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Abstract

This thesis proposes a notion of hints, clauses that are not necessarily consistent with

the input formula. The goal of adding hints is to speed up the SAT solving process. For

this purpose, an efficient general mechanism for hint addition and removal is provided.

When a hint is determined to be inconsistent, a hint-based partial resolution-graph of

an unsatisfiable core is used to reduce the search space. The suggested mechanism is

used to boost performance by adding generated hints to the input formula. described

are two specific hint-suggestion methods, one of which increases performance by 30%

on satisfiable SAT ’13 competition instances and solves 9 instances not solved by the

baseline solver.
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Chapter 1

Introduction

Modern backtrack search-based SAT solvers are indispensable in a broad variety of

applications [5]. In a classical SAT interface, the solver is given one formula in con-

junctive normal form (CNF) and determines whether it is satisfiable or not. Perfor-

mance of SAT solvers has improved dramatically over the past years [23]. The main

advancements came as result of developing new heuristics for existing conflict-driven

clause-learning (CDCL) solver techniques, like deletion strategies, decision heuristics,

and restart strategies (plus preprocessing and in-processing).

In this work, we propose and investigate a novel method for cutting the search

space explored by the SAT solver so as to help it reach a solution faster. The idea is

to add hints, clauses that are not necessarily “correct”, in the sense that they are not

necessarily implied by the original input formula.

We call our hint-addition platform HSat (Hint Sat), and present two variants that

have been implemented in HaifaMUC [21]. HaifaMUC is an adaptation of MiniSat

2.2 [8], which we will henceforth refer to it as Base.

The addition of hints H to the original formula F creates an extended formula F ′.

Hints can, of course, affect the satisfiability of the formula. As long as H is implied by

F , the extended formula F ′ will be equi-satisfiable with the original F (either both are

satisfiable or neither is). This means that if F is satisfiable but F ′ is not, then there

must be a contradiction between the added hints and the original formula.

In HSat, we try to solve only the extended formula F ′. In case it is satisfiable,

we are done, and the solver declares that the original formula was likewise satisfiable.

Otherwise, the extended formula is unsatisfiable, in which case we need to understand

whether the hints are the cause of unsatisfiability, that is, whether any hint is a neces-
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2 CHAPTER 1. INTRODUCTION

sary part of the proof of the empty clause. This is accomplished by an examination of

the resolution graph that is built during the run of the solver on F ′. In [22], the authors

presented an efficient way (their “optimization A”) of saving a partial resolution with

respect to a given subset of input clauses. We use this ability to restrict tracking so

that only the effects of hints are recorded in the partial graph. Marking clauses to

track their origin is an old idea used in Chaff [15] and later reintroduced in [27], and is

well adapted to cases when tracking of clauses is required. When the extended formula

is unsatisfiable, we check the cone of the empty clause. If it includes a hint, then the

status of the original formula remains unknown and additional operations are required

(like deletion of the hints). Otherwise, the original formula is unsatisfiable, and we

are done. Handling of inconsistent clauses was done in several other applications, like

parallel solving [12, 14]; our solution differs, having the ability to track the full effect

of the partial resolution tree.

In case the result is unknown and the UNSAT core contains only one hint, an

additional optimization can be made by using the UNSAT core of the partial resolution

graph. Suppose the UNSAT core contains only hint h, then h must contradict F , and

¬h is implied by F . As ¬h is, in this circumstance, a set (conjunction) of unit clauses,

each literal in h can be negated and added as a fact to F , which will increase the

number of facts and reduce the search space to be explored. This optimization can

be generalized to include all graph dominators in the partial resolution graph. (See

Theorem 9 below.)

We introduce two heuristics for hint generation. The first, “Avoiding Failing

Branches” (Afb), is a purely deterministic hint-addition method. The main idea behind

it is the same idea that drives restarts in modern SAT solvers, namely, the possibility

that the solver is spending too much time on “bad branches”, branches that do not

contain the satisfying assignment to the problem. Our motivation is to prevent the

solver from entering branches that have already been explored. In our algorithm, we

describe an explored branch that is a subset of decision variables. We pick the most

conflict-active decisions and add a hint that explicitly precludes choosing that set again.

In this approach, we keep a score for each literal. The score is boosted every time a

clause containing it participates in a conflict. The literals with the highest scores are

added to a hint in their negated form. The hint is then added right after a restart, and

the same set of active decision variables will never be chosen unless the hint is removed.
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This approach leads to significantly improved solver times for satisfiable instances.

A second heuristic, “Randomize Hints” (Rh), draws a given number of random

assignments, and tries to create a set of hints that will contradict the instance. When

the solver concludes unsatisfiability, all dominators of the partial resolution graph are

extracted, and all literals in all dominators are added as facts in their negated form.

We continue in the next chapter with the formalization and various preliminar-

ies. Chapter. 5 presents the HSat algorithm, and, in Chapter. 7, we demonstrate its

correctness. The two heuristic hint-generation methods of Chapter. 6 are empirically

evaluated in Chapter. 8. We conclude and discuss future work in Chapter. 9.

This thesis contains several contributions. An efficient generic mechanism is intro-

duced to add hints, the goal of which is to speed up the solver. It is based on the ability

to remove clauses and all the facts derived from them. In HSat, we use the partial

resolution graph of Base to remove the hints and their effect in case of an unsatisfiable

conclusion. In [16–18] and later in [22], it was shown that the alternative, using selector

variables for clause removal [9, 19], is inferior to the use of the resolution graph. We

extend the path-strengthening technique published in [17]. Instead of using only im-

mediate children of the removed clauses, we use all dominators in the partial resolution

graph provided in Base. We introduce two algorithms for hint generation, one of them

(Afb) increasing performance for satisfiable instances by 19–30%. A paper on this

work was accepted to the 18th International Conference on Theory and Applications

of Satisfiability Testing [1] (SAT 2015).



