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Abstract 
Modern symbolic model checking techniques use Binary Decision Diagrams (BDD) and 

propositional satisfiability (SAT) decision procedures for checking validity and 

satisfiability of propositional Boolean formulas, which are used to encode sub-problems 

of symbolic model checking. Usage of propositional formulas imposes a potential 

exponential memory blow-up on the model checking algorithms due to the big formula 

sizes. Model checking methods based on the validity of Quantified Boolean Formulas 

(QBF) allow an exponentially more succinct representation of the checked formulas, but 

have not been widely used, because of the lack of an efficient decision procedure for 

QBF. In this work, an evaluation of the usage of QBF in bounded model checking (BMC) 

is presented, using general-purpose SAT and QBF solvers. Additionally, a special-

purpose decision procedure for QBF used in BMC is developed, and compared with the 

methods using general-purpose SAT and QBF solvers on real-life industrial benchmarks. 

The proposed decision procedure performs much better for BMC than general-purpose 

QBF solvers, without incurring the space overhead of propositional SAT. 
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Chapter 1  

Introduction 

During the last decades the field of automatic formal verification of concurrent 

finite-state systems has seen significant development. One of the primary domains for 

practical application of formal verification is in the digital hardware design industry. In 

the domain of digital hardware design, where the cost of correcting errors is extremely 

high, the task of validating design correctness prior to production is very important. One 

of the main means for design validation has traditionally been based on simulation. 

Simulation-based approaches are limited, however, due to the impossibility of exhaustive 

validation, since it is impractical to simulate all possible test vectors in modern designs 

with their ever-increasing size and complexity. Formal verification methods pose an 

alternative for simulation-based validation, but high-capacity automatic formal 

verification is still a challenge nowadays due to the inherent complexity of these 

methods. 

Model checking  [1], as one mean of formal verification, is a technique for the 

verification of the correctness of a finite-state system with respect to a desired behavior. 

Numerous works have been published on algorithms and methodologies for model 

checking, and it is also the focus of this work. The following sections briefly overview 

the background and the existing techniques for model checking, and then the scope of 

this work is described. 
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1.1. Background 
Model checking is the process of determining whether a given formula is true in a 

given model. The model usually represents the program or the design being checked, and 

the formula is used to describe the desired program/circuit behavior, or specification, 

conformance to which it is necessary to prove. 

A model is usually viewed as a finite Kripke structure, i.e. a labeled state transition 

system (a.k.a. state transition graph) where each state is labeled with a set of formulas 

holding in that state. The state of the system is defined as the set of values of the 

variables of the program represented by the model. A formula is usually specified in a 

temporal logic, such as LTL, CTL or CTL*  [1]. The overall task of model checking is to 

compute the set of states in which the given specification holds. Normally some states of 

the system being checked are designated as initial states, and the system is said to satisfy 

the specification if all its initial states are a subset of the set of states in which the 

specification holds. 

1.1.1. Explicit state model checking 

Explicit state model checking algorithm  [1] [2] operates on the Kripke structure 

explicitly represented in memory as a collection of vertices and edges. The CTL model 

checking algorithm iteratively processes the given formula starting from the innermost 

sub-formulas, and proceeds by marking every state in the Kripke structure with the sub-

formulas holding in those states. A linear algorithm exists for finding states in which a 

CTL formula holds, given that the states are already marked with where the sub-formulas 

hold. Thus, the overall algorithm has the complexity O(|φ|⋅|M|), where φ is the CTL 

formula being checked and M is the Kripke structure. The algorithm can also be extended 

to handle fairness constraints, as explained for example in  [1] [2], having an overall 

complexity O(|φ|⋅|M|⋅|F|), where F is the set of fairness constraints.  

An LTL model checking algorithm using a tableau is described in  [1] [44]. A tableau 

is a graph constructed from the given Kripke structure and the sub-formulas of the given 

formula, so that the given formula is true in the given model if and only if there is a 

computation in the structure that is also a path in the tableau. The complexity of the 
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algorithm is O(|M|⋅2|φ|), i.e. linear in the size of the model and exponential in the size of 

the formula.  

CTL* model checking  [1] has the same complexity as the one for LTL, and usually 

combines the ideas of CTL and LTL model checking. The tableau-based LTL model 

checking algorithm can be extended to the cases where the sub-formulas of an LTL 

formula are arbitrary state formulas (including CTL formulas, which are always state 

formulas), and not only propositions. 

Because of the explicit representation of the state graph, explicit state model 

checking is unable in practice to handle state-graphs of  real-life systems, which have at 

least thousands, and often millions, of states. For example, in digital hardware 

verification a state of the system usually corresponds to the values stored in the system’s 

binary storage elements (latches and flip-flops) at specific moment in time; thus a system 

with N such elements is represented by a state-transition graph with 2N vertices in the 

worst case, i.e. has an exponential memory complexity. This is a so-called “state 

explosion problem”, which is inherent in the explicit state model checking. This state 

explosion problem is one of the main factors limiting the industrial application of model 

checking techniques, in general, and explicit state model checking, in particular. A 

number of techniques to work around this problem to some extent have been developed. 

1.1.2. Symbolic model checking 

Symbolic model checking  [4] [40] evolved as an approach to handle the state 

explosion problem faced in explicit state model checking. Since the model explicitly 

represented as a Kripke structure is inherently big, the main idea of symbolic model 

checking is to avoid explicit construction of the model; instead, the model is represented 

symbolically with Boolean functions, originally using Binary Decision Diagrams (BDD) 

 [3] for that purpose.  

In symbolic model checking states of a Kripke structure are encoded using a vector 

of Boolean variables, the so-called state encoding variables. N variables are sufficient to 

encode 2N states. With such an encoding it is possible to construct a formula over those 

variables so that it is true in a single state – this formula characterizes the state, and is 

called the characteristic function of the state. Similarly, a set of states can be 
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characterized by a formula which is true in all states of the set, and false in all other states 

– this is called the characteristic function of the state set. Transitions in the Kripke 

structure may be characterized by Boolean formula over two copies of state variables – 

current state variables and next state variables. It is possible to construct a formula over 

current (V) and next state (V’) variables, called the transition relation of the system, 

which is true if and only if there is a transition in the Kripke structure from the state 

represented by V to the set represented by V’. 

The forward image of a state set S is defined as the set of states reachable from any 

state in S along a single transition. Given a characteristic function for S and the transition 

relation TR of the system, the characteristic function of the image of S can be expressed 

by: 

Image( ') : ( ) ( , ')V V S V TR V V=∃ ∧  (1) 

Similarly, the inverse image of a state set S is a set of states from which any state in S can 

be reached along a single transition. The inverse image of S can be expressed by: 

1Image ( ) ': ( ') ( , ')V V S V TR V V− =∃ ∧  (2) 

An iterative computation of the forward image allows the computation of a set of 

states reachable from a state set S along any number of transitions in the following way: 

0

1 Image( )i i iS S
S S
S + = ∨

=
 (3) 

This iterative computation may be stopped whenever Si+1↔Si, meaning that a fix-point is 

reached and the set Sinf of all reachable states has been computed. 

The symbolic model checking procedure for CTL, described in  [1] [4] [40], is based 

on the fix-point characterization of CTL operators, and is derived from the iterative fix-

point algorithm for symbolic model checking for the μ-calculus using translation of CTL 

formulas to μ-calculus. Since every CTL formula is a state formula (is either true or false 

in every state), it can be thought of as characterizing a set of states. CTL operators 

applied on formulas P and Q can be syntactically translated directly into Boolean 

connectives on characteristic functions of P and Q, into image calculation, or into fix-

point computations, as follows: 
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• , ,P P Q P Q¬ ∨ ∧  are translated directly into Boolean connectives 

• EXP is translated to the inverse image of P: 1Image ( )P−  

• E( U )Q P  is translated to ( ): ( EX )Y P Q Yμ ∨ ∧  

• EGP  is translated to ( ): EX )Y P Yν ∧  

(4) 

All the rest of the operations can be viewed as abbreviations of the above.  

Having such a translation of CTL operators, the model checking goal is achieved by 

computing the set of states R in which the given formula holds and checking whether that 

set of states contains the set I of initial states, by checking validity of the formula 

: ( ) ( )V I V R V∀ →  (5) 

where V is the vector of state variables, I(V) is the characteristic function of the set of 

initial states, and R(V) is the characteristic function of the set of states where the 

specification holds. 

Symbolic model checking for LTL is based on the one for CTL and the method of 

tableau construction, similary to the explicit state model checking algorithm. 

With the introduction of symbolic model checking, the capacity of model checkers 

increased dramatically, and enabled industrial applications of model checking, mainly in 

hardware verification domain. Still, the memory blow-up problem has not been totally 

resolved, as will be described later in this text. 

1.1.3. Boolean satisfiability problems in symbolic model 
checking 

There are two places in symbolic model checking where the validity of Boolean 

formulas should be determined: 

• in the test for the convergence of fix-point computations; and 

• in the test whether the property holds, made in the end or in the process of the fix-

point computations. 

The termination condition in fix-point computations has the form 1( ) ( )i iR V R V+↔ , 

where Ri is the set of states in iteration i, and Ri+1 is the set of states in iteration i+1. In 

fact, it is sufficient to check 1( ) ( )i iR V R V+→  or 1( ) ( )i iR V R V+ → , depending on the kind of 
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the fix-point being computed (greatest fix-point or least fix-point). Both these conditions 

have the form ( ) ( )i jR V R V→ . In order to check this fact, there is a need to prove that 

: ( ) ( )i jV R V R V∀ →  is valid or, alternatively, that its negation ( ): ( ) ( )i jV R V R V∃ ¬ →  is 

unsatisfiable. Noticeably, checking this requires handling of a proper Quantified Boolean 

Formula (QBF), since there are existentially quantified variables under a negation 

resulting from the computation of Ri and Rj. 

The test for the property holding in the model is performed by checking that the set 

of the initial states is contained within the set of states satisfying the specification. To 

accomplish that one needs to check the validity of : ( ) ( )V I V R V∀ → , where V is the 

vector of state variables, I(V) is the characteristic function of the set of the initial states, 

and R(V) is the characteristic function of the set of states where the specification holds; or 

unsatisfiability of its negation ( ): ( ) ( )V I V R V∃ ¬ → . This is also a pure QBF, since R(V) 

contains existential quantifiers, although in some cases this latter check can be simplified 

with a number of simpler checks made during the fix-point iterations. 

1.1.4. Coping with QBF 

Despite the need to evaluate QBF, none of the currently existing model checking 

techniques operates directly on QBF with any sort of decision procedure, because no 

practically efficient decision procedure for QBF has been developed. Essentially, model 

checkers resort to using propositional formulas in one form or another instead of QBF. 

Though both quantified and propositional representations have the same expressiveness, 

QBF are usually much more succinct. Hence, the usage of propositional representation 

results in a significant memory overhead.  

One of the simplest (and most widely described) methods for coping with the 

presence of QBF is quantifier elimination. Quantifier elimination can be seen as a process 

of syntactic replacement of quantified formulas with propositional ones, based on the 

following rules: 

: ( ) ( 0) ( 1)
: ( ) ( 0) ( 1)

x f x f x f x
x f x f x f x

∃ ≡ ∨
∀ ≡ ∧  (6) 
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The main drawback of this approach is that it can result in an un-quantified formula 

that is exponentially larger than the original quantified representation. When formulas are 

represented with Ordered Binary Decision Diagrams (OBDD), quantifier elimination can 

be performed according to the rules in (6) as a combination of restriction and logical-

or/and operations. In  [1] the authors also describe a more efficient algorithm to perform 

quantifier elimination in some cases. 

In  [6] the authors use Binary Expression Diagrams (BED) for representation of 

Boolean functions, and provide a technique to eliminate quantifiers in this representation. 

BED is a DAG representation, which is not canonical, unlike OBDD. In order to check 

the satisfiability of a formula, they either translate a BED representation to OBDD, or to 

conjunctive normal form (CNF) in order to use a SAT solver.  

In  [5] the authors proposed another representation for Boolean formulas, namely 

Reduced Boolean Circuit (RBC), which is somewhat similar to BED, and a quantifier 

elimination technique similar to that of  [6]. They then feed the produced formula to a 

SAT solver in order to check the satisfiability. 

Both  [5] and  [6] implement optimizations for some simple and common cases of 

quantifier elimination, but still do not overcome the exponential space complexity in 

many cases. 

More recent works  [7] [8] [9] [10] [11] [12] [42] propose algorithms for SAT-based 

reachability analysis, where the quantifier elimination is implicitly implemented in the 

SAT solvers. The SAT solvers are modified so as to find all possible solutions rather than 

just one, e.g. by adding a blocking clause for each new solution found. Storing all the 

solutions in a compact data structure is a challenge, however. There have been attempts 

to use BDDs, zero-suppressed BDDs, or disjunctive normal form, but all of these are still 

of an exponential size in the worst case, compared to the quantified representation. 

It should be noted at this point that the performance comparisons of SAT and BDD-

based techniques in symbolic model checking showed that in many cases SAT-based 

techniques outperform BDD-based ones, and in many cases the opposite is true. Thus, it 

is commonly believed that SAT and BDD-based techniques complement each other.  

Bounded model checking (BMC), introduced in  [14] [15], is a model checking 

technique not based on fix-point computations. The authors show that BMC can be used 
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for symbolic model checking of LTL without a tableau construction. BMC places a 

bound on the length of the non-looping prefix of the infinite paths checked to satisfy the 

property and attempts to falsify the property within the bounded model. In a single run of 

the algorithm all infinite paths (starting in an initial state) with prefix of length k are 

checked. By indefinitely incrementing the bound k all possible paths can be checked, 

resulting with a complete model checking procedure. 

The problem of checking all paths with a prefix of length k is reduced to checking 

satisfiability of a propositional formula built up from the transition relation “unrolled” k 

times and the formula specifying that there is a loop in the path from the last state to any 

other state in the prefix. The authors showed that there is a polynomial time algorithm for 

translation of an LTL formula to the propositional formula to be checked for 

satisfiability. A satisfying assignment to this formula constitutes a counterexample of 

length k for the property. 

Bounded model checking has been shown very efficient for bug hunting, i.e. the 

verification process aiming at quick finding of counterexamples, as opposed to producing 

a statement of conformance of the model to the specification. It has been shown that 

bounded model checking significantly outperforms classical symbolic model checking in 

many cases. Specifically, it is able to find short counterexamples very efficiently, since it 

only requires a propositional satisfiability check for a small bound k, and not a full blown 

iterative computation of fix-points. Although bounded model checking may be performed 

with any method for propositional satisfiability checking, including BDD, in  [41] the 

authors showed that SAT-based approach clearly outperforms a BDD-based one. 

