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ABSTRACT

In this thesis we study the application of rewrite techniques to equational
reasoning. We present various rewrite-based proof methods and formalize them
on an abstract level as equational inference systems. We also introduce tech-
niques, based on the concept of proof orderings, for reasoning about such infer-

ence systems.

We describe the standard Knuth-Bendix completion method in our formal-
ism and establish its correctness. Our correctness proofs are comparatively sim-
ple and apply to a large class of specific versions of completion. The notion of

critical pair criterion can also be conveniently formalized in our framework.

We further discuss completion for rewriting modulo a congruence and
present methods that are more general in scope than other completion pro-
cedures. We present, for instance, a completion procedure that can be applied to
equational theories with infinite congruence classes; a case that can not be han-

dled by any other method.

We also describe an extension of standard completion, completion without
{ailure, that often succeeds in constructing a canonical system when standard
completion fails. Unfailing completion is also a refutationally complete theorem

prover for purely equational theories.

Finally, we describe some techniques for proving the termination of rewrite

systems.
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CHAPTER 1

INTRODUCTION

1.1. Equations and Rewrite Rules

Equational reasoning methods have been applied to many problems in
automated theorem proving, program verification, program synthesis, logic pro-
gramming, and symbolic computation. Reasoning about equations may, for
example, involve deciding whether an equation is a logical consequence of a given
set of equations. Dealing effectively with the equality predicate within automated
theorem provers is notoriously difficult. Simply adding equality axioms almost
invariably leads to unacceptable inefficiencies. Instead, a number of special

methods have been devised for reasoning about equality.

Within resolution-based provers, ‘“paramodulation” (Robinson and Wos,
1969) is frequently employed. Paramodulation is 2 complete method for handling
equations but is difficult to control and usually produces a large number of
irrelevant or redundant formulas. More restrictive inference rules have been pro-
posed, e.g. ‘‘demodulation” (Wos, et al., 1967), which consists of using equations
in only one direction to rewrite terms to a “‘simples” form. Demodulation is, in
general, an incomplete, ad-hoc method. In this thesis we describe complete proof

methods that are based on the corcept of rewriting.

We consider purely equational theories, that is, theories that can be axioma-

tized by a set of equations. The validity problem in such theories is, of course,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



semi-decidable: an equation s =% is true in all models of a (countable) set of
equations F, if ¢ can be obtained from s by using the axioms of E to replace
‘“equals by equals.” However, systematically deriving new equations by substitu-
tion and replacement of equals by equals until s =¢ has been proved is impracti-
cal for all but the simplest problems. The advantage of rewrite methods is that
they provide some means of guidance and drastically limit the search space of

equational consequences to be considered.

Reuwrite systems are collections of directed equations (rules) used to compute
by repeatedly substituting equal terms in a giver expression until a simplest form
possible (normal form) is obtained. Many formula manipulation systems, such as
REDUCE or MACSYMA use equations in this manner. Canonical, i.e. terminating
Church-Rosser, rewrite systems have the property that two terms are equivalent
if and only if they simplify to an identical normal form. Deciding validity in
theories for which canonical systems are known (e.g. group theory) is thus easy
and reasonably efficient. A large number of canonical systems have been derived
using the Knuth-Bendiz completion method (Knuth and Bendix, 1970). Comple-
tion has been applied to a variety of problems including the word problem in
universal algebra (Knuth and Bendix, 1970), proofs of inductive properties of
data types (Musser, 1980; Huet and Hullot, 1982), and equational programming
(O’Donnell, 1985; Dershowitz, 1985a).

Completion is supplied with a set of equations and a well-founded ordering
on terms (a reduction ordering) and generates rewrite rules by orienting equations
according to the given ordering. The only new equations that have to be derived
are those obtained by paramodulating left-hand sides of rules into other left-hand
sides. However, no paramodulations have to take place within the variable part
of a rule. Mutual simplification of rules typically results in the deletion of redun-

dant rules. The practicality and efficiency of completion crucially depend on this
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use of simplification. On the other hand, the completeness of proof methods that
contain such simplification mechanisms is difficult to establish, in general, and

has required rather intricate arguments (e.g. Huet, 1981).

In the main part of this thesis we develop a formalism for reasoning about
rewrite methods. We introduce the concept of proof ordering and demonstrate
its usefulness for formalizing the essential properties of completion or similar
proof methods. Proof orderings facilitate comparatively simple and intuitive
proofs of correctness. In Chapter 2, we introduce proof ordering techniques by
applying them to the standard Knuth-Bendix completion procedure. We formu-
late completion in an abstract framework and prove correctness of a large class of
completion procedures, not just a specific version as in Huet (1981). We also util-
ize proof orderings in the design and verification of mechanisms—ecritical pair
criteria—for sorting out redundant equations. Such criteria permit direct control
over the number of equations generated and may considerably improve the
efficiency of completion. The criteria presented here subsume those proposed by

Winkler and Buchberger (1983), Kiichlin (1985), and Kapur, et al. (1985).

Equational theories that can not be represented as canonical systems include,
for instance, theories with commutativity. Such problematic axioms can often be
built into the completion procedure itself, by employing more general matching
and unification algorithms and using rules for rewriting modulo a congruence.
Completion procedures for rewriting modulo a congruence were described by
Lankford and Ballantyne (1977a, b, c), Peterson and Stickel (1981), Huet (1980),
Jouannaud (1983), and Jouannaud and Kirchner (1986). In Chapter 3, we
present new methods for rewriting modulo a congruence that subsume these pro-
cedures. We describe a method that allows construction of fully reduced canoni-
cal systems, which is not possible with other methods, in general. We also

present a method that may be applied to equational theories with infinite
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congruence classes, a case that can not be handled by any other completion pro-

cedure.

Completion must be supplied with a reduction ordering, a requirement that
can not always be easily fulfilled. Unfortunately, even when an appropriate ord-
ering is chosen, completion may fail to find any canonical system, though one
exists (Dershowitz, et al, 1986). In Chapter 4, we address this problem by
presenting an ‘“‘unfailing” extension of completion. For a large class of orderings,
including those most often used in practice (recursive path orderings and polyno-
mial interpretations), this unfailing completion method is guaranteed to succeed
in constructing a canomical system, whenever one exists. The method is refuta-
tionally complete for theorem proving in equational theories, but has the advan-
tage over paramodulation that terms can always be kept in fully-simplified form

and that fewer equational consequences need to be considered.

Finally, in Chapter 5, we study the problem of proving termination of
rewrite systems and outline the use of transformatz'dn mappings in defining redue-
tion orderings. In particular, we describe orderings for rewriting modulo a
congruence, among them a class of orderings for associative-commutative rewrit-

ing.

1.2. Definitions

Most of the terminology we use is standard and we refer the reader to Huet
{1980) for a more detailed exposition. The basic notions concerning equations,

rewrite rules, and equational proofs are reviewed below.

Let T be the set of terms over some set of operator symbols F and some set
of variables V. We use s, t, u, -*- to denote terms; f, g, h, * - to

denote operator symbols; and z, y, 2z, - - - to denote variables. We assume
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that F contains at least one constant. Thus the set of ground terms, i.e. terms
containing no variables, is non-empty. For example, if + is a binary operator, —
a unary operator, and 0 and 1 are constants, then 0+(-z +y) is a non-ground

term and 140 is a ground term.

Let ¢t be a term. A subterm of t is called proper if it is distinct from ¢.
The expression ¢ /p denotes the subterm of ¢ at position p (positions may, for
instance, be represented as sequences of integers). We write s [t ] to indicate that
a term s contains ¢ as a subterm and (ambiguously) denote by s [u] the result of
replacing a particular occurrence of ¢ by u. If necessary, the position p of the
replacement may be indicated by writing s [p —u|. We will writes[t,, ..., ¢,]

if s contains subterms ¢, ..., ¢,.

A binary relation — on T is monotonic (with respect to the term structure)
if s —¢ implies u [s]—u[t], for all terms s, ¢t and u. It is stable (under substi-
tution) if s —¢ implies s 0—t o, for any substitution ¢ of terms in T for variables
in s and ¢. The symbols —7, —" and < denote the transitive, transitive-
reflexive, and symmetric closure of —, respectively. The inverse of — is denoted
by «. We call — a (strict paftial) ordering if it is irreflexive and transitive. A
relation — is Noetherian if there is no infinite sequence ¢,—t,—f3 - . A tran-
sitive Noetherian relation is called well-founded. A reduction ordering is a well-

founded ordering that is stable and monotonic.

An equation is a pair (s,t), written s =t, where s and ¢ are terms. For

any set of equations E, <5 denotes the smallest symmetric relation that con-
tains £ and is stable and monotonic. That is, s «<»p ¢ if and only if, for some

term ¢ and some substitution o, s =¢ [u o] and ¢t =c¢ [v o], where u =v isin E

(v = v denotes, ambiguously, ¥ =v or v =u ). The relation « é is the smallest

stable congruence that contains E ; a congruence is, by definition, monotonic.
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Directed equations are also called rewrste rules and are written s »¢. A
rewrite system is any set R of rewrite rules, in which all variables appearing on a
right-hand side also appear on the corresponding left-hand side. The reduction
relation —p is the smallest stable and monotonic relation that contains R.
That is, s »pt (s reduces or rewrites to t) if and only if s =c |lo] and
t =c [r o], for some rewrite rule  —r in R, term ¢, and substitution . A term
t is srreducible in R if there is no term u such that ¢ —5 u. An irreducible

term ¢’ is called a normal formof t in R if ¢ —»,;t' .

We use the notation s |p ¢ to indicate that there exists a term u such that
s —pt+pt. A rewrite system R is Church-Rosser if s pt implies s | p ¢, for
all terms s and t. This property is equivalent to confluence: s +pu —pt
implies s | ¢, for all terms s, ¢, and u. A rewrite system R terminates if —p
is Noetherian. Thus, a rewrite system terminates if and only if it is contained in
some reduction ordering. A rewrite system is called canonical if it is terminating
and Church-Rosser. In a canonical system every term has a unique normal form.
A rewrite system R is reduced if, for every rule l =r in R, r is irreducible in R
and [ is irreducible in R —-{l —=r }. Reduced canonical systems are unique: if R
and R' are both canonical and reduced and define the same set of irreducible

terms, then they are the same up to renaming of variables.

Let E be a set of equations and R be a rewrite system. A proofof s =t in
EUR (or a proof of s <35 pt) is a sequence P= (s, . . ., s, ), such that s is
5,5, ist and, for 0<i <n, one of s; ;- ps;, $;_1—p S;, OF 5;_1+p s; holds.
Every single proof step (s;_;,s; ) has to be justified by an equation u; =v;, a sub-
stitution o,;, and a position p;, such that s;_;/p; =v;0;, s; =s;_;[v;0;], and
w;=v; is in EUR. We say, for instance, that a proof step (s;_;,s; ) applies at

position p;. The justification may be (partially) indicated by writing the proof
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as, for instance, sgrp s, —p * ¢ ;'R Sy, etc. A proof step s «»pt is called an
equality step; a step s —pt a rewrite step. A proof of the form s —pu—pt is
called a peak; ete. Usually, we abbreviate a proof of the form sy—p ** - —ps,
by sg—pS,- A proof s,—p S¢ g S, is called a rewrite proof. By definition, |
P = (s)is a proof of s =s. A subproof of P is any proof (s;, ..., s;), where

0<i <j<n. The notation P [P'] indicates that P contains P' as a subproof.

For example, if E contains the commutativity axiom z +y=y+z and the
associativity axiom z +(y +z)= (2 +y)+z, and R contains rules z +0—z and
z +{~z )—0, then the following is 2 proof of z +(-z +y )=y in EUR:

z+(-z+y) op (zH-z))+y —p 0+y ©p y+0 —p y.

A proof pattern in EUR is a schema for a class of proofs; it describes proofs
that share a common structure. For example, the pattern s —p t, where s and
t are metavariables denoting arbitrary terms and R denotes an arbitrary rewrite
system, characterizes ali single step rewrite proofs in R ; s — ,; U };t describes
all rewrite proofs in R ; s «+—p u —p t, all peaks, etc. An instance of a pattern is

any specific proof of the given structure.
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CHAPTER 2

THE KNUTH-BENDIX COMPLETION METHOD

In this chapter we describe the Knuth-Bendix completion method (Knuth
and Bendix, 1970) and introduce a new technique—orderings on equational
proofs—for proving the correctness of completion. We also utilize proof orderings
for designing criteria for completior} that may be used to reduce the number of

equational consequences that have to be generated.

2.1. Standard Completion

We first present an abstract formulation of the Knuth-Bendiz completion
method for constructing a canonical rewrite system R for a given set of equations
E. If R is finite and canonical, and the congruence relations « b: and « }; are
the same, then R may be used as a deciston procedure for the validity problem in
E, since then two terms s and ¢ are equivalent in E if and only if they reduce
to identical normal forms in R . In particular, canonical systems may be used for
solving word problems in equational theories. The unsolvability of the word
problem for certain (finitely-based) equational theories implies that the construc-
tion of a canonical system R is not always possible. Thus, a completion pro-
cedure may terminate either with success or failure, or it may not terminate and
instead compute successive approximations R, of an infinite canonical system R .
The latter case can provide a semi-decision procedure for the validity problem in

E (as pointed out in Huet, 1981).
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We will formalize the notion of comple‘tion within the framework of an equa-
tional inference system. Since we distinguish between equations and rewrite
rules, the objects of this inference system are pairs (E,R ), where E is a set of
equations and R is a set of rules. The main steps of completion are (a) turning
equations into rules, (b) generating equational consequences from rules, and (c)

simplifying cquations.

Let > be a reduction ordering on terms. The system BC (basic completion)
consists of the following inference rules, where R is any rewrite system contained

in >:

C1) Orienting an equation.

(EU{s=t}R)

if s >1
(E,RU(s =t }) ne

C2) Adding an equational consequence.
(£,R)
(EUu{s=t},R)

ifs‘—Ru—PRt

C3) Simplifying an equation.
(Eu{s=t},R)
(E U{u =t }:R )

ifs—pu

C4) Deleting a trivial equation.

(EU{s=s},R)
(E,R)

We write (E ,R) }—;— (E' ,R'")if (E',R") can be obtained from (E ,R) by

(one or more) applications of inference rules of the inference system I. A (possi-
bly infinite) sequence (Eg,Ry), (E,Ry), ** is called a derivation in 1 if
(B; _1,R; _4) l—l— (E;,R;), for all i >0. The limit of a derivation is the pair

(E*,R%), where E” is the set of all persisting equations, ie. the set
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Ui>oNj>i £;, and R% is the set of all persisting rules, i.e. the set

Ui >0 >i B; -
Basic completion is sound:

Lemma 2.1. If (E,R) Ir-;_c-: (E',R'"), then the congruence relations HiuR and

Hé,uR, are the same.
In addition, we have

Lemma 2.2. If (E,R) *I;E (E',R') and the reduction ordering > contains R,

then > also contatns R/ .

Consequently, if (E o,R (), (E,R,), - - - is a derivation in BC, then all systems
R;, for i >0, as well as the limit B>, are contained in > and therefore ter-

minate.

We are interested in derivations (E o,R ), (E ,R ), - - * for which the limit
R® is canonical. If the equational theory of E,UR, can be represented by a
canonical system R, then there is, for any valid equation in E UR, a rewrite
proof in R ®. In general, a rewrite proof in E UR can be characterized as a proof
that contains no “‘critical” subproof of the form s <zt or s«—pu—pt. We
denote the set of these two patterns by Nc. Application of an inference rule of
completion has the effect that certain instances of critical proof patterns can be
replaced by ‘‘simpler’’ proofs. Thus the application of inference rules is reflected
on the proof level by a reduction relation on proofs. We will formalize this

aspect of completion below.

A relation = on proofs is monotonic if P=P' implies @ [P]=@Q [P '], for
all proofs P, P',and Q. It is stable if
P=(s,...,u,...,t)=2(s,...,vj,...,t)=P'

_ﬁgprodﬁced with permission of the copyright owner. Further reproduction prohibited without permission.



11

implies
(clso],...selyol, ..., cltal)= (c[sa],...,clv;0], ..., clta]),
for all proofs P and P', terms ¢, and substitutions o. A stable and monotonic

ordering on proofs is called a proof (reduction) ordering if it is well-founded.

An elimination patlern is a pair of proof patterns. If S is a set of elimination
patterns, then =g denotes the smallest stable and monotonic ordering on proofs
that contains any instance P=P' of an elimination pattern of S. (In other
words, =g is a rewrite relation on proofs.) We say that a set S of elimination

patterns is compatible with an inference system I if (E ,R) I—;— (E',R') implies
that for every proof P in FUR there is a proof P' in E'UR', such that
P=gP'.

For basic compietion we have the following set Sgc of elimination patterns,

where R and R’ are contained in the given reduction ordering > (see Figure

2.1):
sept = s—opit
s§ogpl =  s—opiuepit
S+*ps = s
Ss—pu—pt = sepit
S+—pu—pt = s—*é:v«-—};:t

The first three patterns are called equality patterns, the remaining two, overlap
patterns. They may be used to eliminate equality steps and peaks, respectively.

The corresponding proof relation is denoted by = pc¢.
Lemma 2.3. The set Sgc 1s compatible with basic completion.

Proof. 1t can easily be seen that the inference rules C1, C3, and C4 correspond
to the equality patterns; inference rule C2 corresponds to the first overlap pat-

tern. ¢
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Figure 2.1. Equality and overlap patterns

Example 2.1. Let E be the following set of equations characterizing group

theory:
0+z = z
-z +z = 0
(z+yHz = z4+(y+z)

The equation — —z +0=z is valid in this theory as the following proof P, shows:

--2+0 ©p —-z+(-z+z)
ep  (~-z4-z)tz
“p 04z
(—PE n

If we repeatedly apply inference rule C1 to orient the equations in E, then we

obtain the following rewrite system R ,:

Rehp')roduced with permission of the copyright owner. Further reproduction prohibited without permission.
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0+z - T
-z 4z — 0
(s+y)+z > z+(y+z)

The corresponding set E, is empty. We orient equations by comparing terms by
their size. Terms of the same size are ordered by lexicographically comparing
their (top-level) subterms from left to right. To ensure stability under substitu-
tion, we restrict s >t so that no variable appears more often in ¢ than in s.

Replacing all equality steps in P by rewrite steps, we get the following proof P :

--z4+0 +p -—-z+(-z+z)
R, (- -z +-z )+=z
—g, 0+z
-—)Rl A

The proof P is simpler than P in the sense that Py=cP,. It is not a rewrite
proof, since it contains a peak
--z+(~z+z) g, (--2+-z)+z —p 04z,
which is an instance of
-z +(z+y) +p, (-2 +z)+y —p Oty.
The latter peak reflects an overlap between the third and second rule of R,. By
inference rule C2, we may add the equation -z +(z +y )=0+y to E,, obtaining

a new set E, and a proof P,:

~-2+4+0 «—p, —-z+(-z+z)
HE; 04z
—)Rz T

where R, is R ;. Again, we have P,=cP,. By inference rule C3, the equation
-z +(z +y )=0+y can be simplified to —z +(z +y )=y, which is reflected on the

proof level by a reduction P ,=cP ;, where P is
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--24+0 «p, --z+(-z+z)
“p, z
+~gr, 0+z
—p, 3

and R ;is R,. This proof contains a “trivial peak”
Z +p,0+z —p =z
which can be eliminated by first adding the equation z =z, using C2, and then
deleting it, using C4. Thus F 4 and R ; do not change, but we get a simpler proof
--z+0 +p, -—-z+{-z+z)

HE, T

The equation -z +(z +y )=y, may be oriented into 2 rule -z +(z +y)—y,
resulting in a pair (E ;R ,), where E, is empty, and R, is R ; plus the new rule
above. This leads to a proof

--z+0 «—p, --z+(-z+4z)

-—‘)R‘ z

which is an instance of the peak
~-2+0 +p —z+(z+y) =g, 2.
By inference rule C2, we can now generate — -z +UG=z, and, by C1, turn it into

a rule - -z +0—z. We now have derived a rewrite system R :

O+z — =z
-z+z = 0
(z+y)+z — z+(y+z)
~-z+(z+y) — y
--z+0 — =z

that contains enough rules to prove — -z +0=z by simple rewriting. This sys-
tem is not canonical, however. For example, there is no rewrite proof of
-0+y =y, even though the equation is provable:

~0+y «p 0+(0+y) —p v.
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The following canonical and reduced system for group theory was derived by
Knuth and Bendix (1970) with a more powerful completion method that is
described below:

0+z

-z +z
(z+y)+z
—z +(z +y)
z +0

-0

--z
z+-z
z+(-z +y)
~(z +v)

+(y +2)

@ O O 8 OK

A

&
T
8

Proof orderings are the key to our approach of studying completion
methods. The proof orderings we design are based on the given reduction order-
ing and employ information contained in the justification of a proof. The con-
cept of multiset orderings is of particular importance in this context. A multiset
is an unordered collection of elements in which elements may appear more than
once. If > is a partial ordering on a set S, then the corresponding multiset ord-
ering > on the set of all finite multisets of elements in S is the smallest transi-
tive relation such that

MU{z}>MU{yy ..., Y, }, whenever n >0 and z >y;, for 1<i <n.
According to this ordering an element of a multiset can be replaced by any finite

number of elements that are smaller in >.

