Methods and Formal Models/ Nachum Dershowitz

Lecture 8, 16-5-2000
Notes by: Eden Chlamtac

Recursive Programs

Introduction

In lecture 7, we defined fixpoints, and proved the following result, which is due to
Kleene:

Theorem 1Every continuous functional B[f] on a complete partial order has a unique
least fixpoint '
£ = lub{ B[]}

We also briefly discussetbmputation ruleswhich determine the operational seman-
tics of a program by establishing a certain rewriting strategy.

Here we shall discuss the relation between computation rules and least fixpoints.
We shall see that any computation rule applied t@@ursive progran(a recursive
function definition defined by a functionBlas in the theorem above) yields a function
which is less defined than, or equal to the functional’s least fixpoint. We shall also
define a class of computation rules which always yield the least fixpoint of a functional.

Recursive Programs and Computation Rules

By arecursive definitiopor recursive programwe mean a program of the form
pP: f(z) < B[f](=)

where B is a continuous functional composed of monotonic base functions and pred-
icates (e.gif, *) and the function variabl& which are applied to the variablags=<
T1,T2, .0, Ty >.

Naturally, we would like a good computation rule to compute a fixpoinB[f
when applied to the computation bfHowever, we must first examine what we mean
by a computation of a recursively defined function.

We shall examine two different types of rewriting rulsgpstitution andsimplifi-
cation Given some expressiencontaining occurrences ¢fz), substitutiorreplaces
some occurrences of(z) in a with B[f](Z), whereassimplificationrepeatedly ap-
plies the rewriting syster8, which defines the base functions and predicates, until the

expression can no longer be simplified. Assume the rewriting syStemsuch that
simplifications can always be made when the value of some sub-expression can be
determined (e.g0 - © — 0).

Given a progran® as above over a domaib, and an input valud € (D+)", we
define thecomputation off (d) to be a sequence of expressid¢ng derived recursively
as follows:

1. to = f(d)

2. For eachi > 0, an intermediate expressighis obtained from; by applying
substitution according to a computation rule,Thent;, is derived fromt} by
simplification.

A computation rule QGletermines which occurencesf(fz) are to be replaced in each
substitution step. We talk@p, the function determined by applying a computation rule
C to the computation of; to be a mapping as follows: Given inpdite (D*)™, if the
sequencét;}, defined as above, is finite (i.e. it ends in sotpe D) then we define
Cp = t. Otherwise(Cp = w.

In lecture 7, we encountered the computation riédgnost-innermost (“call-by-
value”) andleftmost-outermost (“call-by-name’)The functions computed by these
rules are denotefi’! (or LIp) andf=© (or LOp), respectively. Here are a few exam-
ples of other important computation rules:

1. Parallel-innermost Replace all the innermost occurrences of f simultaneosly.
The function computed is denotgd’” .

2. Parallel-outermost Replace all the outermost occurrences of f simultaneosly.
The function computed is denotgd©.

3. Full-substitution Replace all occurrences of f simultaneosly. The function com-
puted is denoted ¥,

e Exercise: Consider the following recursive program:
P : f(z,y) «ifx=0then2else f(x — 1, f(z +y,y))

What is the least fixpoint df? What are the functiong’! and fL©?

Computation Paths

We will now investigate an alternative method of computation which, as we shall see, is

a generalization of the computation sequence method discussed in the previous section.
Given a progrant defined as before, @omputation pattis a sequence of expres-

sions{C;} whereCy = f, and for eachi > 0, C;11[f](Z) is derived fromC;[f](Z)

by simultaneously replacing certain occurrences @f) with B[f](Z). In contrast

to computation sequences, no simplification is performed in computation paths, and

neither is there necessarily a fixed computation rule for all substitutions.

e Exercise: Show tha{C;[2]} is a chain of functions.

Before examining the relation between computation sequences and computation paths,
let us first show the following result, which is an important property of the substitution
and simplification rewriting system:

Lemma 1: Let «[f] be any monotonic functional, ar@be some rewriting rule. Let
d € (D)™ be an input value for[f], and lety be the expression obtained from
alf](d) by first applying simplification, then substitution according@pand
then applying simplification again. Then there exists a rewriting @llsuch
that applying substitution usin@’, followed by simplification, yields. That s,

ol f)()——5— BLA@)

c'| 1C
a'[f](d) B'1f1(d)
SN S
Y
Proof: Let us suppose[f] containamoccurrences of

Then we may think ofr as an m-ary functional, and f1, ..., f™] as an equivalent ex-
pression if we substitutiefor all £7. Clearly, after applying simplification, we arrive at
some expressiofi[f!, ..., f™]. We may also ordef’ so that applying substitution us-
ing computation rul€ we get3[f*, ...,fm](E)T)B[B[fl], - B[f1], fIL, .., f7)(d).
Let C’' be the computation rule which choosgs ..., f! when applying substitution
to aff!, ..., f™]. LetR be the rewriting system which, for all < j < i, has the
rule f(z) — B[f](Z) (indeed, on the right side we now haf@nd notf’). Recall
thatSis the rewriting system for simplification. Then cleafyU S is an orthogonal
system, and therefore has the Church-Rosser property. Nota'fifat ..., f](d) =
A[B[f], .o, BT, F7H1, ey ™)@ @[, ..., f71(@) = BIBIS], oo, BIF), £, oy F1(@)
are both obtained from[f!, ..., f™] by applying the rewriting rules il U S. Also
note that since neither expression contains @hyfor 1 < j < i, applying theS
rules (simplification) repeatedly to either expression eventually yields a normal form
for RU S. Since the system is C-R, we have that it is the same normal form for both
expressions, namely, To complete the proof it is sufficient to note that substituting
f for all f1,..., f™, and applying simplification and substitution usi@gandC’, as
described above, will yield the same results.