Chapter 2

The Boolean Satisfiability

Problem

The Boolean Satisfiability Problem, is the problem of determining whether a given

Boolean formula is satisfiable. A Boolean formula is built of Boolean variables (over

{0, 1} or {true, false}), their conjunction (denoted by AND or ∧), disjunction (denoted

by OR or ∨) and negation (denoted by ¬). For example, the following formula is a

Boolean formula: (¬x1)∨ (x2∧x3). An assignment is giving truth values to all Boolean

variables in the formula. If there exists an assignment under which a formula evaluates

to true, we say that the formula is satisfiable; otherwise, we say that the formula is

unsatisfiable. Each clause c = `1 ∨ `2 ∨ . . . ∨ `k is a disjunction of literals, and each

literal `i is either a variable v or its negation ¬v. A formula is in conjunctive normal

form (CNF) if it is a conjunction (multiplication) of clauses. For example, the following

formula is in CNF : (x1 ∨ ¬x2) ∧ (x3 ∨ ¬x1) ∧ (¬x3 ∨ x4). A CNF formula is satisfied

if and only if (iff) all of its clauses are satisfied. A clause is satisfied iff at least one

of its literals are evaluated to true. We are only interested in CNF formulas. This

“restriction” is in no way a limitation, since any Boolean formula can be transformed

into an equivalently satisfiable CNF formula in polynomial time and size [20].

SAT is the language of all satisfiable CNF formulas. UNSAT is the language of

all unsatisfiable CNF formulas. SAT was proven to be the first known NP-complete

language [6]. Because SAT is NP-complete, every decision problem in NP is polyno-

mially reducible to SAT, and can be solved by a SAT solver. A SAT solver S is an

algorithm that given a CNF formula ϕ, determines whether it is satisfiable or not, and

4
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if ϕ is satisfiable, S returns a satisfying assignment. Because SAT is an NP-complete

problem, and the question of whether P = NP is unknown, there is no known al-

gorithm S that solves all formulas in polynomial time. If the number of variables is

n, the number of assignments is 2n. A straightforward implementation of a solver S

would be to iterate over all assignment, and return “SAT” if a satisfying assignment

was found, or “UNSAT” otherwise. This algorithm is intractable for a large number

of variables, so several optimizations and heuristics are used to trim the search space.

These optimizations and heuristics are brought up in the following chapter.



Chapter 3

Modern SAT Solvers

Modern SAT solvers, like MiniSat and Glocuse [3, 8], are Conflict-Driven Clause-

Learning (CDCL) solvers, based primarily on decisions, propagations, clause learning

and non-chronological backtracking. CDCL solvers also use heuristics like restarts,

deletion strategies, decision heuristics etc. To explain how a SAT solver like MiniSat

works, we first explain DPLL solvers, the origin of modern SAT solvers.

3.1 DPLL

The Davis-Putnam-Logemann-Loveland (DPLL) algorithm is is a complete backtrack

search SAT solver algorithm which uses several optimizations. It was introduced in

1962 by Martin Davis, Hilary Putnam, George Logemann and Donald W. Loveland [7].

3.1.1 Backtrack Search

The backtrack search algorithm S searches a tree called the search tree. Each level of

the tree corresponds to decision of a variables value, when going left on a variable xi

corresponds to assigning xi = false and going right corresponds to assigning xi = true.

The number of leaves in the tree is 2n when n is the number of variables, but DPLL will

usually traverse a far smaller fraction of that tree. The algorithm S chooses variables

in a certain order and incrementally assigns a value to each variable. As long as the

partial assignment does not contradict the formula, this process is continued. When the

formula is contradicted, S tries to assign the opposite value to the last chosen variable.

If the resulting assignment contradicts the formula, there is no point in continuing

in that search space and backtracking takes place. The algorithm backtracks to the

6



3.1. DPLL 7

previous decision, and either assigns the opposite value or backtrack again if both values

were tested.

The algorithm continues the search in a similar fashion, assigning, reassigning,

unassigning, and backtracking until either a satisfying assignment was found or no

satisfying assignment was found and the results is unsatisfiable. The algorithm does not

explicitly visits all assignments, since it backtracks once a partial assignment contradicts

the formula.

Three trivial but crucial optimizations takes place in DPLL solvers at their early

stages:

1. If a clause is of size one, its literal is taken as a fact.

2. Pure literal elimination - If a literal `i occurs with only one polarity in the formula,

all clauses containing `i can be removed.

3. If a clause contains a literal and it’s negation, then the clause will be satisfiable by

all assignments and can be removed.

3.1.2 Boolean Constraint Propagation (BCP)

The original DPLL algorithm uses an iterative rule called unit propagation. A clause

that has all but a single literal assigned to false is called a unit clause. In a unit clause,

the remaining free literal must be assigned to true, otherwise the formula is falsified.

When a unit clause is found, the algorithm immediately assign the free literal to true.

Such assignments can result with more unit clauses, and the process continues until

no more unit clauses exist or until a contradiction is found (a clause is evaluated to

false). This iterative process is called boolean constraint propagation and the resulting

assignments are called implications.

The variables assigned as a result of BCP are called implication variables, while

the variables assigned by the decision process are called decision variables. When a

clause is evaluated to false, a conflict takes place. When a conflict occurs, either the

second possible value of the last decision variable is chosen, or if it has already been

chosen then backtracking takes place. In both cases, the implications that followed the

last decision are canceled. If no conflict occurs during BCP, a new decision variable is

chosen, and BCP is performed again.
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Figure 3.1: Search tree of (x1 ∨ x2 ∨ ¬x3) ∧ (¬x3 ∨ x4) ∧ (x2 ∨ x3)

The decision level is the number of decision variables assigned so far. The decision

level is increased when a decision variables is assigned, and decreased when unassigned.