In  [14] the authors showed that for a complete model checking procedure, the BMC 

bound k does not need to be increased indefinitely, but only up to the recurrence 

diameter of the system: the length of longest simple path between two states. It is known 

that in many cases even a lower upper bound exists, but determining an optimal bound is, 

however, generally intractable. In the worst-case the bound is exponential in the number 

of the encoding variables of the system. Hence, the number of copies of the transition 

relation within the formulas checked for satisfiability increases from iteration to iteration 

up to an exponential number of times, leading to a memory explosion for large systems 

and bounds. 
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In  [17] the authors proposed a technique for reducing the number of iterations 

required for a complete model checking procedure based on BMC. This method uses 

Craig interpolation as an over-approximation technique for image computation. The 

interpolants are obtained as a by-product of the SAT solver used to check  BMC 

problems by analyzing their proofs of unsatisfiability. The number of iterations required 

for this method to complete is exponentially smaller than for the classical BMC, and it 

has been shown to outperform all the other model checking methods in many cases. 

However, although based on the idea of bounded model checking, this method relies on 

image computation, and therefore also suffers from the potential memory explosion, 

since the computed interpolants can be of exponential size. 

Lastly, there are model checking methods based on induction, e.g.  [16]. In these 

methods the induction hypothesis contains an “unrolling” of length k of the transition 

relation (also called the induction depth), similarly to BMC. An inductive proof of a 

property may require the induction depth to be exponentially big, resulting in a memory 

explosion, just like in regular BMC. 

1.2. Scope of this work 
As evident from the previous section, practically all modern model checking 

techniques suffer from a potential memory explosion problem. In the explicit state model 

checking this is due to the enormous size of the system state graph, while in the symbolic 

model checking techniques this is due to the usage of propositional formulas, which are 

extremely non-succinct, in places where the validity of a QBF must be determined.  

Determining validity of a QBF is possible without translation to a propositional 

formula. Recently a significant effort has been invested in attempt to produce an efficient 

decision procedure for generic Quantified Boolean Formulas, following the success of 

SAT solvers for propositional formulas. However, no publicly available solver currently 

shows a reasonable run-time performance on existing QBF benchmarks, which include 

random, hand-made and a few industrial examples. There is also no known application of 

QBF solvers to the problem of model checking. 

In this work the attention is restricted to model checking of safety properties, i.e. 

properties that can be disproved by examining finite computation paths. Liveness 
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properties can be reduced to safety, for example by the method of  [43]. Moreover, the 

attention is restricted to bounded model checking.  

The main contribution of this work includes: 

• the evaluation of QBF encodings of BMC problems on real-life industrial test 

cases, and the performance analysis of the best-to-date publicly available QBF 

solvers on those encodings; 

• a special-purpose QBF decision procedure, which is able to solve QBF encodings 

of BMC problems faster than the general-purpose QBF solvers. 

The rest of this document is organized as follows:  Chapter 2 presents the QBF-based 

approach to bounded model checking and its evaluation on a set of real-life test cases. 

 Chapter 3 describes the principles of SAT decision procedures, then  Chapter 4 overviews  

their extension for QBF. In  Chapter 5 the special-purpose QBF decision procedure is 

presented together with experimental results. In  Chapter 6 some conclusions are drawn 

and future directions are presented.  Chapter 7 surveys related work. 
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Chapter 2  

Bounded model checking with QBF 

One of the primary goals of this work is to evaluate the applicability of QBF 

formulations of BMC problems and compare their usage to the SAT-based approach on 

the corresponding SAT formulations. The following sections present the QBF 

formulations that were evaluated, the method by which they were generated, and the 

comparison procedure to the classical SAT-based method. 

In the following, let us assume a system M=(S, I, TR), where S is the set of states, I is 

the characteristic function of the set of the initial states, and TR is the transition relation. 

BMC of safety properties assumes a set of so-called “bad” or “final” states, i.e. the states 

that violate the property, given by a characteristic function F. The problem of BMC with 

a specific bound k is then to determine whether a state in F can be reached from a state in 

I in exactly k transitions. 

2.1. Formulations of BMC problems 
In classical SAT-based BMC  [14] the fact that the state Zk is reachable from the state 

Z0 in exactly k steps may be formulated by “unrolling” the transition relation k times: 

0 1 1 0 1

1

0
( , ) ,..., : ( ) ( ) ( , )k k k k i i

k

i
R Z Z Z Z I Z F Z TR Z Z− +

−

=
= ∃ ∧ ∧∧  (7) 
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The validity of this formula may be proved or disproved by applying a SAT decision 

procedure on its propositional part. 

Noticeably, the number of copies of the transition relation TR in (7) is the same as 

the number of steps being checked. When iteratively increasing the bound k, each 

successive iteration checks reachability of the final states in one more step than the 

previous iteration. Thus, for a complete check, the SAT procedure must be invoked on 

formulas containing an exponential number of copies of the transition relation, and hence 

the memory explosion incurred by this BMC method. 

To partially overcome the potential memory explosion, the following QBF 

formulation of the bounded reachability problem can be used: 

0 1 1 0

1

1

0

( , ) ,..., : ( ) ( )

, : ( ) ( ) ( , )

k k k k

i i

k

i

R Z Z Z Z I Z F Z

U V U Z V Z TR U V

−

+

−

=

= ∃ ∧ ∧
⎛ ⎞
⎜ ⎟∀ ↔ ∧ ↔ →
⎜ ⎟
⎝ ⎠
∨  (8) 

Formula (8) contains only one copy of the transition relation. Increasing the bound in this 

case would mean the addition of a new intermediate state and a term of the form 

( ) 1( )i iU Z V Z +↔ ∧ ↔ . Thus, the formula size increase from iteration to iteration does not 

depend on the size of the transition relation, which is usually the biggest formula in the 

specification of the model. 

The solution of (8) with a QBF solver usually requires transformation of the 

quantifier-free part of the formula into a conjunctive normal form (CNF). Linear-time 

translation of a propositional formula to an equisatisfiable CNF formula, e.g. by the 

method of  [18], introduces artificial variables, resulting in a QBF with an ∃∀∃ quantifier 

prefix. The number of the universally quantified variables does not change in the QBF 

from iteration to iteration. 

This approach to reachability checking partially solves the issue of formula growth, 

reducing the growth of the formula from iteration to iteration, but still requires an 

exponential number of iterations to fully verify the reachability. 

To reduce the number of iterations, it is possible to apply “iterative squaring”, 

similar to that used in BDD-based model checking  [40]. This way, each successive 

iteration checks the reachability of a final state in twice as many steps as the previous 
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iteration. Given a formula Rk/2(X, Y) for checking reachability in k/2 steps, the following 

formula checks for reachability in k steps: 

0 0

0 /2

( , ) : ( ) ( ) , :

( ) ( ) ( ) ( ) ( , )
k k k

k k

R Z Z Z I Z F Z U V

U Z V Z U Z V Z R U V

=∃ ∧ ∧∀

↔ ∧ ↔ ∨ ↔ ∧ ↔ →⎡ ⎤⎣ ⎦
 (9) 

The transition relation TR appears in (9) only once, as in the previously described 

technique. However, the number of universally quantified variables and the number of 

quantifier alternations grows from iteration to iteration. 

This technique enables the reduction of the number of iterations to the number of the 

state encoding variables in the model, since it will then cover the worst-case diameter of 

the model. Note, however, that not all bounds are checked by this technique, but only 

powers of two. It is possible to overcome this problem by adding, for example, a self-

loop to each state of the model, which would not change the reachability between states, 

but rather make (9) check reachability in k or fewer steps, instead of exactly k steps.  

2.2. Benchmarking 
To measure the feasibility of different formulations of BMC problems, a test suite of 

real-life industrial model checking examples was created. Formulas of the three forms 

described above were generated, representing BMC problems for different bounds. Run-

time and memory consumption measurements were carried out on the generated formulas 

using publicly available SAT and QBF solvers. 

2.2.1. Test generation 

The tests in the test bench used in the benchmarking were created out of thirteen 

proprietary Intel® model checking examples. The process of test generation is depicted in 

Fig. 1. The models were extracted using a proprietary Intel® model checker from 

hardware design descriptions with embedded property specifications. The code of the 

Intel® model checker was augmented to dump out the following information after it built 

the model internally: 

1. the state encoding variables; 

2. the characteristic function of the initial states; 
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Fig. 1. The process of test generation for benchmarking SAT and QBF solvers on BMC problems. 

Three different kinds of formulas are generated for every test case and bound.  
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3. the transition relation of the system; 

4. the invariant characterizing the assumptions for the model checker; and 

5. the characteristic function of the “bad” states violating the property. 

The extracted models were saved in files in a simple format, described in  Annex A. 

A simple model checker, called jMC, was developed, which was used to read the 

extracted models and generate formulas of forms (7), (8) and (9) in DIMACS (for SAT-

based BMC) and QDIMACS (for QBF-based BMC) formats. In jMC the model and the 

properties were read from a file into an internal data-structure. The propositional 

formulas were stored in a Reduced Boolean Circuit (RBC) data structure  [5], which 

allows a compact but non-canonical representation due to high sharing of common sub-

formulas. Several engines were developed implementing different BMC approaches, each 

producing a set of formulas to be fed into either SAT or QBF solvers: 

1. Propositional BMC engine: a classical SAT-based approach using “unrolling” of 

the transition relation, producing propositional formulas of form (7) in CNF in 

DIMACS format. 

2. Quantified BMC engine: a QBF-based approach producing formulas of form (8) 

in CNF  in QDIMACS format. 

3. Quantified BMC with squaring engine: a QBF-based approach producing 

formulas of form (9) in CNF  in QDIMACS format. 

Later on, an additional engine was implemented to generate formulas for the special-

purpose decision procedure developed as the main part of this work. This is described in 

 Chapter 5. 

For every one of the thirteen test cases, formulas of the three kinds were generated 

for a number of iterations required to perform BMC for bounds in the range 3 – 20. For 

formulas of forms (7) and (8) eighteen instances were generated for each test case, 

resulting in the total amount of 234 formulas of each kind; for formulas of form (9) four 

instances were generated for each test case, corresponding to bounds 4, 8, 16 and 32.  

Table 1 shows the sizes of the models in terms of the number of state variables and the 

sizes of the generated formulas for BMC with bounds 3 and 20 in terms of the number of 

variables and clauses in the CNF encoding. Note that the formulas for SAT-based BMC 

are extremely big and even for moderate examples have hundreds of thousands of 
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clauses. It is expected that the formula size in SAT-based BMC grows linearly with the 

bound, and indeed Fig. 2 shows that the formulas for bound 20 are 6-7X bigger than for 

bound 3 regardless of the size of the model. In the QBF-based approach, the ratio of the 

number of clauses in instances for bounds 20 and 3 is not constant, and in both 

approaches follows the same pattern, though with different amplitude. The peaks on the 

curves appear in test cases where the transition relation is relatively small, and thus the 

overhead of the other parts of the formula is significant. The falls, on the other hand, 

correspond to test cases with a big transition relation, where the additional terms added to 

the formula do not affect its size significantly. 

Twenty of the formulas of forms (8) and (9) were publicly disclosed and participated 

in the QBF solver evaluation during the International Conference on Theory and 

Applications of Satisfiability Testing (SAT) in 2004. 

2.2.2. Benchmarking environment 

The formulas generated as described above were used to measure and compare the 

run-time and memory consumption of publicly available SAT and QBF solvers. The 

SAT-based BMC

QBF-based BMC

QBF-based BMC 
with squaring

0

1

2

3

4

5

6

7

test08 test12 test10 test03 test06 test09 test05 test11 test04 test13 test02 test07 test01

Fig. 2. Ratio of the number of clauses in a formula for BMC bound 20 relative to the formula of 

the same kind for BMC bound 3. 
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environment and software used to perform the measurement were reused with minor 

modifications from  [45]. 

Two SAT solvers were used to solve formulas of form (7): the solver described in 

 [22] [45] and zChaff II  [52], which is one of the best state-of-the-art SAT solvers 

available at the time of comparison. To solve QBF formulas of forms (8) and (9) QuBE 

 [24] and Semprop  [25] QBF solvers were used, which are both state-of-the-art solvers 

available at the time of comparison. 

A dual Intel® Xeon™ 2.8 GHz Linux RedHat 7.1 workstation with 4GB of memory 

was used for the experiments. Each solver was limited to solve every single instance 

within 10 minutes run-time and 1GB memory envelope.  

2.2.3. Benchmarking results and analysis 

The summary of run-time evaluation results is presented in Table 2. Detailed results 

are provided in  Annex C.  

As can be seen, general-purpose QBF solvers were unable to solve practically any of 

the formulas of form (8), while many of the corresponding propositional formulas were 

solved by the SAT solvers, often in a matter of seconds. In fact, QuBE was able to solve 

a few instances, but its results were unstable, and highly sensitive to insignificant and 

seemingly irrelevant changes in the encoding of the instances during the experiments, 

such as changing the numbering of literals, for example. The quality of QuBE results is 

not clear, therefore. None of the instances of form (9) were solved by any of the QBF 

solvers. 

Noticeably, all the three kinds of formulas contain exactly the same information, but 

in different form. In (7) the formula explicitly contains the relation between any two 

successive states in the path from an initial state to a final one. Such an explicit 

representation often allows a solver to immediately restrict the choice of the next state in 

the path when the previous one has been chosen. For example, when in (7) the state Z0 

has been chosen by the algorithm, the Boolean Constraint Propagation (BCP) process 

 [20] might possibly deduce the values of some variables in Z1. Also, the choice of an 

impossible value for one of Z1 variables could immediately cause a conflict. It is possible 
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to say that, in a sense, the SAT-based approach tries to examine for being final only the 

states within the set of states reachable from the initial ones.  

In the QBF-based approaches this is not the case. The information about the relation 

between any two successive states is not found explicitly in the formula. Therefore, in 

formula (8) the DPLL-based solvers are unable to deduce anything about Z1, when Z0 

value is set. This is because the relation between Z0 and Z1 is dependent on all possible 

choices of U and V. Additionally, a general-purpose DPLL-based QBF solver is restricted 

in the decision process to first set the values for the variables quantified in the outer level 

(Z0, Z1, etc.), before proceeding to the inner ones (U and V). Essentially, this means that 

the solver first chooses values for Z0, Z1, …, Zk and only then checks whether such a 

choice constitutes a path in the model. In the solution of (9), not all states in the path have 

variables representing them in the formula, which further complicates the solution 

process. 

