp’s Theorem is actually more giraard asserts expressive
equivalence of FO and temporal logic over all “Dedekindseld orders”. The introduc-
tion of binary temporal connectives by Kamp was necessamgfching the expressive
power of FO;unarylinear temporal logic, which has only unary temporal cortives,

is weaker than FO [40]. The theorem refers to FO formulas witke free variable,
which are satisfied at an element of a structure, analogoaigiymporal logic formulas,
which are satisfied at a point of time.

It should be noted that one direction of Kamp’s Theorem, thediation from tem-
poral logic to FO, is quite straightforward; the hard difentis the translation from FO
to temporal logic. Both directions are algorithmicallyesffive; translating from tempo-
ral logic to FO involves a linear blowup, but translation iretother direction involves
a nonelementary blowup.

If we focus on FO sentences rather than FO formulas, thendegiye sets of traces
(a sentence defines modelg)). A characterization of of the expressiveness of FO
sentences over the naturals, in terms of their ability tondediets of traces, was obtained
in 1979.

Theorem 4. [41] FO sentences over naturals have the expressive poweiffret w-
regular expressions.

8 One is reminded of St. Augustin, who said in Rienfessions'What, then, is time? If no one
asks me, | know; but if | wish to explain it to some who shoulld e, | do not know.”

Recall that MSO defines the classwafegular languages. It was already shown in [42]
that FO over the naturals is weaker expressively than MS®theaaturals. Theorem 4
was inspired by an analogous theorem in [43] for finite words.

2.2 The Temporal Logic of Programs

There were some early observations that temporal logic eaapplied to programs.
Prior stated: “There are practical gains to be had from thidystoo, for example, in
the representation of time-delay in computer circuits][38so, a discussion of the ap-
plication of temporal logic to processes, which are defiretpaogrammed sequences
of states, deterministic or stochastic” appeared in [33].

The “big bang” for the application of temporal logic to pragm correctness oc-
curred with Pnueli's 1977 paper [44]. In this paper, Pnuielspired by [33], advo-
cated using future linear temporal logic (LTL) as a logic foe specification of non-
terminating programs; see overview in [45].

LTL is a temporal logic with two temporal connectives, “rieand “until”.® In
LTL, formulas are constructed from a sBt-op of atomic propositions using the usual
Boolean connectives as well as the unary temporal conmekti¢'next”), and the bi-
nary temporal connectivé (“until”). Additional unary temporal connectives (“even-
tually”), andG (“always”) can be defined in terms 6f. Note that all temporal connec-
tives refer to the future here, in contrast to Kamp’s “stsicice” operator, which refers
to the past. Thus, LTL is &uture temporal logic For extensions with past temporal
connectives, see [46—48].

LTL is interpreted over traces over the gétop of atomic propositions. For a trace
7 and a point € N, the notationr, 7 = ¢ indicates that the formula holds at the
point: of the tracer. Thus, the point is the implicit “now” with respect to which the
formulais interpreted. We have that

— 7,1 = pif pholds atr (i),

- rniEXpifri+1E ¢, and

— 1,1 = U if for somej > i, we haver, j = ¢ and for all k,s < k < j, we have
.k E o

The temporal connectives andG can be defined in terms of the temporal connective
U; Fyp is defined asrue Uy, andGy is defined as-F'—y. We say thatr satisfiesa
formula , denotedr = o, iff 7,0 = ¢. We denote by mode(g) the set of traces
satisfyingyp.

As an example, the LTL formul&(request— F gran}, which refers to the atomic
propositiongrequesandgrant is true in a trace precisely when every state in the trace
in which requestholds is followed by some state in the (non-strict) futureninich
grantholds. Also, the LTL formulaG(request— (requestU grany) is true in a trace
precisely if, wheneverequesholds in a state of the trace, it holds until a state in which
grantholds is reached.

% Unlike Kamp’s “strict until” (“p strict until ¢” requiresq to hold in the strict future), Pnueli’s
“until” is not strict (“p until ¢" can be satisfied by holding now), which is why the “next”
connective is required.

The focus on satisfaction at 0, callgdtial semanticsis motivated by the desire to
specify computations at their starting point. It enableslkernative version of Kamp’s
Theorem, which does not require past temporal connectingsfpcuses on initial se-
mantics.

Theorem 5. [49] LTL has precisely the expressive power of FO over the ordeata-
rals (with monadic vocabularies) with respect to initiahsantics.

As we saw earlier, FO has the expressive power of stardfreegular expressions
over the naturals. Thus, LTL has the expressive power offgtaro-regular expressions
(see [50]), and is strictly weaker than MSO. An interestingcome of the above theo-
rem is that it lead to the following assertion regarding LHL]: “The corollary due to
Meyer — | have to get in my controversial remark — is that tiiddorem 5] makes it
theoretically uninteresting.” Developments since 198@eharoven this assertion to be
overly pessimistic on the merits of LTL.

Pnueli also discussed the analog of ChurchiscBsION problem: given a finite-
state progranP and an LTL formulap, decide ifo holds in all traces ofP. Just like
Church, Pnueli observed that this problem can be solveddyctéeon to MSO. Rather
than focus on sequential circuits, Pnueli focused on progranodeled as (labeled)
transition system§s2]. A transition system\/ = (W, Wy, R, V) consists of a sefl/
of states that the system can be in, aldgtC W of initial states, a transition relation
R C W? that indicates the allowable state transitions of the systad an assignment
V : W — 2P7P of truth values to the atomic propositions in each state efsystem.
(A transition system is essentially a Kripke structure [p3] pathin M thatstarts atu
is a possible infinite behavior of the system starting ate., it is an infinite sequence
ug, u1 - .. Of states inWW such thatug = «, and(u;,u;11) € R foralli > 0. The
sequencd (up), V(u1) ... is atraceof M thatstarts atu. It is the sequence of truth
assignments visited by the path. Tlamguageof M, denotedL(M), consists of all
traces of)M that start at a state i#,. Note thatZ(A/) is a language of infinite words
over the alphabet” P, The languagd.(M) can be viewed as an abstract description
of the system\/, describing all possible traces. We say thasatisfiesan LTL formula
p if all traces inL(M) satisfyy, that s, if L(M) C modelgy). WhenW is finite, we
have a finite-state system, and can apply algorithmic teglas.

What about the complexity of LTL reasoning? Recall from > that satisfia-
bility of FO over trace structures is nonelementary. In cast, it was shown in [54—60]
that LTL SATISFIABILITY is elementary; in fact, it is PSPACE-complete. It was also
shown that the BcisioN problem for LTL with respect to finite transition systems
is PSPACE-complete [56—58]. The basic technique for pigptirese elementary up-
per bounds is theableautechnique, which was adapted fratynamic logic§61] (see
Section 3.1). Thus, even though FO and LTL are expressivglivalent, they have dra-
matically different computational properties, as LTL reaisig is in PSPACE, while FO
reasoning is nonelementary.

