Formal Methods 4. Axiomatic Semantics

Nachum Dershowitz

March 2000

Since nondeterministic programs can return more than one result, it is best to view programs as binary input/output relations. We will make use of standard mathematical notation for sets and relations: union \cup, intersection \cap, composition (juxtaposition, or \circ, or ";"), reflexive-transitive closure R^{*}, inverse R^{-1}, etc.

We consider state-changing programs with assignment statements of the form $x:=e$. For tests, we use a restriction of the identity relation p ? $=$ $\{\langle x, x\rangle \mid p(x)\}$.

The following are definitions of more familiar programming constructs:

$$
\begin{array}{ll}
\text { if } \alpha \text { then } \beta \text { else } \gamma & =\alpha ? \beta \cup(\neg \alpha) ? \gamma \\
\text { while } \alpha \text { do } \beta & =(\alpha ? \beta)^{*}(\neg \alpha) \text { ? } \\
\text { skip } & =I \text { (the identity relation } T ? \text {) } \\
\text { fail } & =\emptyset \text { (the empty relation } F ? \text {) } \\
\text { loop } & =I^{*} \\
a[j]:=e & =a:=\lambda i \text {.if } i=j \text { then } e \text { else } a[i]
\end{array}
$$

We will use the notation:

$$
A \underset{R}{\longrightarrow} B
$$

to mean

$$
\forall \bar{x}, \bar{z}\{A[\bar{x}] \wedge \bar{x} R \bar{z} \rightarrow B[\bar{z}]\}
$$

That is, if A is true for state \bar{x}, then after executing program R, B will be true in the new state \bar{z}. Other notations for the same concept used in the
literature include:

$$
\begin{array}{cl}
A\{R\} B & \text { (Hoare) } \\
\{A\} R\{B\} & \text { (Manna) } \\
A \rightarrow w l p(R, B) & \text { (Dijkstra) } \\
A \rightarrow[R] B & \text { (Harel) }
\end{array}
$$

Properties of programs that can be expressed in this manner include:

Output Correctness

$$
A \underset{R}{\longrightarrow} B
$$

Termination

$$
\neg(A \underset{R}{\longrightarrow} F)
$$

The semantics of basic statements can be defined by the following axioms:

$$
\begin{aligned}
A \underset{p ?}{\longrightarrow} & A \wedge p \\
A[e] \underset{v:=e}{\longrightarrow} & A[v]
\end{aligned}
$$

where v is a state variable appearing in formula A.
In addition we have the following equivalences:

$$
\begin{aligned}
A \xrightarrow[I]{\longrightarrow} B & \Leftrightarrow A \rightarrow B \\
(A \vee B) \underset{R \cup S}{\longrightarrow}(C \stackrel{\vee}{\vee}) & \Leftrightarrow A \xrightarrow[R]{\longrightarrow} C \wedge B \xrightarrow[S]{\longrightarrow} D \\
A \xrightarrow[R S]{\longrightarrow} C & \Leftrightarrow A \xrightarrow[R]{\longrightarrow}[T \rightarrow C] \\
A \xrightarrow[R^{*}]{R} A & \Leftrightarrow A \xrightarrow[R]{\longrightarrow} A \\
A \xrightarrow[R^{-1}]{\longrightarrow} & \Leftrightarrow \neg(\neg B \xrightarrow[R]{\longrightarrow} \neg A)
\end{aligned}
$$

The above provides a compositional semantics for state-modifying iterative programs.

For concurrent programs, it is more convenient to look at the whole program as a state-transition relation. The one-step relation τ is described by a set of formulas that speak of state-variable values and program-statement labels. Computations are just sequences of state-transitions and we are interested in properties that can be expressed by formulas like

$$
A \underset{\tau^{*}}{\longrightarrow} B
$$

Since it is always the same relation that interests us, we can use instead formulas
\square
meaning

$$
T \underset{\tau^{*}}{\longrightarrow} B
$$

We can also define

$$
\diamond A \Leftrightarrow \neg(\square \neg A)
$$

meaning that there is a computation leading to a state in which A holds.

