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We prove the Extended Church-Turing Thesis: Every effective algorithm can be efficiently simulated
by a Turing machine. This is accomplished by emulating an effective algorithm via an abstract state
machine, and simulating such an abstract state machine by a random access machine with only linear
overhead and logarithmic word size.

The first rule of any technology used in a business is that
automation applied to an efficient operation will magnify the efficiency.

The second is that automation applied to an inefficient operation
will magnify the inefficiency.

—William Henry Gates III

1 Introduction

The Church-Turing Thesis [10, Thesis I†] asserts that all effectively computable numeric functions are
recursive and, likewise, that they can be computed by a Turing machine, or—more precisely—can be
simulated under some representation by a Turing machine. As Kleene [11, p. 493] explains,

The notion of an “effective calculation procedure” or “algorithm” (for which I believe
Church’s thesis) involves its being possible to convey a complete description of the effective
procedure or algorithm by a finite communication, in advance of performing computations
in accordance with it.

This claim has recently been axiomatized and proven [4, 7].
The extended thesis adds the belief that the overhead in such a Turing machine simulation is only

polynomial. One formulation of this extended thesis is as follows:

The so-called “Extended” Church-Turing Thesis: . . . any function naturally to be regarded as
efficiently computable is efficiently computable by a Turing machine. (Scott Aaronson [1])

We demonstrate the validity of this extended thesis for all (sequential, deterministic, non-interactive)
effective models over arbitrary constructive domains in the following manner:

1. For a generic, datatype-independent notion of algorithm, we adopt the axiomatic characterization
of (“sequential”) algorithms over arbitrary domains due to Gurevich [9] (Section 2.1, Definition 1).

2. To restrict our attention to effective algorithms only—as opposed, for instance, to conceptual al-
gorithms like Gaussian elimination over all the reals—we adopt the formalization of effective al-
gorithms over arbitrary domains from [4] (Section 2.3, Definition 4).
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2 Extended Church-Turing Thesis

3. Because we will be dealing with models of computation that work over different domains (such
as strings for Turing machines and numbers for random access machines), and will, therefore,
need to represent data values of one model in another, we will require the notion of simulation of
algorithms developed in [3] (Section 3.1, Definition 6).

4. Algorithms, in and of themselves, are indifferent to the actual identity and internal nature of the
elements of their domain. The same algorithm will work equally with different representations, as
for example, testing primality of numbers whether given as decimal digits, as Roman numerals,
or in Neolithic tally notation. So that we may speak of the computation of a function over a
given representation, we consider implementations, by which we mean algorithms operating over
a specific domain (Section 2.2, Definition 2).

5. For counting steps and measuring complexity, we limit operations to basic ones: testing equality
of domain elements, application of constructors, and lookup of stored values. We would not, for
example, normally want to treat multiplication as a unit-cost operation. A basic implementation is
one that only employs these basic operations (Section 2.3, Definition 3).

6. We emulate effective algorithms step-by-step by abstract state machines (ASMs) [9] in the precise
manner of [2] (Section 4.1, Definition 11).

7. We represent arbitrary domain elements of effective algorithms by minimal constructor-based
graph structures (dags). We call these graph structures tangles (Sections 4.2–4.3; cf. [17]).

8. We show that each step of a basic ASM implementation can be simulated in a constant number of
random-access (pointer) machine (RAM) steps (Section 4.4, Lemma 23).

9. Domain elements (Platonic numbers, say) have no innate “size”. So as not to underestimate com-
plexity by padding input, we measure the size of input as the number of vertices in the minimal
tangle representation (Section 3.2, Definition 8).

10. As multitape Turing machines (TMs) simulate RAMs in quadratic time [6], the thesis follows
(Section 5).

Summarizing the effectiveness postulates under which we will be working, as detailed in the next
section: an effective algorithm is a state-transition system, whose states can be any (logical) structure,
and for which there is some finite description of initial states and of (isomorphism-respecting) transitions.

A “physical” version of the extended thesis—as expressed in the following quotations—holds to the
extent that physical models of computation adhere to these effectiveness postulates.