PROPOSITION 2.1. (Dershowitz and Manna, 1979) The multiset ordering > is
well-founded if and only if > is well-founded.

We specify a proof ordering by a complexity measure ¢ of single proof steps
and a corresponding ordering >°. The complezity M (P) of a proof

P =(sg,...,s,) is the multiset {¢, ..., ¢, }, where ¢;=c (s;_;,s;) is the
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complexity of the s -th proof step in P. The ordering > corresponding to ¢ and
>¢ is defined by: P >; P' if and only if M(P)>>¢ M (P'), where >>° is the
multiset ordericg corresponding to >€. The ordering > is monotonic, by
definition. It is stable if ¢(s,t)>° c¢(s',t') implies ¢ (u{so]ulto])>¢
¢ (u[s'o),u[t! o), for any proof step s <> p t, term u, and substitution 0. By

Proposition 2.1, > is well-founded if and only if >°¢ is well-founded.

The ordering >pc is defined by the following compiexity measure ¢ gc and
ordering > gc:
if s »pt,then cpc(s,t)is{s };
if s+pt,then cpg(s,t)is {t};

if spt,then epc(s,t)is {s,t};

the ordering >pg¢ is the multiset ordering >> corresponding to the given reduc-
tion ordering >. The ordering > g¢ is well-founded, since the reduction ordering
> is. In addition, the monotonicity and stability (under substitution) of >

imply stability of >gc. Therefore, >pc is a proof ordering.
Lemma 2.4. The relation = pc ts a proof ordering.

Proof. Since >pc is a proof ordering, it suffices to show that >gc contains any
instance of an elimination pattern for basic completion.

a)(s+pt) >pc(s—pit)since {s,t}>{s};

b)(sgpt) >pc (s —pruepit),

since {s,t }>>{s} and {s,t}>{u,t}.

¢) (sps) >pc(s),since {{s,s }} >0

d)(se—pu—pt) >pc(s—git) since {u}>{s,t};

e)(spu—pt) >pc(s—2pivepit)=P',

since {u }>>{w }, for any term w in P'. o
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Let N be a set of proof patterns and S be a set of elimination patterns com-

patible with an inference system L

Definition 2.1. A derivation (Eg,R), (E,R,), "~ in I is fair relative to S
and N if, for any proof P in E; UR; that contains an instance of a pattern in N,

}";here is a proof P! in E;UR;, for some j >1, such that P =gP’.

THEOREM 2.1. LetI be an inference system, N Be a set of proof patterns, and
S be a set of elimination patterns, such that S ts compatible with I and =g is a
proof ordering. If a derivation (Eo,R ), (E,R,), - tn 1 is fair relative to S
and N, then there s, for any proof P in E;UR;, i >9, a proof P! in EXUR®

such that P =g P’ and P' contains no instance of a pattern in N.

Proof. By induction on =g. Let P be a proof in E; UR;. If P is not a proof in
‘E*UR ®, then it must use some non-persisting equation or rule. Hence, by com-
patibility of S with I, there is a proof @ in E;UR;, for some j >1, such that
P=5@Q. On the other hand, if P is a proof in E“UR, but contains an
instance of a proof pattern in N, then, by fairness, there is a proof @ in E;UR;,
such that P =5@ . The induction hypothesis may then be applied to @ to yield

the desired conclusion. e

Before we apply Theorem 2.1 to completion, we extend the basic inference
system BC by introducing additional inference rules for simplification of rewrite
rules. These rules are essential for efficiency and also allow the construction of
reduced systems, which is not possible in general with basic completion. The
inference system C (standard completion) consists of the inference rules in BC

plus the following simplification rules:

S1) Simplifying the right-hand side of a rewrite rule

(B,RU{s ~t})
(E,R U{s »u})

ift—pu
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S2) Simplifying the left-hand side of a rewrite rule
(E,RU{s =t})
(Eu{u=t},R)
(E,RU{s—t})
(Eu{u=t},R)

The symbol [> denotes the subsumption ordering: s>! if and only if s is a

if s = p u at a position p not at the top,

if s—=pu byl—r and spl.

proper instance of I. For example, f (z,g(z)) and f (z,z) are proper instances

of f (z,y), but f (z,z) is not.

Both Lemma 2.1 (soundness) and Lemma 2.2 generalize to standard comple-
tion. Let S be the set Sg¢ plus the two additional patterns
s—=plt = s—opruepit
s—pt = s—opivept
where R and R' are contained in the given reduction ordering >, s =t is a
rule in R, s »u is a rule in R', and s =/ v is by application of a rule [ —r
such that s either is a proper instance of I or contains an instance of [ (see Fig-
ure 2.2). The corresponding proof relation is denoted by =$¢. The patterns
above are called simplification paiterns. The following lemma can easily be

derived from the definition above.

Figure 2.2. Simplification patterns
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Lemma 2.5. The set of elimination patterns Sc ts compatible with standard

completion.

In order to prove that =¢ is a proof ordering, we introduce an ordering >¢

using the following complexity measure ¢ and ordering >°:

if s —=pt by !l —r at position p, then ¢ (s,t)is ({s },s /p,!,t);

if s —pt by I —r at position p, then ¢ (s,t)is ({¢t },¢ /p,l,s);

if s &pt,then ¢(s,t)is ({s,t},---
Only the first component is relevant in the last case. The ordering >°¢ is the lex-
icographic combination of the multiset extension of the reduction ordering >, the
proper subterm ordering, the proper subsumption ordering [>, and the reduction
ordering >. The complexity measure ¢ extends the complexity measure ¢ g¢ for
basic completion. The inference rules for simplification are reflected by the addi-
tional components of ¢ (s,t). Both the reduction ordering > and the proper
subterm ordering are well-founded, monotonic, and stable (under substitution);
the subsumption ordering is well-founded. From this one can readily infer that

> is a proof ordering.
Lemma 2.8. The relation = ¢ is a proof ordering.

Proof. We show that >¢ contains = ¢. By the same arguments as in’ the proof
of Lemma 2.4, it can be shown that > contains any instance of an equality or a

overlap pattern. For simplification patterns we have:

a) {({s },s s ) > {({s }s,s,u)({t 1t /p,l,u)},

since s >t and t >u;

b) {({s }rs»s,t)} > {({s }s [p v )({t,u }-—-)}

since s >t, s >u, and either s /p is a strict subterm of s or s >I.
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Remark. Inference rule S2 can not be used to simplify the left-hand side of a rule
l—r by another rule [—r’. This is no restriction in practice, since such
simplifications are not necessary if equations are kept simplified. They may be
permitted if the ‘““age” of a rule, i.e. when it was generated, is included in the

complexity measure of proof steps.

We will next derive sufficient conditions for the fairness of a derivation. Let
us censider the possibilities for eliminating equality steps s <zt and peaks
s «p u—pt. Equality steps can be eliminated as a result of orienting, simplify-
ing, or deleting an equation. To eliminate peaks it suffices to generate certain

equational consequences cailed critical pasrs.

Let s =t and [ —r be rules in R with no variables in common (the vari-
ables of one rule are renamed if necessary) and suppose that, for some position p,
s /p is not a variable and is unifiable with /, o being the most general unifier,
i.e. so/p=lo. Then the superposition of | —»r on s —t at position p deter-
mines a critical pair ¢ =d, where ¢ is to and d is so[p —ro]. The proof
c—pso—pd is called a critical (rule) overlap; the term so, the overlapped

term; the position p, the critical pasr position.

Lemma 2.7. (Criticai Pair Lemma, Knuth and Bendix, 1970; see also Huet,
1980) If s —pu —pt, then esther s [zt or, for some critical pair ¢ =d between

rules in R, s =v [c o] and t =v [d 0].

Sketch of proof. Let P be an overlap s+—p u—pt. If s and t are identical,
then obviously s |p t. Let us assume that s and ¢ are distinct. We distinguish
three cases.

a) Suppose both proof steps apply at disjoint positions, i.e. they do not
overlap. Then P can be written as

s=ulr ' J—pull']=pull,r'|=t,
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where [ =5 r and I’ =5 r', and we have (see Figure 2.3):
=ulr,l'|opufr,r'j—pufl,r' |=t.

b) We speak of a variable overlap if one proof step applies in the variable

part of the other step. Then P may be written as
s=ufr(l', ..., U]—pull[l!,. ..., U]|logullr'0',..., 1"]|=t

and can be replaced by (see Figure 2.4):

s=ulr(l!, .. U lmpulrlr's .o, ']

—pull[r!, ..., r’]]«—};u[l[r',l', o U=t

¢) The only remaining possibility is a critical overlap, where one proof step

appliss below the other, but not in the variable part. In this case s =t contains

an instance of a critical pair. ¢ The considerations above lead to

Lemma 2.8. A derivation (E R ), (E,R,), " ' * tn C is fair relative to S¢ and
Nc if (a) E¥=0 and (b) all critical pairs between rules in R™ are contasned in

Uy E; .

Proof. Let (Eg,Ry), (E,R,), - - * be a derivation satisfying (2) and (b), and P
be a proof in E; UR;, for some t >0. Suppose that P is not a rewrite proof.

If P contains an equality step s « g, t, where an equation u=v is used,
then, by property (2), the equation u =v will eventually be formed into a rewrite
rule, simplified, or deleted (C1, C3, C4). By Lemma 2.3, there is a proof P’ in
E;UR;, for some j >i, such that P=cP'. Likewise, if P contains a rewrite
step s —p.t, where a non-persisting rule is used, then simplification of this rule
by S1 or S2 will result in a proof P’ , such that P = P'.

If P is a proof in R ™, i.e. uses only persisting rules, then it must contain a
peak @ = (u+«p v—p w). By the Critical Pair Lemma, if @ is not a critical
overlap, then there is a rewrite proof Q'=(u—p v'+ ,;',w ), and therefore

Q@=cQ'. If @ is a critical overlap, then u =w must contain an instance of a
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Figure 2.3. No overlap

Rb
S

Figure 2.4. Variable overlap
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critical pair ¢ =d, which will be computed eventually because of property (b).
Thus there is 2 proof @' in E; UR;, for some j >1#, such that @ =¢Q’'. In
either case, we may conclude that P =P’ .

In summary, if P is not a rewrite proof, then there is a proof P’ in
E;UR;, for some j >+, such that P=cP'. Therefore the given derivation is

fair relative to Sg and N¢. o

We call a derivation fair (for completion) if it satisfies properties (2) and (b) of

Lemma 2.8.

A completion procedure is any procedure that accepts as input a set of equa-
tions F, a rewrite system R, and a reduction ordering > containing R ; and,
using applications of the inference rules of C as the only elementary computation
steps, generates a derivation (Eq,R ), (E,R ), "+, where Ejis E and R, is
R . Since a fair derivation may not be possible from an arbitrary pair (E;,R;),
or may require backtracking (see Dershowitz, Marcus, and Tarlecki, 1987), we
have to allow for the possibility of failure for certain inputs £, R and >. A
completion procedure is called fair if it generates only fair derivations unless it

fails. Theorem 2.1 and Lemma 2.7 together yield:

THEOREM 2.2. (Huet, 1981) If @ completion procedure is fair and does not fasl
Jor inputs E, R and >, then R s canonical.

COROLLARY 2.1. Let C be a fair completion procedure. If s HéuRt and C
does not fail for inputs E, R and >, then it will generate a pair (E; ,R;) such
that S lR,-t .

If R® is finite, then it may be used as a deciston procedure for the validity prob-

lemin EUR ; if it is infinite, completion still provides a semi-decision procedure.
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Any particular completion procedure has to specify in which order the infer-
ence rules of C are to be applied to given sets of equations and rules. We call
such a selection strategy fair if it gives rise only to fair or failing derivations. By
Theorem 2.2, any implementation using a fair selection strategy is guaranteed to
construct a canonical system, provided it does not fail. Such an implementation
is therefore called correct. The correctness—in this sense—of a specific comple-
tion procedure was first proved by Huet (1981). Huet’s proof requires intricate
arguments using induction on certain orderings on terms. One of the main
differences with our approach is that we use orderings on proofs. The use of mul-
tisets of terms, as in Jouannaud and Kirchner (1986), may be regarded as a sim-
ple instance of a proof ordering that makes no use of the information contained
in the proof steps. The full potential of proof orderings is only realized when this

information is utilized.

The notion of completion as we have formalized it above covers a wide
variety of specific completion procedures, including those given in Knuth and
Bendix (1970) and Huet (1981). These versions of completion permit application
of inference rules in C only in a systematically restricted way. For example,
computation of a critical pair ¢ =d, i.e. application of C2, is usually followed by
the normalization of the critical pair, that is, simplification of ¢ =d by repeated
application of C3. Keeping the sets of equations and rules fully simplified tends
to improve the efficiency of the completion process and guarantees that the final

system will be reduced.

Proof orderings provide a convenient tool for proving the correctness of
specific implementations of completions. In addition, enhancements and improve-
'ments of standard completion can easily be shown to be correct. For instance,
since fairness requires only computation of critical pairs between persisting rules,

simplifying a rule may be combined with deleting critical pairs that originated
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from this rule. However, only those critical pairs may be deleted that have not

yet been turned into rules and used for simplification.

Equations that contain instances of other equations can be deleted. Formu-

lated as an inference rule:

C5) Deleting a subsumed equation

(EuU{s=t,u|saj=ulto|},R)
(EU{s =t },R)

Furthermore, orientable instances of equations can be used for simplification.
That is, if ¥ =v is an equaticn and u 6> v o, then the rule u c—v ¢ can be used
for simplification. We do not list the corresponding inference rules, since they are
essentially the same as C3, S1 and S2. The associated elimination patterns define

a proof ordering (that is not contained in >, though).

Failure is a major drawback of standard completion. Part (b) of the fairness
requirement will always be satisfied, provided critical pairs are selected properly
for application of C2. Therefore failure can only be the result of violating part
(2). Whenever an equation s =t is generated such that s and t are irreducible
in U; >oR; and neither s >¢ nor ¢ >s hold, then no inference rule is ever appli-
cable to s =t, hence no fair derivation possible. Conversely, if the reduction
ordering > is total on each congruence class [t] in EUR, then C1 is applicable
to any equational consequence s =t of FUR . This requirement is too strong,
though, and such an ordering need not exist for an arbitrary pairs (E,R). For
example, the terms f (z,y) and f (y,z) are incomparable in any reduction ord-
ering. Therefore, if £ contains a commutativity axieom, no reduction ordering
can be total on all congruence classes, and completion may fail in such an
instance. This problem can be partially remedied by building certain axioms,

such as commutativity, directly into the completion procedure. We will describe
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this approach in detail in the next chapter. A different approach, that eliminates

the possibility of failure at all, will be described in Chapter 4.

2.2. Critical Pair Criteria

The efficiency of the completion process depends on the number of rules and
critical pairs that are generated. Simplification is important because it allows
deletion of redundant rules and critical pairs. For instance, whenever a critical
pair ¢ =d is generated, both ¢ and d can be reduced to normal forms ¢’ and
d'. If ¢’ and d' are identical, then the equation ¢’ =d' can be deleted, indi-
cating that the original equation ¢ =d was redundant. Normalizing an equation
can be costly, whereas redundancy of a critical pair ¢ —d can often be deter-
mined by looking at the structure of its associated critical overlap ¢ —pu—p d.
Characterizations of redundant critical pairs are commonly called critical pair cri-

teria. We utilize proof orderings both in formalizing and verifying such criteria.

A critical pair can be considered redundant if its associated critical overlap
can be eliminated without computing the critical pair itself. We say that a set
S cpc of elimination patterns of the form

s—pu—pt = SHEURt,
where R is contained in the given reduction ordering >, specifies a critical pair
(elimination) criterion CPC. By = ;pc we denote the corresponding ordering on
proofs. A critical pair is redundant according to criterion CPC, if its associated
critical overlap can be eliminated by = op-. In other words, = ;pc can be used
to sort out redundant critical pairs. Intuitively, a criterion is ‘“correct” if it is

“compatible’ with completion and if = ;p¢ is a proof ordering. More formally,

Definition 2.2. A critical pair criterion CPC is correct if the ordering induced

by ScUS cpc is well-founded.
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Let CPCg p be the set of all critical pairs ¢ =d, such that there is no proof P’
in EUR for which P= cpc P', where P is the critical overlap ¢ —pu—pd
associated with ¢ =d. If a criterion is correct, then critical pairs not in CPCy p

may be ignored by completion.

Definition 2.3. A derivation (Eg,R ), (E,R 1), - * - is fair relative to a critical
pair criterion CPC if (a) E =0, and (b) CPC® is contained in Uy E;, where
CPCOO iS Ui nJZ' CPCEj,R,-'

THEOREM 2.3. Let CPC be a correct critical pasr criterion and C be a comple-
tion procedure that is fair relative to CPC. If C does not fail for inputs E, R

and >, then R is cenonical.

Proof. The proof is by induction on = cU= cpo . Let CPC be a correct criterion
and suppose that the derivation (E,R ), (E,R ), -+ * is fair relative to CPC.
We show that whenever a proof P in E; UR; is not a rewrite proof, then there is
a proof P' in E;UR;, for some j >1, such that P=cP' or P=gpe P'. If
P uses an equation or a non-persisting rule, then, by fairness, P = cP"', for some
proof P'. Suppose that P contains a peak s+ R 4 —p,t, where both rewrite
steps persist. If this peak is not a critical overlap, then there is a rewrite proof
s —r,;‘_v +—};‘_t, and hence P =cP’', for some P’'. Otherwise, s is u [c o] and ¢
is u [d o], for some critical pair ¢ =d. If ¢ =d is in CPC*, then, by fairness,
¢c=d is in Ej, for sume j, and therefore P=¢cP', for some proof P' in
E;UR;. If ¢=d is not in CPC™, then it is not contained in CPCE,-,Rj» for
some j >1:. By correctness of CPC, thére exists a proof P' in E;UR;, such

thatpﬁcpcpl. L]

A criterion can considerably decrease the total number of critical pairs gen-

erated by completion. This advantage may be offset, however, by the additional

R;eproduced with permission of the copyright owner. Further reproduction prohibited without permission.



28

cost of checking whether the criterion applies to a given critical pair. Critical

pair criteria have also been applied to testing the Church-Rosser property.

Definition 2.4. A criterion CPC is sound if, for any terminating rewrite system
R , the following property holds:
R s Church-Rosser if and only if, for all critical pairs ¢ =d not in

CPCyp, there is a term v, such that ¢ —»,; v +—];d .

A sound criterion, whose applicability can be effectively tested, can be used for
testing the Church-Rosser property of terminating systems. ‘Soundness of a ecri-
terion can usually be established without difficulty. Verifying correctness is con-

siderably more difficult.
Lemma 2.9. Any correct criterion 1s sound.