The second “big bang” in the application of temporal logiptogram correctness
was the introduction omodel checkindy Clarke and Emerson [62] and by Queille
and Sifakis [63]. The two papers used two different brangttime logics. Clarke and
Emerson used CTL (inspired by the branching-time logic UB6dH]), which extends

LTL with existential and universal path quantifieisand A. Queille and Sifakis used
a logic introduced by Leslie Lamport [17], which extendspsitional logic with the
temporal connectiveBOT (which corresponds to the CTL operatB#’) andI/ N EV
(which corresponds to the CTL operatd#’). The focus in both papers was on model
checking, which is essentially what Church called trecDsioN problem: does a given
finite-state program, viewed as a finite transition systextisfy its given temporal spec-
ification. In particular, Clarke and Emerson showed that ehatiecking transition sys-
tems of sizen with respect to formulas of size can be done in time polynomial i
andn. This was refined later t®(mn) (even in the presence fdirnessconstraints,
which restrict attention to certain infinite paths in the arlging transition system) [65,
66]. We drop the term “BciSION problem” from now on, and replace it with the term
“M ODEL-CHECKING problem”10

It should be noted that the linear complexity of model chegkiefers to the size of
the transition system, rather than the size of the prograingave rise to that system.
For sequential circuits, transition-system size is esaliynexponential in the size of
the description of the circuit (say, in some Hardware Dgdimn Language). This is re-
ferred to as the “state-explosion problem” [68]. In spitetad state-explosion problem,
in the first few years after the publication of the first modkecking papers in 1981-2,
Clarke and his students demonstrated that model checkmdighly successful tech-
nique for automated program verification [69, 70]. By the [2980s, automated verifi-
cation had become a recognized research area. Also by th&980ssymbolicmodel
checking was developed [71, 72], and the SMV tool, develg€dMU by McMillan
[73], was starting to have an industrial impact. See [74]fare details.

The detailed complexity analysis in [65] inspired a simdatailed analysis of linear
time model checking. It was shown in [75] that model checknagsition systems of
sizem with respect to LTL formulas of size can be done in time:2°(")_ (This again
was shown using a tableau-based technique.) While the boeneds exponential in,
the argument was thatis typically rather small, and therefore an exponentialimbis
acceptable.

2.3 Back to Automata

Since LTL can be translated to FO, and FO can be translated®,Nt is clear that
LTL can be translated to NBW. Going through FO, however, wadntur, in general, a
nonelementary blowup. In 1983, Wolper, Sistla, and | shothed this nonelementary
blowup can be avoided.

Theorem 6. [76, 77]Given an LTL formula of sizen, one can construct an NBW,,
of size29(™) such that a trace satisfiesy if and only ifo is accepted byl.,.

It now follows that we can obtain a PSPACE algorithm for LTRTSSFIABILITY :
given an LTL formulay, we constructd,, and check thatd,, # () using the graph-

10 The model-checking problem is analogous to database quehyation, where we check the
truth of a logical formula, representing a query, with redpe a database, viewed as a finite
relational structure. Interestingly, the study of the céewjty of database query evaluation
started about the same time as that of model checking [67].

theoretic approach described earlier. We can avoid usipgmential space, by con-
structing the automataoon the fly[76, 77].

What about model checking? We know that a transition systésatisfies an LTL
formulay if L(M) C modelgyp). It was then observed in [78] that the following are
equivalent:

— M satisfiesp

— L(M) C modelgy)

— L(M) C L(A,)

— L(M) N ((257°P)~ — L(A,)) = 0

- L(M)NL(A-,) =0

— L(MxA-,)=0

Thus, rather than complementinl, using an exponential complementation construc-

tion [24, 79, 80], we complement the LTL property using ladinegation. It is easy to

see that we can now get the same bound as in [75]: model clygggiagrams of sizen

with respect to LTL formulas of size can be done in time:2°("), Thus, the optimal

bounds for LTL satisfiability and model checking can be alediwithout resorting to

ad-hoc tableau-based techniques; the key is the expoheatislation of LTL to NBW.
One may wonder whether this theory is practical. Reductiguréctice took over a

decade of further research, which saw the development of

an optimized search algorithm for explicit-state modelattieg [81, 82],

a symbolic, BDD-baséd algorithm for NBW nonemptiness [71,72, 84],
symbolic algorithms for LTL to NBW translation [71, 72, 8%nd

an optimized explicit algorithm for LTL to NBW translatio86].

By 1995, there were two model-checking tools that impleraehiT L model checking
via the automata-theoretic approach: Spin [87] is an eitpdtate LTL model checker,
and Cadence’s SMV is a symbolic LTL model checkeBee [88] for a description
of algorithmic developments since the mid 1990s. Additidoals today are/1S[89],
NuSMV[90], andSPOT[91].

It should be noted that Kurshan developed the automatadtie@approach inde-
pendently, also going back to the 1980s [92—-94]. In his apghrdas also in [95, 77]),
one uses automata to represent both the system and its spiaifi{96]* The first im-
plementation of COSPAN, a model-checking tool that is basethis approach [97],
also goes back to the 1980s; see [98].

2.4 Enhancing Expressiveness

Can the development of LTL model checking [75, 78] be viewe@ &atisfactory so-
lution to Church’s CECISION problem? Almost, but not quite, since, as we observed

11 To be precise, one should use the acronym ROBDD, for Reducder€ Binary Decision
Diagrams [83].

12 cadence’s SMV is also a CTL model checker. See
www. cadence. com webf or ns/ cbl \ _sof t war e/ i ndex. aspx.

1 The connection to automata is somewhat difficult to discenhé early papers [92, 93].

earlier, LTL is not as expressive as MSO, which means thatixpressively weaker
than NBW. Why do we need the expressive power of NBWs? Fie that once
we add fairness to transitions systems (sse [65, 66]), thaybe viewed as variants of
NBWSs. Second, there are good reasons to expect the speoifidahguage to be as
expressive as the underlying model of programs [99]. Thokieaing the expressive
power of NBWSs, which we refer to as-regularity, is a desirable goal. This motivated
efforts since the early 1980s to extend LTL.

The first attempt along this line was made by Wolper [59, 60jpwlefined ETL
(for Extended Temporal Logdicwhich is LTL extended with grammar operators. He
showed that ETL is more expressive than LTL, while itssr SFIABILITY problem can
still be solved in exponential time (and even PSPACE [56):5”jen, Sistla, Wolper
and | showed how to extend LTL with automata connectives;heg w-regularity,
without losing the PSPACE upper bound for theT&FIABILITY problem [76,77].
Actually, three syntactical variations, denoted ETETL;, and ETL. were shown to
be expressively equivalent and have these properties 716, 7

Two other ways to achieve-regularity were discovered in the 1980s. The first
is to enhance LTL with monadic second-order quantifiers 8480, which yields a
logic, QPTL, with a nonelementaryaBISFIABILITY problem [100,80]. The second is
to enhance LTL with least and greatest fixpoints [101, 102jctvyields a logicuLTL,
that achieves-regularity, and has a PSPACE upper bound on KsISFIABILITY and
MODEL-CHECKING problems [102]. For example, the (not too readable) formula

wP)(uQ)(PAX(pVQ)),

wherer andy denote greatest and least fixpoint operators, respectisedguivalent to
the LTL formulaG F'p, which says thap holds infinitely often.

