
The Raymond and Beverly Sackler Faculty of Exact Sciences

The Blavatnik School of Computer Science

Using SIFT Descriptors

for OCR of Printed Arabic

This thesis is submitted in partial fulfilment

of the requirements for the degree of Master of Science

by

Andrey Rosenberg

This work was carried out under the supervision of

Prof. Nachum Dershowitz

February 2012



c© 2012

Copyright by Andrey Rosenberg

All Rights Reserved



Acknowledgements

I wish to thank my advisor, Prof. Nachum Dershowitz, for his guidance and pa-

tience throughout the process of researching and writing this work.

I thank my parents for the inspiration they put in me to always strive for the

very best.

I thank my beautiful wife for the mental support and patience.





Abstract

Although optical character recognition of printed texts has been a focus of research

for the last few decades, Arabic printed text, being cursive, still poses a challenge.

The challenge is twofold: segmenting words into letters and identifying individual let-

ters. We propose a method that combines the two tasks, using multiple grids of SIFT

descriptors as features. To construct a classifier, we don’t use a large training set of

images with corresponding ground truth, a process usually done to construct a classi-

fier, but, rather, an image containing all possible symbols is created and a classifier is

constructed by extracting the features of each symbol. To recognize the text inside an

image, the image is split into “pieces of Arabic words” (paws), and each paw is scanned

with increasing window sizes. Segmentation points are set where the classifier achieves

maximal confidence. Using the fact that Arabic has four forms of letters (isolated,

initial, medial and final), we narrow the search space based on the location inside the

paw. The performance of the proposed method, when applied to printed texts and

computer fonts of different sizes, was evaluated on two independent benchmarks, PATS

and APTI. Our algorithm outperformed that of the creator of PATS on five out of eight

fonts, achieving character correctness of 98.87%-100%. On the APTI dataset, ours was

competitive or better that the competition.





Contents

1 Introduction 1

1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 SOCR Algorithm 4

2.1 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 SIFT Descriptors . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.2 Additional Features . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Constructing a Classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Creating Images for All Possible Symbols . . . . . . . . . . . . . 11

2.2.2 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.3 Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.4 Base Confidence . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Single Letter Classification . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Splitting Word into Pieces of Arabic Word . . . . . . . . . . . . . . . . . 14

2.5 Isolating a Letter Inside a Window . . . . . . . . . . . . . . . . . . . . . 15

2.6 Paw Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.6.1 Scanning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.6.2 Scanning for Initial and a Final Letter or an Isolated Letter . . . 18

2.6.3 Scanning for Medial Letters . . . . . . . . . . . . . . . . . . . . . 19

2.7 Multi-font Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Experimental Results 22

3.1 Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 PATS Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 APTI Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4 Scanned Document Example . . . . . . . . . . . . . . . . . . . . . . . . 32

vii



4 Conclusion 35

Bibliography 36



Chapter 1

Introduction

After more than forty years of research, optical character recognition (OCR) systems for

machine-printed text show impressive performance [4]. However, printed Arabic texts

still present difficult challenge. The reasons are manifold: (a) Even printed text is semi-

cursive. Each word consist of one or more pieces of Arabic word (paws). The letters

inside a paw are connected and cannot be easily separated, since finding the correct

segmentation point is itself a challenge. (b) Many Arabic letters are distinguished one

from another only by diacritical dots or strokes. Misclassifying them can lead to a

completely different word. Diacritical marks representing vowels are often left out and

the meaning of a word is identified from the context. (c) The same letter may be written

differently, depending on its location in the word, as there are up to four different

variations in form for each letter, isolated, initial, medial and final (see Figure 1.1).

(d) For some fonts, some combinations of letters may result in a new symbol (ligature).

These multiple forms and combinations of letters significantly increase the number of

different graphically-represented symbols a classifier needs to recognize to well over a

hundred, besides punctuation marks and numerals.

By using features extracted with a grid of scale invariant feature transform (SIFT)

descriptors and a sliding-window technique, we aim to jointly solve the segmentation

and recognition problems for printed Arabic. We scan each paw and consider different

segmentations of it into letters. Each form (initial, medial, final and isolated) has its

Figure 1.1: Initial, medial, final and isolated forms of the letter hā’ in the Arial font.

1



2 CHAPTER 1. INTRODUCTION

own classifier. For each possible segmentation and based on the location of the window

inside the paw, an appropriate classifier is chosen and a set of letters is suggested. The

algorithm chooses those segmentation points for which the classifier achieves its highest

confidence in the recognized letters.

Given a font, we construct a classifier based purely on the images of letters in all

possible forms or combinations of letters that are graphically-represented by a single

symbol. Our classifier doesn’t undergo the classical training phase, where a part of

a tested dataset is used for training, while the other part is used for performance

evaluation. We didn’t use language models, morphological information, word lists or

any other language resources that are commonly used to improve performance.

The remainder of this thesis is organized as follows. In Section 1.1, we review related

work. In Chapter 2, we present the SOCR algorithm. In Chapter 3, we describe the

datasets that were used to measure performance, compare the results of other OCR

algorithms that were evaluated on those datasets and analyze the results. Finally, we

conclude with Chapter 4.

1.1 Related Work

Recently, SIFT descriptors [7] have been suggested for use in OCR. They were used for

Chinese character recognition in [14] and [5], and were applied to degraded handwritten

Latin manuscripts in [3]. The authors of [1] showed that a SIFT descriptor outperform

the classical feature representation methods, such as PCA, when performing word based

classification of cursive Pashto printed text (very similar to the Arabic printed text).

They used the keypoints suggested in [8] as centres of the SIFT descriptors. SIFT

descriptors were also used to recognize the font of an Arabic printed text [15].

As been shown in a survey done more than a decade ago [13], Hidden Markov

Model (HMM) serve as a base for most of the methods that perform recognition of

cursive scripts. The author of PATS dataset [2], the first dataset we used to test our

algorithm, uses HMM and a sliding window to segment and recognize Arabic scripts.

In a competition [12] recently conducted by the authors of APTI dataset [11], the

second data set we used to test our algorithm, participated two HMM based systems.

The system that was suggested by the authors themselves didn’t participate in the

competition, but was also HMM based. The first system that participated in the



1.1. RELATED WORK 3

competition is based on the Hidden Markov Model Toolkit (a toolkit that was originality

designed to be used for speech recognition), which was customized to a purpose of

character recognition. The second system that participated in the competition is based

on Bernoulli HMMs (BMMs), that is, HMMs in which conventional Gaussian mixture

density functions are replaced with Bernoulli mixture probability functions.



Chapter 2

SOCR Algorithm

Our algorithm, called SOCR for “SIFT-based OCR”, that segments and recognizes

the letters of an image containing a single paw is described in Section 2.6. Using a

sliding-window technique a candidate letter is isolated inside each window (see Section

2.5) and classified using the appropriate classifiers (see Section 2.3). The appropriate

classifiers are chosen base on the location of the window inside the paw and can be

either of the four form classifiers (see Section 2.2). The best segmentation points and

letters are chosen based on the confidence of the classifier for the letter to end at this

segmentation point.