Proof. Let R be a rewrite system and CPC a correct criterion. In addition, sup-
pose that, for all critical pairs ¢ =d not in CPCgyp, there is a term v with
c— ,; v+ ,; d. We have to show that R is Church-Rosser. Any proof P in R
that is not a rewrite proof must contain a peak s «—pu —pt. If this peak is not
a critical overlap, then P=cP’', for some proof P'. Otherwise, s =t must
contain an instance of a critical pair ¢ =d. If ¢ =d is not in CPCYy p, then, by
assumption, there is a term v with ¢ —pv«pd, ie. P=cP', for some P'.
If ¢c=d is in CPCyp, then P = cpc P', by the definition of CPCyp. The

assertion follows by induction on =cU= gpc . ©

Formalizing critical pair criteria by using proof orderings greatly facilitates
the task of proving correctness. We will present correctness proofs for all known
criteria, including those for which correctness had not been established previ-

ously.
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2.3. Connectedness

Several critical pair criteria have been proposed that are based on the con-

cept of connectedness.

Definition 2.5. Let B be a rewrite system and > be a reduction ordering.
Two terms s and ¢t are connecied (in EUR) below u (relative to >) if
§ =ugerp R U] " " S EpUpR U, =t, for some terms ugu,, ..., u, with u >u;,

forO0<i<n.

This concept was introduced in a more restricted form by Buchberger (1984) and
can be readily utilized for a critical pair criterion. Completion can be viewed as a
process of establishing, for every critical overlap ¢ «p u —p d, the connectedness
of ¢ and d below the overlapped term u. For instance, adding the critical pair
¢ =d as an equation is one possible way of establishing connectedness. Con-
versely, if ¢ and d are already connected, then the critical pair ¢ =d is redun-
dant. Thus, we define the set Sppp as consisting of all elimination patterns, for
n 21, of the form
S“RUTRL = SOEURYICEUR T Una P EUR Y

where > contains B and u >u;, for 1<i <n. The set CCPy p contains all
critical pairs ¢ =d that are not connected below the associated overlapped term

u.
PROPOSITION 2.2. Criterion CCP is correct for completion.

Proof. 1t suffices to prove that = ;cp is contained in the proof ordering >c.
Suppose that P=cpcP', ie. P is s«pu—pt and P' is
UgSBEUR " “PEUR Un, Where ugis s, u, is ¢, and u >u;, for 1<i <n. The
first component of the quadruple ¢ (s,u) is {u}, and the first component of

e (4 3ot ) is {v; v }, {41}, or {u;}. Since u >y, for 0<i<n, we have

- R;prodﬁced with permission of the copyright owner. Further reproduction prohibited without permission.



B ne

30

¢ (5,u)>° ¢ (u;,u;4,), which implies P >cP'. o

A criterion based on connectedness was first formulated by Buchberger
(1979) for a completion-like algorithm for constructing canonical bases for poly-
romial ideals. Similar criteria for completion have been described by Winkler
and Buchberger (1983), Winkler (1984, 1985), and Kiichlin (1985, 1986a). These
criteria differ in the respective tests that are used for checking whether a critical
pair is connected relative to the ordering — 7 induced by R . Let us sketch the
basic scheme. Suppose ¢ «~p u —p d is a critical overlap and u is reducible to a
term v at a position strictly below the critical pair position p. Thus, we have
overlaps c «~pu —pv and ve—pu—pd. If ¢ —p u—p v is a variable overlap,
then ¢ and v are connected below u. Otherwise, ¢ =v must contain an
instance of a critical pair ¢' =d'. If this critical pair has already been gen-
erated, then ¢ and v are also connected below u. Similar arguments apply to v
and d. Thus, connectedness can often be verified by checking whether certain
critical pairs have already been computed. Various book-keeping mechanisms
have been proposed for that purpose (e.g. Kichlin, 1985, 1986a; Winkler, 1985).
The test described by Winkler (1985) restricts the position at which the rewrite
step u—~p v may apply. No such restriction is imposed by Kiichlin (1985,
1986a).

The emphasis in the papers cited above is on soundness and practicality.
Winkler (1985) and Kiichlin (19862) also show the correctness of specific versions
of completion that incorporate tests for connectedness. Winkler’s proof is similar
to the proof of correctness of standard completion in Huet (1981); Kiichlin’s proof
is based on multiset induction. Both proofs are quite complicated. Our correct-

ness proof, besides being considerably simpler, applies to a large class of comple-

tion procedures. The flexibility of our approach should be particularly helpful in
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establishing the correctness of other implementations of completion procedures

and criteria.

2.4. Compositeness

A different type of criterion was suggested by Kapur, Musser, and Naren-

dran (1985).

Definition 2.8. Let R be a rewrite system and ¢ «p v —p d be a critical over-
lap in R. The critical pair ¢ =d is called composite if the overlapped term u is

reducible in R strictly below the critical pair position p.

Let Spcp be the set of elimination patterns

S+—pu—pl = se—pu—pvepu—pt

where the rewrite step u—p v applies strictly below u—ps, and u—ps
applies below u —p t. The proof relation = pop induced by Spop can be used
to eliminate overlaps corresponding to composite critical pairs. The set PCPg p

contains all non-composite critical pairs of R. Criterion PCP is sound:

Lemma 2.10. (Kapur, Musser, and Narendran, 1985) A terminating rewrite sys-
tem R s Church-Rosser if and only if, for every non-composite critical pair

¢ =d, there is a term v, such that ¢ g v —pd.

.

We prove the correctness of PCP by constructing a well-founded ordering
> pcp that contains = pop and =¢. Let P be an overlap s —~pu—pt, and
P' be s—pu—pvepu—pt, where u—pv by I’ —r’' at a position ¢
strictly below p (see Figure 2.5). Since both P and P’ contain the proof steps
u—ps and u—pt, we have P/ >cP! However, including a measure of the
overlap between successive proof steps in the complexity of a proof allows us to

distinguish between occurrences of these single proof steps in P and P',
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respectively, so that we can design a proof ordering > pop wherein P > pep P’ .

Let P be a proof sy, ..., s, and p; be the position of the i-th proof step
(s;_1»5; ). We define the complexity measure cp by:
if 5;_y—ps; by I —>r, then ep (s;_1,5;,P ) is ({5;_1},5; 1/Pi»¥15i i 1/ Pi 1)y
where s;_,/p;_; is - if 1=1;
if 5;_y—ps; by I —>r, then cp (s;_1,5:,P ) is ({s; }»: /pi sl 1518 /pi +1),
where s; /p; 1 is —, if i =n;

if s;_y g s;, then ¢p (s;_y,8;,P ) is ({5;_1s8; }r—r——-)-

The first four components of ¢p are the same as for the complexity measure ¢.
The additional fifth component reflects the amount of the overlap of a rewrite
step with its neighboring step. The ordering > is the lexicographic combina-
tion of the multiset extension of the reduction ordering >, the proper subterm
ordering, the proper subsumption ordering [>, the reduction ordering >, and the
proper subterm ordering. This ordering is well-founded and stable, but not
monotonic. Let > psp be the ordering on proofs corresponding to ¢cp and > §.

This ordering is well-founded.

Lemma 2.11. The ordering > pgp contains =c.

Figure 2.5.
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Proof. By similar arguments as in the proof of Lemma 2.6, we can show that
P >pcp P', for any instance P=P' of any elimination pattern for standard
completion. (In addition, the multisets M (P) and M (P') have no elements in
common.) However, since > pgp is not monotonic, we can not immediately con-
clude that @ [P]>pcp @ [P']. Let @ be a proof (sg, ..., 8,P,5;, ..., 5s,)
and Q' be Q[P']. Since cp(sg_1,5,Q)=¢p (Sk_1Sk,Q[P']), for k <i and
k>j, we have @ >pcp Q' if and only if (s;,P,5;)>pep (5;,P',5;) Let us
assume that @ is (s’ ,P,t') and P and P' are proofs of s =¢. Since the com-
plexity of a proof step, may depend on its neighboring step, replacing the sub-
proof P by P' may change the complexity of the first and last proof step in @,
though these proof steps themselves remain unchanged. Thus, if the first proof
step of @ is s’ +p s, then its complexity depends on the first step in P. Simi-
larly, if the last step is ¢t —5 ¢/, then its complexity depends on the last step in
P. We consider these problematic cases for all instances P =P ' of elimination
patterns in Sc.

a) If (P,P') is an instance of an equality pattern, then P is s ~+gt. If
s'—ps, then ¢p(s,t,Q)>F cp(s’,s,Q"). If t—pt', then
cp(s,t,Q)>F ep(t,t',Q'). Thus, we have Q@ >pop Q' .

b) If (P,P') is an instance of an overlap pattern, then P is s —p u —pt.
If s'eps, then ¢p(s,u,@)>F cp(s’,s,@'). If t—opt', then
ep(u,t,Q)>p5 cp(t,t’',Q'). Again, we obtain Q@ >pcp Q'.

¢) If (P,P') is an instance of a simplification pattern, then P is s —p ¢
and P' is either s »pru+pit or s —opiv+rpit. The conditions on P’
guarantee that the position of s —p: u is below (though not necessarily strictly
below) the position of s—pt. Consequently, we have
cp(s',5,Q@)>Fcp(s'ys,@'). In addition, cp(s,t,Q@)>F ¢p(t,t',Q"),

which implies @ >pcp Q'. o

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



34

PROPOSITION 2.3. Criterton PCP is correci.

Proof. By the above Lemma, >pgp contains =¢. We show that it also con-

tains = pcp. Suppose P=pcp P!, i.e. P contains an overlap s «pu—pt

——

hat can be decomposed inte s« pu —pvpu—pt, as shown in Figure 2.5.
The proof P has complexity

M(P)=NU{({u }u 1,5 u /p ) ({u },u [p,1" t,u)},
whereas P! has complexity

M(P")=NU{({u }u 1,5 ,u /a)({u}u /a,0"" o,u),

(Quhu/ad" w0 /p)({ubu /o 0"t u fa)},

where the position ¢ is strictly below p. Since the first three elements in
M(P') are smaller than the first element in M (P ), and the last element is

smaller than the second element in M (P ), we have P >pop P'. o

As a special case of non-compositeness we have blocking, a concept that has
been used in theorem proving and rewriting by Slagle (1974) and Lankford and
Ballantyne (1979).

Definition 2.7. Let ¢ =d be a critical pair corresponding to rules s —-¢ and
l—r in R and substitution 0. Then ¢ =d is called blocked if z ¢ is irreducible,

for all variables z in ¢ or d. Otherwise, it is called unblocked.

An unblocked critical pair is composite. The set Sgpop is obtained by imposing
on the elimination patterns

S+—pu—plt = s—pu—pv—pu—pt,
of § pcp the additional constraint that the rewrite step u —, v apply at a posi-
tion ¢ such that either u /q is a variable or ¢ is not a position in u at all. Let
= pop be the corresponding relation on proofs. By definition, = pop is con-

tained in = pcp. The set BCPp p consists of all blocked critical pairs of £ .
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COROLLARY 2.2. Criterion BCP is correct.
Proof. The lemma is an immediate consequence of Proposition 2.3. e

The composite criterion PCP or the blocked criterion BCP can be included
in any completion procedure without difficulty. A critical pair ¢ =d is compo-
site if and only if some proper subterm of the overlapped term u is reducible. It
is unblocked if, for some variable z in ¢ or d, the term z ¢ is reducible, where ¢
is the (most general) unifier associated with ¢ =d. Composite and connectedness

criteria can be combined.

PROPOSITION 2.4. The combination of PCP and CCP, i.e. the critical pair cri-

terion corresponding to Spop USccp , 85 correct.

Proof. The orderings = ¢, = ¢cp and = pcp are all contained in > ppp; hence

their union is well-founded. e

Experimental results that give some indication of the practicality of critical
pair criteria have been reported by Kapur, Musser and Narendran (1985)—for

‘compositeness—and by Kiichlin (1985)—for connectedness.
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CHAPTER 3

REWRITING MODULO A CONGRUENCE

Equational theories that can not be characterized by canonical rewrite sys-
tems include, for instance, many theories that contain commutativity axioms.
Commutativity can not be used as a rewrite rule since this would destroy the ter-
mination property. Instead, such problematic axioms can often be handied by
generalizing the notions of rewriting, matching, and unification, déﬁning them
with respect to a given congruence. A number of approaches have been sug-
gested for ‘‘rewriting modulo a congruence.” Lankford and Ballantyne (1977a, b,
¢) present Church-Rosser theorems for sets of permutativity (e.g. associativity
and commutativity) axioms; Peterson and Stickel (1981) describe a coinpletion
method for associative-commutative rewriting; Huet (1980) studies left-linear
rewrite systems; Jouannaud (1983) and Jouannaud and Kirchner (1986) formulate
completion procedures for sets of equations A that generate finite congruence
classes. In this chapter, we present new completion methods for rewriting

modulo a congruence.

3.1. Completion for Left-linear Rewrite Systems

Let A be a set of equations. A rewrite system R is called Church-Rosser
modulo A if, for all terms s and ¢ with s H; urt, there are terms u and v,
such that s »pu < v pt. A proof of the form s —p u e v—pt is called a

rewrite proof modulo A. The rewrite system R /A (R mod A) consists of all
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rewrite rules | —r such that /«»,u—p v« r. Evidently, R /A is Church-

Rosser modulo A if and only if it is Church-Rosser.

A reduction ordering > is compatible with A if s >t implies u > v, for all
terms s, t, u, and v with u 4 s and te,v. Asystem R /A is terminating
if and only if there is a reduction ordering > that contains R and is compatible
with A. We say that R is cenonical modulo A if R /A is terminating and R is
Church-Rosser modulo A .

Let A be a set of equations. For simplicity, we assume that A is sym-
metric. A rewrite system R is Church-Rosser modulo A if there is a rewrite
proof modulo A for any valid equation in A UR . A rewrite proof modulo A, on
the other hand, is a proof that contains no peak s +-p u—, pt. Such peaks
can be reduced by the elimination pattern

* * *
S—pu—4,pl = Ss—opve,wept.

By =3 p4 we denote the proof relation induced by this pattern.

Let > be a reduction ordering that is compatible with A . Thus, > induces
an ordering on congruence classes of «,. We introduce a proof ordering > p4
by defining a complexity measure ¢ and ordering >°¢ as follows:

if se4¢t,then c(s,t)is {s,min},

if s—pt,thenc(s,t)is {s},
where min is a new constant with ¢ >min, for all terms ¢. The ordering >°€ is
the multiset extension of >. (We assume that terms equivalent under A are
considered identical when compared in the ordering >. This is permissible, since
> is compatible with A.) The ordering >p, is well-founded, monotonic, and

stable; hence a proof ordering.
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Lemma 3.1. IfR /A terminates, then = g, s a proof ordering.

Proof. Let > be the ordering — 7 4 If R /A terminates, then > is a reduc-
tion ordering. We show that >p, contains =p, . Suppose that P=p, P'.
a)[f P is s«-pu—pt and P’ is s—pve,wept, then P>p, P’
since u >u’, for any term v’ in P’.
b) If P is s—pueryt, then P' must be s »pv e, wejt. (The
terms ¢ and w must be distinct, for otherwise R /A would be non-terminating.)
The term t is the biggesf term in P' as well as in P. In P it appears in an

equality step, in P’ , in a rewrite step. Therefore, P >p, P'. o

THEOREM 3.1. (Huet, 1980) Let R be a rewrite system and A be a set of equa-
tions, such that R /A terminates. The system R ts Church-Rosser modulo A if

and only if every proof s —pu—, jpt is reducible by =p, .

Proof. For the only-if direction, suppose that R is Church-Rosser modulo A . If
P is s —pu—, pt, then, by the Church-Rosser property, s —p v o wept.
In other words, there is a proof P/ with P=,, P'. For the if-direction, we
have to show that there is a rewrite proof for any valid equation in AUE. Let
P be a proof of s =t in AUR. If P is not a rewrite proof modulo A, then it
must contain a subproof v«-pu—, pw. By the assumption, P can be
reduced by = p, , i.e. there is a proof P', such that P=p4 P'. The assertion

follows by induction on =g, . ©

Standard completion can be extended in a natural way to rewriting modulo
a congruence. The main difference between the extension and the standard
method is that for the former critical pairs have to be computed both with rules
in B and with equations in A . (A critical pair with an equation u =v in 4 isa
critical pair With 2 —y or v—u.) Unfortunately, the resulting method works

only for left-linear systems. (A rewrite rule [ —r is left-linear if no variable
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occurs more than once in /. A rewrite system is left-linear if all its rules are

left-linear.)

Let A be a symmetric set of equations and > be a reduction ordering that
is compatible with A . The inference system M (completion for rewriting modulo
a congruence) consists of the following inference rules, where E may be any set

of equations and R any rewrite system contained in >:

M1) Orienting an equation.
(Eu{s=t}R)

if s >t
(E,RU{s—>t})
M2) Adding an equational consequence.
(E,R) . s s
f t
(EU{S=t},R) U S—pust—pua

M3) Simplifying an equation.
(BEU{s=t},R)

if
(EU{u =t },R) ORI
M4) Deleting an equation.
(BUfs =t }.R) foolt
(E,R)

Basic completion is a specific instance of M, for A =0. Note that equations may
be simplified by R /A, not just by R. The inference system L consists of M

plus the following rules for simplification:

L1) Simplifying a right-hand side of a rule

(E,RU{s ~t})
(E,R U{s —u})

ift—»R/Au

L2) Simplifying a left-hand side of a rule

((g EJR{ U{st"}’tk}g if s —p u at a position p not at the top
U= ’
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(E,RU{s —=t})
(Eu{u=t},R)

where [> denotes the proper subsumption ordering.

if s—pu byl—r and s>

Right-hand sides of rules may be simplified by R /A, whereas simplification of
left-hand sides is confined to rewriting in R . The inference system L is obviously
sound. Corresponding elimination patterns can be constructed easily. We have
equality patterns

seopt = s—opit

s+pl = s—rR'/AuHE,t

Se=pt = s ‘; t

overlap patterns

Se—pu—,4 pt = s—»};tu—r,;uw—ét
S(——Ru—-)Rt = SHElt
S+—pueyt = Ssepit

and stmplification patterns
s—pt = s—opiuepipt

s—=ptl = sopivegit

where B and R' are contained in > and, in the last two patterns, s —»p ¢ is by
application of ! —r at position p; s =5 u by application of [ —r' at position
p; and s =, v by application of a rule /' —r' below p (if the rule applies at

position p, then I>1').

Let Sy, be the set of all these patterns and =, the corresponding proof rela-

tion. By Ny, we denote the set of proof patterns s gt and s —pu—, pt.

Lemma 3.2. The set of elimination patterns Sy, is compatible with the inference

system L.
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Proof. We have to prove that whenever (E,R )};(E "JR')and P is a proof in

EUR , there is a proof P! in E'UR' such that P =, P'. Applications of
inference rules M1, M3, and M4 are covered by the equality patterns; L1 and L2,
by the simplification patterns. For inference rule M2 the assertion holds trivially,
since then R and R' are the same and E is contained in E', which implies that
any proof in EUR is also a proof in E'/ UR'. The overlap patterns can be used
to eliminate peaks: the first pattern, to eliminate non-overlaps or variable over-
laps; the second, to eliminate critical overlaps between rules of R ; the third, to
eliminate critical overlaps between R and A. The third overlap pattern can

only be applied when the critical pair has been turned into a rule. o

For proving that the ordering =y, is well-founded, we use the following com-

plexity measure ¢y:

if sept,then cy(s,t)is ({s,t}-——)

if s 24 t, then ¢y(s,t)is ({s,min },~,—,-),

if s =gt by l—r at position p, then ¢y(s,t)is ({s },s /p,l,t),

if s «~p t by l—r at position p, then cy(s,t)is ({t },t/p,l,s)
This complexity measure is similar to the one for standard completion. The ord-
ering > is the lexicographic combination of the multiset ordering >, the
proper subterm ordering, the proper subsumption ordering [>, and the reduction
ordering >. By > we denote the ordering specified by ¢ and >,°. This order-

ing is stable, monotonic, and well-founded; hence a proof ordering.
Lemma 3.3. The ordering =y, ts a proof ordering.