SAT UNSAT SAT UNSAT SAT UNSAT SAT UNSAT
test08 10 - 18 - 18 - 0 - 0
test12 11 18 - 18 0 2 - 0 -
test10 12 - 18 - 18 - 0 - 0
test03 39 18 - 18 0 0 - 0 -
test06 160 - 18 - 12 - 0 - 0
test09 160 18 - 18 - 0 - 0 -
test05 199 - 18 - 18 - 0 - 0
test11 220 14 4 14 4 0 0 0 0
test04 626 13 2 4 2 0 0 0 0
test13 662 18 - 18 0 0 - 0 -
test02 914 - 18 - 13 - 0 - 0
test07 1055 17 - 11 0 0 - 0 -
test01 2013 11 - 5 0 0 - 0 -

127 96 106 85 2 0 0 0

QuBE Semprop

Total (out of 234)

# vars

2 0

zChaff [22]

223 191

Table 2. Summary of the evaluation results of two SAT and two QBF solvers on BMC 

problems of forms (7) and (8), respectively. The numbers of solved SAT and UNSAT 

instances are shown separately. A '-' sign specifies that there are no instances with the specific 

result for the corresponding test case. (The terms “SAT” and “UNSAT” are used for QBF for 

consistency. A SAT result for a QBF means that the instance was proved valid; UNSAT 

means it was proved invalid.) 
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The inefficiency of the general-purpose QBF solvers on the QBF formulations of 

BMC problems served as motivation for the development of a special-purpose QBF 

decision procedure for these specific kinds of QBF, which is described later in this 

dissertation. Formulas of forms (8) and (9) have very specific structure, which might 

possibly enable a more efficient special-purpose algorithm for their solution. The scope 

of the development was limited to formulas of form (8); and the goal for the developed 

special-purpose solver was to improve the run-time performance of the solution to come 

as close as possible to SAT-based approaches on the corresponding SAT formulations, 

and still preserve the memory efficiency enabled by QBF formulations. 
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Chapter 3  

Propositional SAT 

The problem of propositional satisfiability (SAT) is the problem of determining 

whether a given Boolean propositional formula contains a contradiction, and if it does 

not, finding a satisfying assignment for it. If the formula has a satisfying assignment, then 

it is said to be satisfiable, otherwise it is said to be unsatisfiable.  

Algorithms for the solution of SAT problem (SAT solvers) have seen major 

advances in recent years. A SAT solver competition is now held annually within the 

framework of the International Conference on Theory and Applications of Satisfiability 

Testing (SAT).  

Excellent surveys on the techniques used in modern SAT solvers can be found in 

 [20] [21] [28]. Here only a brief overview is given. 

SAT algorithms can be divided into two groups: complete and incomplete. Complete 

methods always produce an answer whether the given formula is satisfiable or not. 

Incomplete methods (e.g. local search methods), on the other hand, can only find a 

satisfying assignment, but are unable to produce an answer when the given formula is 

unsatisfiable.  

Modern most successful SAT solvers are based on the Davis-Putnam-Logemann-

Loveland (DPLL) algorithm  [19] – a complete backtrack search method. In this work 

only DPLL-based complete backtrack search methods are covered. 
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3.1. Formula representation 
DPLL-based SAT solvers operate on formulas in a conjunctive normal form (CNF). 

In this form the formula is represented as a conjunction of clauses. A clause is a 

disjunction of literals. A literal is an occurrence of a variable (positive literal) or the 

negation of a variable (negative literal). For example, the CNF formula 

1 2 3 1 3( ) ( ) ( )x x x x x∨¬ ∧ ¬ ∧ ∨  contains three clauses 1 2( )x x∨¬ , 3( )x¬ , 1 3( )x x∨ , two positive 

literals 1x , 3x  and two negative literals 2x¬ , 3x¬ . 

For a variable assignment to satisfy a CNF formula, it must satisfy every one of the 

formula’s clauses separately. If at least one of the clauses is unsatisfied by the variable 

assignment, the whole formula is unsatisfied. 

There are polynomial time algorithms that convert an arbitrary propositional formula 

into a CNF formula having an equivalent satisfiability (equisatisfiable formula)  [18].  

This is done by the addition of extra variables, one for each non-atomic sub-formula, and 

expressing the equivalence of the extra variable with that sub-formula in CNF.  

3.2. Basic DPLL algorithm 
The DPLL algorithm is a complete backtrack search procedure for determining the 

satisfiability of propositional formulas in CNF representation. The algorithm performs a 

systematic search for a variable assignment satisfying the formula. It starts with an empty 

partial variable assignment and incrementally extends it by assigning variables one after 

another as long as the partial assignment does not falsify the formula. If the partial 

assignment has been successfully extended to a full one, the algorithm terminates and the 

formula is reported satisfiable with the found variable assignment. Whenever a partial 

assignment falsifies the formula, i.e. a conflict is discovered, the algorithm backtracks by 

flipping the value of the most recently assigned variable that has not already been tried 

with both values and undoing the decisions for variables assigned later (and which have 

been tried with both truth values). If eventually the algorithm discovers that both values 

of the first assigned variable always lead to a conflict, the formula is declared 

unsatisfiable. 



 27 

The DPLL algorithm can be seen as a depth-first search in the binary tree of partial 

variable assignments, which is commonly called the search tree. Each intermediate vertex 

of the tree is associated with a variable and the outgoing edges from that vertex to its 

offspring represent the possible decisions to assign values true (1) or false (0) to that 

variable. A path in the tree from the root to any vertex represents a partial assignment to 

the variables associated with the vertices in the path, so that each variable is assigned 

with the value corresponding to the outgoing edge taken in the path. A leaf of the tree is a 

vertex of two possible kinds: SAT or UNSAT. A path representing a full satisfying 

assignment ends with SAT leaf; a path representing an unsatisfying assignment (either 

full or partial) ends with an UNSAT leaf. 

 Fig. 3 shows an example of a search tree for formula 1 2 3 1 3( ) ( ) ( )x x x x x∨¬ ∧ ¬ ∧ ∨  with 

the decision order being such that x1 is assigned first, then x2 and lastly x3. With this 

definition in place, DPLL algorithm can be viewed as a depth-first search in the search-

tree for a path leading to a SAT vertex. In the example on Fig. 3 there are two such paths: 

one corresponding to the assignment {x1 = 1, x2 = 1, x3 = 0} and another corresponding 

to the assignment {x1 = 1, x2 = 0, x3 = 0}. The depth of the tree is the same as the number 

x3

x1

x3

x2

x3 x3

x2

x2 = 1 x2 = 0 x2 = 1 x2 = 0

x1 = 1 x1 = 0

UNSAT UNSAT UNSAT UNSATSAT SAT UNSAT UNSAT

x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0

Decision level 1

Decision level 2

Decision level 3

 Fig. 3. Search tree example for formula 1 2 3 1 3( ) ( ) ( )x x x x x∨¬ ∧ ¬ ∧ ∨ . 
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of variables in the formula being solved. The number of leaves in the tree is the same as 

the number of full variable assignments, which is exponential in the number of variables 

in the formula. Decisions for variables at depth i in the tree are said to be on i'th decision 

level. Thus, x1 is said to be assigned on the first decision level, x2 on the second decision 

level, and x3 on the third decision level. 

Noticeably, the DPLL algorithm does not necessarily need to traverse the whole 

search-tree to find a solution. Whenever a partial assignment is known to falsify the 

formula the algorithm backtracks, so that the subtree of that partial assignment is left 

unexplored, since it is known to contain only UNSAT leaves. As a result of backtracking 

the search is directed into another branch of search-tree. For example, assuming the same 

formula 1 2 3 1 3( ) ( ) ( )x x x x x∨¬ ∧ ¬ ∧ ∨  and a decision order x1  x3  x2 that first tries the 

value 1 for the variables, Fig. 4 shows the search tree where the dashed part is not 

actually explored by the algorithm, since it is known to lead to UNSAT answers. 

Fig. 5 shows the general algorithm framework of an iterative implementation of 

DPLL algorithm. Modern DPLL-based solvers differ in the methods and the 

implementation of the following aspects of the general DPLL algorithm: 

• decision heuristics implemented by Decide() (a.k.a. branching heuristics): the 

method by which the choice of the next variable to branch on is made; 

• methods for deduction of necessary variable assignments, when given a partial 

assignment to the variables, such as Boolean Constraint Propagation 

implemented by BCP(); 

• methods for conflict resolution and backtracking, implemented by 

ResolveConflict(); 

• the underlying data structure for representation of the clause set; 

• preprocessing techniques and other optimizations. 

The following sections briefly overview some of these aspects. 

3.3. Boolean constraint propagation 
Boolean constraint propagation (BCP) is an optimization technique used in the basic 

DPLL algorithm that is a particular case of a family of optimizations commonly called 

deduction of necessary assignments. Necessary assignments to yet unassigned variables 
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are those assignments that must be done in order to satisfy the formula, according to the 

current partial variable assignment. BCP is based on the unit clause rule that is one of the 

most efficient rules by which necessary assignments can be identified. The unit clause 

rule states that if for a certain clause all but one of its literals have been assigned the 

value false, then the remaining unassigned literal must be assigned with value true in 

order not to falsify the clause and, consequently, the whole formula. Such clauses are 

called unit clauses and the unassigned literal is called a unit literal. BCP, also known as 

unit propagation, is the process by which unit literals are identified and assigned. Note 

that during BCP an assignment to one unit literal can cause more clauses to become unit 

and thus result in additional necessary assignments. The BCP process is, therefore, an 

iterative application of the unit literal rule until no more unit literals exist.  

Variable assignments performed during the BCP process are called implications and 

the assigned variables – implication variables, to distinguish them from the assignments 

performed by the algorithm as decisions. Implication variables are considered assigned 

on the same decision level as the decision variable, the assignment to which triggered the 

x2

x1

x2

x3

x2 x2

x3

x3 = 1 x3 = 0 x3 = 1 x3 = 0

x1 = 1 x1 = 0

UNSAT SAT UNSAT UNSATUNSAT SAT UNSAT UNSAT

x2 = 1 x2 = 0 x2 = 1 x2 = 0 x2 = 1 x2 = 0 x2 = 1 x2 = 0

Decision level 1

Decision level 2

Decision level 3

Fig. 4. Example of the search tree for formula 1 2 3 1 3( ) ( ) ( )x x x x x∨¬ ∧ ¬ ∧ ∨ , where the dashed part is 

left unexplored after the assignment {x1 = 1, x3 = 1}. 
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corresponding implications. When a decision is undone during backtracking, the 

implication variables on the corresponding decision level are unassigned together with 

the decision variable. 

Continuing with the previous example formula 1 2 3 1 3( ) ( ) ( )x x x x x∨¬ ∧ ¬ ∧ ∨ , if the 

algorithm first assigns x3 with value false, then the clause 1 3( )x x∨  becomes a unit clause. 

The BCP process will then make an implication about x1 having value true. This way the 

exploration of the search-tree under the branch {x3 = 0, x1 = 0} is avoided, since it is 

known to lead to contradiction.  

A conflict is an attempt to assign a variable with two different values simultaneously. 

Without BCP, a conflict can occur when the algorithm makes a decision causing a clause 

to have all its literals have the value false. In DPLL algorithm with BCP, conflicts can 

arise only during the BCP process, since decisions are made only for variables that have 

no unit literals.  

3.4. Decision heuristics 
The approach by which the algorithm selects variables to assign with a value is 

commonly called decision heuristics, or branching heuristics. A number of techniques 

exist for this purpose, starting from random selection of variables and ending with 

dynamically changing strategies based on complex statistical analysis of the formula. An 

overview of various decision heuristics and their impact on the performance of the 

solvers is presented in  [51]. 

A decision heuristic is considered good if (i) it is computationally simple and 

imposes little overhead on the algorithm performance; (ii) it allows for quick finding of a 

satisfying assignment if there is such, and quick finding of contradictions when there is 

none such. 

Most branching heuristics are based on a statistical analysis of the formula. Bohm’s 

heuristic  [29] and the Maximum Occurrences in Minimum Sized Clauses  [30] methods 

have proven themselves efficient for some classes of random problems. It has been 

empirically shown, however, that on non-random SAT instances these heuristics do not 

behave well enough.  
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Benchmarking SAT solvers on non-random test benches has shown that most 

successful branching heuristics are those that impose minimal overhead on the run-time. 

For Chaff SAT solver  [23] the authors proposed heuristics called Variable State 

Independent Decaying Sum (VSIDS), which appeared to be very competitive and 

imposed practically no overhead on the solution run-time. This scheme keeps a score for 

each literal, which is the number of occurrences of the literal in the formula, and updates 

it as new clauses are added due to conflict-driven learning (described later). The scheme 

chooses the variable with the highest score as the variable to branch on. Periodically all 

the scores are divided by a constant number, thus giving priority to literals appearing in 

the most recently generated conflict clauses. It is therefore a dynamic strategy, as it 

adjusts itself to the changes in the formula to give preference to the most recently 

discovered information. 

In Berkmin solver  [31] the designers further improved VSIDS scheme. In VSIDS the 

“activity” of a variable is measured by the number of its occurrences, while in Berkmin 

the activity is measured by occurrences of the variable in conflicts – at the moment a 

conflict is discovered by the algorithm, the variables participating in it get their scores 

increased. In VSIDS the focus on “recent activity” of a variable is based only on the 

periodic decaying of the scores; in Berkmin the scores are also periodically decayed, but 

in addition the branch decision is limited to the variable participating in the last added 

clause that is unresolved. 

while (true) 
{ 
 if (! Decide()) 
 { 
  return SATISFIABLE; // No more unassigned variables 
 } 
 while (! BCP())  
 { 
  if (! ResolveConflict()) // A conflict occurred during BCP 
  { 
   return UNSATISFIABLE; 
  } 
 } 
} 
 

Fig. 5. Iterative implementation of DPLL algorithm (in C syntax). 
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Developing good decision heuristics is an active research area, and other decision 

heuristics have been tried out in various works, e.g.  [55]. Besides general-purpose 

approaches, special-purpose heuristics also exist. For example,  [56] describes several 

strategies that are useful in solution of SAT instances encoding BMC problems. 

3.5. Deduction of necessary assignments 
Deduction of necessary assignments is a technique to find out at a particular moment 

those assignments that must be done to satisfy the formula, according to the current 

partial variable assignment. One of the most important techniques in this area is BCP, 

which was described above, which proved itself critical for good solver performance. 