We assume that the image passed a preprocessing phase and contains only Arabic

text consisting of letters of a predefined alphabet located on a white background and

the baselines are horizontally aligned. We also assume that the image contains only

one line of text. An accurate segmentation of an image containing more than one line

of text to a set of images where each image contains only one line is out of the scope

of this work. While the segmentation of a line or a word to paws is a significant part

of the algorithm and described in Section 2.4, a segmentation of a line into words is

required only when the performance in terms of word recognition rate is a significant

performance metric (see Section 3.1). A segmentation into words can be achieved by

distinguish between white spaces and spaces between paws inside a word. We suggest

a method for this in Section 3.2. For each input image, we estimate the baseline as the

row having the most black ink among all rows. The baseline is needed to correctly split

the image to paws (see Section 2.4) and to isolate correctly a letter inside a window see

Section 2.5). A more accurate baseline estimation that was designed for handwritten

texts and considers the diacritical dots and marks of Arabic [16] was considered, but

4



2.1. FEATURE EXTRACTION 5

not used in this work.

2.1 Feature Extraction

The extraction of features lies at the core of any classification process. The features

of all the unique symbols of a given font (limited to an alphabet) are extracted during

the construction of the classifier as described in Section 2.2. Those features are later

compared to the features extracted from the image of a letter that we are trying to

classify as described in Section 2.3.

We use a multiple grids of SIFT descriptors as the main feature set. The structure

and extraction process of a single descriptor are described in Section 2.1.1. To fine-

tune the classification results produced by the use of SIFT descriptors, we use additional

features. The structure and extraction process of those additional features are described

in Section 2.1.2.

2.1.1 SIFT Descriptors

SIFT descriptors are local feature descriptors. They were designed for object-

recognition purposes [7]. They were proven to be effective when extracted around

points of interest [8]. A single sift descriptor is a 128-dimensional vector of bytes. A

high level overview of the extraction process of a single SIFT descriptor is as follows:

1. Given a center, the gradients and their magnitudes are computed in an area

around the center of the descriptor.

2. The magnitudes are weighted by a Gaussian window.

3. The area around the descriptor is split into 4 × 4 spatial bins. The size of each

spatial bin (in pixels) is the scale of the descriptor.

4. For each spatial bin, a histogram of 8 orientation bins, weighted by the magnitudes

is calculated. The area that is taken into account is defined by the scale of the

descriptor and a magnification factor. This results in a 4×4×8 = 128-dimensional

descriptor.

Figure 2.1a shows the gradients of an area around the center of a descriptor that is

split into 2× 2 spatial bins. Figure 2.1b shows the 8 bin histogram calculated for each

spatial bin resulting in a 32-dimensional SIFT descriptor.



6 CHAPTER 2. SOCR ALGORITHM

(a) Gradients and magni-
tudes (arrows) weighted by
a Gaussian window (blue
circle)

(b) 8 bin orientations his-
togram (arrows) for each
of the 4 spatial bins (green
bold squares)

Figure 2.1: Extraction a 32-dimensional SIFT descriptor using 2 bins in each spatial
direction and a histogram of 8 orientation bins.

2.1.1.1 Extracting a Grid of SIFT Descriptors

Given an image that contains a whole paw or a part of a paw, the following steps are

executed to extract the grid of SIFT descriptors:

1. The image is padded with white to the size of the smallest bounding square of

the paw.

2. The image is split into NGrid × NGrid identical squares, where NGrid is a small

constant.

3. Let W be the width of each square and the scale be W/4.

4. In the middle of each square, extract NMagnif descriptors, where M =

{m1, . . . ,mNMagnif
} are the magnification factors.

5. Each extracted descriptor is identified by Dx,y,m, where x, y are the indices of the

square in the grid and m is the magnification factor.

When no magnification is used, by design, the grid of descriptors should cover the whole

image without overlapping each other; hence the scale of the descriptor is always set

to W/4 due to the fact that each descriptor has 4 spatial bins in each spatial direction.

Throughout this work, NGrid = 3 and M = {0.5, 1.0, 1.5}. Figure 2.2 shows an example

of a grid of SIFT descriptors that were extracted without using magnification.



2.1. FEATURE EXTRACTION 7

Figure 2.2: A grid of 3 × 3 SIFT descriptors of the letter tā’ of isolated/final form.
Each descriptor is separated by a red line.

2.1.1.2 Alternative Points for SIFT Descriptors Extraction

It was suggested by the author of SIFT to extract descriptors at keypoints where

maxima and minima of the result of difference-of-Gaussians function applied in scale-

space to a series of smoothed and re-sampled images is achieved [8]. While this method

might perform well for complex images, it achieved very low performance on Arabic

letters and had major disadvantages: a) The number of keypoints depends on the

resolution. b) For some simple letters, the method didn’t produce any keypoints at all.

c) Similar shapes can have almost identical sets of descriptors. Those findings were

later, independently, reported in [1]. We overcame these disadvantages by combining

padding to the bounding square, a constant-size grid of descriptors and the quantization

process described in Section 2.2.3.

2.1.2 Additional Features

Additional features are used to penalize the confidence of letters that are suggested by

the SIFT classifier (see Section 2.3). The next sections describe the additional features

that we used and how to extract them. We assume that the text inside the image is

bounded by its borders and consists of black pixels located on a white background.

2.1.2.1 Center of Mass Feature

The center of mass feature, f̄m = (x, y), is the relative location (relative to the height

and width of the image) of the center of mass of the black ink. The center of mass

of the letter j̄im is shown in Figure 2.3. Given an image and a letter, where f̄ ′m and



8 CHAPTER 2. SOCR ALGORITHM

Figure 2.3: The center of mass of the letter j̄im is marked by the red dot. The center
of mass feature is (X/W,Y/H).

f̄m are their center of mass features, respectively, the center of mass penalty used is

pm = 1/
(

1 + d(f̄m, f̄ ′m)
1
2

)
. The exponent was arbitrary set to be 1/2 without being

optimized for any of the datasets tested in Chapter 3.

2.1.2.2 Crosshair Feature

The crosshair feature, f̄c = (x, y), is the relative location (relative to the height and

the width of the image) of the vertical and horizontal slices with the largest portion of

black ink compared to the white background. The crosshair of the letter j̄im is shown

in Figure 2.4. Given an image and a letter, where f̄ ′c and f̄c are their corsshair features,

respectively, the crosshair penalty used is pc = 1/
(

1 + d(f̄c, f̄
′
c)

1
2

)
. The exponent

was arbitrary set to be 1/2 without being optimized for any of the datasets tested in

Chapter 3.

2.1.2.3 Ratio Feature

The ratio feature, fo, is the height divided by the width of the bounding box of the black

ink. Given an image and a letter, where f ′o and fo are their ratio features, respectively,

the ratio penalty used is po = 1/
(

1 + (f ′o − fo)
2
)

. The exponent was arbitrary set to

be 2 without being optimized for any of the datasets tested in Chapter 3.



2.1. FEATURE EXTRACTION 9

Figure 2.4: The crosshair of the letter j̄im is marked by the red dot. The crosshair
feature is (X/W,Y/H).