Proof. 1t can easily be seen that > contains any instance of an elimination pat-
tern of Sp. For equality and simplification patterns the proof is essentially the
same as for Lemma 2.6. For overlap patterns the same line of reasoning as in

Lemma 3.1 can be adopted. o
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We will next derive sufficient conditions for the fairness of a derivation in L
relative to Sy, and Ny. In the previous chapter we have shown that computation
of critical overlaps of R suffices for eliminating peaks s «—pu—pt. Now, we

also have to consider peaks s —p u <>, t. Let P be such a peak.

If P is not an overlap, then a simpler proof can be obtained by commuting

the two proof steps: s &+ 4 v +p ¢.

If P is a critical overlap, then, by the Critical Pair Lemma, s =t contains
an instance of a critical pair ¢ =d of A UR. Just adding the equation ¢ =d
does not produce a simpler proof. We even have (s «rpit)>y(s —pu eyt )
However, since the equation ¢ =d was obtained from an overlap ¢ —pu+>, d,
it is orientable: d >c¢. Adding the rule d —»¢ results in a proof P/ =(s «pg:t)
for which we have P ={ P’. An essential difference between equations and rules
is in the respective simplification steps that can be applied to them. The equa-
tion ¢ =d could be reduced to a trivial equation ¢ =c, since ¢ «p 4 d. This
reduction by R /A takes place at the top, and therefore is ruled out as a conse-

quence of turning ¢ =d into a rule d —¢.

Variable overlaps can be problematic. If the reduction step applies in the
variable part of the equality step, then there is a proof
P'=(s—gpv o4 wpt) for which P = P'. If the equality step applies in the
variable part of the reduction step, then there also exists a proof
P'=(s e ,vepwe,t). Unfortunately, the proof P =(s «p u «4 t ) can not
be reduced to P’ by =, in general. More precisely, if u — 5 s by application of
a left-linear rule, then P' =(s <, v +p t), for which we have P =P’ (see Fig-
ure 3.1). On the other hand, if a non-left-linear rule is used in 4 —p s, then P

and P’ may be incomparable (see Figure 3.2).
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~ L 4
IANN + A"
Figure 3.1.
r ol A
»
A*‘* b’A.
- -l
R

Figure 3.2.

For example, with A ={z +y=y+z} and R ={f (z *z )~z } we can con-

struct two incomparable proofs
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(z+y)(y+2)) o4 [ ((z+y)"(z+y)) —p (z+y)

and

fz+y)y+e)) on S (v+2Ply+e)) =p (y+2) o4 (24y).

In summary, only if R is left-linear does computation of critical pairs of A UR
guarantee that critical proof patterns of Ny, can be eliminated. The considera-

tions above lead to

Lemma 3.4. A derivation (E 4R ), (E,R ), - inL is fair relative to S and
Ny if E¥=0, R” is left-linear, all critical pairs of R™ are contasned in Uy By,

and all eritical pairs between R™ and A are contained in U, R, .

A completion procedure based on L is fair if it generates only fair derivations
(in the sense of Lemma 3.4) unless it fails. As an immediate consequence of

Theorem 2.1 and Lemma 3.4, we have

THEOREM 3.2. Let A be a set of equations, R a rewrite system, > a reduction
ordering that contains R and s compatible with A, and C a fair L-completion
procedure. If C does not fail for inputs E, R and >, then E®=0 and R is
Church-Rosser modulo A . ‘

3.2. Completion Based on A-unification

Variable overlaps of equations in A on non-left-linear rules in R can not

.-~ always be readily .eliminated. Thus, the completion method described above
applies only to left-linear systems. A possible remedy for this problem consists of
extending the notion of rewriting so that variable overlaps can be regarded as sin-

gle rewrite steps.

Let A be a set of equations and R be a rewrite system. The rewrite system

R+A consists of all rules ! —r such that <+, uo and r =v g, for some rule
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u—v in R and some substitution . For example, if A consists of the associa-
tivity and commutativity axioms for addition, and R contains rules -z +z —0
and f (z,z)—g(z), then f (z+y,y+z) is irreducible in R, but reduces to
g(z+y) in RA. The term -z +(z+y) is irreducible in R A, whereas it
reduces to 04y in R /A. A rewrite step in R+A corresponds to the application
of a rule in R using A-matching, i.e. matching with respect to the congruence

*
'(—)A.

Any variable overlap s <4 u —pt of A on R can be regarded as a single
rewrite step in R *A . The rewrite relation R A therefore obviates the problem
with variable overlaps, but introduces a new problem of eliminating more compli-
cated peaks. We will see that such peaks can be efficiently resolved when there

exists a finite complete unification algorithm for A .

We will study rewrite systems R that are partitioned into two sets L and
N, where L contains only left-linear rules, and corresponding rewrite relations
RA= LU N-A. In other words, A -matching is restricted to rules in N. Thus,

s —+pal abbreviates s =, f ors —py. 4 t.

The inference system M can be used as a basis for constructing, for given
sets of equations A and F, a rewrite system R =L UN such that LU N+A is
canonical modulo A and the congruence relations <, z and & 4 ur are the
same. Let > be a reduction ordering that is compatible with A. The inference
system A consists of M plus the following inference rules for simplification, where

E may be any set of equations and R any rewrite system contained in >:

A1) Simplifying a right-hand side

(E,RU{s >t}
(E,R U{s »u})

ift—»R/Au

P — N . -
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A2) Simplifying a left-hand side
(E,RU{s —t})
(Eu{u=t },R)
(BE,RU{s —t})
(Eu{u=t},R)

where > denotes the proper subsumption ordering.

if s »p /4 u at a position not at the top,

if s—=pu by l—r and s>I

We implicitly assume that B and R’ are partitioned into L UN and L'UN',
respectively, where L and L' are left-linear. If a rule s »t is in L, then
simplification of its right-hand side by Al yields a rule s »u in L';if s »¢ isin

N, then s —»u isin N'.

Application of Al and A2 can be described by the stmplification patterns
s—pt = 5"’8'““‘R'/At
s—ptl =  s—opijavept
s —pt = Ss—opiwepit
where s —pt is by application of a rule ! —r at position p; s =g/ u is by
I —r! at position p; s —p: (A s by application of a rule strictly below p; and

s =piw isbyarule!’ —r! with [>{' at position p.

A prpof in AUEUR is a rewrite proof modulo A , relative to R4, if and
only if it contains no equality step s <>yt and no peak s+, jpati =pat. Any
peak s+, jpsu—pat contains a simpler peak s, jp 4 2pat. (Recall that
l—par abbreviates ! —;r or l—y.,r, and that !—p.,r abbreviates
le 1" syr.) We will derive patterns for eliminating such peaks between

AUR and R“4.

Non-overlaps can be eliminated by the usual pattern

§ «—AuUR ¥ —pal = 5§ Dpa Vv ey pt

where the two proof steps on the left-hand side apply at disjoint positions p and
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¢, and are simply commuted to obtain the pattern on the right-hand side.

For variable overlaps we have patterns

S —pu —=patl = s—+,;4v+—Rw<—-};4t

S u =yt = s—»,:vHAwe;t

%

S+ et =3 s e v et
=

%
§ &4 u —p.at S —n.a U w+—-'.t
A N-A N:A A N-A

where all left-hand sides denote variable overlaps with the second step below the
first (strictly below in the last pattern) and right-hand sides denote the
corresponding rearrangements of peaks (see also Lemma 2.7). There are no vari-

able overlaps of A on NA.

Overlaps can be effectively eliminated if a finite, complete unification algo-
rithm for the theory A is known. Two terms s and t are A-untfiable if there
exists 2 substitution (an A-unifier) o, such that s o> 4 to. A set T of A -unifiers
of s and t is complete if for any A -unifier 7 of s and ¢ there exists a substitu-
tion p, such that z r— ,; (z o)p, for all variables z. We will assume, from now on,
that finite complete sets of unifiers for A exist and that an algorithm for com-
puting them is given. Finite, complete unification algorithms are known for
many theories of practical importance, including commutativity (Plotkin, 1972),
associativity and commutativity (Stickel, 1981; Fages, 1984), and associativity,
commutativity and identity (Fages, 1984). If A is the empty set, then the set
consisting of the (unique) most general unifier of s and ¢ is complete. For an

overview on unification, see Siekmann (1984).

Let u -v and [ —r be rules in R and R', respectively, with no variables
in common (the variables of one rule are renamed if necessary). Let p be a non-
variable position in u, such that u /p and | are A -unifiable with a complete set

of unifiers T.* For any o in I, the proof vo—p uo—pi.4 uolp /r o] is called an
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A -critical overlap of R' on R. The equation vo=uop /r o] is called an A-
critical pair of | —r on u —v at position p (or an A -critical pair of R' on R).
An A -critical pair between R and R' is either an A -critical pair of R on R’

orof R' on R. If A is empty, then we speak of critical pairs.

Lemma 3.5. (Extended Critical Pair Lemma; Jouannaud, 1983). Let A be a set
of equations for which there exists a finite complete unification algorithm. Let
u—v and [ —r be rules and p a position in u, such that u [p is not a variable
and ts A -unifiable with |, ¥ being a complete set of A -unifiers. Then there
ezist, for any overlap v r—p uT— g1 ut[p [r 7], substitutions o and p, o in I, such
that zr«—»; (z 0)p, for all variables z in u—v or l—r. Consequently, there
exists an A -criticel patr ¢ =d, such that v 1'4—-»1: cpandurp/r T]<—>A* dp. Ifv is

not a variable, then no equation in v TH,; ¢ p applies at the top.

This lemma is the basis for the overlap patterns

§ «—p u ot pi t
SHAuﬁLt —')th
§ 1 U oyt <—R:t

S +—p U =yt HAUHEI‘WHAt

R A | A 1

SHAU“’N-At HAU—PRI‘I.UHAt

where all left-hand sides denote overlaps with the second step applying below the
first step, and all proof steps on right-hand sides apply below the position of
u —,4,p 5. In addition, in the last pattern, the positions of u — ., ¢t and of all
steps in s « ,; v are strictly below the position of u =4 s. The equality steps in
s+ ,; v and w« A:t reflect the fact that an overlap between N*A and A UR
need not contain an instance of an A -critical pair, but only an equation

equivalent to such an instance.
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By Sa we denote the set consisting of the above simplification patterns and
elimination patterns for peaks and overlaps, and the equality patterns from the
previous section. If the set A satisfies certain conditions, then the ordering =5
is a proof ordering. By Nj we denote the set of proof patterns s «pt and

§ —4 ups ¥ —pat. We obviously have

Lemma 3.8. The set of elimination patterns S, is compatible with the inference

system A.

We next introduce a complexity measure ¢, that is needed for proving
well-foundedness of = 5. Let P be a proof (ty, ..., t,)in AUEUR and let p;
be the position of the i-th proof step (#;_;,t;). The complexity M (P ) of P is
the multiset {¢ A(tgt1,P), - - -, € A(ts_1sts »P )}, Where ¢ A(;_1,8; ,P ) is

({ —l’ti 1Ty Ty Ty if t’ —IHE t!
({t:-1}htio1/pi ymaz 1 t;) if t;_j+>4 t; by an equation [ =r
({t -1}7 (R I/Px ( —l:ti )P )»l )t;‘) if ti—l—’R t,’ by arule ! —r

and e (¢_;,¢;,P) is the multiset {¢; , . \/pi s 11, -+ -, t;_1/Pi-1}, With k being

the largest index for which (¢, . . ., t;_,) is a proof of the form #;_, < 4 #;_; or

P S R §

ti kRt k1e Ati- The multiset ¢ (£;_;,t; ,P) encodes information about the

‘“environment’’ of a rewrite step. The symbol maz denotes a new constant.

The ordering > £ is the lexicographic combination of the extension to mul-
tisets of the reduction ordering >, the proper subterm ordering modulo A , the
extension to multisets of the proper subterm ordering modulo A, the subsump-
tion ordering, and the reduction ordering >. (The constant maz is assumed to
be maximal.) This ordering is well-founded if and only if the proper subterm ord-
ering modulo A is well-founded. We define >, by: P >A,P' if and only if
MA(P)> £ M4P').
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Lemma 3.7. If the proper subterm ordering modulo A is well-founded, then = 5

ts a proof ordering.

Proof. We show that =, is contained in >, and therefore is well-founded (by
assumption the proper subterm ordering modulo A is well-founded). Let P and

P! be proofs for which P = ,P"'.

If P' is obtained from P by application of an equality pattern, then an
equality step s «»pt is replaced by a number of proof steps that are smaller in
the first component of the complexity measure ¢ . As a result of the replace-
ment, the complexity of the neighboring steps of s «+»p¢ may change in the third
component. Such changes only pertain to rewrife steps u —p v for which
s A' u or te ,; u. Consequently, these proof steps are strictly smaller than
s «+>p t, and any increase in the third component of their complexity is offset by

the deletion of the equality step.

If P! is obtained from P by application of a simplification pattern, then
similar arguments as in Lemma 2.6 can be used to show that a rewrite step
s —p t is replaced by a sequence of smaller proof steps. (The second, fourth, and
fifth components of the complexity measure ¢ , are needed for this case.) Now,
consider a neighboring (rewrite) step u —pv of s »pt. If ue ¢, then the
neighboring step is smalier than s —p ¢ and a possible increase in the complexity
of the former is offset by deletion of the latter. On the other hand, if u « ;s ,
then the third component of ¢, (u,v,P) can not increase. (The rewrite step
s —p t is either replaced by a rewrite step that applies at the same position, or
by a sequence of proof steps s « ;s' —p w all of which apply at lower posi-

tions.)

Finally, suppose that P’ is obtained from P by eliminating a peak. It can

easily be checked that the elimination patterns for non-overlaps and for variable
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overlaps simplify a proof. The (first and fourth) elimination patterns for overlaps
s «+—p u—rpatl replace an overlap by a sequence of proof steps in which all terms
are strictly smaller than u. In addition, any rewrite step whose complexivty
changes in the third component must apply to terms smaller than u. Thus,
these elimination patterns simplify a proof. There remain the (second, third, and
fifth) overlap patterns. (a) A rewrite step s = ¢ is always smaller (in the second
or third component) than an equality step s «», u that applies at the same or a
higher position. Therefore, in the second overlap pattern, s —p:t is smaller
than s, u—;t. (b) The fifth overlap pattern allows us to replace
seu—pypy4t by s 4—+,; Vg w HA‘t. The condition on the latter proof
guarantee that all its proof steps are smaller than the equality step s <, u (all
equality steps in s + ; v apply at positions strictly below s <4 u). (c) In the
third pattern, s+, u <, ¢ is replaced by s «p:t. The rewrite steps have
equivalent left hand sides (with respect to « /;) and furthermore apply at the
same position. But the third component of ¢ o(s,t,P) contains an additional
element (corresponding to the equality step u <+, ¢). Therefore, u—y s is
bigger than ¢t —p.s in the third component of ¢ 5. (The third component of ¢ o

is only needed for this case, in fact.) e

Lemma 3.8. Let A be a set of equations such that the proper subterm ordering
modulo A is well-founded. A derivation (E R ), (E ,R,), - - tn A is fair rela-
tive to Sp and N, if (a) E¥=0, (b) all critical pairs of L™ on R” and all A -
critical pairs of N® on R” are contained in Uy Ey, and (c) all critical pasrs

between L™ and A and all A -critical pairs of N© on A are contained in U Ry .

Proof. Let P be a proof in A UE; UR; that contains an instance of a pattern in

Ny, i.e. a subproof of the form s «+p ¢t or s —pAY = 4 Upat - We have to show

that P is reducible by = 4. If P contains an equality step u «»p v, then, by
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part (a) of the fairness requirement, eventually one of the inference rules M1, M3,
or M4 has to be applied, resulting in a proof @ in A UE; UR;, for some j >1,
such that P =3 ,0Q . Similarly, if P uses a non-persisting rewrite step, application
of Al or A2 will yield a simpler proof @ . Finally, suppose that P uses only per-
sisting rules or equations in A, i.e. is a proof in A UR®, but contains a peak

Vg R U P RAW . If this peak is a variable overlap, or not an overlap at all,

.then it can be eliminated by rearranging its proof steps, as described in the
corresponding elimination patterns. On the other hand, parts (b) and (¢) of the
fairness hypothesis guarantee that all critical pairs necessary for elimination of
overlaps are computed. In either case, there is a proof @ in A UE;UR;, for

some j >¢,such that P=,0Q. o

A completion procedure based on A is called fair if it generates only fair
derivations (in the sense of Lemma 3.8) unless it fails. As an immediate conse-

quence of Theorem 2.1 and Lemma 3.8, we obtain

THEOREM 3.3. Let A be a set of equations with a finite complete unification
algorithm for which the proper subterm ordering modulo A is well-founded. Let
E be e set of equations, R =L UN be a rewrite system, and > be a reduction
ordering that s compatible with A and contains R. If C ts a fair completion
procedure and does not fasl for inputs E, R and >, then E®=0 and (R™)* is

canonscal modulo A .

A system R4 is called reduced if, for every rule { »r in R, ! is irreducible
in (R-{l—r})* and r is irreducible in R4 . Completion procedures based on
the inference system A do not allow construction of reduced systems, in general,
since simplification of left-hand sides by V+A at the top is not permitted. Thus,
a final (canonical) system R ™ may contain two rules I —r and u —v, for which

‘ - - . .
[+ 4 u o, for some substitution 0. But a reduced canonical system can be easily
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obtained (see also Jouannaud and Kirchner, 1986):

PROPOSITION 3.1. Let R be a (finite) rewrste system and A be a set of equa-
tions, such that R4 s canonical modulo A . Let R' be the system obtained from
R by deleting one by one any rule l —r for which there is a rule u —v in N, dis-
tinct from | —r, such that IHA‘ua, for some substitution 0. Then (R')* is

canonical modulo A .

In contrast with standard rewriting, reduced systems that are canonical
modulo a congruence need not be unique with respect to a reduction ordering >
when A allows infinite congruence classes. A system R is called minimal, if,

whenever [+, u [s 0], for any two (not necessarily distinct) rules | —r and s —¢

_in N, then u is a variable and ¢ is a renaming of variables.

THEOREM 3.4. (Dershowitz, Marcus, and Tarlecki, 1986) Let A be a set of
equations, R and R' be mintmal rewrite systems, and > be a reduction ordering
that is compatible with A and conteins R and R'. If R* and (R')* are
reduced and canonical modulo A, and the congruence relations H;UR and

“*A‘ ur' ore the same, then R and R' are identical up to renaming of variables.

3.3. Protected and Extended Rules

A major limitation of the proof system A is that it does not permit
simplifications of left-hand sides by N4 at the top. This limitation can be by-

passed to a certain extent (at the cost of imposing other restrictions).

Let vow, uo—py.4 uolp/ro] be an A -critical overlap of [ —»r on u=v
at position p. In the completion procedure proposed by Jouannaud and Kirchner
(1986}, not the A -critical pair v o=u o[r 0] is generated, but rather an equation

w =u o{r o}, if there exists a term w such that vo—~paw, or an eziended rule
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ulp/l]-ulp/r], if vo is irreducible in R4. This more intricate scheme of
applying inference rule M2 can also be viewed as combining creation of a rule
v 0—u o[r o] with the simplification (possibly by N+A at the top) of its left-hand
side. If possible, a term w is chosen that can be obtained by reducing a proper
subterm of vo in R /A, or by reducing vo at the top in R. If vo can only be
reduced by N+A at the top, using a rule [’ —r' in N, say, then [’ —=r' has to
be protected from simplification on the left-hand side. An extended rule
u {l]>u[r] is used to reduce vo to uo[ro] in N+A; hence has to be protected,

too.

Let R =L UN be a rewrite system, where some of the rules may be pro-
tected. The above schema of applying M2 can be described by an overlap pat-
tern

S§ gt =yt = s SNy, U ept

where the left-hand side denotes an overlap with the second proof step strictly
below the first, and s — .4 v is by application of a protected rule at a position
below s <4 u. The set Sp is obtained from S, by adding this overlap pattern
and replacing the simplification patterns By more restricted versions

s—ptl = s—+R:u4—R:/At

s—=pt =  s-opijpvepit

s—pt =  s—opiwept
in which s —p ¢t is by application of an unprotected rule ! —r at position p;
s —pru isby [ »r' at position p; s nd TR is by application of a rule strictly

below p; and s —p:w is by arule I’ —r' with I[>I' at position p.