The Extended Church-Turing Thesis states . . . that time on all “reasonable” machine models
is related by a polynomial. (Ian Parberry [13])
The Extended Church-Turing Thesis makes the . . . assertion that the Turing machine model
is also as efficient as any computing device can be. That is, if a function is computable by
some hardware device in time T (n) for input of size n, then it is computable by a Turing
machine in time (T (n))k for some fixed k (dependent on the problem). (Andrew Yao [18])

2 Algorithms

We are interested in comparing the time complexity of algorithms implemented in different effective
models of computation, models that may take advantage of arbitrary data structures. The belief that all
feasible models make relatively similar demands on resources when executing algorithms underlies the
study of complexity theory.
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2.1 Algorithms

First of all, an algorithm, in its classic sense, is a time-sequential state-transition system, whose tran-
sitions are partial functions on its states. This entails that each state is self-contained and that the next
state, if any, is determined by the prior one. The necessary information in states can be captured using
logical structures, and an algorithm is expected to be independent of the choice of representation and to
produce no unexpected elements. Furthermore, an algorithm must, by its very nature, possess a finite
description. These considerations lead to the following definition.

Definition 1 (Algorithm [9]). A classical algorithm is a (deterministic) state-transition system, satisfying
the following three postulates:

I. It is comprised of a set1 S of states, a subset S0 ⊆ S of initial states, and a partial transition function
τ : S ⇀ S from states to states. We write X ;A X ′ when X ′ = τ(X). States for which there is no
transition are terminal.

II. All states in S are (first-order) structures over the same finite vocabulary F , and X and τ(X) share
the same domain for every X ∈ S. For convenience, we treat relations as truth-valued functions
and refer to structures as algebras, and let tX denote the value of term t as interpreted in state X .2

The sets of states, initial states, and terminal states are each closed under isomorphism. Moreover,
transitions respect isomorphisms. Specifically, if X and Y are isomorphic, then either both are
terminal or else τ(X) and τ(Y ) are isomorphic via the same isomorphism.

III. There exists a fixed finite set T of critical terms over F that fully determines the behavior of
the algorithm. Viewing any state X over F with domain D as a set of location-value pairs
f (a1, . . . ,an) 7→ a0, where f ∈ F and a0,a1, . . . ,an ∈ D, this means that whenever states X and
Y agree on T , in the sense that tX = tY for every critical term t ∈ T , either both are terminal states
or else the state changes are the same: τ(X)\X = τ(Y )\Y .

A run of an algorithm A is a finite or infinite sequence X0 ;A X1 ;A · · ·;A, where X0 ∈ S0 is an
initial state of A.

For detailed support of this axiomatic characterization of algorithms, see [9, 7]. Clearly, we are only
interested here in deterministic algorithms. We used the adjective “classical” to clarify that, in the current
study, we are leaving aside new-fangled forms of algorithm, such as probabilistic, parallel or interactive
algorithms.

2.2 Implementations

A classical algorithm may be thought of as a class of “implementations”, each computing some (partial)
function over its state space. An implementation is determined by the choice of representation for the
values over which the algorithm operates, which is reflected in a choice of domain.

Definition 2 (Implementation). An implementation is an algorithm 〈τ,S,S0〉 restricted to a specific do-
main D. Its states are those states S � D with domain D; its input states SD = S0 � D are those initial states
whose domain is D; its transition function τ is likewise restricted.

So that we may view an implementation as computing a partial function over its domain, we require
that there exist a subset I of the critical terms, called input terms, such that all input states agree on all
terms over F except for these, and such that the values of the input terms in input states cover the whole

1Or class—it matters not.
2All “terms” in this paper are ground (that is, variable-free).



4 Extended Church-Turing Thesis

domain. That is, we require {(y1
X , . . . ,y`

X) : X ∈ SD}= D`, where I = {y1, . . . ,y`}. There should also be
a critical term z to hold the output value for terminal states. Then we may speak of an algorithm A with
terminating run X0 ;A · · ·;A XN as computing A(y1

X0
, . . . ,y`

X0
) = zXN . The function being computed is

undefined for those inputs for which the run does not terminate. (The presumption that an implemen-
tation accepts any value from its domain as a valid input is not a limitation, because the outcome of an
implementation on undesired inputs is of no consequence.)

2.3 Effectiveness

The postulates in Definition 1 limit transitions to be effective, in the sense of being amenable to finite
description (see Theorem 13 below), but they place no constraints on the contents of initial states. In
particular, initial states may contain infinite, uncomputable data. To preclude that and ensure that an
algorithm is effective, we will need an additional assumption. For an initial state to be “effective”, it
must either be “basic”, or all its operations must be programmable from basic states.