2.1.2.4 Outline Features

Each image has four outline features, top, left, bottom and right. The top-outline

feature, f̄t =
(
f
(1)
t , . . . , f

(W )
t

)
, where W is the width of the bounding box of the black

ink, is calculated as follows:

1. For i from 1 up to W , let f
(i)
t be the distance from the top of the bounding box

to the first occurrence of a black pixel on ith column of the image.

2. Let m be maximumf̄t.

3. For i from 1 up to W , let f
(i)
t be

∣∣∣f (i)
t −m

∣∣∣.
4. Let m be maximumf̄t.

5. For i from 1 up to W , let f
(i)
t be f

(i)
t /m.

The left (f̄l), bottom (f̄b) and right (f̄r) outline features are calculated in a similar

manner. The top-outline of the letter j̄im is shown in Figure 2.5.

Given an image and a letter, where f̄ ′t and f̄t are its top-outline features, respectively,

the top-outline penalty, pt, is calculated as follows:

1. Let n be the size of f̄t and n′ be the size of f̄ ′t (without loss of generality n > n′).

2. Let f̄ ′′t =
(
f
′′(1)
t , . . . , f

′′(n′)
t

)
be the downscaled version of f̄t by taking n′ elements

from f̄t, where f
′′(i)
t = f

([i·n/n′])
t .



10 CHAPTER 2. SOCR ALGORITHM

Figure 2.5: The top-outline of the letter j̄im is marked by the purple dots. The top-

outline feature is
(
f
(1)
t , . . . , f

(W )
t

)
.

3. Define pt = 1/
(

1 + 1
n′

n′∑
i=1

∣∣∣f ′′(i)t − f
′(i)
t

∣∣∣)
The left (pl), bottom (pb) and right (pr) outline penalties are calculated in a similar

manner.

2.1.2.5 Black Ink Histogram Features

Each image has a horizontal black ink histogram feature and a vertical one. The hori-

zontal black ink histogram feature, f̄h = (f
(1)
h , . . . , f

(H)
h ), where H is the height of the

bounding box of the black ink, is calculated as follows:

1. For i from 1 up to H, let f
(i)
h be the number of black ink pixels in row i.

2. Let m be maximum f̄h.

3. For i from 1 up to H, let f
(i)
h be f

(i)
h /m.

The vertical black ink histogram feature (f̄v) is calculated in a similar manner. The

black ink histograms of the letter j̄im are shown in Figure 2.6.

Given an image and a letter, where f̄ ′h and f̄h are its horizontal black ink histogram

features, respectively, the horizontal black ink histogram penalty, ph, is calculated as

follows:

1. Let n be the size of f̄h and n′ be the size of f̄ ′h (without loss of generality n > n′).



2.2. CONSTRUCTING A CLASSIFIER 11

Figure 2.6: The vertical and horizontal black ink histograms of the letter j̄im.

2. Let f̄ ′′h =
(
f
′′(1)
h , . . . , f

′′(n′)
h

)
be the downscaled version of f̄h by taking n′ elements

from f̄h, where f
′′(i)
h = f

([i·n/n′])
h .

3. ph = 1/
(

1 + 1
n′ ·

n′∑
i=1

∣∣∣f ′′(i)h − f
′(i)
h

∣∣∣).

The vertical black ink histogram penalty (pv) is calculated in a similar manner.

2.2 Constructing a Classifier

On each classifier C for font F and an alphabet Σ, we execute a series of operations

as described below. In Section 2.2.1, we explain how to generate high-resolution im-

ages, each one containing a unique symbol of the alphabet Σ written in font F . In

Section 2.2.2, we explain how to extract the SIFT descriptors and additional features

from each image and group the SIFT descriptors into four groups based on the location

where the unique symbol can appear in a word (isolated, initial, medial and final). In

Section 2.2.3, we describe the quantization process on the SIFT descriptors and group

them into four groups creating a separate classifier for each of the four forms of letters.

Finally, in Section 2.2.4, we compute the base confidence for each unique symbol.

2.2.1 Creating Images for All Possible Symbols

To create an image for each unique symbol for the alphabet Σ written in font F a

Word c© document that contains |Σ| rows, representing all possible letters of the al-

phabet, and four columns, representing the different possible letter forms (isolated,



12 CHAPTER 2. SOCR ALGORITHM

final, medial and initial) is created. Since some letter combinations are graphically-

represented by a single symbol (ligature), these combinations are referred to as letters

and belong to Σ. Each row can have one to four symbols, since some letters don’t

have all four letter forms, but only isolated or initial forms, or even only an isolated

form. The resulting document is exported as a high resolution image. See Chapter 3

for details about the alphabet and the resolution of the image that was exported for

each tested font. The exported image is split into lines and each line is split into the

number of unique symbols it contains resulting in an image for each possible symbol.

We denote each image by Li,r, where r ∈ {isolated, initial, medial, final} is the form of

the ith letter of the alphabet Σ.

2.2.2 Feature Extraction

Before we extract features, we assign to each Li,r a unique identification number, id. We

extract SIFT descriptors and additional features as described in Sections 2.1.1 and 2.1.2,

respectively. The number of extracted SIFT descriptors per symbol is NMagnif ·N2
Grid,

where, as we said, NMagnif is the amount of different descriptor magnifications used and

NGrid is the size of the grid of descriptors that were extracted. Each SIFT descriptor of

the symbol id is denoted by D
(id)
x,y,m, where x,y and m are as described in Section 2.1.1.1.

We group the descriptors into 4 ·NMagnif ·N2
Grid groups. A group for each combination

of g = (x, y,m, r), SDg, contains all the descriptors D
(id)
x,y,m of all ids, where id is the

unique identification that was assigned to an image Li,r.

2.2.3 Quantization

For each SDg, a quantization is performed using k-means clustering. For each g, kg

is chosen to be the largest number such that the smallest energy among 1000 runs

of kg-means is smaller than E. For more information about how E was chosen, see

Chapter 3. The process k-means is executed 1000 time to insure, with a high probability,

that the clustering solution is near optimal (has the smallest energy) and consistent

over many runs. The centers of each of the kg clusters are the quantized descriptors of

SDg and denoted by SQDg. Each quantized descriptor QD ∈ SQDg is assigned a unique

identification number, qid. For each qid, we save a mapping, MAP
(qid)
g , to the ids of

the descriptors that QD is their quantized descriptor; id ∈ MAP
(qid)
g iff QDqid ∈ SQDg

is the center of the cluster to which Did ∈ SDg belongs. We divide all SQDg into four



2.3. SINGLE LETTER CLASSIFICATION 13

groups, based on r, the form of the letter. Each group serves as the SIFT classifier for

that form.

The quantization process is designed to improve the recognition rate. Since there

are letters that look similar, their descriptors might also be very close to each other.

By quantizing, we allow a letter descriptor Dx,y,m to be matched to one QDqid ∈ SQDg,

but since |MAP
(qid)
g | ≥ 1, the descriptor can be matched to more than one symbol.