An assignment to an implication variable does not change the decision level, the im-

plication variable is associated with the current decision level. By construction, every

decision level has a single decision variable and a list of implication variables (the list

can be empty).

3.1.3 Search Example

Presented is an example of backtracking with BCP. In Figure 3.1 1, the search tree of

the formula (x1 ∨ x2 ∨¬x3)∧ (¬x3 ∨ x4)∧ (x2 ∨ x3) is presented. The decision order in

this example is x1, x2, x3, x4, but this is not compulsory and may change according to

algorithm decision heuristic.

The following steps occur in a DPLL solver, when decision level is the current

decision level :

1. The decision x1 = 0 is made. decision level = 1

2. No unit clauses are found and another decision is taken, x2 = 0 is decided.

decision level = 2

3. The clause (x1∨x2∨¬x3) becomes unit, so x3 is assigned to false. However, (x2∨x3)

is falsified. Backtracking is needed. decision level = 1

1Taken from Yulik Feldman’s thesis, Parallel Multithreaded Satisfiability Solver, Tel Sviv University,
2005.
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4. The decision x2 = 1 is made. decision level = 2

5. No unit clauses are found and another decision is taken, x3 = 0 is decided.

decision level = 3

6. All clauses are satisfied and “SAT” is returned.

3.2 CDCL

Conflict-Driven Clause Learning (CDCL) is an advanced algorithm to solve the boolean

satisfiability problem, primarily based on DPLL solvers. It was proposed in 1996 by

Marques-Silva and Sakallah [25]. In CDCL SAT solvers, when a conflict takes place,

conflict analysis is performed. In conflict analysis, the reason for the conflict is com-

puted and added as a conflict clause. The conflict clause prevents the solver from

returning to the same branch that caused the conflict.

As explained, conflict clauses are built during conflict analysis. The conflict clause

is built by analyzing a data structure called the implication graph. After creating the

conflict clause, backtracking takes place. However, instead of backtracking to the last

decision level, the algorithm will usually backtrack to a lower decision level. This

backtracking procedure is called non-chronological backtracking. Conflict analysis with

non-chronological backtracking is one of the most important optimizations ever brought

to modern SAT solvers, improving it by order of magnitude. We explain the process in

more details in the coming sections.

3.2.1 Implication Graph

An implication graph is a directed acyclic graph (dag) that is implicitly created by

recording the reason for every implication taken. Analysis of the implication graph

takes place when a conflict occurs. In Figure 4.1 an implication graph is described.

Each node v represents an assignment or implication. An edge u→ v exists if u was one

of the literals that became false in the unit clause that forced assigning v to true. Note

that more nodes from lower decision levels exist, however we are only concerned with

the ones that are the cause of an implication at the current decision level. Therefore,

decision variables or implication variables from lower decision levels have no incoming

edges. In Figure 4.1, gray nodes represent decision variables or implications from lower

decision levels, while black nodes represent implications from the current decision level.
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Writing vi = a@b means that vi was assigned to a at decision level b. The last node

(on the right) is referred to as the conflict node, while the node whose decision led to

a conflict is referred to as the decision node.

For example, the first decision was assigning v1 = 1. Clause c1 became unit, result-

ing with the implication v2 = 1. Because v9 was assigned to 0 at a lower decision level,

another unit clause, c2, leads to an implication v3 = 1. Both implications turn c3 into

a unit clause, and lead to the implication v4 = 1. This procedure is part of BCP, which

continues until a clause becomes unsatisfied, in this case c6.

In an implication graph, node x is said to dominate node y if all paths from the

decision node to y go through x. A unique implication point (UIP) is a node that

dominates the conflict node. Intuitively, UIPs are points that can replace the decision

node and still result with the same conflict. Note that the decision node is always a

UIP. In Figure 4.1, v1 and v4 are UIPs. UIPs are ordered starting from the conflict, so

v4 is the first UIP and v1 is the second UIP.

Cut. A cut in the implication graph is defined by a partition of the nodes into two

sides. A cut is considered legal if one side contains the conflict node—the conflict side,

while the other side contains all gray (decision) nodes—the reason side. For example,

Figure 4.1 shows a cut where the conflict node, v5, and v6 are on the conflict side, while

all other nodes are on the reason side.

3.2.2 Conflict Clauses

Conflict clauses are generated by finding a cut in the implication graph. Each cut

corresponds to a disjunction of negation of the literals whose edges cross from the

reason side to the conflict side. Since the conflict node can be deduced from all nodes

in the reason side who have edges to the conflict side, the corresponding conflict clause

prevents from entering the same problematic search space again. For example, the cut

in Figure 4.1 represents the conflict clause v10∨¬v4∨v11. In [15], it was shown that the

best clause (best means minimize run-time) is the one created by finding the cut in the

implication graph that has all nodes assigned after the first UIP (1UIP) in the conflict

side, and all other nodes in the reason side. This cut is represented by a vertical line

in Figure 4.1.
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3.2.3 Non-Chronological Backtracking

In Section 3.2.2 we discussed conflict analysis and the construction of the first UIP

conflict clause U .

U will always have a single literal `U from the current decision level dU , and other

literals from lower decision levels. Denote maxU to be the maximal decision level of

literals of U except `U . If we were to backtrack to level maxU (without canceling the

decision of that level), then BCP will assign `U = 1 and continue. Since all decisions

between maxU and dU had nothing to do with the conflict, the search continues from

maxU . The decisions are then taken with respect to the used decision heuristic and

implications resulted from the new conflict clause. In Figure 4.1, maxU = 3. The

algorithm backtracks to level 3, assigns v4 = 0 as an implication and continues with

BCP.

3.2.4 Decision Heuristics

The strategy of deciding which variable to assign next is called a decision strategy. These

strategies can be based on random selection, static heuristics or dynamic heuristics. A

branching heuristic is considered good if it helps finding the satisfying assignment in

branches that contain such an assignment, and finds good conflicts in branches that

do not contain such an assignment. It is important that the overhead of the decision

process be minimal to avoid slowing the entire algorithm.