Definition 3 (Basic).
(a) We call an algebra X over vocabulary F and with domain D basic if F = K]C, and the following

conditions hold:

• The domain D is isomorphic to the Herbrand universe (free term algebra) over K. This means
that there is exactly one term over K taking on each domain value. We call K the constructors
of X .
• All the operators in C have some fixed pervasive constant value UNDEF.

(b) An implementation is basic if all its initial states are basic with respect to the same constructors.

(c) Invariably, states are equipped with equality and Boolean operations, and K includes (nullary)
constructors for domain values TRUE, FALSE, and UNDEF.

Constructors are the usual way of thinking of the domain values of computational models. For
example, strings over an alphabet {a,b,. . .} are constructed from a nullary constructor ε() and unary
constructors a(·), b(·), etc. The positive integers in binary notation are constructed out of the nullary ε

and unary 0 and 1, with the constructed string understood as the binary number obtained by prepending
the digit 1. To construct 0-1-2 trees, we would have three constructors, k0(), k1(·), and k2(·, ·), for nodes
of outdegree 0 (leaves), 1 (unary), and 2 (binary), respectively.

Definition 4 (Effectiveness [4]).
(a) We call an algebra X over vocabulary F and with domain D constructive if F = K ]C, and the

following conditions hold:

• The operations K construct D, as in the previous definition.
• Each of the operations in C can be computed by some effective implementation over K.

(b) An effective implementation is a classical algorithm restricted to initial states that are all construc-
tive over the same partitioned vocabulary F = K]C.

In other words, C is a set of effective “oracles”, obtained by bootstrapping from basic implementa-
tions.

Clearly, basic implementations are effective, as are implementations with only finitely many argu-
ments for which operations in C take on values other than UNDEF. Moreover, if there is a basic algorithm
with the same domain and constructors that computes some function, then that function can be the inter-
pretation given by initial states to one of the symbols in C.
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For example, 0 and successor are constructors for the naturals. With them alone, one can design a
basic algorithm for addition. Multiplication is also effective, since there is an algorithm for multiplication
with + in C interpreted as addition.

In [4], equality of constructor values is not given for free, and must be programmed—in linear time—
as part of C (as shown therein). For now, we will assume we always have it and discuss its cost later.

If X0 ∈ S0 is basic or constructive, then it has a finite description: the finitely-many operators in C can
each be described by an effective algorithm. (In the pathological situation where an algorithm modifies
its constructors, we should imagine that C contains shadow implementations of the constructors K and it
is the latter that are wrecked.) Thus, any reachable state of an effective implementation also has a finite
description, since—as a consequence of Postulate III—each step of the implementation can only change
a bounded number of values of the operations in F .

Two alternative characterizations of effectiveness, reflecting classical notions involving Turing ma-
chines [15] and recursive functions [7], respectively, were shown to be equivalent to this one in [5].

3 Complexity

One usually measures the complexity of an algorithm as the number of individual computation steps
required for execution, relative to the size of the input data. This demands a definition of the notions,
“data size” and “individual step”. By a “step”, one usually means a single step of some well-defined
theoretical computational model, like a Turing machine or RAM, implementing the algorithm via a
chosen representation of domain. Despite the fact that Postulate III imposes a fixed bound on the number
of operations executed in any single step, the length of a run of an effective implementation need not
correspond to a faithful counting of steps. That is because states are allowed to contain infinite non-
trivial operations as predefined oracles in initial states; a single application of such a complex operation
should entail more than the implicit unit cost. Hence, we will need to work with a lower-level model,
consisting of “basic implementations”, and show how it too can simulate any effective implementation.

3.1 Representations

We aim to prove that any effective implementation can be simulated by a basic one. Basic implemen-
tations will provide us with a faithful underlying model for measuring steps. But to do this, let us first
recall the notion of simulation defined in [3].

Definition 5 (Representation).

1. A representation of domain D within domain E is a total injective function ρ : D � E. Represen-
tations naturally extend to functions:

ρ( f )(x1, . . . ,x`) = ρ[ f (ρ−1(x1), . . . ,ρ−1(x`))],

whenever xi ∈ Imρ for all i.

2. Let X and Y be algebras over vocabularies F and G with domains D and E, respectively. We say
that X is mimicked by Y via representation ρ , denoted X �ρ Y , if Y contains all the information
that X does (and maybe more), that is, for every f ∈ F , there is a g∈G such that gY = ρ( fX) �Imρ

.
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Definition 6 (Simulation).