Other deduction rules are used in SAT solvers, many of which have been shown to 

work on specific classes of formulas, but none of which has been shown to be as efficient 

as the unit clause rule. On general SAT instances most of the other rules only affect the 

run-time for the worse. 

One of the other widely known rules is the pure literal rule: if a variable only occurs 

in a single phase (0 or 1) in all the unresolved clauses, then it can be assigned with a 

value making that phase evaluate to true. However, detection that a variable satisfies the 

pure literal rules has been found to be a rather expensive operation during the solution 

process; thus it is believed that the pure literal rule generally slows down the process for 

most of the benchmarks. 

3.6. Conflict analysis 
The situation when a contradiction is found by DPLL algorithm is called a conflict. 

As mentioned earlier, conflicts may arise during the BCP process, when two opposite 

implications about a variable are made. When this happens, there is always a unit clause 

that makes an implication that contradicts an already existing variable assignment. This 

clause is called the conflicting clause. The conflicting clause gets all its literals assigned 

with value false, if the implied assignment is not done, and thus falsifies the whole 

formula. Therefore, whenever a conflicting clause is found, there is no need for the solver 

to continue with the current partial assignment, since it is guaranteed that the formula will 

not be satisfied under it.  
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When a conflict happens it needs to be resolved, so that the algorithm recovers from 

the unsuccessfully made decisions. Conflict resolution is the general term to describe a 

technique that is used to recover from conflicts and direct the algorithm out of the search 

space where there is no solution to another one. Conflict resolution techniques differ by 

how conflicts are analyzed, how backtracking is performed, and how information is 

learned to prevent similar conflicts to happen again. 

The simplest method of conflict resolution is to undo all the latest assignments up to 

the latest decision on a variable that has not been tried with both truth values, assign that 

variable with the value that has not been tried, and continue the search from there. This 

method is called chronological backtracking, since it always tries to undo the last 

decision that has not been tried both ways. Though on random SAT instances 

chronological backtracking has been shown to behave well, on structured problems it is 

generally not efficient.  

A more sophisticated conflict analysis aims at analyzing the real reason for the 

conflict. The benefit of analyzing the real reason for a conflict arises from the fact that 

not all the decisions made by the algorithm at the moment the conflict happened actually 

ω1: ( x1 + x2)
ω2: ( x1 + x3)
ω3: ( x2 + x4 + x5)
ω4: ( x3 + x4 + x5)
ω5: ( x1 + x4 + x7)

…..
ω6: ( x1 + x4 + x7)

x1

x4 x4

x6

x6 = 1 x6 = 0

x1 = 1 (x2 = 1; x3 = 1)

x1 = 0

x4 = 1 x4 = 0 x4 = 1 x4 = 0

Decision level 1

Decision level 2

Decision level 3

Fig. 6. Example of conflicts for which only the decision {x1 = 1} is responsible. The exploration of 

the dashed part of the search tree can be avoided by analyzing the reason for the first two conflicts.
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affected the appearance of the conflict. Knowledge of the reason for a conflict may allow 

a more optimal backtracking and prevention of the same conflict from happening again. 

For example, in Fig. 6 a conflict arises on variable x5 after the decisions {x1 = 1,  x6 = 1, 

x4 = 1}. A chronological backtracking scheme would cause the algorithm to explore the 

branch {x1 = 1, x6 = 1, x4 = 0}, just to discover another conflict on variable x7. The only 

assignment responsible to both these conflicts is the assignment {x1 = 1} on the decision 

level 1. Despite this fact the chronological backtracking scheme would explore the 

branch {x1 = 1, x6 = 0}, even though it is known to contain no solution. By finding out 

the real reason for the conflict, the algorithm may backtrack to an earlier decision level. 

This method is called non-chronological backtracking and it aims at preventing decisions 

that will generate a sequence of conflicts actually following from the same reason. 

Continuing the example in Fig. 6, a non-chronological backtracking scheme would 

backtrack to decision level 1, thus redirecting the search into the branch {x1 = 0}.  

Conflict analysis can be formulated as a resolution process between clauses involved 

in BCP process that led to the conflict. However, most often conflict analysis is presented 

as an analysis of a so-called implication graph  [27]. Whenever a conflict occurs, the 

implication graph can be used to model the BCP process that resulted in the conflict. 

Vertices of the implication graph represent variable assignments and edges represents 

clauses. An outgoing edge from a vertex v1 means that the corresponding clause became 

 
Fig. 7. Example of an implication graph resembling the solution process shown in 

Fig. 6 that led to a conflict on x5. 
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unit because of the variable assignment represented by v1. An incoming edge into a 

vertex v2 means that the variable assignment represented by v2 was implied by the 

corresponding clause when it became a unit clause; such a clause is called the antecedent 

clause of the assignment represented by v2. A conflict is realized in the implication graph 

by opposite assignments to the same variable. Continuing the example in Fig. 6, the 

implication graph resembling the BCP process that led to the conflict on x5 is shown in 

Fig. 7. The number in parentheses in each vertex specifies the decision level on which the 

assignment represented by the vertex was made. White vertices represent assignments 

made on the current decision level (when the conflict occurred); shaded vertices represent 

assignments made on earlier decision levels. Although there are more assignments on 

earlier decision levels, only those that are connected to the white vertices are shown, as 

they are the only ones that possibly caused the conflict. 

Given two vertices v1 and v2 on the current decision level in an implication graph, v1 

is said to dominate v2, if and only if any path from the decision variable to v2 goes 

through v1. A unique implication point (UIP) is a vertex on the current decision level that 

dominates both vertices representing the opposite assignments to the conflicting variable. 

For a given conflict there may be more than one UIP; and the decision variable is always 

a UIP. Intuitively, any UIP can be seen as a sole reason for the conflict on the current 

decision level. 

Analysis of a conflict with an implication graph involves bi-partition (or a cut) of the 

implication graph, so that all the decision variables are on one side (the reason side) and 

the conflicting variable is on the other side (the conflict side).  All vertices on the reason 

side that have outgoing edges going to the conflict side comprise a “reason” for the 

conflict. This reason can be formulated as a clause that consists of the negations of the 

literals from which the edges crossing the cut outcome. Such a clause is called a conflict 

clause and it specifies that the assignments comprising the reason for the conflict cannot 

occur together, i.e. at least one of them must be opposite to what it currently is. Different 

analysis schemes correspond to different ways the bi-partition of the implication graph is 

performed, and choice of a specific scheme is heuristic. For example, cut 1 on Fig. 7 

constitutes a reason for the conflict on variable x5 by the fact that both x1 and x4 have the 

value true. A conflict clause formulating this reason and preventing the same conflict 
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from happening again is 1 4( )x x¬ ∨¬ . For cut 2, on the other hand, the conflict clause 

would be 2 3 4( )x x x¬ ∨¬ ∨¬ . 

The conflict clause produced during conflict analysis as described above can be used 

to implement non-chronological backtracking: the algorithm can safely backtrack to one 

level above the maximal decision level of the variables in the produced conflict clause 

except the variable on the current decision level. That decision level is the lowest 

decision level that is known to necessarily lead to the conflict. 

It has been empirically shown that the heuristic that usually outperforms others is the 

1UIP heuristic, which bi-partitions the graph in a way that the UIP closest to the 

conflicting variable (the first UIP) resides on the reason side of the graph and the 

assignments implied by this UIP reside on the conflict side. Conflict clauses produced by 

bi-partition schemes based on UIPs possess an important characteristic: when non-

chronological backtracking is performed as described above, then after the backtracking 

the conflict clause will be a unit clause. Such a clause is called an asserting clause, and 

the only unassigned variable within it is called an asserting variable. Having an asserting 

conflict clause simplifies the decision how to continue the search after the backtracking. 

The conflict clauses produced as a result of conflict analysis are redundant in nature, 

because they are implied by the formula being solved. Still, they may be recorded and 

added to the formula by the process which is accordingly called conflict clause recording, 

or learning. The recorded clauses, though redundant, can often help prune the search 

space in the future, since they record a reason for a conflict compactly. Thus, for 

example, when a conflict arises on variable x5 in the example on Fig. 7 after the decisions 

{x1 = 1, x6 = 1, x4 = 1}, the reason for the conflict can be recorded as an additional clause 

1 4( )x x¬ ∨¬ , which will prevent the assignment {x1 = 1, x4 = 1} from happening again in 

the future. 

Conflict-driven learning – the combination of conflict analysis, conflict clause 

recording and non-chronological backtracking, – has been incorporated into practically 

all modern SAT solvers, since it proved itself extremely effective in pruning the search 

space and therefore speeding up the search.  

During the solution process a large number of learned clauses may be generated, and 

storing all of them may slow down the solution process. Therefore, it is often useful for a 
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solver not to store or to delete some of the less necessary learned clauses. There are 

various heuristics to measure the usefulness and relevance of the learned clauses based on 

the literal count, the age of the clause, etc. For example, Berkmin  [31] measures the 

usefulness of a particular clause by the number of conflicts in which that clause was 

involved. 

3.7. Formula representation data structures 
The data structures used by a SAT solver to represent the formula being solved have 

critical influence on the performance of the solver. In  [32] the authors present a short 

overview of efficient data-structures for representation of SAT problems, as they are used 

in the modern state-of-the-art solvers. It has been empirically shown that BCP and 

backtracking account for the most significant parts of the run-time, therefore efficient 

data structures aim at minimizing the time required for literal assignment, literal 

unassignment, and finding unit and unsatisfied clauses after each variable assignment. 

One of the most efficient formula representations is the Two Watched Literals 

scheme  [23]. In this scheme the formula is represented as a list of clauses and a clause is 

a list of literals. Additionally, each clause constantly tracks its two arbitrary distinct 

literals that are not assigned to false (the watched literals). A clause that has less than two 

literals not assigned to false is either a unit clause (if there is one such literal) or a 

conflicting one (if there are no such literals at all). Every variable keeps track of clauses 

in which its literals are watched. Whenever a variable is assigned a value, either its 

positive or negative literal becomes false. Apparently, only the clauses that watch the 

literal that became false may potentially become unit after the assignment and therefore 

need to be checked. The check is performed by scanning the clause in search for another 

literal not assigned false. If such a literal is found, then the clause did not become unit 

and the found literal will now be watched instead of the assigned one. If such a literal is 

not found, then the clause either became unit or conflicting and appropriate actions can 

be taken by the algorithm. 

Whenever a variable is unassigned during backtracking, no clause should be updated. 

Clauses that do not watch the literals being unassigned watch other two literals that are 

not assigned false. Clauses that watch the literals being unassigned, and which previously 
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watched less than two unassigned literals, now become to watch one more unassigned 

literal, and therefore do not require updating. Note that unassignments happen in reverse 

chronological order than assignments, therefore it is guaranteed that the last assigned 

(and therefore last watched) literals will be the first to get unassigned (and therefore 

become watched). 

The Two Watched Literals scheme appears very efficient, because of the low 

overhead to detect unit and conflicting clauses during variable assignment and no 

overhead for unassignment.  

3.8. Restarts 
Restarts are a technique to speed-up the search, which stops the search at some point 

and restarts it from the beginning by unassigning all variables, thus bringing the search 

into a new space. This technique may prevent the algorithm from staying in a dead-end of 

the search tree for a long time and has proved to be efficient on real-life instances. 

Noticeably, the learned clauses may be preserved during restarts. 

Restarts can harm the completeness of a search algorithm, if no technique is used to 

ensure that the whole search tree is eventually visited. One such technique is to increase 

periodically the time intervals between restarts, so that eventually the algorithm gets a 

chance to visit the whole search tree without restarting. 

3.9. Preprocessing 
Preprocessing techniques are methods applied to formulas prior to the main search 

algorithm. These techniques aim at simplifying the formula to enable faster completion of 

the search later. An overview and comparison of various preprocessing techniques can be 

found in  [33]. Such techniques include, among others, symmetry breaking, deduction of 

necessary assignment, addition of implied clauses, deletion of redundant clauses, 

identification of equivalent literals; they are out of scope of this work. 
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Chapter 4  

QBF decision procedures 

During recent years Quantified Boolean Formula (QBF) solvers have attempted to 

follow in the footsteps of the dramatic success of propositional SAT solvers. In 2003 the 

first competition of QBF solvers took place as part of the International Conference on 

Theory and Applications of Satisfiability Testing (SAT), 2003 conference. Eleven solvers 

participated in the evaluation, and the results of the evaluation are found in  [26]. 

Most of the QBF solvers implemented in recent years extend the DPLL procedure 

for SAT. In fact the propositional SAT problem is a restricted case of the QBF validity 

problem, where all variables can be considered existentially quantified. The following 

sections describe the techniques used by the extended DPLL procedure for QBF. 

4.1. Extension of DPLL for QBF 
Satisfiability of a propositional formula f can be formulated as the problem of 

validity of a quantified formula ' :if x f= ∃ , where all the variables of f are existentially 

quantified. To determine the validity of 'f  it is sufficient to find one satisfying 

assignment to the variables, and hence propositional SAT solvers stop the search as soon 

as one satisfying assignment is found. In the presence of universally quantified variables 

it is generally insufficient to find one satisfying assignment, giving particular values to 

existential and universal variables, to prove validity. Such an assignment does not 
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guarantee that the formula will be satisfied with other values of the universally quantified 

variables. This fact lies at the base of the main algorithmic difference between SAT and 

QBF problems: a SAT solver looks for one satisfying assignment and stops as soon as 

such is found, while a QBF solver should enumerate many satisfying assignments, trying 

out all possible values of universally quantified variables. 

Similary to propositional satisfiability, the search space of the DPLL extension for 

QBF is a tree of partial variable assignments. An example of such a tree is shown in Fig. 

8 for the formula 1 2 3 1 2 3 1 3.( ) ( ) ( )x x x x x x x x∃ ∀ ∃ ∨¬ ∧ ¬ ∧ ∨ . To prove validity of this formula the 

algorithm must visit both SAT vertices of the search tree, thus making sure that for any 

value of x2 there is an assignment for x3 that satisfies the formula.  