Some examples for static heuristics are Jeroslaw-Wang [13], Literal Count [24],

MOM (Maximal occurence on clauses of Minimal size) etc. A major drawback of these

strategies is the big overhead they require. Another disadvantage is that they do not

use the information gathered during conflict analysis. Example of heuristics that use

conflict analysis information are VSIDS (Variable State Independent Decaying Sum)

[15], VOX (Variable Ordering Extension) and the Berk-min heuristic [10]. In [10, 15],

it was shown that decision heuristics based upon conflict analysis are faster by order of

magnitude.

We describe VSIDS, the first dynamic decision strategy, introduced by Moskewicz

in 2001 [15]. According to VSIDS, each literal ` is associated with a counter, whose

value represents the number of clauses containing `. The initial counter for all literals

is 0. When a conflict clause containing ` is added, the counter of ` is updated. The

algorithm periodically decreases the value of all counters. The literal to be picked is
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the one with the highest score, when ties are broken randomly. Decreasing the value

of counters every once in a while gives preference to literals participating in recent

conflicts. The intuition behind this strategy is trying to satisfy the recent conflict

clauses. This strategy is considered dynamic as it updates itself according to recent

changes in the clause database. It has an extremely low overhead, because grades can

be updated during conflict analysis.

3.2.5 Restarts

Most CDCL SAT solvers will use a strategy called restart strategy. In a global restart

strategy, all decisions are canceled and the solver backtrack to its original base decision

level. Information from the run prior to the restart is recorded in the form of conflict

clauses. The logic behind this strategy is that it helps the solver avoid spending too

much time in branches that have no easy-to-find satisfying assignment, or branches

that do not lead to learning of strong conflict clauses. In [11] it was shown that restarts

are very effective in real-world SAT instances.

Most restart strategies rely on a global criterion, such as the number of conflicts

counted since the previous restart. The difference will usually be in the form of cal-

culating the threshold after which another restart takes place. In this thesis, we use

restarts to add additional clauses who are not necessarily implied by the formula.



Chapter 4

Hints Preliminaries

Let ϕ be a CNF formula c1 ∧ c2 . . .∧ cm. We write ci ∈ ϕ if ϕ = c1 ∧ . . .∧ ci ∧ . . .∧ cm.

Each clause c = `1 ∨ `2 ∨ . . .∨ `k is a disjunction of literals, and each literal `i is either

a variable v or its negation ¬v. We write `j ∈ ci if ci = `1 ∨ . . . ∨ `j ∨ . . . ∨ `k. In what

follows, V denotes the set of variables occurring in ϕ, and n = |V |.

For two clauses ci = v ∨ c and cj = ¬v ∨ c′, both involving the same variable v ∈ V ,

their binary resolvent is

Resol(ci, cj) , c ∨ c′ .

A conflict occurs when several solver decisions and subsequent implications result

with a clause being unsatisfiable. In CDCL SAT solvers, a clause preventing the last

conflicting set of decisions is created and added; as mentioned earlier, this clause is re-

ferred to as a conflict clause. In [15], it was shown that the best clause is the one created

by finding the cut in the implication graph that includes the Unique-Implication-Point

(UIP) closest to the conflict. That cut corresponds to a number of binary resolutions

performed on clauses that are inside the cut or intersect it. For example, Figure 4.1

illustrates the cut and the clauses c4, c5, c6 that participated in the resolutions that

derived the conflict.

If ϕ is a formula and H is a set of hint clauses, then by ϕ ∧ H we mean their

conjunction: ϕ ∧
∧

h∈H h, which we will call a hint-extended formula.

In HSat, we use a resolution graph to determine why ϕ ∧H is unsatisfiable, when

it is, by extracting the UNSAT core.

Definition 1 (Hyper-Resolution). Let c1, c2, . . . , ci be all the clauses (from the implica-

13
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Figure 4.1: Conflict analysis graph. The gray nodes represent decision variables while
the black nodes represent propagated values. The vertical line is the first UIP cut.
Writing vi = a@b means that vi was assigned to a at decision level b.

tion graph) that participated in the binary resolutions that created the first UIP conflict

clause U . The Hyper-Resolution function

Hyper(c1, c2, . . . , ci) , U

yields that resulting conflict clause U .

As mentioned in Chapter. 1, we use a partial resolution graph to generate hints.

This graph is used to determine whether there exists a directed path from H to an

empty clause.

Definition 2 (Resolution Graph). The Resolution Graph G = (V,E) is defined recur-

sively as follows:

V := ϕ ∪H ∪ {Hyper(c1, . . . , cm) | c1, . . . , cm ∈ V }

E := {(ci,Hyper(c1, . . . , ci, . . . , cm)) | c1, . . . cm ∈ V } .

In words, the vertices are the initial clauses and hints closed under hyper-resolution

and the edges point from participating clauses to their hyper-resolvent.

Determining whether a path exists from H to the empty clause is possible by saving

only the part relevant to hints. The partial resolution graph will consist only of hints

or conflict clauses that were derived by some hint. To do so, we start just with the
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Figure 4.2: Resolution graph. Black nodes are the set H. Blue nodes are the hyper-
resolvents of VP . The gray nodes are the nodes in V \ VP .

hints and define the relevant hint-based Partial Resolution Graph as follows:

Definition 3 (Partial Resolution Graph). The Partial Resolution Graph GP =

(VP , EP ) is defined recursively as follows:

VP := H ∪ {Hyper(c1, . . . , ci, . . . , cm) | ci ∈ VP , c1, . . . , ci−1, ci+1, . . . , cm ∈ V }

EP := {(ci,Hyper(c1, . . . , ci, . . . , cm)) | ci ∈ VP , c1, . . . , ci−1, ci+1, . . . , cm ∈ V } .