The ordering = p induced by Sp is well-founded if the proper subterm order-
ing modulo A is. Let P be a proof in A UEUR. So far, we have associated

with each proof step in P a measure ca(s,t,P) of its complexity. Let
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R =L UN be a rewrite system, N' be the set of all protected rules in N, and
R' be R-N'. We can translate P into a proof P' in AUEUR'UN'-A.
Thus, a rewrite step s — 1.4 ¢ represents a sequence s <45’ —y:t in P, but a
single proof step in P’'. (We assume that P’ .contains no subproof
sesu—pnr. 4t for which s —>pyr.4t. Also, when translating a sequence
s+—pN1ue,v—pyit in which all equality steps are below at least one of the
rewrite steps, as many equality steps as possible are associated with the rewrite
step at a lower position. If both rewrite steps apply at the same position, then
all equality steps are associated with the left rewrite step.) The complexity meas-
ure cp is defined with respect to this alternative interpretation of proofs. This
implies that certain equality steps s «»4 ¢ in P do not directly contribute to the

complexity of a proof.

Let P be a proof in AUEUR and P’ =(ty, ..., t,) be the corresponding
proof in AUEUR'UN'+A. The complexity Mp(P) of P is the multiset
{ep(tot,P'), - -, cp(ty_pstn,P')}, where ¢ p(t;_s,t; ,P')is

({& -t b=rmimm if ; 1opt

({t; 1}t -1/ ps ymaz 1 ,t;) if t;_j+ 4 t; by an equation ! =r

({tiabtia/pisa (bt P JG) i 4 —p t by arule l—r
Here p; denotes the position of the i-th proof step in P' and a(#;_,%,P') is
defined by: (i) if t;_;—pyr.4 ¢ (i.e. by a protected rule) and #;_;—pyi.4 8o
applies at the same position, then a(¢;_y,t; ,P')=0; otherwise a (¢;_;,; ,P') is
the multiset {(t;_/p; 1, 6; 1), (ti1/Pivd) -+ -, (ti, /Py, 1)}, where (&1, .. .,
ti;, ) is the proof in P represented by t;_;—y:.4 t; and §; is 0, if the ¢-th proof
step in P’ is a rewrite step, and 1, otherwise; (ii) if ¢;_,—p:{; (i.e. by an unpro-
tected rule), then a(¢;_,¢;,P') is the multiset {(t; &z . 1/P;i k41 Gicks1) » - -

(t;_1/Pi -1y 6;1)}, where k is the largest index for which (t;_,,..., %) is a
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proof of the form t_ e qt;, or 4, —prti +1<—>; t;1, or
E
bk N A tickeatia

The ordering > £ (with appropriate modifications in the third component) is
used to compare elements ¢ p(s,t,P). We define >p by: P >pP' if and only if
Mp(P)> {Mp(P').

Lemma 3.9. If the proper sublerm ordering modulo A s well-founded, then =p

ts a proof ordering.

Proof. 1t can be proved that P =pQ implies P >p@, for all proofs P and Q
in AUEUR . The complexity of proofs P and @ depends on their respective
translations into proofs P’ and @' in AUEUR'UN'+A. The assertion can
be proved separately for the various elimination patterns. For the equality and
simplification patterns the proof is the same as for Lemma 3.7. Elimination of
peaks s+pu—pat is also similar to Lemma 3.7. With elimination of
s+, u—pat we distinguish whether s+, ¢ is part of a rewrite step
s'«—pnr.qu in P', or is a proof ‘step by itself. In the latter case one can
proceed as in Lemma 3.7. As an example of the former case, suppose the fifth
overlap pattern of S, is used to replace s >4 u —py. 4t by s e; VoRiw H;t .
Thus, in P the subproof s'«pyi ,u—py.,t is replaced by a proof
s'le—prav—piw «—»;t . The sequence wHI;t is smaller than u — 5., t, since
all its terms are smaller than u.' Let p be the position of s <+, u. The restric-
tions on the overlap pattern guarantee that the position ¢ of v =5« w is below
p, and that all equality steps in s « ; v are strictly below p. (Of course, p
must be below the position of s’ <« pi.4 u.) The rewrite step s’ «—yr.4 v is
obtained from s’ «p:.4 u by replacing one of its equality steps by a sequence of
equality steps that apply at strictly lower positions. Therefore, the former proof

step is smaller than the latter in the third component. (The positions of the
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respective neighboring steps may also change. But since ¢ is below p this has no
effect.) Finally, the rewrite step v —p: w is smaller than s/ «p., ¢ either in
the second or in the third component. Therefore, P >p@ . Similar reasoning

applies to the other cases. e

Lemma 3.10. Let A be a set of equations for which the proper subterm ordering
modulo A 1s well-founded. A derivation in A is fair relative to Sp and N if (a)
E®=9, (b) all critical pairs of L™ on R and all A -critical pairs of N® on R®
are contatned in Uy By, (c) all eritical pairs between L™ and A are contained in
Ui Ry, (d) whenever l=r is an A -critical pair of N* on A, then there is some
7, such that esther l —»r s contained in R;, or I' =r is contained in E;, where
l—>Ni .4 1! by application of a protecied rule, and (e) left-hand sides of protected

rules are not simplified.

The proof is essentially the same as for Lemma 3.8. Theorem 1 is valid with

the above characterization of fairness.

The completion procedure described in Jouannaud and Kirchner (1986) is a
specific version of the proof system A. Jouannaud and Kirchner (1986) prove the
correctness of this procedure under the assumptions that congruence classes gen-
erated by A are finite and that the proper subsumption ordering modulo A is
well-founded. The first assumption implies that the subterm ordering modulo A

is well-founded, whereas the second is not needed at all.

Rewrite relations other than R *A have also been used for rewriting modulo
a congruence. Pedersen (1985) introduces a rewrite relation RA that consists of
all pairs (u,v ) such that, for some substitution ¢ and some rewrite rule [ —r in
R, u+ /; lo—p r o=v, where each equality step applies in the variable part of
I. For example, if A is {ea=b}, and R is {f (z,z)—g(z)}, then
f(a,b)-g4g(a) The relation RA is less general than R -A. For instance, if
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A is{a=b} and R is {f (a,a)—g(a)}, then f (a,b) is irreducible in RA,
whereas it reduces to ¢g(a¢) in R+A. Variable overlaps s <+, u —p ¢ can be
regarded as single rewrite steps in RA. Pedersen (1985) hints at a completion

procedure for RA in which A -unification is not needed.

3.4. Completion for the Infinite Congruence Class Case

Extended rules were introduced by Peterson and Stickel (1981) in the con-
text of associative-commutative rewriting. Jouannaud and Kirchner (1986) gen-
eralized the concept to rewriting modulo a congruence, in general. In this section
we present a completion method, based on the systematic use of extended rules,
that can be applied to any set of equations A with a finite complete unification
algorithm. In particular, it can be used for equational theories that generate
infinite congruence classes, e.g. theories with identity, f (z,e )=z, or equipo-

tency, f (f (z))=z. Such theories can not be handled by any other method.

Let R =L UN be a rewrite system, where L contains only left-linear rules.
A rule [—-r in N and equation u=v in A determine an extended rule
u(l]>u[r], if | is A -unifiable with some proper (non-variable) subterm v /p of

u.

Left-hand sides of extended rules must not be simplified. This may preclude
construction of fully reduced systems. But extended rules do have advantages.
Consider an A -critical overlap voe, uoer uallo] —puofro] of I —r on
u=v at position p. The term vo reduces to uolro| by application of
u{l/]—u[r]. In other words, in the presence of an extended rule, the A -critical
pair v o=u ofr o] simplifies to a trivial equation u o{r 6]=u o[r o]; hence need not
be computed in the first place. This argument applies to any A -critical pair of

l—r on u=v at position p. Therefore, it suffices to compute a single extended
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rule, instead of a possibly large set of A -critical pairs. In addition, it is usually
more efficient to computed an extended rule than an A -critical pair, since only a

test for A -unifiability is required.

Extended rules can be used within the inference system A. But completion
procedures based on A are confined to equational theories A for which the
proper subterm ordering modulo A is well-founded. We present a different com-
pietion method that imposes no such requirement. This method generalizes the
associative-commutative completion procedure by Peterson and Stickel (1981) to

arbitrary equational theories A .

Let A be a symmetric set of equations and > be 2 reduction ordering com-
patible with A. We assume that all rewrite systems R are partitioned into two
sets L and N, where L contains only left-linear rules. Rewrite rules (in L or
N') may be protected (from simplification on the left-hand side). The inference

system E consists of M plus the following simplification rules:

E1) Simplifying a right-hand side of a rule

(B,RU{s ~t})
(B,RU{s —u})

ift—-)R/Au

E2) Simplifying a left-hand side of a rule

(E,RU{s —t})
(BEU{u=t},R)

arule [ —r with s>

if s = is not protected and s —p /4 u by

Here > may be any well-founded ordering on terms, e.g. terms may be com-
pared by their size. The corresponding simplification patterns are

s—=pt =  sopitepi,tl
s-—)Rt = S—PRI/AUHElt

where s -, t is by application of a rule ! —r at position p; s =g/ u is by
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!

{—r' at position p; and S—rpijqv is by a rule ! —r! with I[>1]' at a posi-

tion below p .

The set Sg is obtained from S, by replacing the simplification patterns by

the patterns above, and replacing the overlap patterns by patterns

S+—pu—opt = s ept

S u—pt = s —pit

S+ Uyt = s e—pit

S +—pu 2,4t = SH;vHE,wH;t
s 4 u -t = s—*N.AvHA*t

where all left-hand sides denote overlaps with the second step applying below the
first step, and all proof steps on right-hand sides apply below the position of
u—4ur S In addition, the rewrite steps s —p:t, in the second pattern,
s +—pit, in the third pattern, and s — .4 v, in the last pattern, are by applica-

tion of a protected rule.

Lemma 3.11. The set of elimination patierns Sg is compatible with the infer-

ence system E.

We next prove that the ordering =g induced by Sg is well-founded. Let
R =L UN be a rewrite system. Let N' be the set of all protected rules in NV,
and R’ be R-N'. Any proof in A UEUR can be interpreted as a proof in
AUEUR'UN'-A. In other words, s — .4 t is considered as a single rewrite
step, not as an abbreviation for a sequence s <+, s’ —p't. (In case of doubt,
equality steps are always associated with a rewrite step that applies at the lower
position, or with the rewrite step to the left.) Let P be a proof in
AUEUR'UN'-A. The ordering >g is based on the following complexit}y
measure ¢ g:

if s gt, then cg(s,t,P)is ({5,t },--),
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if s 4 t, then ¢g(s,t,P)is ({s },-,maz),
if s = p4t by a protected rule ! —r at position p,
then ¢ g(s ,¢,P)is ({s },-n (s,t,P)),
if s »p4t by an unprotected rule [ —r at position p,
then ¢ g(s,t,P)is ({s },{,t),
where n (s,t,P) is the number of equality steps in s — 4 ¢, unless the neighbor-
ing step of s = 54¢ in P is of the form s —p:., u (i.e. by a protected rule in
N) and applies at the same or a higher position, in which case n (s ,t,P )=0.
Elements ¢ g(s ,¢ ,P ) are compared lexicographically in the multiset ordering >,
the ordering [>, and a combination of the reduction ordering > and the usual
greater-than ordering on natural numbers (more precisely, maz >¢ >n, for all

terms ¢ and natural numbers n). The ordering > g is well-founded.
Lemma 3.12. The relation =g 1s a proof ordering.

Proof. It suffices to prove that =g is contained in >g. This can be done in a
similar way as for Lemma 3.9. We prove the assertion for a representative case,
namely for the overlap pattern
Sy u oyt = s—»Nr.AvH;t.

Suppose that P! can be obtained from P by application of this elimination pat-
tern. First note that all terms in v « ; t are smaller than u. Therefore, the
sequence v+, ¢ is smaller than the rewrite step u —y.4t. If s+, u contri-
butes to the complexity of P, then it is bigger than s —y1., v, implying
P >gP'. On the other hand, suppose that s <+ 4 u is part of a rewrite step, i.e.
P contains a subproof w«pyi.4 4 —y.4t. The respective subproof in P’ is
Wepr. 48" Sy 404 t, for some s’ with s’ < 5. Now, wepi. 5’ is
smaller than w <., u, since it contains fewer equality steps. Since the rewrite

step s — 1.4 v applies below w«y:1.4 s, we have n(w,s,P')=0. Therefore,
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§ —Nt.4 v is also smaller than w<«y:1.4 u, which again implies that P’ is

simpler than P. e

Lemma 3.13. A derivation (E,R,), (E,R,), " -+ in E is fair relative to Sg
and N, if (a) E®=0, (b} all critical pairs of L™ on R* and all A -critical pairs of
N% on R® are contained in U, E, , (c) all extended rules of N* on A and all
critical pairs between L™ and A are contained in U, R, and are protected, and

(d) left-hand sides of protected rules are never simplified.

The lemma can be proved in the same way as Lemma 3.8. A completion pro-
cedure based on E is fair if it generates only fair derivations (in the sense of
Lemma 3.13) unless it fails. As an immediate consequence of Theorem 2.1 and

Lemma. 3.13 we obtain

THEOREM 3.5. Let A and E be sets of equations, R be a rewrite system, and
> be a reduction ordering that contains B and is compatible with A. If C 1is a

fair completion procedure based on E and does not fail for inputs E, R and >,

then E*=0 and (R")* is Church-Rosser modulo A .

The associative-commutative completion procedure by Peterson and Stickel
(1981) can be formulated within the inference system E. This procedure applies
to sets AC of associativity and commutativity axioms and employs the rewrite
relation R *AC . For simplification of left-hand sides an ordering [> is used in
which terms are first compared by size, then with respect to the proper subsump-
tion ordering modulo AC. The only extended rules, originating from rules
f (s,t)—>u with an AC -operator f as outermost symbol on the left-hand side,
are f (z,f (s,t))—f (z,u)and f (f (s,t),z)=f (u,z), where z is a new vari-
able not appearing in s, t, or u. (Since both rules are equivalent, only one is
actually needed. Extensions of extended rules are superfluous.) A large number of

canonical systems have been derived with this completion method (e.g. Hullot
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1980).

3.6. Examples

Abelian group theory (Peterson and Stickel, 1981). The axioms for free abelian

groups are
z4+0 = =z
z+(-z) = 0
z+y+z) = (z+y)+z
Tty = y+z
Let R be the system:
z +0 — T
(z+0)+y — z+y
-0 —= 0
~(-z) - z
~z+y) - (-z)+(-y)
z+(-z) — O
(z+(-z)+y - vy

where the operator + is in AC. Then R *AC is canonical modulo AC. (A proof
of termination of R /AC is outlined in the next chapter.) The second and the

last rule are extended rules.

The following slightly different system was given by Jouannaud and

Kirchner (1986):

z4+0 - z

0+z - I

-0 — 0

~{z) - =z
(z+y) - (-z=)+(-y)

t+{-z) —- O

E+(z)ty -

Let L be the set of the first five rules, N the set of the remaining rules. The last

rule is an extended rule. Then L UN *AC is canonical modulo AC.
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Neither of the above systems is reduced. Instead, let R be

z +0

0+z

-0

~(~z)
~(z+y)
z+(-z)
(z+y)+(-v)

~z J+(-y)

A
HOTH O8 8

L consist of the first five rules above, and N of the last two rules. The system

L UN *AC is reduced and canonical.

3.8. Critical Pair Criteria

In the preceding chapter we have described critical pair criteria for standard
completion. Similar criteria can be applied to rewriting modulo a congruence. In
this section, we generalize the concept of compositeness (Kapur, Musser, and

Narendran, 1985). For related work see Kiichlin (1986b).

Definition 3.1. (a) A critical pair ¢ =d of ! —»r on v —v at position p, with
corresponding unifier o, is called composite, if u o is reducible by R /A at a posi-
tion strictly below p. (b) An A -critical pair ¢ =d of | —r on u —v at position
p, with corresponding A -unifier o, is called composite, if one of the terms u o or

uo|p /l o] is reducible by R /A at a position strictly below p.

Composite critical pairs are redundant for (certain) completion procedures
based on the inference system A. Consider, for example, an A -critical overlap
P=(vo—puog—y.  uolp/ra]).
If o reduces to s, at a position strictly below critical pair position p, then the

overlap P can be decomposed into two peaks

@=(vo—puo—p g —pj4u0-yN.4 uolp /r o]).
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Now, the first proof step has smaller complexity in @ than in P, because its
neighboring rewrite step applies at a lower position. A similar argument applies
to the last proof step. The additional proof steps in @ apply at lower positions;
hence are less complex. Therefore, we have P >,Q . In other words, any over-
lap corresponding to a composite A -critical pair of N on R can be simplified.
Similar arguments apply to other critical overlaps, but not to overlaps involving

extended rules. (A different complexity measure is used for extended rules!)

An special case of compositeness is blocking. An A -critical pair ¢ =d is
called blocked if z o is irreducible in R /A, for all variables z, o being the A -
unifier corresponding to ¢ =d. Unblocked critical pairs are composite; hence
redundant. Kapur, Musser and Narendran (1985) report that the application of
biocking to the associative-commutative completion method of Peterson and
Stickel (1981) typically results in considerable savings of computation time.
Associative-commutative completion is based on extended rules, however, and the

correctness of blocked (or composite) criteria for this case is an open problem.
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CHAPTER 4

COMPLETION WITHOUT FAILURE

A completion procedure may fail for various reasons. Any completion pro-
cedure must fail for input E, if E can not be represented by a canorical system.
Even if E can be characterized by a canonical éystem R, completion may fail
whenever the given reduction ordering > does not contain R, i.e. if | and r are
incomparable with respect to >, for some rule /—r in R. More disturbingly,
standard completion may also fail when a reduction ordering containing R is
provided as input (see Dershowitz, Marcus, and Tarlecki, 1987). Failure can be
avoided by choosing as input a reduction ordering > that is total on congruence
classes of E. This requirement is too strong in general, and no such ordering
exists, for instance, if E contains a commutativity axiom. In this chapter we
show that if standard completion is extended appropriately, then a more reason-
able condition on the given reduction ordering suffices for establishing a Church- |
Rosser property on ground (i.e. variable-free) terms. This extension, called
‘“unfailing” completion, can be applied to the construction of canonical rewrite

systems and to refutational theorem proving.

4.1. Unfailing Completion

Let E be a set of equations, R be a rewrite system, and > be a reduction
ordering containing R . A ground rewrite proof relative to > in EUR is a proof

U pUR Y19 EUR © P EUR Yn>s such that uy> -+ >y < -+ <u,, for
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some k, 0<k <n. A ground rewrite proof is a rewrite proof in Rg UR , where
Rg consists of all ‘“‘orientable instances” uo—vo (i.e. uo>vo0) of equations
u==v in E. We say that (E,R) is ground Church-Rosser relative to > if, for
all ground terms s and ¢ with s & uR t, there exists a ground rewrite proof

relative to > in FUR of the equation s =t.

A reduction ordering > is called a ground reduction ordering for E if it is
total on ground terms equivalent in E. That is, whenever s and ¢ are distinct

ground terms such that s « z,; t,thens >t ort >s.

Let > be a ground reduction ordering for E. A ground rewrite proof rela-
tive to > can be characterized as a ground proof that contains no subproof of
the form s «+p p u &g pt, for which u >s and u >t. We denote the set con-
sisting of this “critical” pattern by Ny and use the following overlap (elimina-
tion) pattern to simplify such proofs:

P=(s++gypuepypt) = (s o yp t)=P’,
where u >s, u >t, P>cP',and R and R' are contained in >. This overlap
pattern allows us, for example, to replace a ground proof s <+ p u g gt by
an equality step s +>g1t or by a ground rewrite proof s <z rur't. Let Sy be
the set consisting of this overlap pattern plus the equality and simplification pat-
terns for standard completion. The corresponding proof relation is denoted by

=y
Lemma 4.1. The relation =y is a proof ordering.