1. Let A and B be two implementations over vocabularies F and G with domains D and E, respec-
tively. We say that A is simulated by B via representation ρ , denoted A �ρ B, if B can perform
any computation that A can (and maybe more). In other words, for any run X0 ;A X1 ;A · · · of A
there exists a run Y0 ;B Y 1 ;B · · · of B and an increasing sequence { ji} ⊆ N, such that Xi �ρ Yi

for all i.

2. We say that A is emulated by B via ρ if for any run X0 ;A X1 ;A · · · of A there exists a run
Y0 ;B Y 1 ;B · · · of B, such that Xi �ρ Yji for all i.

3. We say that A and B are computationally equivalent if they emulate each other and possess exactly
the same runs up to renaming and isomorphism. Formally, there should be a bijective renaming
ρ : F �→G and a bijective representation ρ : D�→E such that X0 ;A X1 ;A · · · is a run of A if
and only if ρ(X0) ;B ρ(X1) ;B · · · is a run of B, where ρ(X) assigns ρ( f )(ρ(ā)) 7→ ρ(b) when
X assigns f (ā) 7→ b.

By standard programming techniques, bootstrapped operations (subroutine calls) can be internalized:

Proposition 7. For every effective implementation P over a vocabulary K ]C, there is a basic imple-
mentation simulating P over some vocabulary K]C′.

Thus, we may conclude that any effective implementation possesses a basic implementation, which
is the faithful underlying model by which to count individual computation steps.

For example, if an effective implementation includes decimal multiplication among its bootstrapped
operations, then we do not want to count multiplication as a single operation (which would give us a
“pseudo-complexity” measure), but, rather, we need to count the number of basic decimal-digit opera-
tions, as would be tallied in the basic simulation of this effective implementation.

3.2 Input Size

There are effective algorithms for all manner of data, numbers, matrices, text, trees, graphs, and so on.
We need some objective means to measure the size of inputs to any such algorithm.

Recall from Definition 3 that the domain of each initial state of an effective implementation is iden-
tified with the Herbrand universe over a given set of constructors K. Thus, domain elements may be
represented as terms over the constructors K. Now, we need to measure the “size” of input values y,
represented as constructor terms. The standard way to do this would be to count the number of symbols
|y| in the constructor term for y. A more conservative way is to count the minimal number of constructors
required to access it, which is what we propose to do. This measure is proportional to the number of
basic steps that would be required to create that value.

Definition 8 (Size). The (compact) size ‖t‖ of a term t over vocabulary K is as follows:

‖t‖= |{s : s is a subterm of t}|.

For example, | f (c,d)|= 3, whereas ‖ f (c,c)‖= 2.
One may wish to add a logarithmic factor to this measure to account for the need to point to the

shared subterms. We defer discussion of this issue until later.
So now we have a way to measure the domain elements of effective implementations. But there

is one more issue to consider: The same domain may possess infinitely many constructors and, thus,
infinitely many representations. For example, consider the complexity of implementations over N. We
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are accustomed to say that the size of n ∈ N is lgn, relying on the binary representation of natural
numbers. This, despite the fact that the implementation itself may make use of tally notation or any other
representation.

Consider now that somebody states that he has an effective implementation over N, while working
under the supposition that the size of n ought to be measured by loglogn. Should this be legal? We
neither allow nor reject such statements blindly, but require justification. This requires our preceding
notion of equivalent implementations.

Definition 9 (Valid Size). Let A be an effective implementation over domain D. A function f : D→ N
is a valid size measure for elements of D if there is an effective implementation B over D such that A and
B are computationally equivalent via some bijection ρ , such that f (x) = ‖ρ(x)‖ for all x ∈ D.

Switching representations of the domain, one actually changes the vocabulary and thus the whole
description of the implementation. Still we want to recognize the result as being the “same” implemen-
tation, doing the same job, even over the different vocabulary.

3.3 Complexity

It is standard to consider the application of a constructor to existing objects, so as to form a new object,
to be an atomic operation of unit cost. Examples include successor for recursive functions, CONS for
Lisp, and adding a letter to a string for models like Turing machines. Similarly, destructors (projections)
like predecessor, CAR and CDR, and removing a letter are often considered atomic.