In words, the vertices are the hints closed under hyper-resolution and the edges point

from participating clauses to their hyper-resolvent. Figure 4.2 contains an example

illustrating Definitions 2,3. The nodes c4, c5, c6, c9 form the set ϕ, while c7, c8 are the

hints in H. The entire graph represents G while the black and blue nodes and the edges

between them are the restricted graph GP .

Having defined the partial resolution graph, we are interested in isolating the proof

of unsatisfiability. To do so, we define the UNSAT core (UC) of a resolution graph.

Definition 4 (UNSAT Core). The UNSAT core is a subset UC of ϕ ∪ H that is

backward reachable from the empty clause in G.

We are interested in finding that part of UC that is relevant to the hints:

Definition 5 (Relevant UNSAT Core). The Relevant UnsatCore is the intersection

RC = H ∩ UC.

We refer to the set of all dominator points (a vertex that lies along every path)

between RC and the empty clause in an UNSAT proof as DominatorRC .

The negation ¬h of a clause h = `1∨`2 . . .∨`k is the set (conjunction) of its negated

literals ¬`1 ∧ ¬`2 . . . ∧ ¬`k, viewed as unit facts.



Chapter 5

Hint Addition

We proffer a general platform for adding clauses without worrying that they might

be inconsistent with the input formula. These “hint” clauses can be created using

prior knowledge about the formula’s origins or from information garnered during SAT

solving, as explained in Chapter. 6. Our solution enjoys several benefits:

1. No additional literals are added.

2. We delay the effect of hints by using techniques from HaifaMUC as described in

[22].

3. “Bad” hints, hints participating in the empty clause derivation, are used for search

space reduction.

We use a resolution-graph-based solution to avoid the need for extra literals and to

enable further optimizations in case the extended formula is unsatisfiable on account

of the hints. In addition, we want to prevent any aggressive intervention of hints in the

SAT solver’s solution process, by using hints only when necessary, which is achieved

by delaying their use. We discriminate in favor of the use of ordinary clauses because

conflicts derived from hints are not necessarily consistent with the formula. The same

motivation underlies modern Minimal Unsatisfiable Set (MUS) and Group Minimal

Unsatisfiable Set (GMUS) solvers, which prefer to use clauses already known to be in

the minimal core, to keep that as small as possible. Because of the similarity between

hints and core clauses in MUS and GMUS solvers, we base our solver on HaifaMUC

and use the optimization techniques described in [22]. These techniques allow us to

prioritize ordinary clauses over hints and therefore reduce the run-time effect of hints.

16
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The optimizations relevant to hints are the following:

1. Maintain only the partial resolution proof of clauses derived from the added hints.

This prevents the keeping of the whole resolution proof in the memory and signifi-

cantly reduces the memory footprint of the solver.

2. Selective clause minimization. Clause minimization [4, 26] is a technique for shrink-

ing conflict clauses. If the learned clause is not derived from the hints, then during

shrinking we prevent the use of hints in the minimization. The result is that no

additional dependencies on hints are added even at the expense of longer learned

clauses.

3. Postponed propagation over hints. This optimization is performed by changing the

order of BCP (Binary Constraint Propagation). BCP first runs over ordinary (non-

hint) clauses, and only if no conflict is found does it run over hints. The motivation

is to prefer conflicts caused by ordinary clauses.

4. Selective learning of hints and selective backtracking. Both optimizations change

the learning scheme by reducing the number of clauses effected by hints in case an

ordinary clause can be learned.

We denote these optimization techniques collectively as HMucOpt.

One of the benefits of using a resolution-graph method is the availability of clause

relation information, which can be used in case the extended formula is unsatisfiable

on account of hints. In [17], a path strengthening technique was presented in relation

to the MUS problem solution. It uses the partial resolution graph and is used to check

whether a clause c is part of the MUS. Checking whether c ∈ MUS can be done by

checking if the formula is unsatisfiable without using c. If it is, then c cannot be part of

the minimal core. To speed up the SAT solver run, the negation of the clause is added

to the SAT Solver as assumptions. Path strengthening extends this set of assumptions

by analyzing the resolution graph. If c has only one derived clause in the cone of the

empty clause, then the literals of this clause are added as assumptions as well. This

operation is performed recursively until a clause with more than one child is reached.

In HSat, we extend this by using all dominators between the hint clause and the empty

clause in the partial resolution graph.

Algorithm 1 introduces the general workflow of HSat. Operation Solve() is a mod-

ification of a generic SAT solver with several additions. First, it allows the addition
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Algorithm 1 HSat– Solves an extended formula, negates dominators and cleans hints’
effects.

Input: instance – Boolean formula in CNF
form

H – Initial set of Hints (in our case
∅)

Output: SAT or UNSAT (ignore timeout)

1: while true do
2: model := Solve(instance ∧H) . New h ∈ H can be added in Solve()
3: if model 6= null then
4: return SAT . We have the model
5: else
6: RC := GetRC ()
7: if RC.Size() = 0 then
8: return UNSAT
9: else

10: DominatorRC := GetDominators(RC)
11: for each D ∈ DominatorRC do
12: instance := instance ∧Negate(D)

13: for each ci ∈ RC do
14: RemoveClauses(ci)

of new hints and produces a partial resolution in case those hints are added. In addi-

tion, Solve() contains an implementation of HMucOpt. Operation Solve() can return

satisfiable or unsatisfiable. In the satisfiable case, we are done, as the solver found a

satisfying assignment to the formula. In case the result is unsatisfiable, we check the

RC (UNSAT core of hints) created by the hints. The extraction of RC is performed

using GetRC (). If RC is empty, then the solver found a proof of the empty clause

without relying on hints, so the original formula is unsatisfiable. Otherwise, we find all

dominators of the RC using GetDominators(). (See Algorithm 2 and the next para-

graph.) For each dominator, we add its negation via Negate() to the input formula

and create a new instance, which goes back to Solve(). Before the next call to Solve(),

we clean the effect of hints in GP by means of RemoveClauses(). The correctness of

Algorithm 1 is justified by the observations of Chapter. 7. As mentioned already, for

Solve() we use a modification of Base, so all the optimizations HMucOpt are used, as

was introduced in [22]. This way, we ensure an increased chance of finding the solution

without hints if such a solution is easy to find.