Noticeably, as in the case of DPLL for SAT, there are useful pruning techniques that 

allow one to avoid the exploration of those parts of the search tree where the result of the 

search is known. In the case of DPLL for SAT, such techniques are used to avoid 

exploration of the search space where no solution is known to exist; however in the case 

of DPLL for QBF, additional techniques are used to avoid exploration of the search space 

where a solution is known to exist. 

x3

x1

x3

x2

x3 x3

x2

x2 = 1 x2 = 0 x2 = 1 x2 = 0

x1 = 1 x1 = 0

UNSAT UNSAT UNSAT UNSATSAT SAT UNSAT UNSAT

x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0

Decision level 1

Decision level 2

Decision level 3

Fig. 8. Example of a search tree for formula 1 2 3 1 2 3 1 3.( ) ( ) ( )x x x x x x x x∃ ∀ ∃ ∨¬ ∧ ¬ ∧ ∨ . 
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Fig. 9 shows the extended DPLL algorithm framework for QBF. The main difference 

from the original algorithm shown in Fig. 5 is that whenever a satisfying assignment is 

found the search does not stop. The formula is reported valid only when no more values 

remain to try for the universal variables. 

The implementation of separate steps of the algorithm is discussed in the following 

sections. 

4.2. Formula representation 
As in DPLL for SAT, its extension to QBF operates on a CNF representation of 

formulas, namely an expression of the form Q1x1Q2x2…Qnxn:φ, where every Qi is a 

quantifier, either existential ∃ or universal ∀, xi are distinct variables, and φ is a 

propositional formula over the variables x1…xn in CNF, as described for the propositional 

case.  

Noticeably, if xi and xi+1 are equivalently quantified, then the order between them is 

not important and can be changed without affecting the validity of the formula. 

while (true) 
{ 
 if (! Decide()) 
 { 
  // A satisfying assignment found 
 
  if (! AnalyzeSAT()) 
  { 
   // No more values to try for universal variables 
   return VALID; 
  } 
 } 
 
 while (! BCP())  
 { 
  // A conflict occurred during BCP 
 
  if (! ResolveConflict()) 
  { 
   return INVALID; 
  } 
 } 
} 
 

Fig. 9. Iterative implementation of the extended DPLL for QBF (in C syntax). 
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Therefore, the quantification prefix Q1x1Q2x2…Qnxn is often represented as an ordered 

sequence of variable sets, each set quantified differently than its predecessor. If the last 

quantification Qnxn in the quantification prefix is a universal one, then it is redundant and 

can be safely removed by eliminating from φ all literals of xn. Therefore, without loss of 

generality, it is further assumed that the last quantification is always existential. 

The CNF representation enables efficient BCP, conflict detection and conflict-driven 

learning in DPLL for both SAT and QBF problems. For QBF problems, where the 

algorithm does not stop on the first encountered satisfying assignment, found solutions 

can be used to derive information useful for pruning the search process in the future. This 

satisfiability-driven learning is described later, but for its purpose the CNF representation 

is augmented with a disjunction of cubes (conjunctions of literals), resulting in a so-called 

Augmented CNF (ACNF). ACNF is a combination of CNF for representing the original 

and learned clauses and disjunctive normal form (DNF) for representing the learned 

cubes:  

1 2 1 2... ...n mC C C D D D∧ ∧ ∧ ∨ ∨ ∨ ∨  (10) 

where Ci are clauses (disjunctions of literals) and Dj are cubes (conjunctions of literals), 

all of which are implied by 1 2 ... nC C C∧ ∧ ∧  and serve exclusively pruning purposes. CNF 

is a special case of ACNF, therefore whatever is explained in relation to ACNF in the 

following text applies to the CNF representation as well. 

4.3. Boolean Constraint Propagation 
In DPLL for SAT one of the primary workhorses of the algorithm is the BCP 

process. There are also other techniques for deduction of necessary assignments, as 

described in section  3.5. 

The rules applicable in SAT can be extended to apply and be equally useful for QBF 

as well. For example, the unit clause rule, on which BCP is based, is extended in the 

following way  [37]: 

If the ACNF formula contains a clause C with an unassigned existential literal a, so 

that: 

• all other existentially quantified literals in C have value false,  
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• all universally quantified literals with lower quantification level have value false, 

and  

• all universally quantified literals with higher quantification level are unassigned, 

then the literal a must be assigned with value true for the formula to be satisfied. 

This unit clause rule refers only to existentially quantified literals (in SAT all literals 

are existentially quantified). For QBF in ACNF form, a dual rule can be formulated for 

universally quantified literals and is called a unit cube rule  [37]: 

If the ACNF formula contains a cube S with an unassigned universally quantified 

literal x, so that: 

• all other universally quantified literals in S have value true,  

• all existentially quantified literals with lower quantification level have value true, 

and 

• all existentially quantified literals with higher quantification level are unassigned, 

then the formula is satisfied unless we assign false to x. As the unit clause rule is used to 

avoid conflicts and save the exploration of the search space known to contain no solution, 

the unit cube rule can be used to avoid exploration of the search space known to surely 

contain a solution by assigning x with False. 

The BCP process for QBF in ACNF is based on the two rules described above: it is 

an iterative application of unit clause and unit cube rules until no more implications may 

be deduced.  

To illustrate the effect of BCP based on unit cube rule consider the following valid 

QBF: 

1 2 3 4 5 1 2 3 4 5

1 1 3 5

2 1 2 5

3 2 4 5

4 3 4 5

5 2 3 5

:

( )
( )
( )
( )
( )

x x x x x C C C C C
where
C x x x
C x x x
C x x x
C x x x
C x x x

∀ ∃ ∀ ∀ ∃ ∧ ∧ ∧ ∧

= ∨ ¬ ∨

= ¬ ∨ ∨

= ¬ ∨ ∨

= ∨ ¬ ∨ ¬

= ∨ ¬ ∨ ¬

 (11) 
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Note that whenever {x2 = 1; x3 = 0} the CNF is satisfiable, and therefore the cube 

1 2 3( )D x x= ∧¬  is implied by this formula and can be safely added to it, transforming the 

formula to the following ACNF:  

( )1 2 3 4 5 1 2 3 4 5 1:x x x x x C C C C C D∀ ∃ ∀ ∀ ∃ ∧ ∧ ∧ ∧ ∨  (12) 

Now assume that at some point x2 is assigned value true. The BCP process will 

immediately assign true to x3 in order to force the cube D1 to have value false to avoid the 

exploration of the search space obviously having a solution. 

4.4. Decision heuristics 
As in the case of propositional SAT, a good choice of decision heuristics is critical 

for the speed of the algorithm. In DPLL for SAT there is no restriction on the order in 

which the algorithm chooses variables to split upon, since all the variables belong to the 

same (and the only) existentially quantified set. In DPLL for QBF this is not the case, and 

the choice of the next variable to branch on is subject to the following conditions: 

• Variables from the same quantified set can be chosen in any order, because 

: :x y y xφ φ∀ ∀ = ∀ ∀  and : :x y y xφ φ∃ ∃ = ∃ ∃ . 

• Variables from different quantified sets should be chosen according to quantifier 

nesting, from the outermost one to the innermost one, because : :x y y xφ φ∃ ∀ ≠ ∀ ∃ . 

Unless special techniques are used, such as inversion of quantifiers (described later), 

QBF solvers obey this restriction on the decision heuristics. For the choice of variables 

from the same quantified set, QBF solvers usually use the same kinds of heuristics as 

propositional SAT solvers, e.g. VSIDS. 

The restriction on the order of decisions is a fundamental difference between SAT 

and QBF, and is considered to be one of the key limitations of QBF compared to SAT. 

4.5. Conflict analysis and satisfaction analysis 
In propositional SAT the conflict is said to occur when two contradicting 

implications are made about a variable, or a clause gets all its literals assigned with the 

value false. This rule (the conflicting rule) is not directly applicable in QBF. As 

mentioned in the description of BCP for QBF above, a clause in ACNF may be unit even 
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when more than one of its literals is unassigned: what counts is only the number of 

existentially quantified literals. Hence, the conflicting rule for QBF is accordingly 

adjusted, and a conflict is said to occur when two contradicting implications are made 

about the same variable, or a clause gets all its existentially quantified literals assigned 

with value false and the universally quantified literals either assigned with value false or 

unassigned (i.e. not assigned with value true). 

Efficient conflict analysis coupled with learning and non-chronological backtracking 

proved to be extremely effective for propositional SAT solvers, especially on non-

random instances. As described earlier, in propositional SAT conflict analysis is 

performed whenever a conflict occurs, and it results in the following artifacts: 

• a new clause representing the reason for the conflict, which is added to the 

original clause database; 

• the computed decision level to which the algorithm backtracks at the end of the 

analysis. 

Conflict-driven learning and non-chronological backtracking has been extended also 

to QBF  [35] [36] [37] and empirically shown useful. Conflict analysis in QBF is 

formulated by the concept of long-distance resolution, introduced in  [35]. In 

propositional SAT an iterative application of resolution of the conflicting clause with its 

antecedent clauses in order to eliminate the implication variables results in a clause 

representing the reason for the conflict. Similarly, in QBF the conflicting clause can 

iteratively be resolved with its antecedent clauses to produce a conflict clause. The only 

difference between SAT and QBF is that the resolvent of two clauses in QBF can be a 

tautological clause. For example, consider the following fragment of a QBF: 

( ) ( )1 2 3 4 1 1 2 1 3 1 2 1 4... .... ...x x x x y x x y x x x y x∃ ∃ ∃ ∃ ∀ ∨ ∨ ∨ ∧ ∨¬ ∨¬ ∨  (13) 

Assuming x3 and x4 have value false, when a decision on x1 assigns it value false, the 

first clause becomes unit, because y1 has a higher quantification level than x1 and x2. 

Therefore, x2 is deduced to be true, causing the second clause to become conflicting, 

according to the conflicting rule for QBF. The resolution of the conflicting clause (the 

second clause) with the antecedent clause of x2 (the first clause) results in the new clause 

( )1 1 1 3 4x y y x x∨ ∨¬ ∨ ∨ , which is tautological. Nevertheless, it may be added to the database 
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and be useful for pruning the search space, since it will become unit as soon as x3 and x4 

get assigned value false. This clause can also be used for non-chronological backtracking 

in the same way as is done in SAT. 

Since in QBF the search does not stop when a satisfying assignment is encountered, 

an additional technique, namely satisfaction-driven learning, has been developed to avoid 

exploration of the search space already known to have a solution. Similary to the case 

when a conflict is discovered, it is possible to analyze the solution found, derive a reason 

for it and prevent the algorithm from later encountering a solution implied by the same 

reason. The result of satisfaction analysis is a cube, which can be used for non-

chronological backtracking after a solution is found and can be added to the ACNF 

database for pruning of the future search.  

The method of generating conflict clauses and satisfying cubes in the process of the 

search is described in  [35] [36] [37]. 

4.6. Additional QBF-specific techniques 
A number of techniques specific to QBF have been developed in the recent years in 

an attempt to make the DPLL-based QBF solvers faster. However, in practice, none of 

the specific techniques has proved itself effective in any manner comparable with BCP or 

conflict/satisfaction-driven learning. For completeness, some of those techniques are 

presented in the following paragraphs.  

4.6.1. Unfolding 

Unfolding is the technique of elimination of universal quantifiers from a QBF based 

on the following rule: 

: ( ) ( 1) ( 0)x f x f x f x∀ = ∧  (14) 

Elimination of all universal quantifiers in fact reduces the QBF problem to SAT. 

Even elimination of some of the universal quantifiers may result in a significant speed up 

of the search due to the possibility of making substantially more implications by the unit 

clause rule, as shown in  [38]. The drawback of this technique, however, is that the 
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elimination of a universally quantified variable doubles the formula size, causing the 

unfolded formula to grow exponentially.  

In  [38] a technique called implicit unfolding is proposed, in which the formula is not 

physically unfolded, and therefore does not grow up exponentially, but instead a worst-

case exponential algorithm of unit clause propagation analyzes the formula as if it were 

unfolded. The author of  [38] then proposes a number of limitations that may be set upon 

this unit propagation algorithm, which may limit the run-time to sub-exponential. Still the 

computational cost of the algorithm is high; the trade off between the overhead of the 

algorithm and its usefulness is not clear. In practice, most successful QBF solvers to-date 

do not make use of the implicit unfolding technique. 

4.6.2. Inversion of quantifiers 

Normally, the decision strategy in the DPLL extension for QBF is restricted to 

choose variables in the order of their quantification, as mentioned in section  4.4 above. In 

 [39] the author proposes a technique that enables reasoning with variables that are not 

quantified in the outermost quantification. Noticeably, when given the formula of the 

form :X Y φ∃ ∀ , it is useful to look at the formula :Y X φ∀ ∃ , where the quantifier order is 

reversed. If for some valuation of Y only certain valuations of X are possible, then these 

valuations of X are the only possible for :X Y φ∃ ∀ . This observation leads to the technique 

called inversion of quantifiers, which is used to determine necessary assignments to the 

variables of X. Given the formula :X Y φ∃ ∀ , a random valuation is chosen for the 

variables of Y; then BCP is performed, resulting in a set of necessary assignments to the 

variables of X. Any number of valuations for Y may be tried out in an attempt to discover 

more necessary assignments to the variables of X or even conflicting assignments. In the 

latter case, the formula may be declared invalid. 

In  [39] this technique is applied to the formula as a preprocessing step prior to the 

execution of the main search procedure. 

4.6.3. Sampling 

Sampling is an additional pruning technique which has also been proposed in  [39]. 

For the formula :X Y φ∃ ∀ , whenever a variable from X is assigned, the viability of the 
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assignment is unknown at least until all values of variables from Y are tried one way or 

another. However, the viability of the assignment to a variable from X can be checked 

faster by making a random valuation of a small number of variables of Y and performing 

BCP to check that no conflicts arise. This process is called sampling of Y and aims at 

faster detection of wrong decisions. 

Sampling is somewhat similar to the inversion of quantifiers. But unlike the 

inversion of quantifiers, this technique is applied in  [39] after each decision on the value 

of an existential variable. 