Though equality is not always considered atomic (in recursive functions, for instance), determining
which constructor was used to create a given object is. For example, testing for zero is an atomic oper-
ation for recursive functions, as is testing for an empty list in Lisp, and determining which letter of the
alphabet is at the end of a string. In pointer-based languages, testing equality of pointers is atomic, but
equality of graph structures is not.

In what follows, we apply analogous considerations to our generic constructor framework.

Definition 10 (Time Complexity). Let A be an effective implementation over domain D. A function T :
N→N is a time complexity function for A if there exists a valid size f : D→N and a basic implementation
simulating A such that T (n) is the maximal number of steps in a run of B with initial data d ∈ D such
that f (d) = n.

This definition counts steps, though a step may involve more than one action. But, thanks to Postulate
III, algorithms can only do a bounded amount of work per step, so the number of steps is within a linear
factor of the number of operations performed in a run. One may wish to charge a logarithmic factor per
operation, since they may be applied to arbitrarily large values; we will return to this point later.

A notion of space complexity is a bit more subtle. We postpone a detailed treatment for subsequent
work.

4 Simulation

We know from [4, Thm. 3] that, for any effective model, there is a string-representation of its domain
under which each effective implementation has a Turing machine that simulates it, and—by the same
token—there are RAM simulations. Our goal now is to prove that, given a basic implementation P with
complexity T (n), there exists a RAM M such that

• P is simulated by M (in the sense of Definition 6) via some representation ρ;
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• TM(n) = O(T (n)k) for some k ∈ N,

where TM measures M’s steps. In what follows, we will describe a RAM algorithm satisfying these
conditions. We will view the machine’s memory as forming a graph (pointer) structure. The desired
result will then follow from the standard poly-time (cubic) connection between TMs and RAMs.

First, we explain what an ASM program looks like. Then we will need to choose an appropriate
RAM representation for its domain of terms.

4.1 Abstract State Machines

Abstract state machines (ASMs) [8, 9] provide a language for descriptions of algorithmic transition
functions.

Definition 11 (Program [8]). ASM programs, over a vocabulary F , are composed of assignments and
conditionals.

• A generalized assignment statement f (s1, . . . ,s`) := u involves terms u,s1, . . . ,s` over F . Applying
it to a state X changes the interpretation that the state gives to f at the point (s1

X , . . . , t`X) to be uX .
The result is an algebra X ′ such that tX ′ = (t[ f (s1, . . . ,s`) := u])X for any term t over F , where
t[s := u] denotes the term obtained from t by simultaneous replacement of all occurrences of the
subterm s in t by u.

• Program statements may be prefaced by a conditional test, if c then p or if c then p else q, where
c is a Boolean combination of equalities between terms. Only those branches of conditional state-
ments whose condition evaluates to TRUE are executed.

• Furthermore, statements may be composed in parallel.

• The program, as such, defines a single transition, which is executed repeatedly, as a unit, until no
assignments are enabled. If no assignments are enabled, then there is no next state.

Denote by AlgF the class of all algebras over F . An ASM-program A defines a partial transition
function A : AlgF ⇀ AlgF such that A (X) is the result of applying A to X .

Definition 12 (ASM). Let A be an ASM program over F and let S0 ⊆ S ⊆ AlgF . Then, A = 〈A ,S,S0〉
is called an abstract state machine (ASM) if it is an algorithm in the sense of Definition 1.

Every algorithm is emulated step-by step, state-by-state by an ASM.

Theorem 13 ([9]). Let 〈τ,S,S0〉 be an algorithm over vocabulary F. Then there exists an ASM 〈A ,S,S0〉
over the same vocabulary, such that τ = A �S, with the terms (and subterms) appearing in the ASM
program serving as critical terms.

Remark 14. An ASM can have conflicting assignments, that is, inconsistent values being assigned to the
same location, a situation called a “clash”. In the prevalent ASM semantics, a clash would cause the
algorithm to abort. But the above theorem guarantees the existence of a clash-free ASM emulating any
clash-free algorithm. So, we may henceforth safely ignore any possibility of such clashes.

Definition 15 (ESM). An effective state machine (ESM) is an effective implementation of an ASM. It is
basic when the implementation is.

What is crucial for us is the observation that every basic implementation is emulated by such an
ESM, with the above instruction set. Note that the constructors themselves need not appear in an ESM
program, though they are part and parcel of its states.
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4.2 Tangles

One’s first inclination might be to represent terms as strings in a model like Turing machines. To see the
problem resulting from such a naïve representation, consider a simple ESM, consisting of one uncondi-
tional assignment, t := f (t, t). It is easy to see that k iterations would multiply the length of the string
representing t by 2k. Thus, we get an exponential growth of data size, which would prevent poly-time
simulation.