The operation GetDominators() gets all nodes v ∈ VP such that all paths from H

to the empty clause go through v. At first, we save all nodes from RC in a list called



19

Algorithm 2 GetDominators() – Gets all dominators in GP . This set will be negated
in Algorithm 1

Input: GP – The Partial Resolution Graph

Input: workList – list of vertices. Initially set to RC

Output: DominatorRC – The dominators with respect to
GP

1: while workList.Size() > 0 do
2: v := GetAllParentsMarked(workList)
3: if workList.Size() = 1 then
4: DominatorRC .Push(v) . A dominator

5: Mark(v) . v now marked
6: for each u ∈ Children(v) do
7: if ¬IsMarked(u) then
8: workList.Push(u)

9: workList.Remove(v)

10: return DominatorRC

workList. The algorithm iterates until workList is empty. We get from the list some

v ∈ VP that has all parent marked using GetAllParentsMarked(workList). Note that

since RC has no parents, all members of RC have all parents marked. If the size of

workList is 1, then v is a dominator and we push it into DominatorRC . We mark v

using Mark(v) and push all its unmarked children into workList. Note that the empty

clause is a child too.
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Hint Creation Algorithms

Heuristics for hint generation can vary from completely random selection to a purely

deterministic selection algorithm.

6.1 Avoiding Failing Branches

In this section, we present a deterministic heuristic for hint creation based on the

restart strategy and conflicts. We call this heuristic Avoiding Failing Branches (Afb).

The idea is to track the most conflict-active decisions in the explored branch and add

a hint that explicitly prevents choosing that set again. If a restart took place, it is

reasonable to assume heuristically that the last explored branch is less likely to contain

the satisfying assignment.

In Afb, we keep an array of variable activity to determine the most conflict-active

decisions. When the solver encounters a conflict, we update the scores of all variables

responsible for the conflict. We will explain what “responsible” means shortly.

The decision to add hints is taken upon backtracking. If the backtracking is actually

a restart, then the most active literals are chosen to participate in a hint, which is added

right after the restart. Because the literals are added in their negated form, all explored

branches containing the set of literals in the hint will not be re-explored.

In Algorithm 3, which is implemented within the function Analyze() of MiniSat

2.2 [8], we update the score of the variables participating in a conflict. For this purpose,

we keep an array of variables (variableScores), which is updated for all literals that are

in the first UIP (U) computed in ComputeFirstUip(). We then iterate all variables

v ∈ U . If v is a decision variable (DecisionVariable(v)), we increment its score by one.

20
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Algorithm 3 Update the score of a variable after a conflict. The score is updated
for all decision variables in the first UIP, and for all variables in the reason clause for
non-decision variables.
1: Analyze() {
2: · · ·
3: U := ComputeFirstUip()
4: · · ·
5: for each ` ∈ U do
6: v := Var(`) . v is the variable of `
7: if DecisionVariable(v) then
8: variableScores[v] := variableScores[v] + 1
9: else

10: cv := Reason(v)
11: for each `′ ∈ cv do
12: v′ := V ar(`′)
13: variableScores[v′] := variableScores[v′] + 1

14: . . .
15: }

Otherwise, we take the reason for v being assigned (cv := Reason(v)) and increment

the score for all variables in cv.

In Figure 4.1, the first UIP node is U = v10 ∨ ¬v4 ∨ v11. Algorithm 3 will first

compute U and iterate through all its literals. The scores of decision variables v10, v11

are increased in line 8; v4 is not a decision variable, so its reason, c3, is computed in

line 10. The score of variables v2, v3, v4 is increased in line 13.

The hints are added in the function CancelUntil() of MiniSat 2.2 [8]. If a

restart is decided upon, we use the information acquired by Algorithm 3 to choose

the most active literals to participate in the hint. A literal ` is chosen to participate

if variableScores[Var(`)] is greater than some threshold θ. The integer conflict is the

number of conflicts since Solve() was called. Three magic numbers, α ∈ [0..1], x ∈ N,

y ∈ N, also appear in Algorithm 4. They are used in the following fashion:

1. A literal ` is added to the hint if variableScores[Var(`)] > α× conflicts = θ.

2. We observed that, as time passes, it’s advisable to increase θ.

3. Parameter x was added as a minimal threshold to prevent adding hints too “quickly”.

The idea is to prevent hints from being used when easy instances are solved.

4. Parameter y is used to ensure that new hints are not too small. Small hints can be

too influential in the search procedure.
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Algorithm 4 Afb hint addition – Adds a hint built of all negated literals with a score
exceeding θ.

1: CancelUntil(backtrackLevel){
2: if backtrackLevel > 0 then . This is not a restart
3: Performing backtracking until backtrackLevel . . .
4: Upon freeing variable v:
5: variableScores[v] := 0
6: . . .
7: else . This is a restart
8: if conflicts > x then
9: for each decision variable v with decision ` do

10: if variableScores[v] > α× conflicts then
11: hint.Push(¬l)
12: for each variable v with decision ` do
13: variableScores[v] := 0

14: Perform backtracking until backtrackLevel = 0 . . .
15: if hint.Size() > y then
16: AddClause(hint)

17: hint.Clear()

18: . . .
19: }

We maintain a vector of literals, hint, to store the clause that might form the future

hint. Function AddClause() adds the hint to the input instance.

