Formal Methods: Lecture notes #1
page 3 of 4

Introduction

Basic notations

We will use the symbol ‘→’ (instead of ‘=’) to denote a rewrite rule. For example:
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Thus, as we want to produce 
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we should rewrite it with 
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Moreover, we will avoid denoting quantifier: 
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Standard expressions and operators:

0
zero
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the successor of 
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We will also assume the existence of true and false values.

Based upon the above notations, we define additional notations (from now on, we will use the notation 
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 instead of 
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 for simplicity):
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We restrict the rewriting system to work with non-negative integers only.

Motivating example

Consider the following example program:
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Several questions appear:

1. What is the “value” of 
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?  Possibilities are:

a. Calculation never terminates:  (
b. Returns “1”.
2. What is the “meaning” of f?  Possibilities are:

a. 
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b. 
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3. How is f being calculated?  Here, the order of calculation may impact the “value” and “meaning” of f, as demonstrated above.

Rewriting

The normal form

Based upon the previously defined rules, defining common notations, consider the following rewrite sequence:
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In fact, we derived the initial expression using consequent rewrite rules, until a point where no further rules could by applied. The final expression reached is named normal form. It may be seen, that the reached normal form is unique.

For more complicated example, consider the following program:


[image: image16.wmf]))

),

,

(

(

:

)

,

(

:

))

(

,

(

))

,

(

(

0

0

))

,

(

(

    

)

:

,

(

)

,

(

)

:

(

)

(

))

(

),

(

(

)

0

,

(

)

,

0

(

))

(

),

(

(

)

0

,

(

)

,

0

(

z

y

x

min

insert

y

x

max

x

y

sort

x

insert

y

x

min

s

y

x

max

s

x

x

z

y

x

insert

x

insert

y

x

sort

sort

y

s

x

s

min

x

min

x

min

y

s

x

s

max

x

max

x

max

®

®

®

®

®

®

®

®

®

®

e

e

e

e


The above rewrite system (set of rewrite rules), which uses lists represented in “cons” notation (with ‘:’ and ‘ε’ as constructors) and number represented in successor notation, re-arranges a list of natural number in non-increasing order, by inserting elements one-by-one into position. We would like to know that every term constructed from sort, ‘:’, ‘ε’, s and 0 leads (in zero or more rewrites) to a unique term not containing sort, nor the auxiliary symbols insert, max and min.
In general, rewrite systems can be used to “interpret” other programming languages, in order to reach the value of an expression. Considering that rules are applied non-deterministically, since more than one rule can be applied and any one rule may apply at more than one position within a term, it is possible for some derivation routes to continue infinitely. Here it is emphasized that we need to guarantee that a unique normal form is obtained whenever one exists, and that it can be reached from any stage within the infinite route.

Some additional notations we will use:
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s leads to t within a single step.
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; for our purposes, this symbol is equivalent to the unidirectional derivation, since s and t are different forms for the same term. Also, we can use the derivation rules “on the opposite direction”, thus allowing any derivation sequence to perform both ways.
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s derives t within zero or more steps.
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s and t are convertible.
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as above, and t is normal form, i.e. no further rewrites can be applied to it.

Church-Rosser and confluence properties

Definition -- Church-Rosser Property:
A binary relation is Church-Rosser if elements are joinable whenever they are convertible.

In other words, CR property exists if 
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From that we may conclude the following:

1. If the CR property holds for some rewrite system, then each term has a unique normal form. Showing that is rather easy, since if exists u such that 
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, then we may say that 
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, therefore there exists v such that 
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. But, since s and t are normal forms, they could not be applied any further rules, therefore they both equal v, which leads to s equals t.

2. In a system where CR property exists, there is always a “way out” from an infinite derivation route towards the normal form: if 
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 (where t is some step among the infinite route), then we can say that 
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, therefore there exists v such that 
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. Of course, since s is NF then it is clear that s equals v, therefore we proved a route from t to the NF.

Definition – Confluence property:
A binary relation is confluent if elements are joinable whenever they are derivable from the same term.

Lemma:
The Church-Rosser and confluence properties are equivalent.

Proof:

The direction CR ( confluence is trivial, since if 
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 (i.e. s and t are derivable from the same term u) then according to our notations 
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, and therefore, according to CR, there exists v such that 
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The other direction is proved by induction on the number of “peaks”: we consider a rewrite rule taken the “forwards” way to be “downhill”, and one taken “backwards” (against the direction of →) to be “uphill”. This way, the notation 
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 can be considered as a sequence of “downhill” and “uphill” derivations, forming a sequence of “peaks”. Under those definitions, a “peak” would be an intermediate term u on the route 
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 where the rule 
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Here, the basis of the induction is a case of “no peaks”, i.e. the route 
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  is formed of rules taken only “forwards” or only “backwards”. In this case, assuming the rules are taken “forwards”, s is derived from itself (zero rewrites) and t is derived from s (at the direction of the rules). Since confluence exists, then there exists u such that 
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Advancing with the induction, consider the case of a “single peak”: in the case of 
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 the term v is considered as such, implying s to u is performed “downhill”, u to v is “uphill”, v to w is “downhill again, and w to t is “uphill” (of course, u and w are optional to the case, since they may be equivalent to s and t respectively). In other words we may say that 
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, therefore according to confluence property, we conclude that there exists x such that 
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The rest of the induction phases, we will take any additional “peak” just as mentioned above for the “single peak” case.     □
Orthogonal systems

Definition – Orthogonality:
A rewrite system is orthogonal if:

1. Every variable appearing on the right side of the rule appears on the left side as well.

2. No variable appears more than once on any left side.

3. Left sides of different rules do not “overlap”, meaning no left side unifies with a (renamed) non-variable sub-term of any left side (other or itself).

To demonstrate the “overlapping” definition, consider the following rewrite rules:
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In a case where y equals 0, there exists “overlapping” between 
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 (a sub-term of the second rule’s left-hand side).

Theorem:
Every orthogonal system is confluent.

Proof:

We will define, for the purpose of the proof, a relation of “parallel rewriting”: 
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, meaning that s derives t by parallel usage of a single rewrite step on different sub-terms of s (it is clear that there is no interference between the different rewrites, since they are used on non-overlapping sub-terms of s).

(TBD: complete the proof)
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