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Abstract. Current algorithms for bounded model checking (BMC) use SAT 
methods for checking satisfiability of Boolean formulas. These BMC methods 
suffer from a potential memory explosion problem. Methods based on the valid-
ity of Quantified Boolean Formulas (QBF) allow an exponentially more suc-
cinct representation of the checked formulas, but have not been widely used, 
because of the lack of an efficient decision procedure for QBF. We evaluate the 
usage of QBF in BMC, using general-purpose SAT and QBF solvers. We also 
present a special-purpose decision procedure for QBF used in BMC, and com-
pare our technique with the methods using general-purpose SAT and QBF 
solvers on real-life industrial benchmarks. Our procedure performs much better 
for BMC than the general-purpose QBF solvers, without incurring the space 
overhead of propositional SAT. 

1   Introduction1 

Model checking is a technique for the verification of the correctness of a finite-state 
system with respect to a desired behavior. The system is traditionally modeled as a la-
beled state-transition graph, and the behavior is specified by a temporal logic formula. 
Early implementations, based on explicit-state model checking, suffered from the 
state explosion problem. The introduction of symbolic model checking with binary 
decision diagrams (BDDs) and other recently developed methods, such as Bounded 
Model Checking (BMC), succeeded in partially overcoming this problem and enabled 
industrial applications of model checking for real-life systems, mostly in the hardware 
design industry. However, all these methods still suffer from the potential memory 
explosion problem on modern test cases. In this work we evaluate the application of 
Quantified Boolean Formulas (QBF) in BMC of safety properties in attempt to avoid 
the memory explosion problem. We also present a special-purpose purpose QBF deci-
sion procedure for a QBF encoding of BMC problems. 

Assume a system M=(S, I, TR), where S is the set of states, I is the characteristic 
function of the set of the initial states, and TR is the transition relation. Let F be a 
characteristic function of the “bad” states violating the property being checked. As in 
classical BMC, the fact that a “bad” state Zk is reachable from an initial state Z0 in ex-
actly k steps may be formulated by “unrolling” the transition relation k times: 
                                                           
1 Due to space constraints references have been omitted in this text. 
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The validity of this formula may be proved or disproved by applying a SAT decision 
procedure on its propositional part. Noticeably, the number of copies of the transition 
relation TR in this formula is the same as the number of steps being checked. When 
iteratively increasing the bound k, each successive iteration checks reachability of the 
final states in one more step than the previous iteration. Thus, for a complete check, 
the SAT procedure must be invoked on formulas containing an exponential number of 
copies of the transition relation.  

To partially overcome the potential memory explosion, the following QBF formu-
lation of the bounded reachability problem can be used: 
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The formula (2) contains only one copy of the transition relation. Increasing the 
bound, thus, would mean an addition of a new intermediate state and a term of the 
form (U↔Zi)∧(V↔Zi+1). Hence, the formula increase from iteration to iteration does 
not depend on the size of the transition relation, which is usually the biggest formula 
in the specification of the model. 

2   jSAT Decision Procedure 

An experimental evaluation of general-purpose QBF solvers on formulas of form (2), 
presented in section 3, found them very inefficient, as they failed to solve practically 
any of the formulas in our test bench. This fact motivated the development of a spe-
cial-purpose decision procedure, called jSAT, for formulas of this form. 

jSAT holds in memory the encoding variables representing the states Z0, Z1, …, Zk, 
U and V, but only holds the following propositional formula: 

0( ) ( , ) ( ).kI Z TR U V F Z∧ ∧  (3) 

The states Zi (0≤i≤k) represent a path; the states U and V represent two neighboring 
states in that path. Instead of explicitly storing the fact that U and V represent a pair of 
neighboring states, as done in (2) with assistance of the terms of the form 
(U↔Zi)∧(V↔Zi+1), our algorithm implicitly assumes this information.  

jSAT is based on the classic DPLL algorithm widely used in the current state-of-
the-art SAT and QBF solvers. Intuitively, jSAT algorithm can be seen as a depth-first 
search in the state graph of the system from the initial states to the final ones. The al-
gorithm starts by associating U with Z0 and V with Z1; thus the formula (3) becomes 
semantically equivalent to: 

0 0 1( ) ( , ) ( ).kI Z TR Z Z F Z∧ ∧  (4) 
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jSAT() { 

    InitializeCurrentAndNextStates(); 

    while (true) { 

        if (! SelectDecisionVariable()) { 

            if (AllStatesDecided()) return true; 

            if (! AdvanceCurrentState()) return false; 

        } 

        while (! BCP()) { 

            if (! ResolveConflict()) return false; 

        } 

    } 

} 

Fig. 1. Pseudo-code of jSAT decision procedure 

The states Z0 and Z1 are then chosen by finding an assignment to their encoding vari-
ables, if possible, so that Z0 is an initial state and Z1 is its successor. As soon as they 
are chosen, the algorithm makes Z1 to be the current state and Z2 to be the next one: U 
becomes an alias to Z1, and V becomes an alias to Z2. The algorithm proceeds in this 
fashion until all states are successfully chosen, or until it discovers that such a choice 
is impossible.  