2.2.4 Base Confidence

For each symbol we compute its base confidence. The base confidence is the confidence

value returned by executing the classification process described in Section 2.3 on the

image Li,r that the id of the symbol was assigned to. Since the base confidence is used

to divide the confidence as the last step in the classification process, its initial value is

set to 1. Since all additional feature penalties will be equal to 1, the base confidence is

actually the SIFT confidence.

In the classification process, the SIFT confidence of the classifier in the symbol id is

divided by its base confidence to create a more “comparable metric” between different

symbols of the same form.

2.3 Single Letter Classification

Given an image I, a classifier C and a letter form r, the classification process returns

the pair (id, c), where c is the confidence of the classifier that I contains just the symbol

id.

First, SIFT descriptors and the additional features are extracted as described in

Section 2.1.1 and Section 2.1.2, respectively. The grid size, NGrid, and the magnification

factors, M , must be the same once that were used to create C. The extracted features

of I are: a) SD, the set of descriptors Dx,y,m, where x, y ∈ {1, . . . , NGrid} and m ∈M ;

b) the additional features f̄m, f̄c, fo, f̄t, f̄r, f̄b, f̄l, f̄h, f̄v. Next, we execute the following

operations:

1. Let P ′ be an empty list that will hold the predicted ids. The ids in P ′ can repeat

since two descriptors can be matched to the same id, as can be seen in the next

step.

2. For each Dx,y,m ∈ SD, we execute the following:



14 CHAPTER 2. SOCR ALGORITHM

(a) Find QDqid ∈ SQDg, where g = (x, y,m, r), such that Euclidean distance

between Dx,y,m and QDqid is smaller or equal to any other descriptor in

SQDg.

(b) Add all the ids of MAP
(qid)
g to P ′.

3. Let P be the set of unique values of P ′.

4. For each id ∈ P execute the following:

(a) Calculate the additional feature penalties pm, pc, po, pt, pl, pb, pr, ph, pv as de-

scribed in Section 2.1.2.

(b) Let the SIFT confidence, ps, be the number of occurrences of id in P ′ divided

by |P ′|.

(c) Let the confidence, cid, of the classifier C in I being the symbol id, be

ps · pm · pc · po · pt · pl · pb · pr · ph · pv/(base confidence of id).

5. The pair (id,c) is the result of the classification process, where c = max
id∈P

cid and

id is such that cid = c.

2.4 Splitting Word into Pieces of Arabic Word

The classification process described in Section 2.6 requires that the classified image

contain a single piece of Arabic word (paw). Given an image containing one line of

Arabic text, we split it into paws.

First, we find and label in ascending order, based on the horizontal position of the

first pixel, all 8-connectivity connected components (CCs). Next we group the CCs

into “rough” paws by executing the following steps for each CC starting from the one

labelled using the smallest label until the one labelled with the largest label:

1. If the CC doesn’t belong yet to any “rough” paw, add the CC to the paw.

2. While there are CCs that vertically intersect with the “rough” paw, add them to

the paw. A CC and a paw vertically intersect if there is a column of pixels in the

image that contains both pixels that belong to the CC and the paw.

Next, we split each “rough” paw into “regular” paws (referred to as just paws) by first

finding and labelling in ascending order, based on the horizontal position of the first



2.5. ISOLATING A LETTER INSIDE A WINDOW 15

pixel, all 4-connectivity CCs. At this point, each 4-connectivity CC has 2 labels, one

8-connectivity label and one 4-connectivity label. Next, all 4-connectivity CCs that are

located on the baseline are marked as the anchors of each paw. For each anchor CC,

we execute the following steps:

1. Add the anchor CC to the paw.

2. All CCs that have the same 8-connectivity label as the anchor, that either verti-

cally intersect only with the anchor, or don’t intersect with any other CC at all,

are added to the paw.

3. All CCs that are not an anchor, but intersect by more than X% with the anchor

of the current paw are added to the paw.

4. All other CCs that have the same 8-connectivity are added to the paw only if

their width is 10 times smaller or less than the width of the paw. The value 10

was chosen arbitrary without being optimized for any of the datasets tested in

Chapter 3.

Each “rough” paw is eventually split to a number of paws as the number of anchor

CCs. The percentage of intersection, X, is a font-specific characteristic that can be a

priori calculated for each font. For each font, X will be the minimal amount of vertical

intersection that a diacritical dot or a mark has with the other parts of the letter. In

this work, we used an intersection percentage of 50% to all fonts but Andalus, which

had an intersection percentage of 30%.

2.5 Isolating a Letter Inside a Window

Given a paw and starting and ending positions inside this paw, we would like to isolate

the black ink that belongs to the possible letter that starts and ends at those positions.

See Figure 2.7a which shows a paw with starting and ending window positions (inclu-

sive) marked in blue. If we will always take all the ink between the starting and ending

positions of the window, we might get black ink that belongs to the next or previous

letter, as can be seen in Figure 2.7b, where the red color indicates the pixels of the

next letter that are inside the window. Instead of taking all the black ink, we remove

black ink that is located on the external side of the borders of the window and on the

baseline of the paw, as can be seen in Figure 2.7c, where the black ink that we removed



16 CHAPTER 2. SOCR ALGORITHM

(a) A window inside a
paw marked by blue
lines.

(b) A window inside
a paw marked by blue
lines. The green pix-
els are the pixels of
the letter that we
want to isolate. The
red pixels are pix-
els of the next letter,
but located inside the
window.

(c) A window inside a
paw marked by blue
lines. The green pix-
els are the pixels of
the letter that we iso-
lated by cutting the
baseline outside the
window. The cuts
that we made on the
baseline are marked
with purple.

Figure 2.7: A paw during the isolation process of a letter inside a window.

is marked in purple. If no black ink is located on the baseline, we remove all the black

ink located on the outer side of the border of the window. This process is expected

to create three connected components that are located on the baseline. On the image

with the cut baseline, we execute the process described in Section 2.4, which splits an

image into paws. The second paw retuned by this process is the isolated letter. If the

starting point of the window is the beginning of the paw, the first paw returned by this

process is the isolated letter.

2.6 Paw Classification

The classifications of a paw is one of the main challenges we address in this work. A

paw can consist of one or more letters of different forms depending on their location

in the paw. Since we don’t know where one letter ends and the next letter begins we

use a sliding window to scan for letters throughout the paw. A paw can be one of the

three types described below:

• Type 1: A paw that contains one isolated letter.

• Type 2: A paw that starts with initial letter, ends with a final letter and contains

zero or more middle letters.

• Type 3: A paw that contains two isolated-form letters. This case is very rare

and happens when the algorithm that splits words into paws (see Section 2.4)

fails to split an image containing two isolated letter into two paws of type 1.



2.6. PAW CLASSIFICATION 17

A high level overview of the steps of classifying a paw are as follows:

1. Scan for an initial or isolated letter at the beginning of the paw.

2. Scan for a final or isolated letter at the end of the paw.

3. Decide if the paw is of type 1, 2 or 3.

4. If the paw is of type 1 or type 3, then return the best isolated letters and the

confidence in them.

5. Otherwise, if the paw is of type 2, scan for a middle or final letter until some final

letter is found.

6. Return the list of one initial letter, zero or more middle letters and one final

letter. Also return the confidence of the classifier in those letters.