Proof. 1t suffices to prove that > contains any instance of an elimination pat-
tern in Sy. For the overlap pattern this follows immediately from the definition;

for the equality and simplification patterns, from Lemma 2.6. e
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Let > be a reduction ordering. The inference system U (unfailing comple-
tion) consists of the following ¢nference rules, where R is any set of rules con-

tained in >:

U1) Orienting an equation.

LEU{Sit},R) if s
(E,RU{s =t }) fs>t

U2) Adding an equational consequence.
(E,R)
(Eu{s=t},R)

ifs«—rguR uHEukt

U3) Simplifying an equation.
(E U{s=t }’R )
(E U{u=t hLR)

ifs—pu

U4) Deleting a trivial equation.

(EU{s=s },R)
(E,R)

S1) Simplifying the right-hand side of a rewrite rule

(Z,RU{s—t})
(B, R U{s —u})

ift—*Ru

S2) Simplifying the left-hand side of a rewrite rule

ég l,JR{ U{st—}*tk})) if s —p u at a position not at the top
u =t },
((giﬁffjt_}’t;; if s—pu byl —r, where s >!

The difference with standard completion is that both equations and rules, and not
just rules, may be used to generate equational consequences. The inference sys-
tem U depends on the reduction ordering >, whereas Ny has been defined rela-
tive to a ground reduction ordering >. We will therefore assume that unfailing

completion is used in combination with a reduction ordering > that can be
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extended to a ground red}xction ordering > . Orde;rings based on polynomial
interpretations (Lankford, 1975, 1979) satisfy this requirement. Furthermore, any
partial ordering on the set of operator symbols (a precedence ordering), can be
extended to a ground reduction ordering on terms by way of a recursive path ord-
ering (Dershowitz, 1982). (If the precedence ordering is total, then the

corresponding recursive path ordering is total on ground terms.)

Let U be the inference system for a ground reduction ordering >. Let &> be

a ground reduction ordering containing >, and Ny and Sy be the sets associated

with o>. We have

Lemma 4.2. The set of elimination paiterns Sy is compatible with unfailing

completion.

Lemma 4.3. A derivation (Eo,R ), (E,R,),* -+ in U is fair relative to Sy and

Ny if any critical pair ¢ =d of E*UR is contained in U, E, .

Proof. Let (Eg,Rg), (E,R ), ' -+ be a derivation in U. We have to show that
whenever P is a proof in E;UR; that contains a critical pattern of Ny, then
there exists a proof P/ in E;UR;, j >i, such that P=suP'. Let P be a proof
in E;UR;. If P uses a non-persisting equation or rule, then P =yP', for some
proof P'. Since = ¢ is contained in =y, we have P = yP'. Next suppose that
P contains a ground proof @ =(s ¢+ gw gt < ge p=t), Wwhere u>s,t. If @
is not a critical overlap, then, by the Critical Pair Lemma, there is a ground
rewrite proof Q' (relative to > ) for s =¢. Thus, @ =y@’' and, by monotoni-
city, P=yP', for some proof P'. If @ is a critical overlap, then s =t must
contain an instance of a critical pair ¢ =d of EXUR . By fairness, ¢ =d is in
Ey, for some k, thus Q@'=(s+pt) is a proof in E;. Again, we have

@ =uQ', and therefore P = yP', for some appropriate P'. o
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The characterization of fairness above can be refined. Since critical pairs of
E®UR ® are needed for eliminating overlaps s «»g g v ¢+ g gt With u>s and

u >t, any critical pair coming from an overlap s ¢+ 5 g u g gt for which

s >u or t >u can be ignored.

A U-completion procedure is any procedure that accepts as input a set of
equations E, a rewrite system R, and a reduction ordering > containing R .
Using the inference rules of unfailing completion as elementary computation
steps, it generates a derivation (E¢,R), (E,R,), - -, where Eyis E, and R is
R . A U-completion procedure is fair if it generates only fair derivations. It can
easily be seen from Lemma 4.3 that fair derivations can be constructed from any

arbitrary pair (E; ,R; ).
THEOREM 4.1. Let C be a fair U-completion procedure, E be a set of equa-

tions, R be a rewrite system, and > be a reduction ordering that contains R and

can be extended to a ground reduction ordering > for E. Then C, for inputs E ,

R and >, will generate o derivation such that (E,R™) is ground Church-Rosser

relative to > .

Proof. Let P be any ground proof in E“UR *. By Theorem 2.1 and Lemma 4.3,
there is a proof P', such that P=yP' and P' contains no critical pattern of
Ny. If P' contains no such critical pattern, then it must be a ground rewrite

proof. e

4.2, Construction of Canonical Rewrite Systems

We next turn to the problem of constructing reduced canonical rewrite sys-
tems. Recall that a canonical rewrite system R is reduced if, for every rewrite

rule [—r in R, the term r 1is irreducible in R and [ is irreducible in
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R -{l—>r}. Any two reduced canonical systems R and R' that are contained
in the same reduction ordering are identical up to renaming of variables—
provided, of course, that the congruence relations ++, and «+p, are the same

(e.g. Metivier, 1983).

Let R be a reduced canonical system and > be a reduction ordering con-
taining R . If | —»r is a rule in R, then all proper subterms of ! and all terms of
which [ is a proper instance are irreducible in R. A term ¢ is irreducible in R if
and only if it is minimal with respect to > in its congruence class. Every
congruence class contains exactly one irreducible (minimal) term. The systems
constructed by completion need not be reduced, in general. We may enforce

deletion of redundant rewrite rules by imposing a stronger fairness requirement.

Definition 4.1. A derivation (EgRy), (E,R,), - in U is fair for
simplification if (a) all critical pairs of £ “UR ™ are contained in Uy Ej , (b) B is
reduced, (c) whenever u =v is contained in £, then v and v are incomparable

with respect to > and irreducible in R .

THEOREM 4.2. Let R be a reduced canonical system for E, > be a reduction
ordering containing R, and C be a U-completion procedure that is fair for
ssmplification. If > can be extended to a ground reduction ordering for E , then
C will generate a derivation for inputs E and >, such that E*=0 and R” and

R are the same up to renaming of variables.

Proof. Let R be a reduced canonical system for E, and > be a ground reduc-
tion ordering for E containing >. By ¢t we denote the skolemized version of a

term t. The set R consists of all rules l_—>r—, where ! —r is in R. We extend
the ordering > to terms containing Skolem constants of R by defining: s >t if

and only if either sv>tv or sy=tv and s >’ t, where v maps all (new) Skolem
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constant to some (fixed) constant ¢ of R and >' is an arbitrary ground reduc-

tion ordering. A term t is irreducible in R if and only if t is. Thus, ¢ is

minimal with respect to > if and only t is.

Now let (Eg,Rq), (E 3R ), * - - be the derivation generated by C for inputs
E and >, i.e. Eqg=F and R =0, and let ! —r be a rule in R. We will prove,
By induction on =y, that there is a ground rewrite proof of I=7 wherein the
first step is a rewrite step. Since I=r isvalidin E , by Theorem 4.1, there is 2
ground  rewrite proof P=(l,u;, ..., u, »r) o ETUR®, e
> u, < *++ < 7. Since r is minimal, we actually have I > - - >r.
Since all proper subterms of 1 are minimal, the first step in P is by application
of an equation ¥ =v in E®UR ™, at the top, that is, ! is uo. If | is an instance

of u,sois /. If | were a proper instance, then u would be minimal. This would

imply v >u, which contradicts u o> vo. Therefore, | and v have to be the
same up to renaming of variables and we may assume without loss of generality
that they are identical. In other words, the system E “UR * contains an equation

l=v.

If | and v are comparable, i.e. ! >v, then, by fairness for simplification,
| v must be in R”. Thus, the first step in P is a rewrite step. This is in par-
ticular true if P consists of only one proof step, since then v is equal to r. If
the first proof step is not a rewrite step, then / and v must be incomparable and
P must contain at least two proof steps. Since the first proof step applies at the
top, the first two steps must overlap. Thus there is a critical pair ¢ =d of
E®UR®, which, by fairness, is contained in Uy E;. Then there is a proof P’,
such that P=yP' and, consequently, also a ground rewrite proof P'' with
P'=yP'', By the induction hypothesis, some ground rewrite proof of =7

begins with a rewrite step. As we have shown above, this implies that R
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contains a rule [ —v.

Since R* contains a rule | —v in R %, for every left-hand side ! of a rule in
R, any term reducible in R is reducible in R *. This implies that E~=@ and,

since R ” is reduced, that R"=R . o

There are reduction orderings that can not be extended to a ground reduc-
tion ordering. Unfortunately, these also include reduction orderings induced by a
canonical reduced rewrite system. For example, the rewrite system
R={f (h{z)—f (i(z)), 9(:(z))—g(h(z)), h(a)—c, i(a)=—c} is canonical
and reduced. Any ground reduction ordering for B must contain k(a)>1(a)or
i(a)>h(a). If h(a)>i(a), then, by monotonicity, g (h(a))>g (i (a)); but
from the second rule in R we infer, by stability, ¢ (1(¢))>g(h(a)). A similar

contradiction can be derived from the assumption i (a )>h ().

We will next describe a class of rewrite systems that are contained in a
ground reduction ordering. A reduction sequence (of length n) is any sequence
to—+p t;—g - - —pt,. If R is finite and terminating, then (by Konig’s
Lemma) there are only finitely many reduction sequences from any given term ¢.
A reduction sequence is called innermost if, for 1<: <n, the reduction step
t;_,—pt; applies at a position p;, where each proper subterm of ¢;_;/p; is
irreducible in R. If R is finite and reduced, then we denote by I (¢) the length
of the shortest innermost reduction sequence from ¢ to its normal form ¢’, and
define the ordering >4 by: s >pt if and only if s =gt and either I(s)>I(t)
or I(s)=I(t) and s >t, where > is the usual “greater-than’ relation on the

natural numbers and & is any ground reduction ordering for R .

Lemma 4.4. The ordering >} is monotonic and contains R .
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Proof. Since R is reduced, we have I (l)=1 and I(r )=0, for any rule | —r in
R . Therefore, >4 contains R. Now suppose that s >4t, and let s’ be the
normal form of s and ¢ in R. Any shortest innermost reduction sequences of
u [s ] can be rearranged so that s is reduced to s’ before any other rewrite steps
are applied. In other words, u[s]—pu[s’]—gu’ is a shortest innermost
sequence. Since the corresponding innermost sequence u [t]—pus’]—pu’ is

shorter, we have u[s |>Su|t]. o

The ordering > ,é is not stable under substitution. For example, if R is

{f (z)—=9(z,z,2),a—b}, then f (a:)>}§g(z,z,z), but f (a)Fpg(a,a,a)

PROPOSITION 4.1. Let R be a reduced canonical system wherein no instance
of a right-hand side ts reducible and no variable appears more often in a right-
hand side than in the respective left-hand side. Then R is conlained in some

ground reduction ordering.

Proof. Let > be the transitive closure of the union of the reduction ordering
— g induced by R and the restriction of > ,é to ground terms. This ordering is
obviously stable and monotonic. For well-foundedness we prove that the restric-
tion of —7 to ground terms is contained in >j. It suffices to show that
lo> ,5' r o, for every rule [ »r in R and every ground substitution 0. Let o be a
ground substitution. Its normalized version o’ assigns to each variable z the
normal form of z 0. Since no variable appears more often in a right-hand side of
a rule than in the corresponding left-hand side, no shortest innermost reduction
sequence r0—p *** —pro can be longer than a shortest innermost sequence
lo—p - -+ —plo'. The term r o’ is irreducible, by assumption, whereas /¢’ is

reducible. Thus, I(I¢)>I(r o) which implies lo>fro. o

For arbitrary canonical systems we have the following result:
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THEOREM 4.3. Let R be a reduced canonical system for E and > be any
reduction ordering contained in > 5. Then any fair U-completion procedure will

generate a derivation such that R is contained in E”UR ™.

Proof. Let > be the union of > and the restriction of >1§ to ground terms.
This ordering is a ground reduction ordering. Let /—r be a rule in R. We
show that any proof P of =7 in E®UR * consists of a single step only, or oth-
erwise can be simplified with respect to > c. The assertion then follows by
induction on > We may assume that P is a (ground) proof
(I—,u 1 - -+ ty_1,T ), Wherein IS -+ >7. The first proof step is by application
of an equation u =v at the top, i.e. I=uo. Consequently, ! is an instance of u .
First suppose that I(u)>I(v). (This we have in particular if u >v.) If
I(u)=I(v)=0, then both u and v would be irreducible in R, which is impossi-
ble. Thus I(u)>0, whick implies that u and ! are reducible by some rule
" >r! in R. Since R is reduced, ! and /' must be identical. Thus, u is the
same as | and v the same as r, up to renaming of variables. In other words,
E™URT contains (a variant of) the equation /=r. On the other hand, if
I(v)>I(u), then v is reducible in B. Therefore P must contain at least two

proof steps, of which the first two must overlap. Then P can be simplified with

respect to > . o

4.3. Refutational Theorem Proving in Equational Theories

Completion procedures have been primarily used for constructing canonical
rewrite systems. Huet (1981) suggested the use of completion for theorem prov-
ing in equational theories, and proved that standard completion is a semi-decision
procedure for validity in purely equational theories, in cases where it does not

fail. We will prove that unfailing completion is a refutationally complete proof
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method for equational theories.

Let E be a set of equations and s =t be an equation. Let E" be the set
EU{eq(z,z)=true, egq (?,t_)=false }, where true and false are new con-
stants, eq is a new binary operator, and s and ¢ are skolemized versions of s
and ¢, respectively. The equation s =t is valid in E if and only if true =f alse -
is valid in E*. The inference system U is refutationally complete in the sense
that a refutation true =false can be derived in U from E ', whenever s =t is

validin E.

THEOREM 4.4. Let C be a fair U-completion procedure, E be a set of equa-
tions, and > be a reduction ordering that can be extended to a ground reduction
ordering for E. If s=t is valid in E, then C will generate a refutation

true = f alse for inputs E' and >.

Proof. We first show that the reduction ordering > can be extended to a ground
reduction ordering for E " By assumption, > can be extended to a ground
reduction ordering for E. We denote this extemsion by >, too, and assume,

without loss of generality, that it is also defined on terms containing Skolem con-

stants of 5 and t. We then extend > to an ordering > by defining, for all

terms s, ¢, u, and v not containing the symbols eq, or true, or false:
(a) eq {s,t)> u > true > false; and
(b) eq(s,t)> eq(u,v)if and only if {s,t }>>{u,v}.
Now, > is a ground reduction ordering for E *. Since true =false is valid in

E’, there is, by Theorem 4.1, a ground rewrite proof relative to > of
true =false in E;UR;, for some ¢. Since no term is smaller than true or

f alse , this proof can only be of the form true « E;uR, [ alse , which implies that

the equation true =f alse is contained in E; UR;. e
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Example 4.1. (J. Hsiang). Suppose E consists of

z+y = z+z
(z-y)+z = (s+z)y
(z+y)y = =

To prove that (z -y )+2z =z is an equational consequence of E , we derive a refu-
tation from E‘, where E' is E plus the equations eq(z,z)=true and
eq ((a -b )+c' a6 )=[alse . For orienting equations we use the recursive path ord-
ering (see next chapter) corresponding to a precedence ordering in which — is
smaller than +. In this ordering the second and third equation in £ are orient-
able:

(e-y)+z — (z+z)y

(z4+y)y — =
The first rule and the remaining equation of E produce a critical pair
(£ +2 )~y =(z -y )J+(z -y ), which can be simplified to {z +2)-y =(z +(z-y))-y.
This new equation and the second rule yield a critical pair z=(z +(z-y))-y,
which can be turned into a rule, and then used for simplifying the original equa-
tion to (z +z }-y =z. We obtain a2 new rule (z +z }-y —z that can be used to
simplify eq ((a +¢ )-b,a )=/ alse to eq(a,a)=false. The critical pair of this

equation with eq (e ,a )=true is a refutation true =f alse .

Unfailing completion is refutationally complete when used with a reduction
ordering that is contained in some ground reduction ordering. A corollary of
Theorem 4.4 is the refutation completeness of paramodulation, since the latter
essentially corresponds to unfailing completion with the “empty” ordering. The
advantages of using a non-trivial ordering, as compared to paramodulation, are
that (a) equations may be turned into rules and used for simplification, and (b)
equational consequences from rules are restricted to these obtained by overlap-

ping left-hand sides. The systematic use of rewriting may thus considerably
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reduce the search space of a proof procedure, without destroying refutation com-

pleteness.

Though the power of simplification is undisputed, rewrite techniques have
not yet been widely employed in (first-order) theorem proving with equality.
First attempts at integrating resolution and simplification by rewriting were
made by Brown (1975) and Lankford (1975). Peterson (1982) proved complete-
ness of an inference system combining resolution, paramodulation, and
simplification with respect to orderings isomorphic to w on ground terms. Hsiang
and Rusinowitch (1986a) show that oriented paramodulation, an inference rule
similar to C5 in that it excludes paramodulants obtained by replacing a term by
a more complex term, is complete for various resolution strategies. Hsiang and
Rusinowitch (1986b) use semantic trees to establish the refutation completeness
of an unfailing completion method that extends basic completion, but does not
include any of the simplification rules of standard completion. (The completeness
proof can be generalized to cover simplification; J. Hsiang, personal communica-
tion.) Implementations of completion without failure have been reported by Hsi-

ang and Rusinowitch (1986b) and Ohsuga and Sakai (1986).
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CHAPTER §

TRANSFORMATION ORDERINGS

A rewrite system R that is Church-Rosser and terminating provides a deci-
sion procedure for an equational theory E if it is finite, and a semi-decision pro-
cedure if it is infinite. In the preceding chapters we have implicitly assumed ter-
mination (by using reduction orderings for orienting equations) and showed how
to establish the Church-Rosser property. In this chapter, we will deal with the

problem of (orderings for) termination in more detail.

While termination of rewrite systems is undecidable, in general (e.g. Huet
and Lankford, 1978), a number of techniques have been developed to prove ter-
mination of specific rewrite systems, among them the Knuth-Bendix ordering
(Knuth and Bendix, 1970), monotonic interpretations (Manna and Ness, 1970),
polynomial interpretations (Lankford, 1975, 1979), path of subterms ordering
(Plaisted, 1978), recursive path ordering (Dershowitz, 1982), lexicographic and
semantic path ordering (Kamin and Levy, 1980), recursive decomposition order-
ing (Lescanne, 1982), and associative path ordering (Bachmair and Plaisted,
1985). For a survey, with an extensive list of references, see Dershowitz (1985b).
We will describe termination methods that are based on transformation tech-
niques, and in particular outline the design of reduction orderings for rewriting

modulo a congruence.
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b.1. Transformation

A rewrite system is terminating if and only if it is contained in some reduc-
tion ordering. Thus, most methods for proving termination consist of finding or
constructing an appropriate reduction ordering. It is frequently convenient to
separate a reduction ordering > into two parts: a ‘“termination function’ 7 that
maps terms in T to a set W, and a “standard” well-founded ordering > on W.
In this section, we will consider specific termination functions, called transforms,

that map terms to terms and can be represented by canonical rewrite systems.

The termination function described by a canonical system T maps a term ¢
to its (unique) normal form ¢’ in T. The system consisting of all rules ¢t —=¢' is
denoted by T!. We also assume that the ordering »> is a reduction ordering,
and thus can be characterized by some (possibly infinite) rewrite system S. We
will derive sufficient conditions for the combination of S and T to be a reduc-
tion ordering. For the sake of readability, we will use the symbols R, R~ and
R? to ambiguously denote the relations —p, —p and —, respectively, and

R* to denote «»p.

We say that two rewrite systems R and S commute if «—p 0 —¢ is con-
tained in —-go «~p. A system R is reducing relative to S and T if it is con-

tainedin T 0 So(T")Y, ie. if l>po—goeqpr,foreveryrule [—r in R .

THEOREM 5.1. Let R, S, and T be rewrste systems such that T s canonical, S
terminates, and S and T! commute. If R is reducing relative to S and T, then

R [T* terminates.