Clearly, this exponential blowup is due to the ability of an ESM to create several copies of existing
data in one transition, in contradistinction to a TM, regardless of the size of this data. To prevent the con-
sequent unwanted growth, we must avoid creating multiple copies of the same subterms, using pointers
to shared locations instead:

This structure is a fully collapsed “term graph”, which we call a tangle. For more on term graphs—that
is, rooted, labelled, ordered, directed acyclic graphs, see [14].

Let G(K) be all tangles over vocabulary K, for constructors K.

4.3 States

Throughout this section, let X be a constructive algebra over vocabulary F = K]C, with domain D and
constructors K (as in Definition 4). We describe the state of a RAM over the same signature F , but with
domain G(K), simulating X via the injection ρ : D � G(K) that maps elements of D to the tangle of
their unique constructor term.

Tangles will be implemented in RAMs by using matrices of pointers, where pointers are just natural
numbers in N. The pointer structure of a domain element is unique, but the numerical value of the
pointers themselves will vary from run to run. For any particular run of an algorithm, let ι : D � N give
the value of the pointer to the appropriate tangle constructed in that run.

We view (the graph of) an arity-` function f as an infinite `-dimensional matrix. If f (d1, . . . ,d`) = d0,
then the value of the matrix’s entry indexed by [d1, . . . ,d`] is d0. Actually, the indices are not domain
elements, per se, but numerical values of pointers to the appropriate tangles. In other words, we require
that f and ι commute: f (ι(d1), . . . , ι(d`)) = ι( f (d1, . . . ,d`)). Note that constants are nullary functions
and thus are associated with a matrix of dimension 0, with one unique entry, accessed via the constant
name, directly, without recourse to indices. The benefit of this representation is described in the following
proposition.
Proposition 16 ([16]). Multidimensional arrays can be organized in the memory of a RAM in such a
way that one can access an entry indexed by [i1, . . . , i`] in O(log i1 + . . .+ log i`) RAM-time, whether it is
a first-time access or a subsequent one.

The trick is to segment the memory into big chunks in such a way that one can compute squares of
indices, hence, cell locations, without need for multiplication; see [16] for details. One can also have
more than one array in such a RAM.
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We start by describing properties of the domain, as constructed in a RAM.

Proposition 17. Let D̃ be a finite set of matrices with natural-number values and indices, such that there
exists a bijection between matrices and constructors, satisfying the following:

1. Each constant has an integer value associated with it.

2. Entry values constitute a proper subset of index values (each domain element can be constructed
from the constants).

3. No repeated entry values (unique representation).

Then there exists some injection ι : D � N, such that D̃ represents D over it. We will say that D̃ mimics
D.

We continue with the description of state simulation.

Proposition 18. Let X̃ be a state of RAM such that the following holds:

1. State X̃ has an `-dimensional matrix for each arity-` function in the vocabulary of X.

2. The set D̃ of matrices associated with the constructors satisfies the requirements of Proposition 17.

3. For any nonconstructor `-ary function g there exists a `-dimensional matrix in X̃ , also named g,
such that the following holds: whenever g(d1, . . . ,d`) = d0 in X and d0, . . . ,d` are represented by
natural numbers c0, . . . ,c` using set D of matrices in X̃ , then the value of the entry in g indexed by
d1, . . . ,d` is d0.

Then X̃ mimics X.

Whenever we say that X̃ mimics a constructive algebra X , we mean it in the sense of this proposition.
Note that a basic state (Definition 3) possesses only finite non-trivial information and thus refers

to only finitely many domain elements. Thus, it should be mimicked by a RAM state with a finite
description, as well.

Proposition 19. Assume that X is a basic algebra. Let X̃ be a finite state of RAM such that the following
hold:

1. There exists a state X̃ ′ simulating X in a sense of Proposition 18.

2. State X̃ shares with X̃ ′ nonconstructor matrices (X̃ mimics all non-trivial data).

3. Values appearing in nonconstructor matrices of X̃ appear also in domain matrices.

Then X̃ mimics X.

This is what we will mean whenever we mention that X̃ mimics a basic algebra X .
So now we know how to mimic a basic algebra. To mimic a state of a basic ESM, we will have to

store additional information in the direct-access RAM.