3 Thread lll: Dynamic and Branching-Time Logics

3.1 Dynamic Logics

In 1976, a year before Pnueli proposed using LTL to specibgmms, Pratt proposed
usingdynamic logican extension of modal logic, to specify programs [183h modal
logic Oy means thap holds in all worlds that are possible with respect to the enirr
world [53]. Thus,O¢p can be taken to mean thatholds after an execution of a program
step, taking the transition relation of the program to be pbesibility relation of a
Kripke structure. Pratt proposed the addition of dynamidalities [¢]p, wheree is
a program, which asserts thatholds in all states reachable by an execution of the
programe. Dynamic logic can then be viewed as an extension of Hoaie,lsigpcey) —
[e]¢ corresponds to the Hoare trip{eb}e{¢} (see [109]). See [108] for an extensive
coverage of dynamic logic.

In 1977, a propositional version of Pratt's dynamic logielled PDL, was pro-
posed, in which programs are regular expressions over atpnoigrams [110, 111].
It was shown there that thea8ISFIABILITY problem for PDL is in NEXPTIME and

14 See discussion of precursor and related developments asud®4—107], in [108].

EXPTIME-hard. Pratt then proved an EXPTIME upper bound péidg tableau tech-
niques from modal logic [112,61]. (We saw earlier that Wolgigen adapted these
techniques to linear-time logic.)

Pratt's dynamic logic was designed for terminating progsamhile Pnueli was
interested in nonterminating programs. This motivatedoes extensions of dynamic
logic to nonterminating programs [113-116]. Neverthel#ssse logics are much less
natural for the specification of ongoing behavior than teraptmgic. They inspired,
however, the introduction of thenoda) p-calculusby Kozen [117, 118]. Thg-calculus
is an extension of modal logic with least and greatest fixizoilh subsumes expres-
sively essentially all dynamic and temporal logics [119pzn’s paper was inspired
by previous papers that showed the usefulness of fixpoimisanacterizing correctness
properties of programs [120, 121] (see also [122]). In ttie,u-calculus inspired the
introduction ofuLTL, mentioned earlier. Th@-calculus also played an important role
in the development of symbolic model checking [71, 72, 84].

3.2 Branching-Time Logics

Dynamic logic provided a branching-time approach to reaspabout programs, in
contrast to Pnueli’s linear-time approach. Lamport waditiseto study the dichotomy
between linear and branching time in the context of programectness [17]. This was
followed by the introduction of the branching-time logic UBhich extends unary LTL
(LTL without the temporal connective “until”) with the exential and universal path
quantifiers,E/ and A [64]. Path quantifiers enable us to quantify over differartife
behavior of the system. By adapting Pratt’s tableau-baseithan for PDL to UB, it
was shown that its &1SFIABILITY problemis in EXPTIME [64]. Clarke and Emerson
then added the temporal conncetive “until” to UB and obtdi@& L [62]. (They did not
focus on the &TiSFiABILITY problem for CTL, but, as we saw earlier, on itsodEL-
CHECKING problem; the &TISFIABILITY problem was shown later to be solvable in
EXPTIME [123].) Finally, it was shown that LTL and CTL havecmmparable expres-
sive power, leading to the introduction of the branchinmgeiogic CTL*, which unifies
LTL and CTL [124,125].

The key feature of branching-time logics in the 1980s wasritreduction of ex-
plicit path quantifiers in [64]. This was an idea that was ristdvered by Prior and his
followers in the 1960s and 1970s. Most likely, Prior wouldvddound CTL* satisfac-
tory for his philosophical applications and would have saemeed to introduce the
“Ockhamist” and “Peircean” approaches.

3.3 Combining Dynamic and Temporal Logics

By the early 1980s it became clear that temporal logics am@uwhjc logics provide two
distinct perspectives for specifying programs: the firsgtatebased, while the second
is actionbased. Various efforts have been made to combine the twmagpipes. These
include the introduction olProcess Logi¢126] (branching time)Yet Another Process
Logic[127] (branching time)Regular Process Logid 28] (linear time) Dynamic LTL
[129] (linear time), andRCTL[130] (branching time), which ultimately evolved into
Sugar[131]. RCTL/Sugar is unique among these logics in that it mid attempt to

borrow the action-based part of dynamic logic. It is a staieed branching-time logic
with no notion of actions. Rather, what it borrowed from dgmalogic was the use of
regular-expression-based dynamic modalities. Unlikeadtyie logic, which uses reg-
ular expressions over program statements, RCTL/Sugarregegar expressions over
state predicates, analogously to the automata of ETL [76which run over sequences
of formulas.

4 Thread IV: From LTL to ForSpec, PSL, and SVA

In the late 1990s and early 2000s, model checking was havingaeasing indus-
trial impact. That led to the development of three industeanporal logics based on
LTL: ForSpecgdeveloped by Intel, anBSLandSVA developed by industrial standards
committees.

4.1 FromLTL to ForSpec

Intel’s involvement with model checking started in 1990,emtKurshan, spending a
sabbatical year in Israel, conducted a successful fetgibtudy at the Intel Design
Center (IDC) in Haifa, using COSPAN, which at that point wagratotype tool; see
[98].1n 1992, IDC started a pilot project using SMV. By 198%del checking was used
by several design projects at Intel, using an internallyettgved model checker based
on SMV. Intel users have found CTL to be lacking in exprespio@er and the Design
Technology group at Intel developed its own specificatiorgleage, FSL. The FSL
language was a linear-time logic, and it was model checkiagjtise automata-theoretic
approach, but its design was rather ad-hoc, and its exgeepsiver was unclear; see
[132].

In 1997, Intel's Design Technology group at IDC embarked loe development
of a second-generation model-checking technology. Théwasto develop a model-
checking engine from scratch, as well as a new specificatinguage. A BDD-based
model checker was released in 1999 [133], and a SAT-basedIrnlecker was released
in 2000 [134].

| gotinvolved in the design of the second-generation spetifin language in 1997.
That language, ForSpec, was released in 2000 [135]. Thesust to be decided was
whether the language should be linear or branching. Thigled in-depth examination
of this issue [35}° and the decision was to pursue a linear-time language. Aioabv
candidate was LTL; we saw that by the mid 1990s there were &qglicit-state and
symbolic model checkers for LTL, so there was no questiorasibility. | had numer-
ous conversations with L. Fix, M. Hadash, Y. Kesten, and Mg®&s on this issue. The
conclusion was that LTL is not expressive enough for indaistrsage. In particular,
many properties that are expressible in FSL are not exjiiessi LTL. Thus, it turned
out that the theoretical considerations regarding theesgiveness of LTL, i.e., its lack
of w-regularity, had practical significance. | offered two exdmns of LTL; as we saw
earlier both ETL ang:LTL achievew-regularity and have the same complexity as LTL.

15 See [136] for another study of this issue.

Neither of these proposals was accepted, due to the pedcdiffeculty of usage of
such logics by Intel validation engineers, who typically&anly basic familiarity with
automata theory and logic.