Proof. If R/T* is not terminating, then there is an infinite sequence
t,—=p taerp ty—p t44—>7‘- -+ +. Using the facts that R is reducing, T is

canonical, and S and T! commute, we can construct an infinite sequence
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Uj—g Ug—g Ug—rg ** "1

. .

T

T’ reducing T ’ T’ reducing T’ T reducing T

canonsesty canonicsty canonscsty N
m
commutation commutation

This contradicts the fact that S is terminating. o

COROLLARY 5.1. Let R, S, T, and T' be rewrste systems such that T is
canonical, S terminates, and S and T! commute. If T' is contained sn T* and

R 15 reducing relative to S and T, then R /T' terminates.

Let S and T be rewrite systems, such that S terminates and T is canoni-
cal. The transformation ordering >7‘? is defined by: u >2§ v if and only if
u—g10 g0+ w. It can easily be seen that > £ is transitive and irreflezive,
and hence a (strict partial) ordering. The ordering is well-founded, since S ts

terminating.
Lemma 5.1. If S and T! commute, then > § is a reduction ordering.

Proof. Let > denote the transformation ordering >1~? . For monotonicity and
stability it suffices to show that s >¢ implies ¢ [s 0]>¢ [t 0], for all terms s, ¢,
and ¢, and all substitutions 0. Suppose that s >t, ie. s—pu—gveq .
Then, for any substitution ¢ and term ¢,

clsal=recluo)—ge|vo]—reltal

Denoting by u' and v' the normal forms in T of ¢ [s o] and ¢ [t o], we have
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¢c[uo]=rwu' and ¢ [vo]opw'. Since S and T'! commute, so do S and T'!.

Thus we have u' —gv', which implies ¢ [so]>¢c [t o]. o

Commutation is essential for >f- to be a reduction ordering. On the other hand,

we have

Lemma 5.2. If T s canonical and >1‘? i1s a reduction ordering containing S,

then St and T'! commute.

Proof. Suppose that u «g¢ [sa]—gc [to], where s+t isin S. From s > §t
we may infer, by monotonicity and stability, ¢ [s g]> f¢ [t 0]. That is, we have

¢ [s o]— 7w =g v —q,c |t o], which implies commutation of S* and T!.

Let us consider specific transforms. For termination proofs symbolic
interpretations of operators are often useful. These consist of a single rewrite

rule  f

{£,,...,z,)=tlz,, ..., 2,], where ¢ contains all variables

12 %5
NTAr - .

Ty, ...,Z,, but not f. Such transforms are canonical. They may be used, for
instance, to declare two operators equivalent (for the purpose of proving termina-
tion). The T -normalized version Ry of R consists of all rules [! —7', where I

and r’ are normal forms of | and r in T, respectively, for some rule ! —r in

R.

Lemma 5.3. Let R be a rewrite system, T be a symbolic interpretation, and
Rq be the T -normalized version of R. Then R is reducing relative to Ry and

T, and Rgt and T! commute.

Proof. By the definition of Ry, R is reducing relative to Ry and T. For com-

mutation, suppose that ¢ [lg]—p_c [r o], for some rule /[ —r in Ry, some substi-
tution ¢ and some term ¢. We have to show that u — g v, where u and v are

normal forms of ¢ {l/o] and ¢ [ro] in T, respectively. Let o' be the “normalized

version” of o, i.e. zo is the normal form of z o', for all variables z, and let
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d[z,..., z] be the normal form of ¢ [z]in T. A normal form of ¢ |l o] can be
computed as follows: V
cllo]=pe[ld ]=pd[ld, ..., 1d]|=u.
Similarly, we have
clroj=gpelrd|ogpdlro, ..., rod |=v.
Neither 4 nor v contain the operator f , hence are irreducible. In addition, we

have v —F v, which completes the proof. e
Combining Theorem 5.1 and Lemma 5.3, we obtain

PROPOSITION 5.1. Let R be a rewrite system and T be a symbolic interpreta-

tion. The system R /[T ™ is terminating sf Rp is.

Example 5.1. Let R be

g(z,y) — h(z,y)
h(f(z)y) — [ (9(z,y))

We use the first rule as a transform T and let R’ be the second rule. The T -

normalized version Ry’ of R/ is

h(f(z)y) — [ (h(z,y))

Rp' terminates, since it decreases the summed length of all the terms with
outermost operator h. By Proposition 5.1, R’ /T is terminating. Since T is

also terminating, sois R =R'UT.

The termination methods outlined above may be applied to rewrite systems

R /E by using transforms T, such that F is contained in T .

If I consists of the axioms for identity, f (z,e )=z and f (e,z )=z, then
we may use a transform T;={f (z,e)—=z, f (¢,z)—z}. This transform is
canonical, and T;" contains I. Let X; be the set of all substitutions o, such

that zo is z or e, for all variables z. Note that the compdsition of two
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substitutions in I; again yields a substitution in X;.

Let R be a rewrite system and R’ be the set of all rules {o—r o, where
[—r isin R and 0 is in ;. We define R;' as the T;-normalized version of
Ri'. If I—r is in B’ and o is in &y, then the T;-normalized version of
lo—rois also in R;'. Now, let R, be R;' plus the following additional rules
(necessary for commutation of Ry and T;!): for every rule e »r in R;', where
r#e, rules z—f (z,r) and z—f (r,z); for every rule / —¢ in R;', where

l#e,rules f (z,0)—>z and f (I,z)—z; and the rule z -z, if e —¢ isin R;'.

Lemma 5.4. Let R be a rewrite system and T; and R; be as defined above.

Then R is reducing relative to T; and Ry, and R; and T;! commute.

Proof. R is reducing relative to T} and R, since R; contains all T}-normalized
versions of rules in R . For commutation, suppose that ¢ [l g]—p ¢ [r o], for some
rule /| =»r in R, some substitution o, and some term ¢ . Let v and v be normal

forms in Ty of ¢ [l o] and ¢ [r 0], respectively. We have to show that u —p v.

We may assume, without loss of generality, that ¢ [z] is irreducible and that
o is normalized, i.e. z o is irreducible, for all variables z. Let o’ be a substitu-
tion in £; such that z¢’ is e if zo is e, and z¢' is z, otherwise. Then the
T;-normalized version !’ —r' of lo' —r ¢’ is contained in R;. Also, o is the
composition of ¢/ and some substitution p, for which z p7£e , for all variables z .
Since neither !’ nor r' contain a subterm f (z,e) (or f (e,z)), !'pand r'p
contain no such subterm either. In other words, both [’/ p and r' p are irreduci-
ble in T;. Now, if both ¢ {I' p| and ¢ [r’ p| are irreducible, then u =c¢ [l 0] and
v=c [r'o|, and since /' —=r' is in R;, we have ‘;’*R,”- If ¢ [l p] is reducible,
then !’ must be ¢ and ¢ [z ] can be written as d[f (z,t)] (or d [f (¢,z)], where

t is some term different from e. A similar argument applies to ¢ [r’ p|. Let us
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consider the various possibilities.

(a) If I’ =e=r', then R, contains a rule z—z. Since ¢ [’ o] and
¢ [r! o] are identical, so are their respective normal forms u and v, and we have
u—pv.

(b) If I’ =e #r', then R} containsarulez—f (r',z)(orz—f (z,r').
Applying this rule we obtain yu=d [t|—=p d[f (r',s)]=v.

A similar argument applies if I' e =r'. e

PROPOSITION 6.2. An equational system R [I terminates if and only if B; ter-

minates.

Proof. The if-direction follows from Theorem 5.1 and Lemma 5.4. The only-if-

direction holds because R; is contained in R /I. o

Transforms need not necessarily be canonical, but may be canonical modulo
some set of equations E. Such transforms are particularly useful for, but not
limited to, proving termination of systems R /E. Recall that if R is canonical
modulo E, then two terms are equivalent in £ UR if and only if their respective

ncrmal forms in R are equivalent in F.

THEOREM 5.2. Let R, S, and T be rewrite systems and E be an equatio'nal
theory, such that T is canonical modulo E, S /E 1is terminating, and S and T'!

commute. If R s reducing relative to S /[E and T, then R /[(E UT °) terminates.

Proof. Let t,—p tz""i:‘uT t3—p t4"‘*1;uT -+ be an infinite sequence. If T
is canonical modulo F, and S and T! commute, then S /E and T! also com-
mute. An infinite sequence of S /E reduction steps can be constructed as fol-

lows:
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R (EuT)’ R (EuT)’ R
——— A - >
T’ reducing T i reducing T T reducing T’
| canonicity canonicsty L .
modulo B modulo B
S/E S/E S/E
T! T!| commutation | T T!! commutation | T!
/ ] : Y J
- E'  S/E B S/E

This contradicts termination of S /E.

In the next section we will consider transforms for associative-commutative

rewrite systems in depth.

5.2. Transforms Based on Distributivity

Equational rewrite systems R /E , where E is a set of associativity and com-
mutativity axioms, are of particular importance in practice. We will apply the
transformation techniques outlined above to the termination problem for such

systems (AC termination).

Let f be some operator symbol in F'. An associativity axiom is an equation
of the form f (z,f (v,2))=/f (f (z,y)z)or f (f (z,y)z)=F (z,f (v,2)). A
commutativity axiom is an equation f (z,y)=f (y,z). An equational rewrite
system R /E is called associative-commutative if E contains only associativity
and commutativity axioms. From now on let AC denote a set of associativity
and commutativity axioms for which any associative operator is also commuta-

tive and vice versa. We say that f is in AC to indicate that f is an

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



87

associative-commutative cperator.

A reduction ordering > is compatible with AC if s « ,;C u>ve ,;Ct implies
s >t, for all terms s, ¢, u, and v. A rewrite system R /AC terminates if and
only if there is a reduction ordering > that is compatible with AC and contains
R. We will show how to combine a standard ordering—the recursive path
ordering—with an appropriate transform to obtain a reduction ordering that is

compatible with AC.

The permutation congruence ~ is the smallest stable congruence such that
f(X,u,Y,w,2)~f (X,v,Y,u,Z). Let > be an ordering, called a precedence,
on the set of operator | symbols F. The recursive path ordering >,

| (Dershowitz, 1982) is defined as follows:
s=f(s1 - 1 8m) ety .., t,)=t
if
() 8; >ppo t or s; ~t, for some ¢, 1<i <m; or
(b) f =g and {5y, ..., 8, }> o {t}, ..., t }s0r

(c) f >g and s >, t;, forall j,1<j<n.

Lemma 5.5. (Dershowitz, 1982) Let > be a precedence ordering on the set of

operator symbols F . The recursive path ordering is well-founded if and only if >

ts well-founded.

Unfortunately, the recursive path ordering >,,, is not compatible with AC'.
For example, if f isin AC and a > b, then
flasf (by0)racf (f(a,8)0)>pp f (a,f (8,0),
but f (a,f (b,6))>,p f (a,f (b,b)) is false.

If we have a transform that selects a unique representative (canonical form)

from each AC -congruence class, then we can easily get 2 compatible ordering by
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comparing canonical representatives instead of terms themselves. A natural

choice for such a canonical representation are “flattened’’ terms.

A flattensing rule for an operator f is arule f (X,f (Y),Z2)~f (X,Y,2),
where Y denotes a sequence of variables y;, ..., y, of length n>2, and X
and Z are sequences of variables of length ¥ and [, respectively, where k +! >1.
When using flattening rules, we have to regard operators as varyadic. However,
flattening rules do not apply to unary operators or constants. For example,
f(z,f (y,2))—=f (z,y,2) is a flattening rule, but f (f (z))—f (z) is not. Let
F; be a set of operators and L be the set of all flattening rules for operators in

F; . The system L is canonical; terms irreducible in L are called flattened.

Consider the transformation ordering >, defined by: s >t if and only if
§ =g >, v t. This ordering is not monotonic, as the following example
illustrates. If f is in AC and f >g, then f (a,b)>,g(e,b). The term
f (f (a,b),c) flattens to f (a,b,c)and f (g(a,b),c) is already flattened. We
have f (g(a,b),c)> f (a,b,c), instead of the opposite!

We have to enrich our transform in order to get a reduction ordering. It
suffices, in fact, to include distributivity rules
[ (X (Y)Z)—a(f XwpZ), " of (X,4,,2),
for certain operators f and g (Y is a sequence y,, ..., y, of length n >1).
For instance, z *(y +2z)—z *y +z *z and —(z +y)—(-z )+(-y) are distributivity
rules. Sets of distributivity rules are not canonical, in general, but only under
certain conditions. For example, if f distributes over both ¢ and A, then the

term f (g (z),h (y)) can be transformed to ¢ (A (f (z,y)))or (g (f (z,¥)))

Let F be a given set of operators and Fp be a subset of F that contains all
AC operators and no constants. Let > be a precedence ordering on F; D be

the set of all distributivity rules for operators f/ and ¢ in Fp with f >g; and
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L be the set of all flattening rules for operators in F,. We call the rewrite sys-

tem T =L UD the A-transform corresponding to > and Fp.

Definition 5.1. A precedence > satisfies the associative path condition with
respect to Fp if, for every operator f in Fp,

(a) f >g implies that ¢ isin Fp;

(b) at most two operators are smaller than f ;

(¢) f >¢g and f >h implies g >h or h >g;

(d) f >g¢ >h implies that g is unary;

(e)forall g and h in Fp, g >f and h >/ implies g >h orh >g.

For example, if f , g, and h are in Fp, then the precedence ordering in Figure
5.1(a) satisfies the associative path condition. The precedence in Figure 5.1(b)
only satisfies the condition if ¢ is unary. The orderings in Figures 5.1(¢c) and (d)

violate the requirements (c) and (e), respectively. * -~

If a precedence satisfies the associative path condition, then Fj can be parti-
tioned into (totaily ordered) sets F,, . . ., F,, such that any two operators from

different sets are incomparable. Conditions (b), (¢) and (d) guarantee that the

f
f f A f

g
9 h g ) \h
() (b) (c) (d)

Figure 5.1.
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transform is canonical modulo ~. Condition (a) is necessary for monotonicity of

the corresponding transformation ordering; condition (e), for stability.

The congruence generated by AC is contained in ~UT*, since (i)

f(z,y)~f (y,z) and (ii) both f (z,f (y,z)) and f (f (z,y),2) flatten to

f (z,y,z). Furthermore, we have

Lemma 5.8. If the precedence > satisfies the assoctative path condition with

respect to Fpy , then the corresponding A-transform T is canonical modulo ~.

Proof. Let > be a precedence that satisfies the associative path condition with
respect to Fp. The system T /~ is terminating, since the recursive path order-
ing >,,, contains T and is compatible with the permutation congruence. Thus,
to prove that T is Church-Rosser modulo ~ it suffices to show that, for every
critical overlap ¢ +—pu —pd or ¢ «pu~d, there exist terms v and w, such
that ¢ =7 v ~w +pd. For overlaps between T and ~ this holds since T and
~ commute, i.e. ¢<+pu~d implies ¢ ~vrd. Let us consider overlaps
between rules of T. For instance, we have an overlap
c=g(f (X:h(Y),Z))~1 /] (X,9(h(Y)),Z)

= f (X:h(g(yy, -, 9(va )% )=d,
if f,g and h arein Fp with f >g >h (because of the associative path condi-
tion, ¢ must be unary). This overlap can be resolved since both ¢ and d reduce
to h(g(f X,wpZ)),...,9(f (X,y,,Z))) in T. Other overlaps can be han-
dled similarly. e

Definition 5.2. Let > be a well-founded precedence that satisfies the associa-
tive path condition with respect to Fp, and let T be the A -transform
corresponding to > and Fp. The associative path ordering >, is defined by:

S >yt fandonlyifu> v,
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where v and v are normal forms of s and ¢ in T, respectively.

Lemma 5.7. The associative path ordering is monotonic with respect to the term

structure.

Proof. We have to show that s >, ¢ implies ¢ [s |>,,, ¢ [t], for all terms s, ¢,
and ¢. We may assume without loss of generality that s, ¢, and all proper sub-
terms of ¢ [z ] are irreducible in T, and that ¢ [z] is of the form f (- --z -+ ).
Let s be g (s, . .,Sp)and t beh(ty, ..., t,)andlet v« and v denote ¢ |s |
and ¢ [t ], respectively.

a)If f isnotin Fp, then both f (+--s ---)and f(---¢ ---) are
in normal form, and u >, v follows from the monotonicity of the recursive
path ordering.

b) If f is a minimal non-unary operator in Fj), then no distributivity rule
applies to u or v. Therefore the respective flattened versions u and v are
irreducible in T. If g7/, then u is ¢ [s| and, since ¢ [s |> 5o ¢ [t]|>,p0 v, We
have u > v. Ifg=f,thenw is f (...,55,...,58,,...) Now, if g 2k,
then s; >,,, t, for some 1, 1<+ <m. Since any term with operator symbol f
must have at least two subterms, i.e. m >2, we obviously have u > ,,v. On
the other hand, if g=h, then {sy, ..., $5 }>> o {t1, .. -, 8, }. Thus

u=f(...,50 . ..,sm,...)>,p,,f R S A LT
Since ¢ is minimal, ¢ > h is impossible.

c) Next suppose that f is a unary operator. We certainly have
f (8)>apo f (t)if f (s)is irreducible. Now, the term f (s) is reducible only if
f >g. Then, because of the associative path condition, ¢ must be in F and
minimal. Thus f (s) has the normal form u' =g (f (s,), ..., f (s,))in T.
If s; 2,5 t, for some 1, then u' >, f (5;)>,50 f (¢ ), which implies u > 5, v.

If g=h, then {sy, ..., 8, }>pe{ty, ..., 4} and f(¢) reduces to
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g(f (t1)s o) [ () Simee {f(sy),..., f(sm)}>pe {f () ...,
f (t5)}, we have u >, v.

d) Finally, suppose that f is neither minimal nor unary. We prove this
case by induction on the combined size of ¢ (z], s, and ¢t. First suppose that
clg]=f(---z +--)isreducible in T. If the flattened version ¢ [z] is shorter
than ¢ [z ], we may apply the induction hypothesis to ¢ [z], s and ¢ and obtain
¢ [6 ]>qpo € [t ], which proves this case. Next suppose that ¢ [z ] contains a top-
level subterm f ' (uy, ..., u; ), where f >f'. Then the term
elf"(uy ..., wmdzl=Ff (..o f " (v oot )yenerz,...)
reduces to '

[lelupz], ..., clu,z])

Applying the induction hypothesis to ¢ [4;,z ], s, and ¢, we obtain

€ [u; 18 ]>gpo € [u; 5t ],
for all 1, 1<1 <k. Because of the associative path condition, f/ / must be unary
or minimal. Thus, by (b) and (c) above,

F (e lps ] er e [ugs D> ape £ (e [kl - os e [ugot])
which proves this case.

The only remaining case is that ¢ [z ] is irreducible. The assertion trivially
holds if ¢ [s ] is irreducible. Let us therefore assume that f >g.

(i) If ¢ 2h, then s; >t, for some s, 1<i<n. By induction, we get
¢[si]>gp0 ¢ [t] Now,if f =g, then c[s] reducesto f (...,51, ..., 5p,--)
in T Since m >2, we have ¢ [s |> 5, ¢ [s;], and thus ¢ [s|> o c[t]. If f >y,
then ¢ s | reduces to g(e,, ..., ¢, ), where ¢; is the normal form of ¢ [s;] in
T . Thus we have ¢ [s |> g, ¢ [5; ]2 gp0 € [t]-

(ii) If g=h, then {s),...,85}> 0 {ty, ..., t}. If f =g, then
U= f (..o, Spmy-- .)>,;of (..-st1, -+, %m,...)=v and, since both

terms are irreducible, we obtain u > ,v. If f >g, then ¢[s] reduces to
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1
g(¢y, ..+, ¢y ), where ¢; is the normal form of ¢ [s;] in T, and ¢ [t] reduces to

g(ey, ..., ¢,"), where ¢;' is the normal form of ¢ [¢;]. Now, if s; >, t;,
then ¢ [s;]> ), ¢ [¢;], by the induction hypothesis applied to ¢ [z], s;, and ¢;.
Thus {ey, . .., en }>ppo{¢y ..., ¢,' }, which implies ¢ [s ] >, ¢ [t]-

(iii) Finally, suppose that ¢ >h and s >,,,¢;, for 1<i <n. Then ¢ [t]
reduces to A(f(...ty...),...,f(..t,...). Applying the induction
hypothesis to ¢ [z], s, and ¢;, we get u >, f (+ -8 ++ ), for 1<i<n. Let

!

u' be the normal form of u in T. Since op(u’)>g >h, we conclude that

' Spoh(f () ity ) leu>p,v. 0
Lemma 5.8. The assoctative path ordering is stable under substitution.

