
Formal Methods

4. Axiomatic Semantics

Nachum Dershowitz

28/3/2000

1 Introduction

A computer program contains a �nite number of state variables. The com-
bined states of all variables de�nes the current state of the program. In each
computation step one state variable may change its value. Since nondeter-
ministic programs can move from a certain state to a set of possible states by
one computational step, it is best to view programs as binary input/output
relations. When we deal with a deterministic program, the binary relation
becomes functional. We will make use of standard mathematical notation
for sets and relations: union [, intersection \, composition (juxtaposition,
or Æ, or \;"), re
exive-transitive closure R�, inverse R�1, etc.

2 Syntax

We now show how to express statements in computer programs using these
relations.
We consider the if statement : if � then � else
 . We would like to build
a relation Rif to represent the if statement given the relation R�, R� and
R
 for the statements �, � and
, respectively.
To represent a condition we de�ne : �? = f(�x; �x)j�(�xg , where � is a pred-
icate.
The relation �? transforms each state �x where �(�x) = true to itself, the
state is unchanged. We can now express the if statement as :
if � then � else
 = �?� [(:�)?

1

Similarly we can express the following statements :

while � do � = (�?�)�(:�)?
skip = I (the identity relation T ?)
fail = ; (the empty relation F ?)
loop = I�

a[j] := e = a := �i:if i = j then e else a[i]

3 Dijkstra's nondeterministic language

Dijkstra developed a language for nondeterministic computation.
The if statement for example is de�ned :

if

C1 ! S1

C2 ! S2

:

:

:

Cn ! Sn

�
Line Ci ! Si means that if Ci holds we perform Si. The program chooses

nondeterministicly one of the lines for which the condition is true.
Consider for example a program to compute the maximum of two numbers :

if

x � y ! m := x

x � y ! m := y

�

If x = y (both conditions are true) it does not matter which line is chosen
to be done.

The do statement in Dijkstra's language is de�ned like this :

2

do

C1 ! S1

C2 ! S2

:

:

:

Cn ! Sn

od
The do statement is like a repetitive if statement. In each step we do one of
the statements associated with a true predicate. Once all predicates return
false, the loop terminates.

4 Program properties

We will use the notation:
A�!

R
B

to mean
8�x; �zfA[�x] ^ �xR�z ! B[�z]g

That is, if A holds for state �x, then after executing program R, B will be
true in the new state �z. Other notations for the same concept used in the
literature include:

AfRgB (Hoare)
fAgRfBg (Manna)

A! wlp(R;B) (Dijkstra)
A! [R]B (Harel)

Properties of programs that can be expressed in this manner include:

� Output Correctness

A�!
R

B

� Termination

:(A�!
R

F)

The semantics of basic statements can be de�ned by the following axioms:

� Test Axiom

A�!
p?

A ^ p

3

� Assign Axiom

A[e]�!
v:=e

A[v]

where v is a state variable appearing in formula A.
In addition we have the following equivalences:

� Identity

A�!
I

B , A! B

� Union

A�!
R

B ^ A�!
S

B , A�!
R[S

B

� Composition

A�!
RS

B , A�!
R

(T �!
S

B)

� Star

A�!
R

A, A�!
R�

A

�

A�!
R

C ^B�!
S

D ! (A _B)�!
R[S

(C _D)

�

A�!
R�1

B , :B�!
R
:A

The above provides a compositional semantics for state-modifying itera-
tive programs.

For concurrent programs, it is more convenient to look at the whole pro-
gram as a state-transition relation. The one-step relation � is described by a
set of formulas that speak of state-variable values and program-statement la-
bels. For example, if we have two concurrent programs S and R represented
by relations �S and �R respectively, the relation for the entire program is
� = �R[�S . Computations are just sequences of state-transitions and we are
interested in properties that can be expressed by formulas like

A�!
��

B

4

We de�ne 2B = T �!
��

B which means that B is invariant throughout the

program, with no regard to the initial state.
We can also de�ne

3A, :(2:A)

meaning that there is a computation leading to a state in which A holds.
In deterministic programs 23A means that from every path we take in the
program we can reach a state where A is true. We also have 32A which
means that starting from some place, A remains true always.

5