Steps 1, 2 and 3 are explained in detail in Section 2.6.2; step 5 is explained in

detail in Section 2.6.3. The scanning procedure in steps 1, 2 and 5 is described in

Section 2.6.1.

2.6.1 Scanning

Given a letter form r and a starting point inside the paw, scanning is done by classifying

a set of windows of increasing sizes, starting at the given point. Inside each window,

a letter is isolated as described in Section 2.5 and then classified using the classifier of

form r as described in Section 2.3. Each window of size s is assigned with the result of

the classifier on it, (ids, cs), and the following is executed:

1. Let sb be the window size that has the highest classifier confidence csb .

2. Let idsb be the id that was assigned by the classifier to the window of size sb.

3. Return idsb and a list of all pairs (p, cs), where p is the ending point of a window

that the classifier assigned the letter idsb and cs is the confidence of the classifier

for the isolated letter inside the window to be idsb .

Scanning is done by increasing the window size from the starting point either towards

the end of the paw or towards the beginning of the paw. The latter scanning is used

when scanning for the best starting point of a final or isolated letter that end exactly

at the end of a paw.



18 CHAPTER 2. SOCR ALGORITHM

2.6.2 Scanning for Initial and a Final Letter or an Isolated Letter

We execute this kind of scan to identify the type of the paw. First we scan for an initial

letter candidate that starts at the beginning of a paw and a final letter candidate that

ends at the end of the paw, assuming the paw is of type 2:

1. Scan for idin and Pin = {(p1, c1), . . . , (pn, cn)}, where idin is the id of the best

initial letter starting at the beginning of the paw and Pin are the possible ending

positions and confidences of the letter to end at those positions.

2. Scan for idfle
and Pfle

= {(p1, c1), . . . , (pn, cn)}, where idfle
is the id of the best

final letter ending at the end of the paw and Pfle
are the possible starting positions

and confidences of the letter to start at those positions.

Second, we scan for an isolated letter candidate that begins at the beginning of the paw

and an isolated letter candidate that ends at the end of the paw, assuming the paw is

either of type 1 or type 3:

1. Scan for idisb and Pisb = {(p1, c1), . . . , (pn, cn)}, where idisb is the id of the best

isolated letter starting at the beginning of the paw and Pisb are the possible ending

positions and confidences of the letter to end at those positions.

2. Scan for idise and Pise = {(p1, c1), . . . , (pn, cn)}, where idise is the id of the best

isolated letter ending at the end of the paw and Piseb are the possible starting

positions and confidences of the letter to start at those positions.

Third, we calculate some intersection ratios between the windows of the candidates as

follows:

1. Let the intersection ratio, Iris, between the isolated letters, idisb and idise , be

twice the number of pixels shared by the windows with the highest confidence of

idisb and idise divided by the sum of the window sizes.

2. Let the intersection ratio, Irinfl, between the initial and final letters, be twice the

number of pixels shared by the windows with the highest confidence of idin and

idfle
divided by the sum of the window sizes.

3. Let the “unclassified ratio”, Irisis , be one minus the ratio of the number of pixels

not covered by the windows with the highest confidence of idisb and idise and the

width of the paw.



2.6. PAW CLASSIFICATION 19

Fourth, we calculate the confidence of a paw to be one of the three possible types:

• The confidence of a paw to be of type 1 is ct1 = cisb · cise · Iris

• The confidence of a paw to be of type 2 is ct2 = cin · cfle
· (1− Irinfl)

• The confidence of a paw to be of type 3 is ct3 = cisb · cise · Irisis · (1− Iris)

• For ct3 to be taken into account, it has to be significantly bigger than ct2 , i.e. if

ct2/ct3 > 0.9, then ct3 = 0. The value 0.9 was chosen arbitrary without being

optimized for any of the datasets tested in Chapter 3.

Finally, based on the type confidences, we decide weather to return the isolated letter

or letters that we found or to continue and scan for medial letters that are located

between the initial and the final letter that we found:

1. If ct3 is the largest confidence, return idisb , idise , the ids of the 2 isolated letters

that were found.

2. If ct1 is the largest confidence and idisb = idise , return idisb .

3. If ct1 is the largest confidence and idisb 6= idise , choose the better isolated letter.

Since the paw is a single isolated letter, taking the confidences of both possible

isolated letters is not enough. It should be taken into account how many pixels

were left outside the best window for each isolated letter. Based on that, a revised

confidence for each isolated letter is calculated:

(a) cisb = cisb ·(size of the window that was classified to be idisb and confidence

cisb)

(b) cise = cise ·(size of the window that was classified to be idise and confidence

cise)

If cisb > cise return idisb , otherwise return idise .

4. If ct2 is the largest confidence continue scanning for medial letters as described in

Section 2.6.3.

2.6.3 Scanning for Medial Letters

We scan for medial letters if the paw was classified as type 2. At this point, we know

the initial letter, idin, and it possible ending positions and the confidences for the letter



20 CHAPTER 2. SOCR ALGORITHM

to end at those positions, Pin. We also know the final letter that ends at the end of

the paw, idfle
, and its possible starting positions and the confidences for it to start at

those positions, Pfle
. We do the scanning for medial letters until we find a final letter

as follows:

1. Let pf be the first possible starting position of idfle
.

2. Let pl be the last possible starting position of idfle
.

3. Let ppre be the position where the previous letter has the highest confidence for

ending. At the first iteration of this process, the previous letter is idin, while on

the next iterations, this letter is the previous medial letter.

4. For windows ending before pl, scan for idm and Pm = {(p1, c1), . . . , (pn, cn)},

where idm is the id of the best middle letter starting at ppre and Pm in the set of

possible ending positions and confidences of the letter to end at those positions.

Let (pm, cm) ∈ Pm be the ending position and the confidence for idm to end at this

position, where cm is the highest confidence among all possible ending positions.

5. For windows ending after pf , scan for idflb
and Pflb

= {(p1, c1), . . . , (pn, cn)},

where idflb
is the id of the best final letter starting at ppre and Pflb

is the possible

ending positions and confidences of the letter to end at those positions. Let

(pflb
, cflb

) ∈ Pflb
be the ending position and confidence for idflb

to end at this

position, where cflb
is the highest confidence among all possible ending positions.

6. Let the intersection ratio, Irmfl, between the middle letter, idm, and the final

letter, idfle
, be twice the number of pixels shared by the windows with the highest

confidence of idm and idfle
divided by the sum of the window sizes. Update cm

to be cm · (1 − Irmfl)
1
2 . The exponent was arbitrary set to be 1/2 without being

optimized for any of the datasets tested in Chapter 3.

7. Let the intersection ratio, Irflfl, between the final letter, idflb
, and the final letter,

idfle
, be twice the number of pixels shared by the windows with the highest

confidence of idflb
and idfle

divided by the sum of the window sizes. Update cflb
to

be cflb
· Ir

1
2
flfl. The exponent was arbitrary set to be 1/2 without being optimized

for any of the datasets tested in Chapter 3.