Proof. We have to show that s >, ¢ implies s 0>, ¢ o, for all substitutions
o. We may assume that s and ¢ are irreducible and that, for some variable z,
zoish(zy ..., z,), where k >0 and z,, . . ., 7; are new variables, and yo is
y, for y5#z. (Any arbitrary substitution can be composed of substitutions such
as 0.) The proof is by induction on the combined size of s and t. Let s be
f(sy...,8p)andt beg(ty,...,¢).

a) f f g, then s;>,,¢, for some ¢, 1<¢<n. By the induction
hypothesis, s;02>,,,t0. The assertion then follows frém the following subterm
property: f (s * " )>45,5, forallterms f (-5 -+ ) ands. The proof
of this property is not difficult, but rather technical, and is omitted.

b) If f =g, then M={s,...,5,}>,0{t1,...,t,}=N. We may
assume that N is (M—{s; })U{s;y, ..., s }, where k >0 and s; >, s,;, for
1< 7 <k. (The general case can be obtained by repeated application of the ele-
mentary one.) By the induction hypothesis, s; 0> 150 850, for 1< 7 <k. If k=1,
then so>,,, to follows by the monotonicity of the associative path ordering.

Let us assume that k£ >1. Then f must not be unary. If op(s;)>f , then
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i >rpo [ (Si1s - -+, 5 ) and, by induction, s; 0>, f (510, . . ., 5§ 0). Again,
the assertion follows by monotonicity. Finally, suppoée that op (s;)# f . Since
s is irreducible, we have f Pop(s;). Because of the associative path condition,
f and op(s;), and consequently f and op(s;o), have to be incomparable.
Therefore, transforming s ¢ does not change s; 0, so that we can infer without
much difficulty that s o>, t 0.

c) If f>g, then s>,,t;, for all j, 1<j<n. By the induction
hypothesis, so>,,t;0, for 1<j<m. If op(so)>g, then
§0>4p0 9 (810, - - ., 13 0)>4p, t 0. Let us therefore assume that g >h =op (s o).
Thus, f, g,and b are allin Fp and f >g >hk. There are various possibilities,
according to the associative path condition.

1) First assume that f is not unary and ¢ and A are unary. Since
[ Zop(s;), for 1<i <m, the variable z must occur as a top-levél subterm of s,
for otherwise op(so)=f . Also, zo is h(z,). Now, so has a normal form
u=h( - -h(f(vy...,8,) ) where y; is the normal form of s;0, if
s; #z, and z, otherwise. Let u' denote / (v, ..., u, ). The term t =h (¢,)
has a normal form k (v,), where v, is the normal form of ¢,0. By our assump-

tions, u >, v, and op (vy)>h. If op (v,)#h, then u' > v, If op (v,)=h,

then ¢, is either z or f (t}', ..., 4"). In the first case, v’ > ,v,. In the
second case, vy=h (- - h(f (v{,..., ) ), where v;! is the normal form
of ¢!, if ¢;'54z, and z,, otherwise. Let v,’ denote f (v, ..., v !). From

§ >ty and v, v, we can deduce u’' > v, , which also implies

rpo
u' >,k (vy). Insummary, u >, v.

2) Next suppose that f , g, and A are all non-unary. Because of the asso-
ciative path condition, ¢ and A must be identical and minimal. Also, z o is
h(zy ..., z;). As before, s must contain z as a top-level subterm. The nor-

mal form u of sois h(uy, ..., ), where uy, ..., u are all possible terms
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f (wy, ..., wy,) in which w; is the normal form of s; g, if s; %z, and any one
of the variables z,, ..., 7, otherwise. Let v; be the normal form of ¢; o, for

1<j<n. If op(v;)7#h, then we define n; to be 1 and v{ to be v;. Other-

f) I

wise, v; can be written as h(v{,..., vn’;, ). The normal form v of to is

h{vd,..., v,,i yov+sVlyee, Yy ). By our assumptions, u >, v; and
op (v;)>h, for 1<j<n. If op(v;)7#h, then u; >, v;, for some ¢, 1<s <I.

v, that each term

If op (v; }=h, then we can deduce from s >, ¢t; and u >, v;

t)7 is strictly smaller than some term u;. Consequently, we have u > rpo U+
- 3)If f >g>h, then ¢ must be unary. The normal form u of so is as
described in (2) above. Let v and v, be the normal forms of ¢ and ¢,, respec-

tively. If op(v,)7%h, then v=g(v,) and, for some i, u; > Since

rpo Vi
v and hence u >, , v. On the other hand, if

op (u; )=/ , we also have u; > rpo

rpo
vy=h(vl,...,v.l), then v=h(g(v!),...,9(v,})). Each term vl s
strictly smaller than some term u;. Since op (u; )=/ , g (v;') is also smaller than
;. Thus, u >, v.

4) The only remaining case is that f is unary. Then g and h must be
identical. Similar arguments as in (2) above can be applied in this case.

In summary, s >, t 7, which concludes case (c). o
Combining the above two lemmata we obtain

THEOREM b5.3. If > 15 a well-founded precedence thatl satisfies the associative
path condition, then the corresponding associative path ordering >, 1s a reduc-

tion ordering.
Now, we can apply associative path orderings to AC -termination:

THEOREM b5.4. Let > be a precedence ordering that satisfies the associative

path condition with respect to Fy,. Let T be the corresponding A-transform and
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R and R' be rewrste systems, such that R' is contained in T, If1 >, r, for

every rule l —r in R, then (R [AC)/(R' |AC) terminates.

Proof. Let S be the restriction of the recursive path ordering to terms irreduci-
ble in T. By Lemma 5.6, T is canonical modulo ~. Moreover, S /E is ter-
minating and, since the associative path ordering is a reduction ordering, S and
T! commute. Now, if !>, r, for every rule ! »r in R, then R is reducing
relative to S and T. Thus, by Theorem 5.2, R /(~UT **) terminates. Both R’
and AC are contained in ~UT**. Therefore R /(R'UAC) and, consequently,
(R /AC)/(R' [AC) are terminating. e

Theorem 5.3 shows how termination of (RUR' })/AC may be reduced to prov-
ing termination of R /AC and R' /AC separately. The systems R and R’
usually contain no varyadic operators. In practice, R' often is a set of ‘‘stan-
dard” distributivity rules of the form f (z,9(y))—¢(f (z,y)) or
f (z,h(y,2))=h(f (z,y),f (z,2)), where operators have fixed arity (f and h
are binary and ¢ is unary). In that case, R' is contained in T. Furthermore,

we have

Lemma 5.9. Let > be a well-founded precedence that satisfies the associative
path condition and R be a corresponding set of standard distributivity rules.

Then R [AC 1is terminating.

Proof. For the proof one can use a polynomial interpretation P over the integers
greater than 1, where fp is Azy. 2z +2, if f is a unary operator in Fp;
Azy.z +y +5, if f is 2 minimal non-unary operator in Fp; and Azy.z Xy, if f is

a non-minimal non-unary operator in Fp, (e.g. Peterson and Stickel, 1981). o

Transformation techniques for AC termination were first suggested by

Dershowitz, et al. (1983). Associative path orderings were suggested by Plaisted
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(1984) and formalized in Bachmair and Plaisted (1985). The difference with our
ordering is in the associative path condition. We allow precedence orderings with
f >g>h (provided g is unary), but not orderings with f >h and g >h,
where f and g are incomparable (f , g and h in Fp). Bachmair and Plaisted
(1985) rule out the former case, but not the latter. Orderings defined by such a
precedence need not be stable, however. Suppose, for example, that f , g and A
are in F with f >h and ¢ >h. Let ¢ and b be constants, with ¢ >b. Then
s=f(g(a,2),a)> f (f (9(b,2),9(b,z)),a)=t (the second term flattens to
f(g(b,z)g(b,z)a)). If we substitute h(y,z) for z, then the first term
reduces to h(f (¢(a,y),e),f (¢(a,z),a)), whereas the second reduces to
h(---f(g(b,y)g(b,z)a) ") Thus, s>, to is false in this case. Since
stability is not satisfied, rather complicated “lifting” schemes are necessary to
compare terms containing variables (see Bachmair and Plaisted, 1986). Our ord-
ering, on the other hand, can be implemented easily and, in addition, is more
efficient. The associative path condition is not overly restrictive and, as the
examples below indicate, many theories of practical interest allow precedence ord-

erings that satisfy the condition.

The A -transform can also be used in combination with a lexicographic path
ordering >,,. In other words, operators not in AC' may be given lexicographic
status, i.e. some positions in a term may be given more significance than others
(see Kamin and Levy, 1980). For example, if & >b, then we have
f(a,b)>p, f(b,a), if the operator f has left-to-right status, and
f(b,a)>p, f (a,b), if it has right-to-left status.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5.3. Examples

Most of the rewrite systems below were constructed using the rewrite rule
laboratory RRL (Kapur and Sivakumar, 1984). Further examples of canonical
systems can be found in Hullot (1980).

Example 5.2. Boolean algebra. The following canonical rewrite system R for

boolean algebra is due to Hsiang (1985):

z® false - =z
z N\ f alse —  false
z Nirue - I

Nz — z

(@®y)N: - (s (yNA2)
z®z —  false
zVy = (zNyP(zDvy)
Dy — (zNhy)YD(zDtrue)
=y — (z®y)Dtrue

-z = z® true

The operators denote the usual boolean connectives; @ denotes exclusive disjunc-
tion. The operators @ and A are in AC. We first apply a symbolic interpreta-
tion false —irue to R. For termination of the resulting system, we use the
associative path ordering corresponding to F ={A® } and the precedence order-
ing shown in the Hasse diagram in Figure 5.2. This precedence sé.tisﬁes the asso-
ciative path condition relative to F. The fifth rule of R is a distributivity rule
and is placed in R'. For all other rules, we have [ > gpo T+ Thus, by Theorem

5.4 and Lemma 5.9, R /AC terminates.

Example 5.3. Abelian group theory. The axioms for free abelian groups are

z+0 = =z
:I:-i—(—-:c) = 0
z+(y+z) = (z+y)+z
r+y = y+z

The following system R, where + is in AC, is canonical modulo AC for this
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Figure 5.2.

theory:
z+0 - ¢
z+(-z) = 0
0- —- 0
—(-z) = =z
~z+y) - (z)+(-v)

To prove termination of R /AC, we use an associative path ordering correspond-
ing to F ={+} and a precedence ordering >, where + and 0 are smaller than —.
The precedence > satisfies the associative path condition relative to F. Since
Fp contains only one operator, the only transformation rules are flattening rules.
We have I >, r for all rules [—r in R. Thus, by Theorem 5.4, R /AC ter-

minates.

If B is a rewrite system, then the corresponding ground system Rg consists
of all rules lo—r 0, where [ —r is in R and ¢ is a ground substitution. It can
easily be proved that if R contains at least one constant, then it terminates if

and only R; terminates.

Exampie 5.4. Rings. The axioms for rings are the axioms for abelian groups,

plus the following two distributivity rules:
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z¥y+2) = (z*y)+(z*z)
g4y )z = (z*z)+(v*z)
A canonical system R is
z+C — =z
z+{(-z) —= 0
0 - 0
~(-z) - =z
~(z+y) - (-z)+(-y)
z¥y+z) = (z*y)+H(z*z)
(z+y)*z - (z*2)+{y*z)
z¥0 —- 0
0z — 0
z¥-y) - z*y)
=)'y - ~(z*y)

The first five rules form a canonical system for abelian groups. To prove termi-
nation of R /AC, an associative path ordering may be used with F, ={+} and a

precedence >, where * is bigger than —, and - is bigger than 0 and +.

A ring is associative (commutative) if * is associative (commutative). The
following is a canonical system for associative-commutative rings with unit:

z+0
z+(-z)
-0

(z)
~(z+y)
z¥(y +z)
z*0
z*(-y)

T *1

1l

Llbbly
)
IQ*
x
]

For termination of R /AC, we use an associative path ordering for F ={+,*, -}
(Fp must contain all AC -operators). We can not use the same precedence as
above, since 0 must not be smaller than any operator in Fj,. Let us use a pre-
cedence >, where * is bigger than —, and -~ is bigger than +. This precedence

satisfies the associative path condition relative to Fp. The fifth, sixth, and
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eighth rule are distributivity rules. For all other rules, except the second, we

have I > r. Since 0 is minimal, groun

3 . 1. e
VL€ Seconma rule 18

contained in > ;. Thus >, contains Rg. Consequently, Rg/AC is ter-

minating, which implies that R /AC is also termizating.

Example 5.6. A-Modules. Let A be an associative ring with unit. A (left) A -
module M over A is an algebraic structure consisting of operations
@©:MxM-M and A XM —M, such that M with @ is an abelian group (the
identity of the group is denoted by (1, the inverse to @ by I), and the following
identities hold:

a-(ﬁl-a: ) = (a*B)z
(a+f)rz = (az)®(fz)
a(z@y) = (ez)®(ay)

For the sake of readability we use Greek letters for variables ranging over ele-
ments of A, and Roman letters for variables ranging over elements of M. Terms
are not typed, though. The following is a canonical system for A -modules,
where A is an associative-commutative ring with unit and +, *, and @ are in

AC:
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a+0
a+i-a)
-0

~(-a)
~(a+B)
a*(B+1)
a*0
o(-f)
a*1

z®N
a{fz)
Iz
(at+B)z
a(z@y)
(~a'z XD (az)
(F1zP@®z
Oz

o)

I(z)

’Q‘ ]

*
2
13

XN
8 8
DD
——
R
< 8
e S

o Ji-o J R

L A A A A A A

|
[hory
j -
.
5]

The first nine rules form a canonical system for the ring A, and the remaining
‘rules describe the module structure. (A different system for A -modules has been
given by Hullot, 1980.) To prove termination of R /AC we use the associative
path ordering corresponding to Fp ={+, *, -,@ } and the precedence ordering >
shown in the Hasse diagram in Figure 5.3. The operator « has (right to left) lexi-
cographic status. The fifth, sixth and eighth rules are distributivity rules. All
ground instances of other rules are contained in the associative path ordering

> 4p0 » Which implies termination of R /AC.

Example 5.8. A-Bimodules. Analogous to left A -modules, one can define right
A -modules as algebraic structures consisting of operations ® :M xM —M and
o:M xA —M, such that M with © 1is an abelian group, and the following

axioms hold:
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/

+-_|-_ '

S
Figure 5.3.
(zoa)o? = z o (a*p)
zo(a+f) = (zoaP(z0fh)
(z@yloa = (zo0aP(yoa)

If M is a left and right A -module, then it is called an A -bimodule if, in addi-

tion, the following axiom holds:

(arz)of = a(z0p)

A possible canonical system for A -bimodules over an associative-commutative
ring with unit A consists of the canonical system for left A -modules from the

preceding examples, plus the following rules:

loa — (1
zol —= =z
00 — 0
(zoa)of — zo(a*h)
go(a+f) — (zoaP(zo0f)
(z@y)a — (zoaP(yoa)
zo(-a) = (-1)(zoa)
(a'z)of = or(z0f)

where +, *, and @ are in AC. This system is simpler than the one given in
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Hullot (1980). For termination of R /AC, we use the set Fp={+, *,-, @}
from the preceding example, and exiend the precedence ordering > in the Hasse
diagram in Figure 5.3 by choosing o to be bigger than *. The operator o has
(left to right) lexicographic status.

Example 6.7. A-Rings. Let M, with + and o, be an A -bimodule and, with @
and ®, a ring. M is called an A -ring if the following equations hold:

(az®y = a(zQy)
(zoa®y = z8(ey)
z1®(yoa) = (z®y)oc

A canonical system for A -rings over an associative-commutative ring with unit

A consists of the canonical system for an A -bimodule above, plus the following

rules:

zN —= 0

WVz - 0O
t®(yDz) — (zQyP(z®z)
(z®yR®z — (z@zP(y®z)
1@(ay) — (11(E®(ay)

ez ®y — ea(zQy)
(zoa®y — zQ(ey)
z®(yoa) — (z2Qy)oa
z®(a(yof)) — (z2®(ery))op

where +, * and @ are in AC. The first five of these additional rules describe
the structure of the ring M. The remaining rules describe the A -ring structure.
For termination of R /AC, one may use an associative path ordering for
Fp={+,%* -,@} and the precedence > from the previous example, extended by
defining @ to be bigger than o. The operator ® has lexicographic status (left to
right).

Example 5.8. A-Algebras. Let A be an associative-commutative ring with

unit. An A -ring M is called an A -algebra, if
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'z = ToQ

for all elements z and a. A canonical system for A -algebras consists of the

canonical system for a left A -module from Example 5.8, plus the following rules:

0 - 0
Rz - 0
z®(ydz) — (2@yP(zQz2)
OyB: - (=1 (1®:)
(z)®y - o(zQy)
zQ(ary) — a(zQy)

where +, *, and @ are in AC. For termination of R /AC, the associative path

ordering from the preceding example may be used.

In the examples above we have used A -transforms for termination of
associative-commutative systems. They may also be used for proving termination

of ordinary rewrite systems.

Example 5.9. Associativity and endomorphism. Let R be the following rewrite

system (Cherifa and Lescanne, 1986):

(z2y)z - z(yz)
f=)yfly) —= flzy)
f S (yyz) — flz-y)ez

Let T' be the first rule of R and R' be R—R'. For terminatior of R, it
suffices to prove termination of R/ /T' and T', separately. T' is terminating.
Let T be the A -transform corresponding to F, ={f , *} and a precedence order-
ing >, where * is bigger than f . Then we have / },m r, for both rewrite rules

I—r inR'. Since T' is contained in T*, R' /T’ is terminating.
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CHAPTER 6

SUMMARY

We have presented various rewrite-based proof methods—standard comple-
tion, completion for rewriting modulo a congruence, completion without
failure—and have introduced new concepts—proof orderings—for reasoning about
them. Our approach differs from previous work in this area in that we do not
present specific versions of completion, but formulate completion on a more

abstract level, using equational inference rules.

This approach of representing completion as an inference system has several
advantages. Various notions such as fairness and correctness (of completion),
that otherwise have to be defined with respect to a particular version of comple-
tion, can be formalized in more general terms that apply to a wide spectrum of
completion procedures. Correspondingly, our correctness results also apply to a
large class of completion procedures. This aspect greatly simplifies the task of
establishing the correctness of an implementation. Observations pertaining to
one method can often be carried over to a related method, e.g. subsumption can

be safely used with standard as well as with unfailing completion.

The key concept of our approach are proof orderings. The essential proper-
ties of an inference system, in particular, the relationship between the individual
inference rules, are closely reflected in the complexity measures used for proof
orderings. The complexity measure for standard and unfailing completion indi-

cates, for instance, that simplification rules are only loosely connected with the
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other inference rules. Consequently, correctness can be proved without imposing
any restrictions on simplification rules. On the other hand, proof orderings aliso
illuminate the specific difficulties with rewriting modulo a congruence and

simplification of rules.

Reduction orderings are an important component of proof orderings. They
are crucial for the completion process itself. Any completion procedure has to be
supplied with a reduction ordering; success or failure often depending on this ord-
ering. Appropriate orderings are often difficult to find. A number of schemes
have been devised for constructing reduction orderings for ordinary rewrite sys-
tems (see the survey of Dershowitz, 1985). There afe only a few such methods
for rewriting modulo a congruence. We have discussed one technique, transfor-

mation orderings.

Rewrite techniques are not restricted to purely equational theories, but have
been successfully integrated in theorem provers for first-order predicate logic, as
exemplified by the work of Hsiang (1985). We have undertaken research in

adapting proof ordering techniques to such methods.
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