 49 

Chapter 5  

jSAT 

 Chapter 2 presented the results of the evaluation of general-purpose SAT and QBF 

solvers for the solution of BMC problems encoded in a classic approach with the 

following propositional SAT instance (15) and a QBF instance (16), avoiding the 

memory explosion during successive increase of the BMC bound:  
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⎜ ⎟
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The conclusion of the evaluation was that the general-purpose QBF solvers are 

totally out of the running compared to the SAT solvers.  This inefficiency of the general-

purpose QBF solvers on QBF formulations of BMC problems served as motivation for 

the development of a special-purpose QBF decision procedure, called jSAT, for these 

specific kinds of QBF. The scope of the development was limited to formulas of form 

(16); and the goal for the developed special-purpose solver was to improve the run-time 

performance of the solution to come as close as possible to SAT-based approaches on the 

corresponding SAT formulations, and still preserve the memory efficiency enabled by 

QBF formulations. 
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5.1. Motivation and approach 
The primary reason for the inefficiency of general-purpose QBF solvers compared to 

SAT solvers is believed to be the lack of efficient Boolean Constraint Propagation 

between the state encoding variables, caused by the restriction of the decision strategy to 

assign all state encoding variables before assigning to variables of U and V, as well as by 

the lack of explicit relations between the state encoding variables in the formula. The 

relations encoded by TR(U, V) part of the formula do not have any effect until very late in 

the solution process. Essentially, as mentioned in  Chapter 2, QBF solvers first choose all 

the state encoding variables and only then check whether they constitute a path. 

Another reason for the inefficiency of the QBF solvers is the redundant exploration 

of the search space in which the implication 1( ) ( ) ( , )i iU Z V Z TR U V+↔ ∧ ↔ →  is trivially 

satisfied when those valuations of U and V are tried out that do not represent any chosen 

pair of neighboring states Zi and Zi+1, i.e. the left side of the implication evaluates to 

false. 

An example of a state graph is shown on Fig. 10, which depicts a correct model for a 

resetable 2-bit modulo-3 counter, and where S0 is the initial state and S3 is the 

unreachable state where the counter has the illegal value 3. Assume a BMC problem that 

S3 is reachable from S0 in two transitions. A SAT solver on the formula of the form (15) 

will deduce the values for the encoding variables of Z0, Z1 and Z2 immediately during the 

first invocation of BCP, completing the solution process without making any decision, 

because: 

• S0 is the only initial state, whose value is deducible from I(Z0); 

 
 

Fig. 10. State graph of a correct model for a resetable 2-bit modulo-3 counter. 
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• S1 is the only successor of S0, and its value is deducible from TR(Z0, Z1) as soon 

as Z0 is deduced; 

• S3 is the only final state whose value is deducible from F(Z2). 

The solution process of a QBF solver on the corresponding formula of form (16) is 

much less efficient. It will also immediately deduce the values for Z0 and Z2, but it will 

perform an exhaustive search for a value of Z1 that could make the formula valid. Z1 will 

be chosen heuristically to be any one of the four states, and then an exhaustive trial of all 

possible 24 values for the encoding variables of U and V will be made to check if all of 

them satisfy the implication under the universal quantification. Even with learning and 

non-chronological backtracking, which could help to avoid re-exploration of the already 

explored search space, the deficiency of the QBF approach is obvious. 

The primary goal of the development of jSAT was to overcome, at least partially, the 

two deficiencies of the general-purpose QBF approach, namely: 

• redundant exploration of the search space where the implication 

1( ) ( ) ( , )i iU Z V Z TR U V+↔ ∧ ↔ →  is trivially satisfied; and 

• inappropriate choices of neighboring states that do not constitute a path. 

jSAT holds in memory the encoding variables representing the states Z0, Z1, …, Zk, U 

and V, but only holds the following propositional formula: 

0( ) ( , ) ( )kI Z TR U V F Z∧ ∧  (17) 

The states Zi ( 0 i k≤ ≤ ) represent a path; the states U and V represent two 

neighboring states in that path. Instead of explicitly storing the fact that U and V represent 

a pair of neighboring states, as done in (16) with assistance of the terms of the form 

1( ) ( )i iU Z V Z +↔ ∧ ↔ , jSAT implicitly assumes this information. The idea of the algorithm 

is to iteratively associate U and V with a pair of successive states, called the current state 

and the next state, until all states are decided. We call U and V aliases, since at each point 

of time during the algorithm execution they act as the states they are associated with. This 

way the redundant exploration of the values of U and V that do not correspond to any 

state is avoided, since U and V always have values making the left side of the implication 

1( ) ( ) ( , )i iU Z V Z TR U V+↔ ∧ ↔ →  evaluate to true. 
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To avoid choices of states that do not constitute a path, jSAT tries to choose states 

consistently with the previously chosen ones. For example, when state Z0 is chosen, and 

the aliases (U, V) are associated with states (Z0, Z1), the relations between Z0 and Z1 are 

explicit in the formula (17), since TR(U, V) in fact represents the relation TR(Z0, Z1). The 

explicit relations between Z0 and Z1 allow a consistent choice of Z1. 

Intuitively, the jSAT algorithm can be seen as a bounded depth-first search in the 

state graph of the system from the initial states to the final ones. The search is bounded 

because it only goes up to k steps in depth, where k is the bound of the BMC problem 

being solved. 

The algorithm starts by associating U with Z0 and V with Z1; thus the formula (17) 

becomes semantically equivalent to: 

0 0 1( ) ( , ) ( )kI Z TR Z Z F Z∧ ∧  (18) 

The states Z0 and Z1 are then chosen by finding an assignment to their encoding 

variables, if possible, so that Z0 is an initial state and Z1 is its successor. As soon as they 

are chosen, the algorithm makes Z1 be the current state and Z2 be the next one: U 

becomes an alias of Z1, and V becomes an alias of Z2. The algorithm proceeds in this 

fashion until all states are successfully chosen, or until it discovers that such a choice is 

impossible. In fact, jSAT solves a sequence of formulas, shown below, having in mind 

that all the similarly named state encoding variables are equivalent in all the formulas: 

0 0 1( ) ( , ) ( )kI Z TR Z Z F Z∧ ∧  

0 1 2( ) ( , ) ( )kI Z TR Z Z F Z∧ ∧  

0 2 3( ) ( , ) ( )kI Z TR Z Z F Z∧ ∧  

… 

0 1( ) ( , ) ( )k k kI Z TR Z Z F Z−∧ ∧  

(19) 

Whenever the algorithm fails to choose the next state consistently, the depth-first 

search backtracks by setting U to be the previous chosen state and V to be the 

unsuccessfully chosen current state; it then tries to find another suitable such state. 
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Back to the simple example on Fig. 10, Fig. 11a shows that jSAT will deduce Z0 and 

Z2 immediately just like a SAT or a general-purpose QBF solver. Also, since in the 

beginning the current and the next states U and V are associated with Z0 and Z1, the value 

of Z1 will also be immediately deduced. Upon the next step of the depth-first search, 

which will try to extend the path Z0 Z1 one more transition, U and V will become 

associated with Z1 and Z2 respectively, as shown in Fig. 11b. A contradiction will 

immediately arise, since there is no transition between these two states, which have 

already been assigned to be S1 and S3, respectively. 

 
(a) 

 
(b) 

Fig. 11. jSAT solution process for the 2-bit module-3 counter from Fig. 10. (a) when U 

and V are associated with Z0 and Z1, values for Z0, Z1 and Z2 are deduced immediately; 

(b) when U and V move forward a conflict arises. 
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The jSAT solution of the BMC problem in the above example was not as efficient as 

that of a SAT solver, due to the inability to perform BCP across more than one transition 

at the same time, since there is only one copy of the transition relation available to jSAT. 

Still, jSAT was able to solve the problem by only applying BCP without making any 

decision, and thus was much more efficient than a general-purpose QBF solver.  

5.2. Algorithm description 
jSAT is based on the DPLL algorithm, which was described in the previous chapters. 

Fig. 12 shows the structure of the algorithm. The main algorithmic difference of jSAT 

from the classical DPLL is the action taken on lines 6-7 whenever a satisfying assignment 

is found to the formula with U and V being aliases to a specific pair of states. Since jSAT 

iteratively solves different formulas (with U and V being aliased to different states of the 

path), whenever one formula is satisfied the algorithm does not finish, but adjusts U and 

V to the next pair of states in order to start solving the next formula. This is somewhat 

similar to the extension of DPLL for QBF, where the algorithm does not finish when a 

satisfying assignment is found, but backtracks to check other (still unexplored) branches 

of the universally quantified variables. 

The following sections describe the details of the various steps of the algorithm, such 

as the decision strategy, conflict analysis technique, etc. 

 1: InitializeCurrentAndNextStates(); 
 2: while (true)  
 3: { 
 4:     if (! Decide())  
 5:     { 
 6:         if (AllStatesDecided()) return VALID; 
 7:         if (! AdvanceCurrentAndNextStates()) return INVALID; 
 8:     } 
 9:     while (! BCP())  
10:     { 
11:         if (! ResolveConflict()) return INVALID; 
12:     } 
13: } 
 

Fig. 12. Pseudo-code of jSAT decision procedure (in C syntax). 
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5.2.1. Overview 

The algorithm first initializes the states U and V to be associated with Z0 and Z1, 

respectively. With such setting jSAT will start its search process by finding values for 

these states first. 

The procedure Decide() selects a still unassigned variable out of the encoding 

variables of the current state or, if all the encoding variables of the current state are 

assigned, from those of the next state. The decision strategy has some restrictions, which 

are covered in the following paragraphs. 

Decide() returns true if the decision is made successfully. Boolean Constraint 

Propagation is then performed by the procedure BCP(), which returns false in case a 

conflict arose. If so, ResolveConflict() attempts to analyze it and backtrack to a 

previous decision level. In case the conflict cannot be resolved the algorithm terminates 

and the given formula is reported invalid. 

Decide() returns false whenever all the encoding variables of the current and the 

next states have been decided. If at this point all the states of the path have been decided, 

as determined by the call to AllStatesDecided(), then a path has been found from an 

initial state to a final one, and the algorithm terminates, reporting the given formula is 

valid. AllStatesDecided() returns true when all the state encoding variables are 

assigned and the current and the next states U and V are positioned on the last pair of 

states in the path. 

If undecided states remain, AdvanceCurrentAndNextStates() advances U and V 

to the next pair of states by associating U with whatever was previously associated with 

V, and associating V with the next state in the path. During this operation new relations 

between the encoding variables become apparent. Thus, for example, when U and V are 

moved from the pair of states (Z0, Z1) to the next pair (Z1, Z2), the relations between the 

encoding variables of Z1 and Z2 become explicit in the TR(U, V) part of the formula. 

Since the newly discovered information may contradict some of the already made 

decisions, conflicts may arise during the adjustment operations. The procedure 

AdvanceCurrentAndNextStates() returns false in case a conflict occurred that could 

not be resolved; in this case the algorithm terminates and the given formula is invalid. 
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(c)     (d) 

 

Fig. 13. The jSAT solution process on the example of 2-bit modulo-3 counter from Fig. 10 with 

BMC bound 3. (a) U and V are fully assigned, causing the DFS traverse to advance; (b) U and V 

after the advancement, showing the conflicting situation; (c) Z2 is unassigned as a result of 

backtracking, and U and V are retracted; (d) as a result of conflict resolution Z2 is assigned with a 

new value, redirecting the DFS into a new branch. 
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5.2.2. Decision heuristics 

The decision strategy of jSAT is not as arbitrary as that of the propositional SAT 

solvers. The following restrictions apply to make jSAT implement a depth-first search of 

the state graph and to “visit” only the states actually reachable from the initial states: 

• Only the encoding variables of the current and the next state are chosen. If there 

are no more such variables to decide, then the current and the next states should 

be advanced in the path. 

• The encoding variables of the current state are chosen prior to the encoding 

variables of the next state. 

The restrictions described above ensure selection of the decision variables in the 

order of the states in the path: encoding variables of the state Z0 are selected first, then the 

variables of Z1, then the variables of Z2, and so on. Moreover, every state in the path is 

chosen consistently with the previous state.  

The order of the selection of the encoding variables of the same state is not 

important, and heuristics similar to the ones used in SAT/QBF solvers can be used. 

5.2.3. Conflict analysis 

Conflicts may arise during the solution process either as a result of BCP performed 

after a decision is made, or as a result of state adjustment operations (advancement and 

retreating of the DFS traverse). The purpose of the conflict analysis is, as in the case of 

other DPLL-based solvers, to find a reason for the conflict, record this reason as a learned 

clause, and decide on the decision level to which the search should backtrack, thus 

implementing conflict-driven learning and non-chronological backtracking. Since 

conflicts in a sense represent a dead end of the DFS traversal in the system state graph, 

i.e. a situation in which it is known that no path to the final state can be found, there is 

one more goal for the conflict analysis to achieve in the case of jSAT, namely, identify 

the state to which the DFS traversal of the system state graph should retreat. There is a 

close correlation between the decision level to backtrack to (the backtracking level) and 

the retraction of the current and the next states U and V: U and V should be adjusted in 

such a way that U corresponds to the last fully decided state in the path and V to the state 
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following it. Thus, the search will proceed by finding another assignment to the variables 

of V, redirecting the search to another branch of the system state graph. 

Back to the example of 2-bit modulo-3 counter on Fig. 10, Fig. 13 shows an example 

of a conflicting situation during solution of BMC problem of bound 3 using an “unrolled” 

state graph presenting all possible computation paths of length 3. The numbers in 

parentheses near every state specify the decision level on which the state is completely 

assigned. The states Z0, Z1 and Z3 are fully assigned on the decision level 0, since there is 

a single possible initial state Z0, a single possible transition out of that initial state to Z1, a 

single possible final state Z3. In Fig. 13a the current and the next states U and V 

correspond to the pair (Z1, Z2), which are fully assigned. At this point the DFS traversal 

advances by associating U and V with the next pair of states in the path (Z2, Z3), as shown 

in Fig. 13b. A conflict occurs as a result of this state adjustment operation, because no 

transition exists from Z2 to Z3, which means that the most recently chosen state (i.e. the 

state encoding variables of which are assigned on the highest decision level) was not 

chosen correctly. As a result of backtracking, the variables on the highest decision levels 

are unassigned, resulting with the current state Z2 associated with U to be incompletely 

assigned. This, in turn, means that another assignment to the encoding variables of Z2 

should be found, still being consistent with the current value of Z1. To achieve this the 

DFS traversal retreats by associating the current and the next states U and V back with the 

pair (Z1, Z2), as shown in Fig. 13c. In the next step another value will be assigned to one 

 1: ResolveConflict()  
 2: { 
 3:     nBacktrackingLevel = AnalyzeConflict(); 
 4:     if (nBacktrackingLevel < 0) 
 5:         return false; 
 6: 
 7:     nFirstUndecidedPathState = Backtrack(nBacktrackingLevel); 
 8: 
 9:     if (! RetractCurrentAndNextStates(nFirstUndecidedState))  
10:         return false; 
11:     return true; 
12: } 
 

Fig. 14. Pseudo-code of jSAT conflict resolution procedure (in C syntax). 
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of the encoding variables of Z2, thus redirecting the DFS into another branch of the state 

graph, as shown in Fig. 13d. 