2.7. MULTI-FONT CLASSIFICATION 21

8. If the SIFT confidence part, ps, of the higher confidence between cm and cflb
is

less than 0.9 (the value 0.9 was chosen arbitrary without being optimized for any

of the datasets tested in Chapter 3), retry and scan starting from all possible

ending positions of the previous letter as follows:

(a) Normalize the confidences of all ending points of the previous letter by di-

viding them by the value of the maximal confidence.

(b) Repeat steps 3–7 to get idm, cm and idflb
, cflb

, the best middle and final

letters and their confidences starting at all possible ending points of the

previous letter.

(c) For each possible ending point of the previous letter, multiple cm and cflb
by

the normalized confidence of the previous letter ending at this position.

(d) Choose idm, Pm = {(p1, c1), . . . , (pn, cn)} and idflb
, Pflb

=

{(p1, c1), . . . , (pn, cn)} to be the ones with the highest cm and cflb

among all possible ending positions of the previous letters.

9. If cm > cflb
, save idm as the next letter and scan, stating from step 3, for the

next letter starting at the position, where the medial letter found has the highest

confidence to end.

10. Otherwise if cm ≤ cflb
, return the initial letter idin, all medial letters and the final

letter that has the higher confidence. If cflb
> cfle

return idflb
; otherwise return

idfle
.

2.7 Multi-font Classification

A quick observation shows that when an image that contains a text written using font

A is classified using a classifier constructed for font B, the average confidence of the

classified letters is significantly lower than the average confidence of letters returned by

the classifier of font A on the same image.

To classify an image containing a text written using one font from a group of fonts

F = {F1, . . . , Fn}, a classifier for each font in F is constructed. Next, the image is

independently classified using each classifier as described in Section 2.6. The result of

the multi-font classification process is the set of letters returned by the classifier that

had the highest average of letter confidence.



Chapter 3

Experimental Results

In order to test the performance of SOCR, two different datasets were used. In Sec-

tion 3.2 we describe how the PATS dataset was constructed [2] and compare the results

of the algorithm suggested by the author of PATS to the results of SOCR. In Section 3.3

we describe how the APTI benchmark was constructed [11] and provide some initial

tests results we did on parts of the dataset. To demonstrate the robustness of SOCR,

in Section 3.4, we show the result of processing an image of scanned text using SOCR.

Common Parameter Configuration

Although all the parameters used in SOCR can be configured, the parameters that a

priori cannot be automatically computed were the same for all datasets and fonts. The

following list contains the common configuration of parameters:

• NGrid - the number grid elements, SIFT descriptors, in each spatial direction

extracted from each given image was set to 3.

• M - the set of descriptor magnification factors was set to {0.5, 1.0, 1.5}.

• E - the energy used to compute the optimal k for k-means clustering of the

descriptors as described in Section 2.2.3 was set to 104.

3.1 Performance Metrics

The performance is reported in terms of character recognition rate (CRR) and word

recognition rate (WRR). CRR was measured using the Levenshtein edit distance [6]

22



3.2. PATS DATASET 23

between the predicted word and ground truth. WRR is the ratio of the number of

words having all its letter recognized correctly to the total number of words. WRR

is an important performance parameter for algorithms that take a language-specific

approach, such as using word lists, for training or for improving the results of the

classification process. Since we don’t use a language-specific approach, WRR is less

important for our algorithm and reported only in cases where we were able to split the

input images into words.

3.2 PATS Dataset

The PATS dataset consists of 2766 text-line images that were selected from two stan-

dard classic Arabic books. Word c© document files with the same text were created,

each with one of the fonts. Each file was printed on paper sheets and then the sheets

were scanned to images representing the printed pages. The images were split into

images that each contain one line. Ground truth information is given as a Unicode

text file. The dataset includes the fonts Arial, Tahoma, Andalus, Simplified Arabic,

Akhbar, Thuluth, Naskh and Traditional Arabic. Lines written using Arial, Tahoma,

Andalus and Simplified Arabic use 41 different letters and ligatures (see Figure 3.1).

Akhbar uses three more unique symbols while Thuluth, Naskh and Traditional Ara-

bic use several more symbols that were not taken into consideration when creating a

classifier (see Figure 3.2).

Since each image in the dataset contains a line of text, in order to measure WRR,

each line has to be first split into words. In Arabic, this task creates a challenge,

since there is a need to differentiate between white spaces and spaces inside a word (a

space between two letters in the same word where one of the letter doesn’t have medial

form). To achieve separation, the number of pixels separating each two components

is measured and a k-means clustering executed on the number of pixels with k = 2.

The cluster with the larger centroid value contains the white spaces. This approach

proved to work almost perfectly on Arial, Tahoma, Andalush, Akhbar and Simplified

Arabic, while failing on Thuluth, Naskh and Traditional Arabic. For that reason,

spaces were omitted from the ground truth when measuring CRR of Thuluth, Naskh

and Traditional Arabic and WRR is not reported.

Using the tables shown in Figure 3.1 and 3.2, a classifier for each font, as described



24 CHAPTER 3. EXPERIMENTAL RESULTS

(a) Arial

(b) Tahoma

Figure 3.1: A table of unique symbols used to construct the classifier of the first two
fonts using 41 unique symbols.



3.2. PATS DATASET 25

(c) Andalus

(d) Simplified Arabic

Figure 3.1: A table of unique symbols used to construct the classifier of the last two
fonts using 41 unique symbols.



26 CHAPTER 3. EXPERIMENTAL RESULTS

(a) Akhbar

(b) Thuluth

Figure 3.2: A table of unique symbols used to construct the classifier of the first two
fonts using 44 or more unique symbols.



3.2. PATS DATASET 27

(c) Naskh

(d) Traditional Arabic

Figure 3.2: A table of unique symbols used to construct the classifier of the last two
fonts using 44 or more unique symbols.



28 CHAPTER 3. EXPERIMENTAL RESULTS

in Section 2.2, was constructed. Using the classifier, the SOCR algorithm was executed

on all 2766 lines of each font. See Figure 3.3 for a sample line of each font. In Table 3.1

the performance, in terms of CRR and WRR, is reported for all 2766 lines and the

last 266 lines, along side with the CRR of executing on the last 266 lines the algorithm

suggested by the author of PATS. SOCR outperforms the algorithm suggested by the

author of PATS on Tahoma, Arial, Andalus, Simplified Ararbic and Akhbar fonts. The

classifier constructed for fonts Thuluth, Naskh and Traditional Arabic was constructed

using a table of 44 unique letters and combination of letters, but the lines in PATS

dataset included some more combinations. This resulted in a constant failure of the

classifier on those missing combinations and a poor CRR performance.

SOCR PATS SOCR SOCR

Font CRR-266 CRR-266 CRR-2766 WRR-2766

Tahoma 100.0% 99.68% 100.0% 100.0%

Arial 99.98% 99.90% 99.96% 99.90%

Andalus 98.87% 97.86% 98.58% 94.90%

Simplified Arabic 99.72% 99.70% 99.73% 99.00%

Akhbar 99.83% 99.34% 99.89% 99.72%

Thuluth 87.23% 97.78% 86.16% N/A

Naskh 87.38% 98.09% 85.69% N/A

Traditional Arabic 92.56% 98.83% 91.53% N/A

Table 3.1: Performance in terms of CRR and WRR of SOCR and the algorithm sug-
gested by the author of PATS executed on PATS dataset.