6.2 Randomized Hints

We introduce next a completely random selection algorithm for hint creation, based on

random assignments and satisfiability checking. We call this heuristic Randomize Hints

(Rh). In this algorithm, we use random assignments to see if we can learn literals that

are likely untrue, that is, if chosen, a conflict is reached. We add these literals to form

a new hint, that will hopefully lead the solver to an unsatisfiable conclusion. This hint

is then negated, and the explored search space is reduced.

The randomized hint is created before HSat is called. First, k random assignments

are drawn, each with uniform distribution over {0, 1}n. These assignments are then

checked on every clause. If some clause is unsatisfied, we bump the grade of all literals

in the clause. We keep a vector of grades, literalsGrades(), and track the maximal

graded literals that will be chosen to participate in the hint. We encourage the solver

to pick the literals of the hint as decisions by increasing the activity of the variables

involved in MiniSat’s VarBumpActivity(v).
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Algorithm 5 Create randomized hints – draws random assignments and boosts score
for all literals in a clause unsatisfied by an assignment. The literals with the highest
scores are chosen to participate in hints.

Input: sizeOfHint – Size of the hint

Input: assignments – Number of assign-
ments to draw

1: DrawRandomAssignments(assignments)
2: for each Assignment σ do
3: for each Clause c do
4: if ¬ClauseSatisfied(c, σ) then
5: for each literal ` ∈ c do
6: literalsGrades[l] := literalsGrades[l] + 1
7: VarBumpActivity(V ar(`))

8: for i ∈ [0..sizeOfHint− 1] do
9: hint[i] := literalsGrades.PopMax ()

10: AddClause(hint)
11: hint.Clear()

The following functions and variables are used in Algorithm 5 for random hints:

1. DrawRandomAssignments(num) creates num random assignments.

2. ClauseSatisfied(c, σ) returns true iff σ(c) = true.

3. PopMax () returns and removes the literal with the highest score.
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Theoretical Basis

For completeness, a few observations are in place, which should serve to convince readers

that correctness is being maintained.

Proposition 6. For any formula ϕ, a set of hints H and assignment σ : V → {0, 1}

of truth values to the variables of ϕ ∧H,

σ(ϕ ∧H)⇒ σ(ϕ) .

Proposition 7. For any formula ϕ and set of hints H,

ϕ ∧H ∈ UNSAT⇒ ϕ ∧ ¬H ≡ ϕ .

By ¬H, we mean
∨

h∈H ¬h.

Proof. If ϕ ∧H ∈ UNSAT, then ¬(ϕ ∧H), which is equivalent to ϕ⇒ ¬H.

From Proposition 7, we establish the following:

Proposition 8. Given ϕ ∧H ∈ UNSAT and |H| = 1 where h = `1 ∨ `2 · · · ∨ `k

ϕ ∧ ¬`1 ∧ ¬`2 ∧ · · · ∧ ¬`k ≡ ϕ .

This observation is critical for HSat. In this case, k new facts are learned, which

helps reduce the fraction of the search space that gets explored.

As mentioned earlier, this idea can be generalized to include all dominators.

Theorem 9. If ϕ ∧H is unsatisfiable, then ϕ ≡ ϕ ∧ ¬D for every D ∈ DominatorRC .
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Proof. Since D ∈ DominatorRC , it is sufficient to prove ϕ ∧D ∈ UNSAT. By Proposi-

tion 7, ϕ ≡ ϕ ∧ ¬D.



Chapter 8

Experimental Results

8.1 AFB Results: SAT 2013

We compare now the performance of HSat, with and without heuristic Afb. We

find that hints have a positive effect for satisfiable instances but cause a moderate

degradation for unsatisfiable ones. The positive results for satisfiable instances are in

line with our presumption that, if a restart takes place, it is heuristically likelier that

the satisfying assignment to the problem lies on another branch.

We ran over 150 satisfiable instances from SAT 2013, but the results reported below

refer only to the 113 that were fully solved by at least one solver within half an hour.

All of the instances are publicly available at [2]. We implemented all the algorithms in

Base [22], which is built on top of MiniSat 2.2 [8]. The code is public and available

at [21]. For the experiments, we used machines running Intelr Xeonr processors with

3Ghz CPU frequency and 32GB of memory.

Table 8.1 displays a 30% improvement in overall runtime for satisfiable instances.

Furthermore, there are 9 instances solved by Afb that are not solved by the base solver,

compared to 4 instances solved by Base but not by Afb.

In addition, 130 unsatisfiable instances from SAT 2013 were tested; the reported

results refer only to the 60 that were fully solved by at least one solver within the 30-

minute time limit. Table 8.1 shows a 7% degradation in overall runtime for unsatisfiable

instances.

Figure 8.1 presents Base vs. Afb. The diagonal y = x emphasizes the superiority

of Afb. Figure 8.2 presents the time differential between Base and Afb. On average,

Afb solves one of these problem instances 21
2 minutes faster than the baseline. The
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Table 8.1: Afb performance results for SAT 2013: satisfiable (left) and unsatisfiable
(right) instances. Run-time is in minutes.

SAT Base Afb

Run-time 990 697

Unsolved (by one) 9 4

UNSAT Base Afb

Run-time 727 779

Unsolved (by one) 2 3

Figure 8.1: Comparing Afb to Base.

graphs refer to satisfiable instances only.

Figure 8.3 shows three curves, plotted at one minute intervals. The lower curve

(A) is the percentage of instances solved by Base and Afb both; the middle (B) is

the percentage of instances solved by Base the upper (C) is the percentage solved by

either one. The gap B −A represents the percentage of instances solved by Base but

not by Afb; C−B represents the percentage solved by Afb but not by Base. Notably,

C −B is consistently larger than B −A.

We observe that the positive effect of Afb is due to successful branch cutting by

hints and not because of HSat’s ability to negate dominators. Most of the hints added

did not contradict the instance, so HSat’s UNSAT core abilities were not helpful in

Afb.