Q.E.D.

It is now easy to show a direct correlation between computation sequences and
certain computation paths. The following lemma states that for every computation se-
quence, there is functionally similar computation path. The proof is left as an exercise.

Lemma 2 For any recursive prograi® : f(Z) < B|[f](%), elemenid and com-
putation ruleC, there corresponds a computation péth} (of finite or infinite
length equal to that dft;}) such that

2. lwb{Ci[Q]}(d) = Cp(d)

Exercises:
1. Prove Lemma 2. (Hint: for part (1), use induction and Lemma 1)

2. Consider the following program which compufés
Py: f(z)<ifx=0thenlelse f(x —1)+ f(z —1)

What is the computation of(2) by the leftmost-outermost rule, and what is the
corresponding computation path?

Fixpoint Computation Rules

As we mentioned earlier, we are interested in computation rules which always compute
a fixpoint of any given recursive definition. We call thdsgoint computation rules

We will now show that all computation rules yield functions which are no more defined
than the least fixpoint, which from now on will be denotedfyy Later we will define

a class of computational rules for which the computed function is alyiidys

Theorem 2 (Cadiou) For any computational rul€, the computed functio®'p is
less defined than or equal f¢'; thatis,Cp C f“.

Proof: Letd € (D*)" be any inputfof. Let{C;} be a computation path as in Lemma
2. Note that for each B‘[Q2] can be obtained fror;[Q2] by replacing certain
occurences of2. SinceB is monotonic, and from theorem 1, we have

Vi >0.Ci[Q] C B'[Q] C lub{ B[]} = f*

Thus f“ is an upper bound §t7;[Q?]}. Therefore, combining this result with
Lemma 2, we get 3 3
Cp(d) = lb{Ci[]} C f*(d)

Q.E.D.

The above theorem implies that if a computation rule always yields a fixpoint of
a certain recursive definition, then it necessarily yidtis least fixpoinbf that defi-
nition. Thus, we could have equivalently defined a fixpoint computation rule to be a
computation rule which for any recursive definition yields the least fixpoint. We now
define a general class of computation rules which are all fixpoint computation rules.

Definition: Leta[f!,..., f™] be any monotonic functional. L& be a computational
rule which substitutes fof?, ..., f* when we takef? = fforall1 < j < m.
This application ofC is called asafe substitutioif when substitutingf’ = Q for
1<j<iandfi = fofori+1<j<m,wegeta]Q,..,Q f ... f*] =Q.
A computation rule is said to keafeif it uses only safe substitutions.

Theorem 3 (Vuillemin): Any safe computation rule is a fixpoint computation rule.

Proof: By contradiction.

Let us assume, by way of contradiction, that there existas computation rule which
is safe but not a fixpoint computation rule. LRRte a recursive program, as before,
suchthaCp # f“. From theorem 2 we havép C f“, therefore, there must be some
d € (D7) such thatlCp(d) = w and(lub{ B[Q]}(d) =)f“(d) # w. Thus we have
B"[Q](d) # w for somen > 0.

Let {C;} be the computation path fgi(d) as in lemma 2. We haw€p(d) = w, S0
clearly {C;} cannot be finite. Otherwise, substitutifig for every occurence df in
Ci[f], we get (sincef* is a fixpoint)w # f<(d) = Co[f*](d) = ... = Ck[f*](d) =
lub{Ci[f“]}(d) = Cp(d) = w wherek is the length of the path.

Therefore the pat§C;} must be infinite. Let us briefly introduce the notion of
depth of occurrences dfin elements of a computation path. For exampleBjff]
contains two occurrences @fthen in the expressioB[f;, B[B]f2, f3], f1]] we say
that f, has depth 1/, has depth 3f, has depth 2, etc. Recall thB*[Q](d) # w for
somen. Since there can be only finitely many substitutions at deptl, there must
exist someV > 0 such thaC'y 1, [f] is derived fromCy [f] by substitutions of depth
>n.

Denote the occurrencesfoih Cn[f] by f1, ..., f™, suchthal'n[f] = Cn[f!, ..., f™]
andCn.1[f] = Cn[BI[f], ..., B[f], fi*t!, ..., f™]. Note that the depths gf', ..., fi
in Cn[f] are all>n. Consider the tern®'x[12, ..., 2, B™[)], ..., B"[?]] obtained by
substituting® for all £*, ..., ¢ and B*[Q] for all f*+1, ..., f™. All occurrences of2
here are of deptkn. Therefore, this expression can be derived fiBi{Q2] by substi-
tuting for certainQ)'s. BJ[f] is monotonic, therefore

B"[Q] C CN[9Q,...,Q, B[], ..., B"Q]]
Cn|f] is also monotonic, and so
Cn[,..,Q,B"Q],..,B"[Q]] C Cn[Q,...,Q, f“, ..., f]
From these two inequations, and sirf¢és safe, we get
B"QC CN[Q, ... Y, . Y] =w

which immediately implieB™[?] = w, contradicting our assumption.
Q.E.D.

Corollary: The parallel-outermost, full-substitution, and leftmost-outerfogés are
safe rules and therefore are fixpoint computation rules.

1When the program consists only of strict functions, and if expressions.

Exercises:

1. Why is the leftmost-innermost rule not safe? lllustrate this fact by considering
the programP; in the first exercise.

P : f(z,y) < ifx=0then2else f(z — 1, f(z+y,y))

2. The proof of theorem 3 is not very straightforward. lllustrate the direct nature of
the relation between safety and fixpoint computation rules by transforming the
proof by contradiction to a direct proof.