Definition 20. Let 〈A ,S,S0〉 be a basic ESM over vocabulary F = K]C. Let X be a state of A . We say
that a finite state X̃ of RAM mimics X if the following hold:

1. State X̃ mimics X in the sense of Proposition 19.

2. For each nonconstructor constant c ∈C, there is a pointer named c that points to the value of c.

3. An additional counter MAX ∈ N contains the maximal value of the pointers to domain elements
used so far.
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Any time we mention that X̃ mimics a basic state X , we mean the simulation in the sense of this
proposition.

From now on, let m = lg MAX.
To see why it is enough to have pointers for constants only, and not for the whole set of critical terms,

consider the following lemma.

Lemma 21. Let 〈A ,S,S0〉 be a basic ESM over vocabulary F = K]C. Let X be its state and X̃, a finite
state of RAM simulating X. Let t be some term appearing in the description of A . Then the value tX can
be computed over X̃ in O(m) RAM-time.

Proof. The proof is based on the fact that, to compute the value of term, it is enough to compute the
values of all its subterms. These are bounded by the description of A . And an application to any of
the matrices is bounded by O(m), as per Proposition 16, because MAX is an upper bound on pointer
values.

4.4 Transition

Throughout this section, let 〈A ,S,S0〉 be a basic ESM over vocabulary F = K]C, with input terms I ⊆ J.
Consider some run X0 ; X1 ; · · · of A .

Lemma 22 (Building Initial States). Let X0 be an initial state of basic ESM A with input data I. Let
n = ‖I‖. Then there exists a constant c, not dependent on X0 and I and state X̃0 of RAM simulating X0,
using O(n logn) space such that |MAX| ≤ n+ c.

Proof. Recall that MAX is a variable containing the upper bound of the representations of the domain
elements used. Recall from the description of an ESM that the initial state contains input values and some
finite initial data, which is the same for all the initial states and does not depend on the input. Recall, also,
that each domain element is a term over a constructor vocabulary. To insert a domain term f (t1, . . . , t`)
in a matrix, one needs a representation for each t i. So to represent a term, one must represent all its
subterms. Thus, a representation of domain term t requires values in ‖t‖ entries of matrices, that is, ‖t‖
natural numbers. Representing input values requires at most n natural numbers (some input values may
have common subterms, so that the bound is not necessary reached). Also, since the other data encoded
in the initial state is finite, relative to the input, we may assume that it requires at most c additional
integers. Hence, to mimic the initial state, it is enough to use n + c natural numbers. Taking them to be
successive integers starting with zero, we conclude that |MAX| ≤ n+ c.

Lemma 23 (Simulating Transitions). Let X̃i be a RAM state simulating a basic state Xi. Then a RAM
state X̃i+1 simulating a basic state Xi+1 can be constructed in O(m) RAM-time. Also there exists a
constant b (which depends on A only and not on Xi) such that MAX is increased by at most b (that is, the
new counter value is greater then the prior one by at most b).

Proof. To construct X̃i+1, we have to simulate the transitions described by an ESM A . To do so, we
must simulate a finite number of predefined comparisons of the values of critical terms, and—based on
the result—we have to perform a set of assignments of new values (see Definition 11). Since the number
of comparisons and assignments has a finite bound fixed by the algorithm, it is enough to estimate the
complexity of one comparison and one assignment.

Recall that a comparison is a Boolean operation that requires comparisons of values of pairs of
critical terms appearing in the description of A . It thus follows from Lemma 21 that this operation can
be performed in O(m) RAM-time.
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An assignment f (t1, . . . , t`) := t0 causes the value of f at location [t1
X , . . . , t`X ] to become t0

X . It follows
again from Lemma 21 that computing [t1

X , . . . , t`X ] is O(m). If t0
X does not involve constructors, then

the same is true for it. In case it does, it may create new domain elements and thus new integers will
be required to represent them. Their number is bounded by the number of constructors used in the
description of t0 and thus is constant. Hence, the overall process is again O(m) RAM-time.

Denote by b the number of constructors appearing in the description of A . It follows from the above
that MAX is increased by at most b after the overall process. The resulting state X̃i+1 mimics basic state
Xi+1. The construction required O(m) RAM-time, as desired.

We demonstrate the evaluation of a RAM simulating ESM with the following artificial example.