For the SAT 2013 benchmark, we also measured the average size of hints (number

of literals participating in a hint), the average number of hints per instance, and the

number of dominators found in all instances:
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Figure 8.2: The time difference (in seconds) between Base and Afb

Figure 8.3: Comparing percentage of instances solved by Base and Afb.

SAT UNSAT

Hint average size 34 43

Hints per instance 0.84 1.16

Dominators 2 15

Hints were used in 34% of the satisfiable instances and 39% of the unsatisfiable cases.

8.2 AFB Results: SAT 2014

We used the same configuration when testing Afb on satisfiable instances from the

SAT 2014 competition. Table 8.2 shows a 19% improvement in overall runtime for

satisfiable instances. Furthermore, there were 9 instances solved by Afb that were not

solved by the base solver, compared to 2 instances solved by Base but not by Afb.

These results refer only to the 98 instances that were fully solved by at least one solver

within 30 minutes.
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Table 8.2: Afb performance results for SAT 2014: satisfiable instances. Run-time is in
minutes.

SAT Base Afb

Run-time 833 681

Unsolved (by one) 9 2

Table 8.3: Rh performance results: satisfiable (left) and unsatisfiable (right) instances.
Run-time is in minutes.

SAT Base Rh

Run-time 1080 988

Unsolved (by one) 12 12

UNSAT Base Rh

Run-time 757 888

Unsolved (by one) 3 9

8.3 RH Results: SAT 2013

The same configuration as in Chapter. 8.1 was used for the Rh heuristic on satisfiable

instances from SAT 2013, and the same instances were tested. The results reported

below refer only to the 116 instances that were fully solved by at least one solver

within 30 minutes. Table 8.3 shows a 8% improvement in overall runtime for satisfiable

instances.

We were admittedly surprised to see that satisfiable instances were solved faster

because of “good” hints, hints that do not contradict the input. We were surprised

because we tried to build hints that would contradict the input and have the negation

of dominators drive the solution.

In addition, 130 unsatisfiable instances from SAT 2013 were tested; the results below

refer only to the 60 that were fully solved by at least one solver within the 30-minute

time limit. Table 8.3 shows a 15% degradation in overall runtime for unsatisfiable

instances.

Combining the two heuristics, Afb and Rh, as though they would run in parallel for

half an hour on the SAT 2013 benchmark, we obtain 16 SAT instances that are solved

for which Base times out, versus 2 that only Base solves, and 5 UNSAT instances

that Base fails on, versus 3 only by Base.
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Discussion

We have introduced a new paradigm and platform, called HSat, with which one can

speed up SAT solving by means of added clauses. It enables the addition of “hint”

clauses that are not necessarily derivable from the original formula but which can

nevertheless help the solver reach a solution faster. HSat avoids the addition of new

literals, using instead a partial resolution graph to keep track of the effect of hints. We

have seen that the Afb hint heuristic, which causes the prover to avoid retaking the

most conflict-active decisions, outperforms the (hintless) baseline system and introduces

a significant improvement in the solver core. On a benchmark of 280 instances, 150 of

which are satisfiable: Afb achieved a 30% runtime improvement over the baseline and

solved 9 instances not solved by the baseline prover.

Though these results are very encouraging, we have reason to believe that future

work can lead to further improvements. For example, we tried to increment conflict

decision variable scores by an amount that is inversely proportional to its depth in

the proof tree, so those closer to the root (which have greater impact) get greater

weight. This approach did not work for the thresholds we looked at, but might work

for others. Another example is that our hint heuristics do not work well for unsatisfiable

instances, the main reason being that there are usually no dominator clauses, in which

case unsatisfiability does not drive the subsequent search very well. In this case, the

incremental running of Algorithm 1 just adds overhead. An interesting avenue for

research would be to design hints that create multiple dominators or that lead the

solver to a contradiction faster.

There are an endless number of ways to create hints, and many places in the process

to add them; so far we have only explored a few options. It is likely that there remain
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even more interesting ways to create good hints for satisfiable instances and, hopefully,

for unsatisfiable ones, too.
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 אביב-אוניברסיטת תל

 ריימונד ובברלי סקלרע"ש קים למדעים מדויהפקולטה 

 למדעי המחשב ע"ש בלבטניקבית הספר 

 

 

 ספיקות עם רמזים

 

 

 

 אביב-באוניברסיטת תל .M.Sc  - "מוסמך אוניברסיטה" חיבור זה הוגש כחלק מהדרישות לקבלת התואר

 בית הספר למדעי המחשב

 

 על ידי

 

 יונתן קלכשטיין

 

 בהנחייתו שלהעבודה נעשתה 

 פרופסור נחום דרשוביץ

 

 

 

 

 

 

 אלול תשע"ה

 

 

 

 

 



 

 תקציר

 

 התזה מציגה את המושג של רמזים, פסוקיות שאינן בהכרח קונסיסטנטיות עם נוסחת הקלט.

 .SAT solvingאלו היא להאיץ את התהליך של ההמטרה של הוספת רמזים 

 למטרה זו, מנגנון יעיל וגנרי להוספה והסרה של רמזים אלו מוסף.

רמזים על מנת ת הקלט, ניתן להשתמש בגרף הרזולוציה המבוסס כלא קונסיסטנטי עם נוסחכאשר רמז נקבע 

 להקטין את מרחב החיפוש.

 ון הנ"ל משמש להאצת קצב הפתרון על ידי הוספת רמזים לנוסחת הקלט.המנגנ

על נוסחאות ספיקות  30%-וארות שתי שיטות להוספת רמזים, כאשר אחת מהן קיצרה את זמן הריצה בבתזה מת

 ללא רמזים. solverאותו  ופתרה תשע נוסחאות שלא נפתרו על ידי SAT '13 מתחרות
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