These conversations continued in 1998, now with A. Land&ener also argued
that Intel validation engineers would not be receptive todhtomata-based formalism
of ETL. Being familiar with RCTL/Sugar and its dynamic moitieks [131, 130], he
asked me about regular expressions, and my answer was thaarexpressions are
equivalent to automata [6], so the automata of ETwhich extends LTL with automata
onfinitewords, can be replaced by regular expressions over stadéeptes. This lead to
the development dRELTL, which is LTL augmented by the dynamic regular modalities
of dynamic logic (interpreted linearly, as in ETL). Instezfdhe dynamic-logic notation
[e]¢, ForSpec uses the more readable (to enginéetsiggers ¢), wheree is a regular
expression over state predicates (§v,q)*, (p/Agq)), andyp is a formula. Semantically,
7,1 |= (e triggers o) if, for all j > 4, if 7[i, j] (that is, the finite word-(7), ..., 7(j))
“matches”e (in the intuitive formal sense), then j E ¢; see [137]. Using thes-
regularity of ETLy, itis now easy to show that RELTL also achiewesegularity [135].

While the addition of dynamic modalities to LTL is sufficigntachievev-regularity,
we decided to also offer direct support to two specificatiardes often used by ver-
ification engineers at Intetlocksandresets Both clocks and resets are features that
are needed to address the fact that modern semiconducitgndesnsist of interacting
parallel modules. While clocks and resets have a simplenlyideg intuition, defining
their semantics formally is quite nontrivial. ForSpec isegtially RELTL, augmented
with features corresponding to clocks and resets, as we rpiaie.

Today’s semiconductor designs are still dominated by ssorgbus circuits. In syn-
chronous circuits, clock signals synchronize the seqaHotjic, providing the designer
with a simple operational model. While the asynchronous@ggh holds the promise
of greater speed (see [138]), designing asynchronousitsiriusignificantly harder
than designing synchronous circuits. Current design nuetlogy attempts to strike a
compromise between the two approaches by using multipleksladrhis results in ar-
chitectures that are globally asynchronous but locallychyonous. The temporal-logic
literature mostly ignores the issue of explicitly suppogticlocks. ForSpec supports
multiple clocks via the notion ofurrent clock Specifically, ForSpec has a construct
change_on c¢ ¢, which states that the temporal formufas to be evaluated with re-
spect to the clock; that is, the formula is to be evaluated in the trace defined by the
high phases of the cloek The key feature of clocks in ForSpec is that each subformula
may advance according to a different clock [135].

Another feature of modern designs’ consisting of interagparallel modules is the
fact that a process running on one module can be reset by al sigming from another
module. As noted in [139], reset control has long been acatitaispect of embedded
control design. ForSpec directly supports reset signdie formula accept_on a ¢
states that the property should be checked only until the arrival of the reset signal
at which point the check is considered to hauweceededn contrast, reject.on r ¢
states that the propertyshould be checked only until the arrival of the reset signat
which point the check is considered to hdaied. The key feature of resets in ForSpec

is that each subformula may be reset (positively or negigibg a different reset signal,
for a longer discussion see [135].

ForSpec is an industrial property-specification langudge supports hardware-
oriented constructs as well as uniform semantics for foramal dynamic validation,
while at the same time it has a well understood expressiggnesegularity) and com-
putational complexity (8TISFIABILITY and MODEL-CHECKING problems have the
same complexity for ForSpec as for LTL) [135]. The desigmefstrove to find an ac-
ceptable compromise, with trade-offs clarified by theogtween conflicting demands,
such as expressiveness, usability, and implementalfligcks and resets, both im-
portant to hardware designers, have a clear intuitive séogrbut formalizing this
semantics is nontrivial. The rigorous semantics, howeavet,only enabled mechani-
cal verification of various theorems about the languagealsd served as a reference
document for the implementors. The implementation of mathelcking for ForSpec
followed the automata-theoretic approach, usafigrnatingautomata as advocated in
[140] (see [141)).

4.2 From ForSpec to PSL and SVA

In 2000, the Electronic Design Automation Association iingtd a standardization
body calledAccellera® Accellera’s mission is to drive worldwide development and
use of standards required by systems, semiconductor aighdesls companies. Ac-
cellera decided that the development of a standard spd@fidanguage is a require-
ment for formal verification to become an industrial realigge [98]). Since the focus
was on specifying properties of designs rather than desiggmselves, the chosen term
was “property specification language” (PSL). The PSL stashdammittee solicited in-
dustrial contributions and received four language countridns: CBV, from Motorola,
ForSpec, from IntelJemporale, from Verisity [142], and Sugar, from IBM.

The committee’s discussions were quite fiete&lltimately, it became clear that
while technical considerations play an important role uisttial committees’ decisions
are ultimately made for business considerations. In thatssdion, IBM had the upper
hand, and Accellera chose Sugar as the base language fonP&I0B. At the same
time, the technical merits of ForSpec were accepted and RiSptad all the main
features of ForSpec. In essence, PSL (the current versignsLLTL, extended with
dynamic modalities (referred to as thegular laye), clocks, and resets (calledborts.
PSL did inherit the syntax of Sugar, and does include a biiagetime extension as an
acknowledgment to Sug#t.

There was some evolution of PSL with respect to ForSpec.rAftene debate on
the proper way to define resets [144], ForSpec’s approachesssntially accepted
after some reformulation [145]. ForSpec’s fundamentalrapph to clocks, which is
semantic, was accepted, but modified in some importantlg¢izi6]. In addition to
the dynamic modalities, borrowed from dynamic logic, PS&oahas weak dynamic

8 Seenhtt p: / / www. accel | era. org/ .

1" Seeht t p: / / www. eda- st ds. org/ viv/.

8 See [143] and language reference manualhat p: / / www. eda. or g/ vf v/ docs/
PSL-v1. 1. pdf.

modalities [147], which are reminiscent of “looping” moiligs in dynamic logic [113,
148]. Today PSL 1.1 is an IEEE Standard 1850-2005, and agegito be refined by
the IEEE P1850 PSL Working Grou§.

Practical use of ForSpec and PSL has shown that the regytar(that is, the dy-
namic modalities), is highly popular with verification engers. Another standardized
property specification language, call8dfA(for SystemVerilog Assertions), is based, in
essence, on that regular layer [149]. Today SystemVersagni IEEE Standard 1800-
2005.

5 Contemplation

This evolution of ideas, from Lowenheim and Skolem to PSH &VA, seems to me
to be an amazing development. It reminds me of the medievalgyevhen building a
cathedral spanned more than a mason’s lifetime. Many magmersl their whole lives
working on a cathedral, never seeing it to completion. Wef@nteinate to see the com-
pletion of this particular “cathedral”. Just like the mediemasons, our contributions
are often smaller than we’d like to consider them, but eveallsoontributions can have
a major impact. Unlike the medieval cathedrals, the sdientathedral has no archi-
tect; the construction is driven by a complex process, wioeseome is unpredictable.
Much that has been discovered is forgotten and has to beceedised. It is hard to
fathom what our particular “cathedral” will look like in 5Cesprs.