3.3 APTI Dataset

The Arabic printed text image database (APTI) [11], was created to address the chal-

lenges of optical character recognition of printed Arabic text of multiple fonts, multiple

font sizes and multiple font styles. It consists of more than 100,000 different single

words presented in 10 fonts (Andalus, Arabic Transparent, AdvertisingBold, Diwani

Letter, DecoType Thuluth, Simplified Arabic, Tahoma, Traditional Aatbic, DecoType

Naskh and M Unicode Sara), 10 font-sizes (6, 8, 10, 12, 14, 16, 18 and 24 points)

and 4 font-styles (plain, italic, bold and combination of italic bold). APTI is designed

for the evaluation of screen-based OCR systems. The images of the dataset are 72dpi

resolution images of a single word, synthetically generated from a large corpus. The



3.3. APTI DATASET 29

(a) Tahoma

(b) Arial

(c) Andalus

(d) Simplified Arabic

(e) Akhbar

(f) Thuluth

(g) Naskh

(h) Traditional Arabic

Figure 3.3: Line 88 of each font in the PATS dataset.

dataset is split into six sets, where the number appearances of each letter is evenly

distributed between the sets. The authors suggested numerous OCR evaluation proto-

cols and conducted a competition [12] to test the performance of state of the art OCR

systems. Five of the six sets of the dataset were publicly available for research and

training, while set number 6 was used for evaluating the submitted systems and known



30 CHAPTER 3. EXPERIMENTAL RESULTS

only to the creators of APTI. The ground truth is provided in XML files, and has a

unique identifier for each combination of letter and letter form.

Table 3.2 shows the performance comparison, in terms of CRR and WRR, of SOCR

and the systems submitted to the competition running the first APTI protocol. The

first protocol tests the ability of a system to recognize the images of words written

using Arabic Transparent font (very similar to Arial) in six different sizes (6, 8, 10, 12,

18 and 24). See Figure 3.4 for a sample image of a word in the dataset in Traditional

Arabic and the six fonts sizes used. Each system is tested on all six sizes, while the

size is known to the system. Three different systems, IPSAR, UPV-PRHLT and DIVA-

REGIM, were evaluated in the competition using the first protocol on the unpublished

set number 6, while the latter system was declared out of the competition since it was

built by the creators of APTI and optimized for more than a year on the first five sets.

The other two systems also used the first fives sets for training. Since set number 6 is

not publicly available, SOCR was evaluated (on the randomly chosen) set number 4 [10]

in two different modes. The first mode considers the variations of the letter alif (no

diacritic marks, hamza above, hamza below and tilda above) as different letters, while

the second mode considers all the variation of alif as the same letter. The approach of

the second mode, measuring the quality of Arabic OCR while considering the different

variations of the letter alif as the same letter, was previously suggested in [9]. Since

SOCR assumes that the input images are black ink on white background, each image

was converted to a black and white image using a dynamic threshold. Assuming that

the value 0 represents a black pixel and value 1 represented a white pixel, the dynamic

threshold was calculated as follows:

• Let s be the standard deviation of the pixel values in the image.

• Let m be the mean value of all the pixels that are smaller than 1− s.

• Let t = m + s be the dynamic threshold.

All pixels smaller than t are transformed into 0, while all pixels larger or equal to t

are transformed into 1. The APTI dataset uses an alphabet of 43 uniquely represented

letters and combination of letters for Arabic. The SOCR classifier for it was constructed

using the table shown in Figure 3.5.

From Table 3.2 it can be seen that SOCR performs competitively with the other

systems, mostly on the larger font sizes. It is important to mention that all the other



3.3. APTI DATASET 31

Figure 3.4: A word in Arabic Transparent and sizes 6, 8, 10, 12, 18 and 24 (from left
to right).

Figure 3.5: A table of unique symbols used to construct the classifier for the Arabic
Transparent font.



32 CHAPTER 3. EXPERIMENTAL RESULTS

three systems used the first five sets to train their classifiers, while SOCR didn’t perform

any training using those sets. SOCR also used the same classifier for all font sizes. The

difference in performance between the first and second mode shows that a training phase

can be used to create an SOCR classifier for each font size to significantly improve the

performance when running in the first mode. The training phase can fine tune the

SIFT descriptors for each font size of the different variations of the letter alif.

System/Size 6 8 10 12 18 24

SOCR WRR 23.5% 61.9% 63.5% 71.2% 84.0% 97.0%

CRR 64.7% 90.1% 92.7% 93.2% 97.1% 99.2%

SOCR WRR 27.6% 78.9% 89.8% 94.0% 99.0% 98.5%

Ignore Alif Variation CRR 68.2% 94.4% 97.5% 97.6% 99.8% 99.6%

IPSAR WRR 5.7% 73.3% 75.0% 83.1% 77.1% 77.5%

CRR 59.4% 94.2% 95.1% 96.9% 95.7% 96.8%

UPV-PRHLT WRR 94.5% 97.4% 96.7% 92.5% 84.6% 84.4%

CRR 99.0% 99.6% 99.4% 98.7% 96.9% 96.0%

DIVA-REGIM WRR 86.9% 95.9% 95.7% 93.9% 97.9% 98.9%

CRR 98.0% 99.2% 99.3% 98.8% 99.7% 99.7%

Table 3.2: Performance in terms of CRR and WRR of SOCR and the algorithm sug-
gested by the author of PATS executed on PATS dataset.

3.4 Scanned Document Example

SOCR was also tested on an image of a scanned page written using the Scheherazade

font. The classifier for the font was constructed using an alphabet containing 44

graphically-unique letters and combination of letters, similar to the way that the classi-

fier for the font Akhbar was constructed. The input image can be seen in Figure 3.6 and

the result of SOCR can be seen in Figure 3.7. Since SOCR is not aware of punctuation

marks and other symbols that are not in the alphabet that was used to construct the

classifier, it mistakenly classifies those symbols as letters. Those letters are marked in

yellow, while the letters SOCR misclassified are underlined and marked in red. Since

separating white spaces and spaces inside a paw was not a goal of this work, on the few

occasions when the separation algorithm mentioned in Section 3.2 failed, the spaces

were inserted or removed manually.



3.4. SCANNED DOCUMENT EXAMPLE 33

Figure 3.6: An input image of a page written in the Scheherazade font.