Example 24. Consider a simple ESM defined by the one-line program d := f (d,d) over a vocabulary
Σ = {0, f ·, ·)}∪{d}, where 0 and f are constructors of A and d is a constant accumulating the result of
the computation. Assume that we start with with d = 0 and f undefined. Then the transition of RAM
will be as follows:

d 

0

f

d 1

f
0

0 1

d 2

0 1

0

1

1

2

d:= f(d,d)
d:= f(d,d) d:= f(d,d)

Max =  0

f

Max =  1 Max =  2

0 

0

0 0 00 

Note that the length of the string representation of a domain element accessed at step i of an ESM run
is O(2i). Thus, any attempt to store the string representation of domain elements would require RAM
memory exponential in the number of the ESM’s simulated steps. Since the memory requirement is a
lower bound on complexity, we conclude that a RAM would require at least an exponential-time overhead
to simulate the ESM. We overcome this difficulty by counting accessed elements, but not saving their
actual representations as domain terms.

4.5 Complexity

Theorem 25 (Time). Any effective implementation with time complexity T (n), with respect to a valid
size measure, can be simulated by a RAM in order O(T (n)) steps, with a word size that grows up to
order logT (n).

Proof. Let 〈τ,S,S0〉 be a basic implementation, simulating the given effective one with complexity T =
T (n). Let 〈A ,S,S0〉 be a basic ESM simulating it step-for-step. Let X0 be an initial state with input I of
size n. Then a run X0 ; X1 ; · · · of A starting from X0 has at most T states. It follows from Lemma 22
that there exists a RAM state X̃0 simulating X0, using O(n logn) space such that |MAX| ≤ n+c (where c is
some constant defined by A itself and not dependent on the choice of initial state). The proof continues
by induction on the number of steps. Assume RAM state X̃i mimics Xi using O(n logn + i log i) space
and that |MAX| ≤ n+ id + c. It follows then from Lemma 23 that a RAM state X̃i+1 simulating X+1 can
be constructed in O(logn + log i) RAM-time with MAX increased by at most d. Thus in X̃i+1 we have
that |MAX| ≤ n+(i+1)d + c. So we may conclude that we have to simulate T transitions, each of them
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requiring at most O(logn + logT ) RAM-time. So the overall simulation will take O(n logn + T logT )
RAM-time. Assuming that a run is long enough, we may conclude that the cost is O(T logT ) time. The
desired result thus follows.

5 Discussion

We have shown—as has been conjectured and is widely believed—that every effective implementation,
regardless of what data structures it uses, can be simulated by a Turing machine, with at most polynomial
overhead in time complexity.3

To summarize the argument in a nutshell: Any effective algorithm is behaviorally identical to an
abstract state machine operating over a domain that is isomorphic to some Herbrand universe, and whose
term interpretation provides a valid measure of input size. That machine is also behaviorally identical to
one whose domain consists of compact dags, labeled by constructors. Each basic step of such a machine,
counting also the individual steps of any subroutines, increases the size of a fixed number of such compact
dags by no more than a constant number of edges. Lastly, each machine step can be simulated by a RAM
that manipulates those dags in time that is linear in the size of the stored dags.

Specifically, we have shown that any algorithm running on an effective sequential model can be sim-
ulated, independent of the problem by a multi-tape Turing machine with little more than cubic overhead:
linearithmic for the RAM simulation of the ESM and quadratic for a TM simulation of the RAM [6].

In basic effective implementations, lookup of values of defined functions is an atomic operation, as
is testing equality of domain elements of arbitrary size. This may be unrealistic, of course, in which
case the overhead of the simulation may be considered lower than we have determined. Just as it is
standard to charge a logarithmic cost for memory access (lgx to access f (x)), it would make sense to
place a logarithmic charge lgx + lgy on equality test to test if x = y, that is if x and y point to the same
domain value. Though we did not include (unit-cost) destructors in basic implementations, that should
be possible, since destructors can be added to the RAM model without undue overhead.

In the simulation we have given, space-usage grows whenever a new domain value is accessed,
and that space is never reclaimed. For the simulation to preserve the space complexity of the original
algorithm, some version of “garbage collection” would be necessary, with a concomitant increase in the
number of steps. Further work is needed to quantify the space-time tradeoff involved.

Our result does not cover large-scale parallel computation, such as quantum computation, as it posits
that there is a fixed bound on the degree of parallelism, with the number of critical terms fixed by the
algorithm. The question of relative complexity of parallel models is a subject for future research.
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