Acknowledgments

| am grateful to E. Clarke, A. Emerson, R. Goldblatt, A. Pl Sistla, P. Wolper for
helping me trace the many threads of this story, to D. Fisr@arkisner, J. Halpern,
D. Harel and T. Wilke for their many useful comments on eadigfts of this paper,
and to S. Nain, K. Rozier, and D. Tabakov for proofreadindieadrafts. I'd also like

to thank K. Rozier for her help with graphics.

References

1. Davis, M.: Engines of Logic: Mathematicians and the Qrigf the Computer. Norton
(2001)

2. Borger, E., Gradel, E., Gurevich, Y.: The Classical Ben Problem. Springer (1996)

3. Dreben, D., Goldfarb, W.D.: The Decision Problem: Soleablasses of Quantificational
Formulas. Addison-Wesley (1979)

4. Lowenheim, L.: Uber Moglichkeiten im Relativkalkiill (On possibilitiés the claculus
of relations). Math. Ann76 (1915) 447-470 [Translated in From Frege to Godel, van
Heijenoort, Harvard Univ. Press, 1971].

5. Skolem, T.: Untersuchung tUber Axiome des Klassenksliild tUber Produktations- und
Summationsprobleme, welche gewisse Klassen von Aussageeffen (Investigations of
the axioms of the calculus of classes and on product and sobbepns that are connected

9 Seenht t p: / / ww. eda. or g/ i eee- 1850/ .

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.
27.

with certain class of statements). Videnskabsakademieistignia, Skrifter 13 (1919)
[Translated in Selected Works in Logic by Th. Skolem”, J.Engtak, Scand. Univ. Books,
Universitetsforlaget, Oslo, 1970, 67-101].

. Hopcroft, J., Ullman, J.: Introduction to Automata Thgdranguages, and Computation.

Addison-Wesley (1979)

. Buchi, J.: Weak second-order arithmetic and finite aatamZeit. Math. Logik und Grundl.

Math. 6 (1960) 66-92

. Buchi, J., Elgot, C., Wright, J.: The non-existence otaia algorithms for finite automata

theory (abstract). Notices Amer. Math. S&q1958) 98

. Elgot, C.: Decision problems of finite-automata desigd eglated arithmetics. Trans.

Amer. Math. Soc98(1961) 21-51

Trakhtenbrot, B.: The synthesis of logical nets whoserators are described in terms of
one-place predicate calculus. Doklady Akad. Nauk S$584) (1958) 646—649
Trakhtenbrot, B.: Certain constructions in the logioné-place predicates. Doklady Akad.
Nauk SSSRL38(1961) 320-321

Trakhtenbrot, B.: Finite automata and monadic secoddrdogic. Siberian Math. 3
(1962) 101-131 Russian; English translation in: AMS Trab81(1966), 23-55.

Rabin, M., Scott, D.: Finite automata and their decigimblems. IBM Journal of Research
and Developmert (1959) 115-125

Meyer, A.R.: Weak monadic second order theory of sucrassiot elementary recursive.
In: Proc. Logic Colloquium. Volume 453 of Lecture Notes intll@matics., Springer (1975)
132-154

Stockmeyer, L.: The complexity of decision proceduresitomata Theory and Logic.
PhD thesis, MIT (1974) Project MAC Technical Report TR-133.

Church, A.: Applicaton of recursive arithmetics to thelgem of circuit synthesis. In:
Summaries of Talks Presented at The Summer Institute fo8ijmLogic, Communica-
tions Research Division, Institute for Defense AnalysB852) 3-50

Lamport, L.: “Sometimes” is sometimes “not never” - or temporal logic of programs.
In: Proc. 7th ACM Symp. on Principles of Programming Langegd1980) 174-185
Church, A.: Logic, arithmetics, and automata. In: Piot.Congress of Mathematicians,
1962, Institut Mittag-Leffler (1963) 23—-35

Bichi, J., Landweber, L.: Solving sequential conditidy finite-state strategies. Trans.
AMS 138(1969) 295-311

Kupferman, O., Piterman, N., Vardi, M.: Safraless cosijimnal synthesis. In: Proc 18th
Int. Conf. on Computer Aided Verification. Volume 4144 of bee Notes in Computer
Science., Springer (2006) 31-44

Kupferman, O., Vardi, M.: Safraless decision proceslud@: Proc. 46th IEEE Symp. on
Foundations of Computer Science. (2005) 531-540

Rabin, M.: Automata on infinite objects and Church’s pgob Amer. Mathematical Soci-
ety (1972)

Thomas, W.: On the synthesis of strategies in infiniteeganin Mayr, E., Puech, C., eds.:
Proc. 12th Symp. on Theoretical Aspects of Computer Scievickime 900 of Lecture
Notes in Computer Science., Springer (1995) 1-13

Buchi, J.: On adecision method in restricted secondradthmetic. In: Proc. Int. Congress
on Logic, Method, and Philosophy of Science. 1960, Starifbridersity Press (1962) 1-12
Choueka, Y.: Theories of automatawtapes: A simplified approach. Journal of Computer
and Systems Scien®(1974) 117-141

Trakhtenbrot, B., Barzdin, Y.: Finite Automata. Nortbltdnd (1973)

Sakoda, W., Sipser, M.: Non-determinism and the size/ofway automata. In: Proc. 10th
ACM Symp. on Theory of Computing. (1978) 275-286

28.

29.

30.

31.
32.
33.

34.
35.

36.
37.
38.
39.
40.
41.
42.

43.
44,

45.

46.

47.

48.

49.

50.

51.

52.

53.
54.

Vardi, M.Y.: The Biichi complementation saga. In: P&th Sympo. on Theoretical As-
pects of Computer Science. Volume 4393 of Lecture Notes im@der Science., Springer
(2007) 12-22

Schewe, S.: Buchi complementation made tight. In: F26th Int'l Symp. on Theoretical
Aspects of Computer Science. Volume 09001 of Dagstuhl Sanftnoceedings., Schloss
Dagstuhl (2009) 661-672

Yan, Q.: Lower bounds for complementation.eutomata via the full automata technique.
In: Proc. 33rd Int. Collog. on Automata, Languages, and Rmogning. Volume 4052 of
Lecture Notes in Computer Science., Springer (2006) 589-60

@hrstram, P., Hasle, P.: Temporal Logic: from Ancienhds to Artificial Intelligence.
Studies in Linguistics and Philosophy, vol. 57. Kluwer (99

Prior, A.: Modality de dicto and modality de re. Theat#(1952) 174-180

N. Rescher, A.U.: Temporal Logic. Springer (1971)

Prior, A.: Time and Modality. Oxford University Pres9glr)

Vardi, M.: Branching vs. linear time: Final showdown: Rroc. 7th Int. Conf. on Tools and
Algorithms for the Construction and Analysis of Systemsluviee 2031 of Lecture Notes
in Computer Science., Springer (2001) 1-22