Fig. 14 shows the pseudo-code of ResolveConflict() procedure. The call to 

AnalyzeConflict() checks whether the conflict is resolvable, and if yes, produces a 

conflict clause and returns the decision level to which to backtrack. Then, by the call to 

Backtrack(), the algorithm undoes the assignments made on decision levels higher than 

the level to which the algorithm should backtrack. Backtrack() returns the earliest state 

among all the states, which does not have all its encoding variables assigned after the 

backtracking. If this earliest state is the one currently associated with U (i.e. is the current 

state) or an earlier one, U and V are retracted by RetractCurrentAndNextStates(), so 

that V is associated with the earliest undecided state in the path. This retraction 

implements the retreating step of the depth-first search in the state graph, as described 

above.  Noticeably, as with the operation of advancement of the current and the next 

states, the retraction may also produce conflicts, because the relations that were not 

explicit in the formula become explicit. RetractCurrentAndNextStates() returns 

false in case an irresolvable conflict occurred during the operation. 

The procedure AnalyzeConflict() uses the same analysis method as other DPLL-

based solvers by analyzing the implication graph to find the reason for the conflict. An 

important aspect of this analysis follows from the fact that U and V represent different 

states at different points of time. It is therefore generally incorrect to produce learned 

conflict clauses that involve the encoding variables of U or V, or any artificial variable 

resulting from the translation of TR(U, V) to CNF, as they will become useless as soon as 

U and V are adjusted to represent another pair of states. Therefore, the learned clauses 

must be formulated in terms of the state encoding variables of the states Zi. jSAT conflict 

analysis achieves this by using only decision variables (which are state encoding 

variables by the restriction on the decision heuristics) in the learned clauses, somewhat 

similar to the Last UIP learning scheme described in  [27]. 

5.2.4. Formula representation data structures 

The CNF representation of the formula (17) on which jSAT operates may be stored 

in any way that the propositional SAT solvers use. As in the case of propositional SAT 
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solvers, an appropriate data structure for formula representation is crucial for the 

efficiency of the solution, and thus approaches like the Two Watched Literals scheme are 

advantageous. 

In addition to the CNF representation of the formula (17), jSAT requires knowledge 

of which are the state encoding variables and what states they encode. Noticeably, the 

formula (17) does not necessarily contain (and in fact, usually does not contain) 

references to all the state encoding variables, since the only states explicitly mentioned 

are the initial and final states. The knowledge of all the state encoding variables is 

required for the implementation of the decision strategy, the conflict analysis algorithm, 

and the algorithm of association of the current and the next states U and V with actual 

states in the path. 

5.2.5. Additional optimization techniques 

Besides BCP, conflict-driven learning and non-chronological backtracking, other 

optimization techniques proved themselves useful in case of the propositional SAT and 

QBF solvers. These techniques, such as periodic restarting for example, may be applied 

to jSAT as well, but they are out of scope of this work. 

5.3. Experimental evaluation 

5.3.1. Test generation 

Benchmarks for the evaluation of the performance of jSAT versus the propositional 

SAT solvers and the general-purpose QBF solvers were generated using the method 

described in Section  2.2.1. jMC model checker was enhanced with an additional engine, 

the purpose of which was to generate formulas to feed to jSAT solver. Fig. 15 depicts the 

extended structure of the test generation process and jMC model checker. The formulas 

for jSAT were generated in JDIMACS format (described in  Annex B) , which is a 

slightly modified DIMACS format that adds the specification of state encoding variables 

to the file. The same test bench of thirteen model checking examples and the same 

benchmarking environment as described in Section  2.2.1 were used. 
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Fig. 15. The process of test generation extended to produce tests for jSAT solver. 
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5.3.2. jSAT implementation 

The implementation of jSAT for the purpose of evaluation was performed based on 

the solver described in  [22] [45], which was found to be slightly slower than zChaff  [23]. 

The decision to base the implementation on this specific solver followed from its well-

designed and clearly documented implementation, which enabled easier implementation 

of jSAT. 

The data structure for the representation of the clause set of the formula being solved 

was Two Watched Literals. With this data structure the state adjustment operations, used 

by AdvanceCurrentAndNextStates() and RetractCurrentAndNextStates(), were 

implemented with the following simple method: 

• unassign all variables, bringing the algorithm to its just-initialized state; 

• associate U and V with another pair of states; 

• re-assign all the state variables on the same decision levels as they were prior to 

the unassignment; and 

• perform BCP.  

The decision strategy used in the implementation was a variation of the VSIDS 

heuristics, subjected to the restrictions, described in Section  5.2.2, where only the state 

encoding variables are selected for decision and so that earlier states are selected first. 

Within the encoding variables of the same state a non-dynamic variation of VSIDS was 

used, i.e. the variable weights were not updated dynamically during the solution process. 

The implication graph for the purpose of conflict analysis was not explicitly built, 

just as it is not built by the base solver  [22] [45]. Instead, when the BCP process assigns a 

variable because of a clause becoming unit, that variable is associated with the antecedent 

clause that implied it. Generally, in the case of the propositional SAT solver using this 

method, the implication graph can be reconstructed by walking from a variable to the 

variables participating in its antecedent clause. However, in jSAT, if the antecedent 

clause belongs to the TR(U, V) part of the formula, then the state adjustment operation 

may disassociate the variable and the clause, because after the adjustment of the current 

and the next states the encoding variables of U and V represent other variables. The 

disassociated variables lose their relations to the corresponding antecedent clauses, 
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resulting with an information loss incurred by the state adjustment operation. In the case 

of propositional SAT solvers, variables without an associated antecedent clause may only 

be decision variables. In the evaluated implementation of jSAT they may also be implied 

variables that lost their relation to the corresponding antecedent clauses. For the purpose 

of conflict analysis, such variables should be treated as decision variables and included in 

the learned conflict clauses. Specifically, the produced conflict clauses include not only 

the decision variables on the decision levels of variables participating in the conflicting 

clause, but also state encoding variables on those levels that are not decision variables but 

do not have an associated antecedent clause. 

The evaluated jSAT implementation included conflict-driven learning and non-

chronological backtracking, but no other optimization techniques, such as restarting.  

5.3.3. Benchmarking results 

For fair analysis the performance of jSAT was compared against that of  [22] [45], but 

the comparison to zChaff is brought for completeness. The summary of the evaluation 

SAT UNSAT SAT UNSAT SAT UNSAT
test08 10 - 16 - 18 - 18
test12 11 18 - 18 - 18 -
test10 12 - 18 - 18 - 18
test03 39 18 - 18 - 18 -
test06 160 - 1 - 12 - 18
test09 160 18 - 18 - 18 -
test05 199 - 0 - 18 - 18
test11 220 14 4 14 4 14 4
test04 626 0 1 4 2 13 2
test13 662 18 - 18 - 18 -
test02 914 - 0 - 13 - 18
test07 1055 0 - 11 - 17 -
test01 2013 18 - 5 - 11 -

104 40 106 85 127 96

[22] zChaff

191 223

# vars

Total (out of 234) 144

jSat

 
 

Table 3. Number of instances solved by jSAT and the two SAT solvers per test case. There are a 

total of 18 instances in each test case, corresponding to BMC problems with bounds 3 to 20. 

SAT and UNSAT instances are shown separately. The '-' sign specifies that there are no 

instances with the specific result for the corresponding test case. 
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results is presented in Table 3. The numbers of solved SAT and UNSAT instances are 

shown separately. 

Interestingly, jSAT results are especially close to those of the base solver  [22] on 

SAT instances, where jSAT managed to solve 104 versus 106 instances solved by  [22]. 

On UNSAT instances, the distance between jSAT and  [22] is much more significant.  

Fig. 16 graphically shows the run-time performance of the solvers. The x-axis shows the 

number of instances solved, and y-axis shows the time taken to solve a particular 

instance; the curve is obtained by sorting the run-times in an ascending order. It is evident 

that jSAT significantly outperformed the general-purpose QBF solvers. It still did not 

achieve the same run-times as the propositional SAT solvers, though in the biggest test 

case, test01 (see Table 1), it managed to solve all the instances in seconds, which required 

a much longer time for the other solvers. Also it is noticeable that on most of the 

instances that jSAT succeeded to solve the run-time achieved by jSAT is similar to that 

of the SAT solvers. However, jSAT performance degrades much faster than that of the 

SAT solvers when coming to more complex instances: the slope of the performance 

curve of jSAT is much higher than that of the other solvers. 

Fig. 17 graphically shows the memory consumed by jSAT,  [22] and zChaff solvers 

when solving instances generated from test case test13, which is the largest test case fully 

solved by all three tools. The x-axis shows the BMC bound, and the y-axis shows the 

memory consumed when solving the corresponding instance. The run-time of jSAT on 

these instances varied from 1 to 3 seconds; the run-time of zChaff 1 to 6 seconds; and the 

run-time of  [22] from 3 to 146 seconds. As expected, the graph indicates that jSAT 

memory consumption practically does not depend on the BMC bound being solved, while 

for SAT-based BMC approaches the memory consumption is proportional to the bound. 

The same behavior has been observed in the other test cases, including those that jSAT 

failed to complete. 

5.3.4. Performance analysis 

The evaluation results shown in the previous section fulfill the expectations: jSAT is 

much more robust than the general-purpose QBF solvers and, in the same time, maintains 
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their memory efficiency; on the other hand it is not as robust as the propositional SAT 

solvers. 

The slower run-time of jSAT may be attributed to several factors. Firstly, the lack of 

explicit relations between all the states at the same time causes some implications, which 

a propositional SAT solver could make early in the decision process, to be made 

relatively late, after a number of state adjustment operations involving exploration of 

multiple transitions. Such a late discovery of implications allows an incorrect decision 

made on an earlier decision level to get through until an implication falsifying it is 

discovered, thus leading to a redundant exploration of the state-space in the meanwhile. 

Secondly, the difference in the decision heuristics is known to affect the efficiency of 

the solution, and the decision heuristics of jSAT is much more restricted than those of the 

SAT solvers. The performance of the SAT solvers with decision heuristics similar to the 

one of the jSAT implementation was not evaluated as part of this work. 

Another reason for the slower run-time of jSAT may be that many of the advanced 

optimizations present in the SAT solvers were not implemented in jSAT. Compared to 

 [22], the evaluated jSAT implementation did not use restarting, did not remove conflict 

clauses and used a static decision heuristic. 

The performance analysis of jSAT runs on the non-trivial instances showed that time 

is spent mostly on the state adjustment operations – those implemented by the procedures 

AdvanceCurrentAndNextStates() and RetractCurrentAndNextStates() in Fig. 

12 and Fig. 14. The approach used for these operations, described earlier in Section  5.3.2, 

is simple but not very efficient. In fact, in a highly connected system state graph the 

number of retreating steps performed during the depth-first search is very large; hence, 

the state adjustment operation is performed very frequently. 

The performance analysis also showed that the conflict clauses built by the evaluated 

jSAT implementation systematically increase in length during the solution process. This 

follows from the way the implication graph is held in memory, as described in  5.3.2. 

Because of the information loss incurred by the state adjustment operation, more 

variables need to be included in the learned conflict clauses, since the knowledge that 

some of them were implied by others no longer exists. 
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Chapter 6  

Conclusions and future research 

directions 

As part of this work a study was performed in the following fields: 

• the model checking domain, in general; 

• existing model checking techniques, including BMC and unbounded SAT-based 

methods; 

• DPLL-based SAT decision procedures; and 

• DPLL-based QBF decision procedures. 

The primary focus of this work was an evaluation of the usage of QBF in BMC, 

comparing the standard SAT-based BMC method to one using a QBF encoding of the 

problem. The benefit of the usage of QBF in BMC is the avoidance of the memory 

explosion problem occurring with other model checking methods, because it requires 

neither “unrolling” of the transition relation, nor the usage of propositional reasoning 

used in the existing model checking techniques. This work quantitatively shows that 

modern state-of-the-art general-purpose QBF solvers are still unable to handle in an 

efficient manner real-life instances of BMC problems encoded in QBF, but a special-

purpose DPLL-based solver is feasible and capable of achieving much higher 
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performance, significantly narrowing the performance gap between SAT-based BMC and 

QBF-based one. 

The main contributions of this work are: 

• a comparative study of the classical SAT-based BMC approach versus the 

approach using QBF formulations of BMC problems with the existing state-of-

the-art general-purpose QBF solvers; 

• publication of twenty QBF BMC encodings produced from real-life industrial 

BMC test cases of Intel® for the benefit of the academic research to develop and 

improve QBF solvers; and 

• the development of a public-domain special-purpose DPLL-based QBF decision 

procedure, called jSAT, for the solution of QBF instances encoding BMC 

problems in form (16) and its experimental evaluation in comparison with the 

classical SAT-based BMC. 

The following software was developed as part of this work: 

• a simple bounded model checker, capable of reading a model from a file and 

producing formulas encoding BMC problems of different bounds in multiple 

approaches; 

• jSAT algorithm implementation. 

The results of this work have been partially published in  [53] [54]. 

A performance evaluation of jSAT shows that it achieves the expected memory 

savings, and succeeds to solve significantly more BMC instances than the general-

purpose QBF decision procedures. Still, jSAT does not achieve run-times as short as the 

state-of-the-art SAT solvers on the corresponding SAT instances of the same problems, 

even though on some benchmarks it shows similar, and sometimes even much better, run-

times. 

A number of performance bottlenecks in the presented implementation of jSAT have 

been identified, so that a number of improvements can be made, and are subjects for 

future research. These include:  

• an improved data structure to enable more efficient state adjustment operations;  

• an alternative representation of the implication graph to avoid information loss 

incurred by the state adjustment operations; and 
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• incorporation of additional optimization techniques used in the current state-of-

the-art solvers, e.g. restarting. 

Besides improvements of the jSAT implementation, a number of additional research 

opportunities arise, which are described below. 

Bounded model checking iteratively solves sub-problems for a range of bounds, 

increasing the bound from iteration to iteration. Clearly, within a system state graph any 

computation path of length k contains a path of length k-1. It is possible to reuse the 

information, found in the form of learned clauses, obtained during the solution of the 

instance for bound k-1 during the solution of the instance for bound k. This approach has 

been empirically shown as very useful in  [56] in the context of SAT-based BMC. Since, 

unlike the classical SAT-based BMC, jSAT records learned clauses in terms of the state 

encoding variables only, it makes these clauses relevant and directly reusable for the 

solution of all the greater bounds as well, resulting with a significant search space 

reduction and speed-up of BMC. 