34 CHAPTER 3. EXPERIMENTAL RESULTS

ثارة   والسفينة تشق طريقهاخا  ولدت الرغبة فى ا عقاب نظرة مفعمة بالإ 
 بدا ت الرحلة من مدينتنا ههالفيضان  فى ا واخر فصل القوى غضد التيار الهادئ

 ى التى استقر بها الزواجنسايس ماضية جنوبا ا لى بانو بوليس لزيارة ا خ
 ا ركانهاعظمة من تطل مررنابمدينةغريبة مدينة صيلاا   ذات ئف ه هناك
 مترامية بين النيل هلفناء بنهم على جنباتها وا شيائها ا  ويزحف  همغابرة 

 مغلقة هلطرقات ا  خالية  ها  لإ شجار ا  متعرية  ا  ب الجبل شرقا ا  غربا ومحر
 عنها ولإتندلإتنبض بها حياة  هالإ بواب والنوافذ كالجفون المسدلة 

 وتخيم عليها الكا بة وتلوح فى قسماتها طسثفوقها اليجثم  خا  حركة 
 ا لى ا بىح ثوهرع ملبصر فانقبض صدرى ا  فيها  ثا جل هلموت ا  ت ا  ا مار

 ا  حيث يسترخى على ا ريكة فوق المنصة مجللا بشيخوخته وسا لته 
 ا ا  ماشا ن هذه المدينة ياا بى  حسس

 نافا جاب دون تا ثر 
 ههءون يامرى م ممالمدينة الكافرة الملعونة  ةمدينة المارق  حست

 ا   ثكريات منثالة ثم سا لقؤا ليها بانفعال مضاعف و ببفرجع البص
 ما  ا لإيوجد بها حى  حسب

 ا  فا جاب ا بى باقتضاب 
 متتنفس فى قصرها ا و سجنها وهو الإ صح  ةالمرا ة المار ثما زال حسب

 ههكما يوجد بعض الحراس بلاريب 
 نمتذكرا  ثفغمغم

Figure 3.7: The result of SOCR on the image in Figure 3.6. The punctuation marks that
are classified as letters are marked in yellow and the misclassified letters are underlined
and marked in red.



Chapter 4

Conclusion

We have shown how SIFT descriptors can be successfully used as features of individual

letters to perform OCR of Arabic printed text. We overcame the challenge of printed

Arabic being a cursive text by performing, jointly, segmentation into letters and their

recognition. While enjoying the benefit of not having a need for a training set, our

method performs competitively compared to other, recently purposed methods, which

require large training sets. More work can be done to address the scenarios where the

method showed a relatively high failure rate. In the situation where the method fails

to distinguish between the variations of the letter alif, which differ only in diacritical

marks, post-processing can be used to correct the misclassification by matching the

recognized word against a pre-defined list of words. In the situation where the method

fails due to a failure to split two paws, which happens mostly with low resolution fonts,

this post-processing might not suffice, since the probability that most of the letters of

the second paw will not be recognized correctly is high. Since our classifier consists

of four classifiers, one for each possible location of a letter inside a paw, creating one

classifier for all forms can help overcome the failures that happen when a split fails.

On top of that, introducing a learning phase can, potentially, improve performance

by finding the best weights for penalties and their combination with the segmentation

and recognition scores. As suggested by Prof. Lior Wolf, image-based verification can

be added. By generating an image of the predicted word or paw, we can measure its

visual similarity to the word we are trying to recognize. Future work should focus on

the variety of fonts and sizes available in the APTI dataset and the performance of

SOCR should be evaluated when executed on multiple fonts.

35



Bibliography

[1] Riaz Ahmad, Syed H. Amin, and Mohammad A.U. Khan. Scale and rotation
invariant recognition of cursive Pashto script using SIFT features. 6th International
Conference on Emerging Technologies, pages 299–303, 2010. 1.1, 2.1.1.2

[2] Husni A. Al-Muhtaseb, Sabri A. Mahmoud, and Rami S. R. Qahwaji. Recognition
of off-line printed Arabic text using Hidden Markov Models. Signal Processing, 88.
1.1, 3

[3] Markus Diem and Robert Sablatni. Recognition of degraded handwritten char-
acters using local features. International Conference on Document Analysis and
Recognition, pages 221–225, 2009. 1.1

[4] Hiromichi Fujisawa. Forty years of research in character and document recognition-
an industrial perspective. Pattern Recognition, 41:2435–2446, 2008. 1

[5] Jia Ping Gui, Yi Zhou, Xin Da Lin, Kai Chen, and Hai Bing Guan. Research on
Chinese character recognition using bag of words. Applied Mechanics and Materi-
als, 20–23:395–400, 2010. 1.1

[6] Vladimir I. Levenshtein. Binary codes capable of correcting deletions, insertions,
and reversals. Soviet Physics Doklady, 10:707–710, 1966. 3.1

[7] David G. Lowe. Object recognition from local scale-invariant features. In Proceed-
ings of the International Conference on Computer Vision, volume 2 of ICCV ’99,
pages 1150–1, 1999. 1.1, 2.1.1

[8] David G. Lowe. Distinctive image features from scale-invariant keypoints. Inter-
national Journal of Computer Vision, 42:91–110, 2004. 1.1, 2.1.1, 2.1.1.2

[9] Walid Magdy and Kareem Darwis. Arabic OCR error correction using character
segment correction, language modeling, and shallow morphology. In Proceedings of
the 2006 Conference on Empirical Methods in Natural Language Processing, pages
408–411, 2006. 3.3

[10] Randall Munroe. Random number. xkcd.com, page 221. 3.3

[11] Fouad Slimane, Rolf Ingold, Slim Kanoun, Adel Alimi, and Jean Hennebert. A
new Arabic printed text image database and evaluation protocols. In International
Conference on Document Analysis and Recognition, pages 946–950, 2009. 1.1, 3,
3.3

[12] Fouad Slimane, Slim Kanoun, Haikal El Abed, Adel M. Alimi, Rolf Ingold, and
Jean Hennebert. Arabic recognition competition: Multi-font multi-size digitally

36



BIBLIOGRAPHY 37

represented text. In Eleventh International Conference on Document Analysis and
Recognition, pages 1449–1453. IEEE, 2011. 1.1, 3.3

[13] Tal Steinherz, Ehud Rivlin, and Nathan Intrator. Offline cursive script word recog-
nition - a survey. International Journal on Document Analysis and Recognition,
2:90–110, 1999. 1.1

[14] Tong Wu, Kaiyue Qi, Qi Zheng, Kai Chen, Jianbo Chen, and Haibing Guan. An
improved descriptor for Chinese character recognition. Third International Sym-
posium on Intelligent Information Technology Application, pages 400–403, 2009.
1.1

[15] Morteza Zahedi and Saeideh Eslami. Farsi/Arabic optical font recognition using
SIFT features. Procedia Computer Science, 3:1055–1059, 2011. 1.1

[16] Majid Ziaratban and Karim Fae. A novel two-stage algorithm for baseline estima-
tion and correction in Farsi and Arabic handwritten text line. 19th International
Conference on Pattern Recognition, 2008. 2


	Introduction
	Related Work

	SOCR Algorithm
	Feature Extraction
	SIFT Descriptors
	Additional Features

	Constructing a Classifier
	Creating Images for All Possible Symbols
	Feature Extraction
	Quantization
	Base Confidence

	Single Letter Classification
	Splitting Word into Pieces of Arabic Word
	Isolating a Letter Inside a Window
	Paw Classification
	Scanning
	Scanning for Initial and a Final Letter or an Isolated Letter
	Scanning for Medial Letters

	Multi-font Classification

	Experimental Results
	Performance Metrics
	PATS Dataset
	APTI Dataset
	Scanned Document Example

	Conclusion
	Bibliography