Prior, A.: Modality and quantification in s5. J. Symbdliogic 21 (1956) 60-62

Kripke, S.: A completeness theorem in modal logic. JaluohSymbolic Logic24 (1959)
1-14

Prior, A.: Past, Present, and Future. Clarendon Pré&5j1

Kamp, J.: Tense Logic and the Theory of Order. PhD thei$,A (1968)

Etessami, K., Vardi, M., Wilke, T.: First-order logictiitwo variables and unary temporal
logic. Inf. Comput.1792) (2002) 279-295

Thomas, W.: Star-free regular setswbequences. Information and Contd®(2) (1979)
148-156

Elgot, C., Wright, J.: Quantifier elimination in a protmef logical design. Michigan Math.
J.6(1959) 65-69

McNaughton, R., Papert, S.: Counter-Free Automata. RIES (1971)

Pnueli, A.: The temporal logic of programs. In: Proc HLEEEE Symp. on Foundations of
Computer Science. (1977) 46-57

Goldblatt, R.: Logic of time and computation. Techniegdort, CSLI Lecture Notes, no.7,
Stanford University (1987)

Lichtenstein, O., Pnueli, A., Zuck, L.: The glory of thash. In: Logics of Programs.
Volume 193 of Lecture Notes in Computer Science., Spring@8%) 196218

Markey, N.: Temporal logic with past is exponentially nmguccinct. EATCS Bulletii79
(2003) 122-128

Vardi, M.: A temporal fixpoint calculus. In: Proc. 15th MCSymp. on Principles of
Programming Languages. (1988) 250-259

Gabbay, D., Pnueli, A., Shelah, S., Stavi, J.: On the teat@nalysis of fairness. In: Proc.
7th ACM Symp. on Principles of Programming Languages. (1983-173

Pnueli, A., Zuck, L.: In and out of temporal logic. In: Br&th IEEE Symp. on Logic in
Computer Science. (1993) 124-135

Meyer, A.: Ten thousand and one logics of programmingéchhical report, MIT (1980)
MIT-LCS-TM-150.

Keller, R.: Formal verification of parallel programs. r@munications of the ACML9
(1976) 371-384

Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Gaidge University Press (2002)
Halpern, J., Reif, J.: The propositional dynamic logicdeterministic, well-structured
programs (extended abstract). In: Proc. 22nd IEEE Symp.comdrations of Computer
Science. (1981) 322-334

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.
73.
74.
75.
76.

77.

Halpern, J., Reif, J.: The propositional dynamic logicdeterministic, well-structured
programs. Theor. Comput. S&7 (1983) 127-165

Sistla, A.: Theoretical issues in the design of distéduand concurrent systems. PhD
thesis, Harvard University (1983)

Sistla, A., Clarke, E.: The complexity of propositiotinkar temporal logics. In: Proc. 14th
Annual ACM Symposium on Theory of Computing. (1982) 159-168

Sistla, A., Clarke, E.: The complexity of propositiotiakar temporal logic. Journal of the
ACM 32(1985) 733-749

Wolper, P.: Temporal logic can be more expressive. lacP22nd IEEE Symp. on Foun-
dations of Computer Science. (1981) 340-348

Wolper, P.: Temporal logic can be more expressive. imédion and Contrdb6(1-2) (1983)
72-99

Pratt, V.: A near-optimal method for reasoning abouioact Journal of Computer and
Systems Scienc20(2) (1980) 231-254

Clarke, E., Emerson, E.: Design and synthesis of synitation skeletons using branching
time temporal logic. In: Proc. Workshop on Logic of Progrardslume 131 of Lecture
Notes in Computer Science., Springer (1981) 52—71

Queille, J., Sifakis, J.: Specification and verificata@drconcurrent systems in Cesar. In:
Proc. 9th ACM Symp. on Principles of Programming Languayetume 137 of Lecture
Notes in Computer Science., Springer (1982) 337-351

Ben-Ari, M., Manna, Z., Pnueli, A.: The logic of nexttimén: Proc. 8th ACM Symp. on
Principles of Programming Languages. (1981) 164-176

Clarke, E., Emerson, E., Sistla, A.: Automatic verifioatof finite state concurrent systems
using temporal logic specifications: A practical approati. Proc. 10th ACM Symp. on
Principles of Programming Languages. (1983) 117-126

Clarke, E., Emerson, E., Sistla, A.: Automatic verificatof finite-state concurrent systems
using temporal logic specifications. ACM Transactions oogPamming Languagues and
Systems3(2) (1986) 244—-263

Vardi, M.: The complexity of relational query languagés: Proc. 14th ACM Symp. on
Theory of Computing. (1982) 137-146

Clarke, E., Grumberg, O.: Avoiding the state explosiovbfem in temporal logic model-
checking algorithms. In: Proc. 16th ACM Symp. on Princippé®istributed Computing.
(1987) 294-303

Browne, M., Clarke, E., Dill, D., Mishra, B.: Automatiesfication of sequential circuits
using temporal logic. IEEE Transactions on Comput35 (1986) 1035-1044

Clarke, E., Mishra, B.: Hierarchical verification of asjironous circuits using temporal
logic. Theoretical Computer Scien88 (1985) 269-291

Burch, J., Clarke, E., McMillan, K., Dill, D., Hwang, LSymbolic model checkingt0?°
states and beyond. In: Proc. 5th IEEE Symp. on Logic in Coerpbtience. (1990) 428—
439

Burch, J., Clarke, E., McMillan, K., Dill, D., Hwang, LSymbolic model checkingt0?°
states and beyond. Information and Computa€i2) (1992) 142—-170

McMillan, K.: Symbolic Model Checking. Kluwer Acadenfablishers (1993)

Clarke, E.: The birth of model checking. This Volume (20

Lichtenstein, O., Pnueli, A.: Checking that finite stet¤t programs satisfy their
linear specification. In: Proc. 12th ACM Symp. on Principté$rogramming Languages.
(1985) 97-107

Vardi, M., Wolper, P.: Reasoning about infinite compotad. Information and Computation
1151) (1994) 1-37

Wolper, P., Vardi, M., Sistla, A.: Reasoning about inérdiomputation paths. In: Proc. 24th
IEEE Symp. on Foundations of Computer Science. (1983) 1851

78

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

Vardi, M., Wolper, P.: An automata-theoretic approazladwtomatic program verification.
In: Proc. 1st IEEE Symp. on Logic in Computer Science. (1832344

Kupferman, O., Vardi, M.: Weak alternating automatarentthat weak. ACM Transactions
on Computational Logi€(2) (2001) 408-429

Sistla, A., Vardi, M., Wolper, P.: The complementationlgem for Biichi automata with
applications to temporal logic. Theoretical Computer S8cet9 (1987) 217-237
Courcoubetis, C., Vardi, M., Wolper, P., Yannakakis; MMemory efficient algorithms
for the verification of temporal properties. In: Proc 2nd. I6onf. on Computer Aided
Verification. Volume 531 of Lecture Notes in Computer Sceen&pringer (1990) 233—-242
Courcoubetis, C., Vardi, M., Wolper, P., Yannakakis; Memory efficient algorithms for
the verification of temporal properties. Formal Methods yst8m Desigril (1992) 275—
288