Additionally, under an assumption that when BMC with bound k is performed all the 

bounds lower than k have been already checked, it is possible to avoid the exploration of 

those computation paths of length k which contain loops. Loops can be detected by jSAT 

because it has the knowledge of which are the states and their encoding variables. jSAT 

may retreat its DFS traversal when encountering a state that has been previously 

encountered, thus reducing the overall search space of the problem being solved. 

The propositional BMC encoding used in the classical SAT-based method contains 

explicitly the relations between the states in the computation path of the system, as well 

as the explicit mentioning of what is the initial state and what is the final one. This is also 

partially the case with jSAT, where formula (17) contains an explicit specification of 

what the initial and the final states are. Avoiding the explicit specification of which is the 

final state may allow development of an unbounded depth-first search in the state graph 

of the system, enabling bounded model checking of a range of bounds in a single 

invocation of a jSAT-like algorithm. Explicit specification of what the final state is may 

be avoided by slightly changing the QBF formulation (16) of a single BMC problem: 
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Here the term F(Zk) has been replaced with a formula specifying that a new variable 

B (standing for “bad state”) is the final state. Analogously to the approach described in 

Section  5.1, it is possible to enhance jSAT to accept the following formula: 

0( ) ( , ) ( )I Z TR U V F B∧ ∧  (21) 

The jSAT algorithm may then be enhanced to handle B as an alias of the last state in 

the path, similary to U and V that are aliases of a pair of neighboring states in the path, so 

that B may be associated with different states at different points of time. With such 

enhancements in place, the bound of the depth-first search in the state graph may be 

dynamically increased in run-time by introducing a new state and associating it with B, 

thus increasing the length of the paths being checked. Reuse of the learned information, 

as suggested above, is achieved trivially in this approach, because multiple BMC bounds 

are handled in the same algorithm invocation. 

In fact, the approaches described above for the dynamic extension of the depth-first 

search and loop detection can be coupled together to enable a true symbolic depth-first 

search in the system state graph, enabling memory-efficient unbounded model checking. 

The jSAT algorithm, as presented in this work, performs a forward DFS traversal of 

the system state space from the initial states to the final ones. Another interesting 

research direction is evaluation of a backward DFS traversal, e.g. by changing the 

decision strategy of jSAT to choose states in the opposite order. It may even be possible 

to further extend this direction by developing decision heuristics that make a non-linear 

order of state choices. Here it should be held in mind, however, that the current and the 

next state adjustment operations are relatively costly when performed frequently. 
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Chapter 7  

Related work 

jSAT, as presented in this work, implements a depth-first traversal of the system 

state graph using a general DPLL framework, in order to solve a QBF of a particular 

form in a memory-efficient manner, without replicating the tansition relation of the 

system multiple times. There is no other known solely DPLL-based algorithm 

implementing this approach.  

The work most closely related to jSAT is in the domain of ATPG-based techniques 

in hardware verification. Automatic Test Pattern Generation (ATPG) is the task of 

generating a test for every fault in a hardware circuit according to some fault model. This 

field is closely related to hardware and has been driven primarily by specific applications 

in circuit testing. The relation of ATPG to formal hardware verification is briefly 

surveyed in  [46]. 

One of the fault models considered in ATPG is the well-known stuck-at fault model, 

addressing the faults of a circuit when a specific wire gets stuck at a certain constant 

value due to manufacturing or other circuit defects. A test for stuck-at fault of a specific 

wire is obtained by finding assignments to the circuit inputs and state elements such that 

the fault is controlled at the chosen fault location, e.g. value 0 is produced for stuck-at-1 

fault, and the fault is observable, i.e. a change on at least one output of the circuit can be 

observed as a result of the change of the value at the fault location. The controllability 

portion of this ATPG problem may be directly represented as a SAT problem; 
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accordingly, a SAT problem may be directly represented as an ATPG problem, if the 

CNF is interpreted as a two-level Boolean circuit.  

Despite the similarity of concepts, due to historical reasons largely different 

terminology is used in the SAT and ATPG domains. Both techniques use backtrack 

search in the search space induced by the Boolean variables of the CNF or the circuit. 

The main difference between them, though, arises from the different problem formulation 

and representation: CNF or multi-level Boolean netlist. Techniques used for pruning the 

search space and making the implications vary as well, due to the difference in the 

problem representation. CNF-based SAT solvers enjoy the regularity of CNF to 

implement efficient implication techniques (e.g. BCP), conflict analysis, learning and 

non-chronological backtracking. Implication and conflict-based learning techniques for 

multi-level circuit ATPG are known to be less efficient. On the other hand, the CNF 

representation used in SAT lacks the structural circuit information that can be very 

useful. All in all, ATPG techniques pose an alternative to the usage of SAT in general 

and in model checking and hardware verification in particular.  

The notion of Sequential ATPG (a.k.a. Sequential SAT) has been introduced as an 

alternative to the usage of “unrolled” transition relation of a system in SAT-based BMC. 

The combinational parts of a circuit model the transition relation of the system, since 

given the values at the inputs and the state elements of the circuit, those combinational 

parts determine the values for the outputs and the states of the circuit to assume in the 

next state. Sequential ATPG does not explicitly replicate the circuit to model a number of 

subsequent transitions, as opposed to the SAT-based BMC approach of “unrolling”. 

Instead, the notion of time-frame is used to implicitly refer to the copy of the circuit at a 

certain time, and the algorithm works separately with different time-frames using the 

physically same representation of the circuit in memory, in a manner similar to jSAT. 

The Sequential ATPG backward reachability analysis algorithm starts with the setting of 

the desired final state after the last transition of the system, i.e. in the last time-frame. It 

then tries to find a justification for this setting by finding an assignment to the inputs and 

the state elements of the circuit in that time-frame  that would cause the desired state to 

occur. A set of all such assignments constitutes an overall set of states from which the 

desired state is reachable. This set of states is the objective for the exploration of the 
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previous time-frame. The algorithm proceeds until a legal initial state is covered in some 

time-frame, or a limit on the number of time-frames to explore is exhausted. This 

algorithm is a backward breadth-first (BFS) computation of the reachable states, 

somewhat similar to all-solutions SAT solvers, and potentially explodes in memory due 

to the complexity of the storage of the reachable states.  

DFS exploration of the state space is also possible with the approach of Sequential 

SAT. To perform the DFS, the algorithm should not collect the justifying states of a time-

frame all together, but try to justify them back in time as they are found. One such 

implementation is SATORI  [13], which combines some ATPG and SAT techniques; 

particularly it operates on CNF in addition to the multi-level circuit for faster BCP. It has 

been reported outperforming state-of-the-art SAT solvers, mainly because of the 

availability of the circuit structure. Due to its DFS nature, it is also more memory 

efficient than the BFS approaches or SAT on “unrolled” model representation. 

A few comparative studies of property checking using SAT versus ATPG have been 

published. For example,  [47] shows that the two kinds of engines are comparable in 

performance. On the other hand,  [48] shows a comparative study of BMC in hardware 

verification using SAT and ATPG techniques, claiming superiority of ATPG techniques. 

These conclusions are controversial, however, since some model checking practitioners 

(at least at Intel) claim the opposite observations in practice. The authors of  [50] and  [49] 

demonstrate an application of Sequential SAT based on SATORI for BMC, combining 

backward BFS and DFS traverses of the state space. It has been reported outperforming 

the classical SAT-based BMC, again mainly due to the availability of structural circuit 

information. 

jSAT has not been evaluated against ATPG-based techniques. The memory 

efficiency trends observed with jSAT are similar to those of ATPG-based DFS 

approaches, but a number of differentiating qualities of jSAT vs. ATPG exist, namely: 

• ATPG-based techniques are limited to backward search (BFS, DFS or a 

combination of those). jSAT, however, is more general and can be used to 

perform both backward and forward search. In fact, jSAT can work on different 

time-frames in any order, still being sound and complete. 
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• ATPG-based techniques are generally limited in learning capabilities so that the 

learned information does not involve states from distant time-frames. jSAT, on 

the other hand, is capable of producing conflict clauses involving any 

combinations of state encoding variables. In particular, since ATPG-based 

engines perform backward search and are limited in their learning, they are 

unable to learn from the constraints on the initial states, unlike jSAT. This is a 

considerable advantage for jSAT, since learning across time-frames can 

significantly prune the search space. 

ATPG-based techniques are designed solely to cope with hardware verification. The 

main advantage of ATPG techniques that finds expression in their performance is the 

availability of the circuit structure to guide the search. jSAT, however, being based on the 

general DPLL framework is designed to solve any QBF instance of a particular form. It is 

possible that with circuit structure available, jSAT may achieve better results than shown 

in this work. Additionally, jSAT may benefit from its being based on DPLL, because the 

optimization techniques developed for DPLL-based SAT and/or QBF solvers can 

probably find their way to jSAT simpler than into ATPG-based techniques. 
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Annex A  

jMC File Format 

The simple bounded model checker developed as part of this work, called jMC, reads 

the model description from a text file in a format, the syntax of which is defined below.  

Boldface words are used to denote keywords, operators and punctuation required as part 

of the syntax. A vertical bar symbol | separates alternatives, square brackets [ ] denote 

optional items, and braces { } enclose items repeated one or more times. 

The model description is given in the form of statements, which specify which are 

the state encoding variables in the model and the propositional formulas describing the 

initial states, the states violating the properties being checked (the bad states), and the 

transition relation. Additionally, an invariant formula may optionally be given to specify 

assumptions on the state encoding variables. The invariant formula is internally applied 

on the initial states and on the next state in the transition relation using conjunction with 

the two formulas. 

Formulas are built from references to state encoding variables, simple binary and 

unary operators and the constants true and false. State encoding variables are used to 

specify the “current state of the system”. A special “next-state” operator ’ following an 

identifier naming a state encoding variable is used to specify the value of the variable in 

the “next state of the system”. To enable sharing of common sub-formulas, intermediate 

formulas can be given name using formula definition statements. 

 

model_descrption ::= { statement } 
 
statement ::= 
    state_variable_declaration 
    | transition_relation_declaration  
    | initial_state_declaration  
    | bad_state_declaration  
    | invariant_declaration 
    | formula_definition  
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state_variable_declaration ::=  
    VAR identifier ; 
 
transition_relation_declaration ::=  
    TR expression ; 
 
initial_state_declaration ::=  
    INIT expression ; 
 
bad_state_declaration ::=  
    BAD expression ; 
 
invariant_declaration ::=  
    INVAR expression ; 
 
formula_definition ::= 
    DEFINE identifier = expression ; 
 
expression ::= 
      ( expression binary_operator expression ) 
    | ( expression ) 
    | ! expression 
    | identifier 
    | identifier’ 
    | true 
    | false 
 
identifier ::= [a-zA-Z0-9_$\[\]\.]{[a-zA-Z0-9_$\[\]\.]} 
 
binary_operator ::= & | + | = 
 
true ::= 1 
 
false ::= 0 
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Annex B  

jDIMACS File Format 

The implementation of jSAT described in  Chapter 5 reads formulas in jDIMACS 

format, which is a slightly modified version of DIMACS format. DIMACS format is 

commonly used to describe instances of SAT problems and contains the list of clauses 

that are part of the CNF formula to be solved. jDIMACS extends this simple format to 

include the knowledge of which are the state variables Z0, …, Zk and the variables U and 

V, since this knowledge is required for jSAT to operate.  

The syntax of jDIMACS format is defined below, and utilizes the syntax of 

comments in the standard DIMACS format to provide additional information. Boldface 

words are used to denote keywords, operators and punctuation required as part of the 

syntax. A vertical bar symbol | separates alternatives, square brackets [ ] denote optional 

items, and braces { } enclose items repeated one or more times. The comment construct 

allowed by DIMACS format is excluded from the definition below for clarity, though 

supported by jDIMACS.  

A jDIMACS file starts in the same way as a DIMACS file by specifying the total 

number of variables in the formula and the total number of clauses in the CNF body. 

Then, prior to the definition of the CNF body, a variable definition section should be 

present. The variable definition section specifies the number of states and the number of 

state encoding variables in those states. It then contains the ordered sequence of state 

encoding variables for each state, followed by the definition of the encoding variables of 

the current state U and the next state V. 

 

jDimacs ::= header variable_definition body  
 
header ::= p cnf number_of_variables number_of_clauses 
 
variable_definition ::=  
    c gp number_of_states number_of_state_variables 
    state_variables { state_variables } 
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    U_variables V_variables 
 
state_variables ::= c s { variable } 0 
 
U_variables ::= c a { variable } 0 
 
V_variables ::= c a { variable } 0 
 
body ::= { clause } 0  
 
clause ::= { literal } 
 
number_of_variables ::= positive_number 
 
number_of_clauses ::= positive_number 
 
number_of_states ::= positive_number 
 
number_of_state_variables ::= positive_number 
 
variable ::= positive_number 
 
literal ::= number 
 
number ::= [-] positive_number 
 
positive_number ::= [1-9] { [0-9] } 
 

The following example shows an instance of a jSAT problem with three states and 

four encoding variables for each state. Italicized text are informative comments. 

 

c This jSAT instance contains 266 variables and 382 clauses 
p cnf 266 382 
 
c There are 3 states in this jSAT instance, and each 
c state is encoded by 4 variables 
c gp 3 4 
 
c The following lines define what variables encode each  
c of the 3 states 
c s 2 3 4 5 0 
c s 259 260 261 262 0 
c s 6 7 8 9 0 
 
c The line below defines the variables that encode  
c the current state U 
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c a 130 131 132 133 0 
c The line below defines the variables that encode  
c the next state V 
c a 134 135 136 137 0 
 
c The CNF body of the instance as a set of clauses 
-16 6 0 
-16 7 0 
-6 -7 16 0 
-17 8 0 
-17 16 0 
………… 



 86 

Annex C  

Detailed Benchmarking Results 

The following tables show the detailed benchmarking results of the jSAT 

implementation described in  Chapter 5, the SAT solver  [22] on which the implementation 

of jSAT was based, and the SAT solver zChaff II. All the measurements were carried out 

on a dual Intel® Xeon™ 2.8 GHz Linux RedHat 7.1 workstation with 4GB of memory. 

Each solver was limited to solve every single instance within 10 minutes of run-time and 

within a 1GB memory envelope. The numbers were obtained by invoking every solver on 

every instance five times, dropping the least and the greatest measurements and taking 

the average of the remaining three. Time is reported in seconds, and memory 

consumption in MB. 
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