Bryant, R.: Graph-based algorithms for Boolean-fuorcthanipulation. IEEE Transactions
on ComputingC-35(8) (1986) 677—691

Emerson, E., Lei, C.L.: Efficient model checking in fraguts of the propositiongi-
calculus. In: Proc. 1st IEEE Symp. on Logic in Computer Soéel(1986) 267-278
Clarke, E., Grumberg, O., Hamaguchi, K.: Another loolBL. model checking. In:
Proc 6th Int. Conf. on Computer Aided Verification. Lecturetds in Computer Science,
Springer (1994) 415 — 427

Gerth, R., Peled, D., Vardi, M., Wolper, P.: Simple oa-fty automatic verification of
linear temporal logic. In Dembiski, P., Sredniawa, M., eBsotocol Specification, Testing,
and Verification, Chapman & Hall (1995) 3-18

Holzmann, G.: The model checker SPIN. IEEE Transactmn$oftware Engineering
23(5) (1997) 279-295

Vardi, M.: Automata-theoretic model checking reviditdn: Proc. 8th Int. Conf. on Ver-
ification, Model Checking, and Abstract Interpretationlivoe 4349 of Lecture Notes in
Computer Science., Springer (2007) 137-150

Brayton, R., Hachtel, G., Sangiovanni-Vincentelli, Bomenzi, F., Aziz, A., Cheng, S.T.,
Edwards, S., Khatri, S., Kukimoto, T., Pardo, A., QadeeiR&@njan, R., Sarwary, S., Shiple,
T., Swamy, G., Villa, T.: VIS: a system for verification anchsiyesis. In: Proc 8th Int. Conf.
on Computer Aided Verification. Volume 1102 of Lecture NotesComputer Science.,
Springer (1996) 428-432

Cimatti, A., Clarke, E., Giunchiglia, E., Giunchigli&, Pistore, M., Roveri, M., Sebastiani,
R., Tacchella, A.: Nusmv 2: An opensource tool for symboliodel checking. In: Proc.
14th Int'l Conf. on Computer Aided Verification. Lecture Ngstin Computer Science 2404,
Springer (2002) 359-364

Duret-Lutz, A., Poitrenaud, D.: SPOT: An extensible elodhecking library using
transition-based generalized biichi automata. In: Praih Iht'l Workshop on Modeling,
Analysis, and Simulation of Computer and Telecommunica8gstems, IEEE Computer
Society (2004) 76-83

Aggarwal, S., Kurshan, R.: Automated implementatia@mfrformal specification. In:
Proc. 4th Int'l Workshop on Protocol Specification, Testimgl Verification, North-Holland
(1984) 127-136

Aggarwal, S., Kurshan, R., Sharma, D.: A language forspeification and analysis of
protocols. In: Proc. 3rd Int'l Workshop on Protocol Spedifion, Testing, and Verification,
North-Holland (1983) 35-50

Kurshan, R.: Analysis of discrete event coordination.dé Bakker, J., de Roever, W.,
Rozenberg, G., eds.: Proc. REX Workshop on Stepwise RefimamhBistributed Systems,
Models, Formalisms, and Correctness. Volume 430 of Ledtiates in Computer Science.,
Springer (1990) 414-453

95.

96.

97.

98.

99.

100.

101.

102.

103.

104.

105.
106.
107.

108.
109.
110.
111.
112.
113.
114.
115.
116.

117.

Sabnani, K., Wolper, P., Lapone, A.: An algorithmic teigie for protocol verification. In:
Proc. Globecom '85. (1985)

Kurshan, R.: Computer Aided Verification of CoordingtiRrocesses. Princeton Univ.
Press (1994)

Hardin, R., Har’el, Z., Kurshan, R.: COSPAN. In: Proc Bth Conf. on Computer Aided
Verification. Volume 1102 of Lecture Notes in Computer Scien Springer (1996) 423—
427

Kurshan, R.: Verification technology transfer. In: Pra606 Workshop on 25 Years of
Model Checking. Lecture Notes in Conmputer Science, Spri(2007)

Pnueli, A.: Linear and branching structures in the sdivsiand logics of reactive systems.
In: Proc. 12th Int. Collog. on Automata, Languages, and Rmogning. Volume 194 of
Lecture Notes in Computer Science., Springer (1985) 15-32

Sistla, A., Vardi, M., Wolper, P.: The complementatmoblem for Blichi automata with
applications to temporal logic. In: Proc. 12th Int. Collas Automata, Languages, and
Programming. Volume 194., Springer (1985) 465-474

Banieqgbal, B., Barringer, H.: Temporal logic with fiyegints. In Baniegbal, B., Barringer,
H., Pnueli, A., eds.: Temporal Logic in Specification. Vorir898 of Lecture Notes in
Computer Science., Springer (1987) 62—74

Vardi, M.: Unified verification theory. In Baniegbal,,Barringer, H., Pnueli, A., eds.:
Proc. Temporal Logic in Specification. Volume 398., Spring®89) 202-212

Pratt, V.: Semantical considerations on Floyd-Hoagicl In: Proc. 17th IEEE Symp. on
Foundations of Computer Science. (1976) 109-121

Burstall, R.: Program proving as hand simulation witkttke induction. In: Information
Processing 74, Stockholm, Sweden, International Federdtir Information Processing,
North-Holland (1974) 308-312

Constable, R.: On the theory of programming logicsPhoc. 9th ACM Symp. on Theory
of Computing. (1977) 269-285

Engeler, E.: Algorithmic properties of structures.tM&yst. Theord (1967) 183-195
Salwicki, A.: Algorithmic logic: a tool for investigains of programs. In Butts, R., Hin-
tikka, J., eds.: Logic Foundations of Mathematics and Cdatplity Theory. Reidel (1977)
281-295

Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Bsg2000)

Apt, K., Olderog, E.: Verification of Sequential and Coment Programs. Springer (2006)
Fischer, M., Ladner, R.: Propositional modal logic oigrams (extended abstract). In:
Proc. 9th ACM Symp. on Theory of Computing. (1977) 286—294

Fischer, M., Ladner, R.: Propositional dynamic logicegular programs. Journal of
Computer and Systems Sciernt®(1979) 194-211

Pratt, V.: A practical decision method for propositibdynamic logic: Preliminary report.
In: Proc. 10th Annual ACM Symposium on Theory of Computirt78) 326-337

Harel, D., Sherman, R.: Looping vs. repeating in dywcaogic. Inf. Comput.551-3)
(1982) 175-192

Streett, R.: A propositional dynamic logic for reasmnabout program divergence. PhD
thesis, M.Sc. Thesis, MIT (1980)

Street, R.: Propositional dynamic logic of looping andverse. In: Proc. 13th ACM Symp.
on Theory of Computing. (1981) 375-383

Streett, R.: Propositional dynamic logic of loopingl @onverse. Information and Control
54(1982) 121-141

Kozen, D.: Results on the propositiopatalculus. In: Proc. 9th Colloquium on Automata,
Languages and Programming. Volume 140 of Lecture Notesmpier Science., Springer
(1982) 348-359

118.

119.

120.

121.

122.

123.

124,

125.

126.

127.

128.

129.

130.

131.

132.

133.

134.

135.

136.

137.

Kozen, D.: Results on the propositiopatalculus. Theoretical Computer Scien2@
(1983) 333-354

Bradfield, J., Stirling, C.: PDL and modalcalculus. In Blackburn, P., van Benthem, J.,
Wolter, F., eds.: Handbook of Modal Logic. Elsevier (2006)

Emerson, E., Clarke, E.: Characterizing correctnesgepties of parallel programs using
fixpoints. In: Proc. 7th Int. Collog. on Automata, Languagasd Programming. (1980)
169-181

Park, D.: Finiteness jsineffable. Theoretical Computer Scier8¢1976) 173—-181

Pratt, V.: A decidablg-calculus: preliminary report. In: Proc. 22nd IEEE Symp Faun-
dations of Computer Science. (1981) 421-427

Emerson, E., Halpern, J.: Decision procedures andssgpeness in the temporal logic of
branching time. Journal of Computer and Systems Sci8a¢&985) 1-24

Emerson, E., Halpern, J.: “Sometimes” and “not nevevisited: On branching versus
linear time. In: Proc. 10th ACM Symp. on Principles of Pragraing Languages. (1983)
127-140

Emerson, E., Halpern, J.: Sometimes and not neveiitex/iOn branching versus linear
time. Journal of the ACMB3(1) (1986) 151-178

Harel, D., Kozen, D., Parikh, R.: Process logic: Exgikesess, decidability, completeness.
J. Comput. Syst. ScR5(2) (1982) 144-170

Vardi, M., Wolper, P.: Yet another process logic. Inglas of Programs. Volume 164 of
Lecture Notes in Computer Science., Springer (1984) 502-51

Harel, D., Peleg, D.: Process logic with regular formsul Theoreti. Comp. Sc8(2—3)
(1985) 307-322

Hafer, T., Thomas, W.: Computation tree logic CTdnd path quantifiers in the monadic
theory of the binary tree. In: Proc. 14th Int. Collog. on Auiata, Languages, and Program-
ming. Volume 267 of Lecture Notes in Computer Science., &y (1987) 269-279

Beer, I., Ben-David, S., Landver, A.: On-the-fly modeécking of RCTL formulas. In:
Proc 10th Int. Conf. on Computer Aided Verification. Volumé2T of Lecture Notes in
Computer Science., Springer (1998) 184-194

Beer, |., Ben-David, S., Eisner, C., Fisman, D., Griga A., Rodeh, Y.: The temporal
logic Sugar. In: Proc 13th Int. Conf. on Computer Aided Vesfion. Volume 2102 of
Lecture Notes in Computer Science., Springer (2001) 363—-36

Fix, L.: Fifteen years of formal property verificationlatel. In: Proc. 2006 Workshop on
25 Years of Model Checking. Lecture Notes in Conmputer SmeBpringer (2007)

Fix, L., Kamhi, G.: Adaptive variable reordering fomsigolic model checking. In: Proc.
ACM/IEEE Int'l Conf. on Computer Aided Design. (1998) 35%53

Copty, F., Fix, L., Fraer, R., Giunchiglia, E., Kamhi, Gacchella, A., Vardi, M.: Benefits
of bounded model checking at an industrial setting. In: Fr@th Int. Conf. on Computer
Aided Verification. Volume 2102 of Lecture Notes in CompuBsience., Springer (2001)
436-453

Armoni, R., Fix, L., Flaisher, A., Gerth, R., GinsbuBRy, Kanza, T., Landver, A., Mador-
Haim, S., Singerman, E., Tiemeyer, A., Vardi, M., Zbar, YhelForSpec temporal logic: A
new temporal property-specification logic. In: Proc. 8th @onf. on Tools and Algorithms
for the Construction and Analysis of Systems. Volume 228Degfture Notes in Computer
Science., Springer (2002) 296-211

Nain, S., Vardi, M.: Branching vs. linear time: Semealtiperspective. In: Proc. 5th Int’l
Symp. on Automated Technology for Verification and Analysislume 4762 of Lecture
Notes in Computer Science., Springer (2007) 19-34

Bustan, D., Flaisher, A., Grumberg, O., Kupferman,\@rdi, M.: Regular vacuity. In:
Proc. 13th Conf. on Correct Hardware Design and Verificakitathods. Volume 3725 of
Lecture Notes in Computer Science., Springer (2005) 198—-20

138.

139.

140.

141.

142.

143.
144,

145.

146.

147.

148.

149.

C.H. van Berkel, M.B. Josephs, S.N.: Applications ghasronous circuits. Proceedings
of the IEEE87(2) (1999) 223-233

A comparison of reset control methods: Application teno 11.
http [/ www. summi t m cro. com t ech_.support/ notes/ notell. htm
Summit Microelectronics, Inc. (1999)
Vardi, M.: Nontraditional applications of automataahy. In: Proc. 11th Symp. on Theo-
retical Aspects of Computer Science. Volume 789 of Lectunéell in Computer Science.,
Springer (1994) 575-597
Gastin, P., Oddoux, D.: Fast LTL to Bichi automatadiaion. In: Proc 13th Int. Conf.
on Computer Aided Verification. Volume 2102 of Lecture NotesComputer Science.,
Springer (2001) 53—-65
Morley, M.: Semantics of temporal In Melham, T.F., Moller, F., edsBanff’99 Higher
Order Workshop (Formal Methods in Computation), Universit Glasgow, Department of
Computing Science Technical Report (1999)
Eisner, C., Fisman, D.: A Practical Introduction to PShpringer (2006)
Armoni, R., Bustan, D., Kupferman, O., Vardi, M.: Rese$. aborts in linear temporal
logic. In: Proc. 9th Int. Conf. on Tools and Algorithms foetiConstruction and Analysis
of Systems. Volume 2619 of Lecture Notes in Computer Sciegminger (2003) 65 — 80
Eisner, C., Fisman, D., Havlicek, J., Lustig, Y., MasgA., Van Campenhout, D.: Reason-
ing with temporal logic on truncated paths. In: Proc. 15t [@onf. on Computer Aided
Verification. Volume 2725 of Lecture Notes in Computer Scien Springer (2003) 27—-39
Eisner, C., Fisman, D., Havlicek, J., Mclsaac, A., VampPenhout, D.: The definition
of a temporal clock operator. In: Proc. 30th Int'l Collogmiun Automata, Languages
and Programming. Volume 2719 of Lecture Notes in Computérge., Springer (2003)
857-870
Eisner, C., Fisman, D., Havlicek, J.: A topologicalrauterization of weakness. In: Proc.
24th ACM Symp. on Principles of Distributed Computing. (8928
Harel, D., Peleg, D.: More on looping vs. repeating inaiyic logic. Inf. Process. Lett.
20(2) (1985) 87-90
Vijayaraghavan, S., Ramanathan, M.: A Practical GéideSystemVerilog Assertions.
Springer (2005)