The pseudo-code of the algorithm is shown on Fig. 1. The algorithm first initializes 
the states U and V to be associated with Z0 and Z1, respectively. The procedure Se-
lectDecisionVariable() selects a still unassigned variable out of the encoding variables 
of the current state or, if all the encoding variables of the current state are assigned, 
from those of the next state. We restrict the decision strategy to selecting decision 
variables in the order of the states in the path: encoding variables of the state Z0 are 
selected first, then the variables of Z1, then the variables of Z2, and so on. Such a re-
striction causes the algorithm to implement a depth-first search of the state graph and 
to “visit” only the states actually reachable from the initial states. The order of the se-
lection of the encoding variables within one state is not important, and heuristics simi-
lar to the ones used in SAT/QBF solvers can be used. 

SelectDecisionVariable() returns true if the decision is made successfully. Boolean 
Constraint Propagation is then performed by the procedure BCP(), which returns false 
in case of a conflict. If a conflict is produced, ResolveConflict() attempts to analyze it 
and backtrack to a previous decision level. In case the conflict cannot be resolved the 
algorithm terminates and the given formula is reported invalid. 

SelectDecisionVariable() returns false whenever all the encoding variables of the 
current and the next states have been decided. If at this point all the states have been 
decided, as determined by the call to AllStatesDecided(), then a path has been found 
from an initial state to a final one, and the algorithm terminates, reporting the given 
formula is valid. Otherwise, if undecided states remain, AdvanceCurrentState() 
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ResolveConflict() { 

    nBacktrackingLevel = AnalyzeConflict(); 

    if (nBacktrackingLevel < 0) return false; 

    nFirstUndecidedPathState = Backtrack(nBacktrackingLevel); 

    if (! RetractCurrentAndNextStates(nFirstUndecidedState)) 

        return false; 

    return true; 

} 

Fig. 2. Pseudo-code of jSAT decision procedure 

advances U and V to the next pair of states by associating U with whatever was previ-
ously associated with V, and associating V with the next state in the path. During this 
operation new relations between the encoding variables become apparent. Thus, for 
example, when U and V are moved from the pair of states (Z0, Z1) to the next pair (Z1, 
Z2), the relations between the encoding variables of Z1 and Z2 become explicit in 
TR(U, V). Since the newly discovered information may contradict some of the already 
made decisions, conflicts may arise during the adjustment operations. The procedure 
AdvanceCurrentState() returns false in case a conflict occurred that could not be re-
solved; in this case the algorithm terminates and the given formula is invalid. 

Fig. 2 shows the pseudo-code of ResolveConflict() procedure. The call to Ana-
lyzeConflict() checks whether the conflict is resolvable, and if yes, produces a con-
flict clause and returns the decision level to which to backtrack. Then, by the call to 
Backtrack(), the algorithm undoes the assignments made on the decision levels higher 
than the level to which the algorithm should backtrack. Backtrack() returns the earli-
est state among all the states, which does not have all its encoding variables assigned 
after the backtracking. If this earliest state is the one currently associated with U (i.e. 
is the current state) or an earlier one, U and V are retracted by RetractCurren-
tAndNextStates(), so that V is associated with the earliest undecided state in the path. 
This retraction implements the retreating step of the depth-first search in the state 
graph, so that the search is directed into another part of the graph.  Noticeably, as with 
the operation of advancement of the current and the next states, the retraction may 
also produce conflicts, because the relations that were not explicit in the formula be-
come explicit. RetractCurrentAndNextStates() returns false in case an irresolvable 
conflict occurred during the operation. 

An important aspect of our algorithm follows from the fact that U and V represent 
different states at different points of time. It is therefore generally incorrect to produce 
learned conflict clauses that involve the encoding variables of U or V, or any artificial 
variable resulting from the translation of TR(U, V) to CNF, as they will become use-
less as soon as U and V are adjusted to represent another pair of states. Therefore, the 
learned clauses must be formulated in terms of the encoding variables of Zi. Our con-
flict analysis technique achieves this by using only decision variables in the learned 
clauses, somewhat similar to Last UIP learning scheme described in. 
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3   Experimental Results 

We have implemented jSAT algorithm to measure its applicability to the problem of 
BMC. We used a bounded model checker to generate formulas of the forms (1), (2) 
and (3). The formulas of form (1) were generated in DIMACS format and could be 
fed into many available SAT solvers. The formulas of forms (2) were generated in 
QDIMACS format and could be fed into the available QBF solvers. The formulas of 
form (3) were generated in a slightly customized DIMACS format, which adds the 
specification of the encoding variables to the formula description; our implementation 
of jSAT reads this modified DIMACS format. 

Table 1. Number of instances solved by each solver per test case. There is a total of 18 
instances in each test case, corresponding to BMC problems with bounds 3 to 20. SAT and 
UNSAT instances are shown separately. '-' sign specifies that there are no instances with the 
specific result for the corresponding test case 

SAT UNSAT SAT UNSAT SAT UNSAT
test08 10 - 16 - 18 - 18

test12 11 18 - 18 - 18 -

test10 12 - 18 - 18 - 18

test03 39 18 - 18 - 18 -

test06 160 - 1 - 12 - 18

test09 160 18 - 18 - 18 -

test05 199 - 0 - 18 - 18

test11 220 14 4 14 4 14 4

test04 626 0 1 4 2 13 2

test13 662 18 - 18 - 18 -

test02 914 - 0 - 13 - 18

test07 1055 0 - 11 - 17 -

test01 2013 18 - 5 - 11 -

104 40 106 85 127 96

# vars

Total (out of 234)

jSat Base zChaff

144 191 223  

We used a set of thirteen proprietary Intel® model checking test cases of different 
sizes to compare the run-time and memory consumption of the different BMC meth-
ods. For each test case we generated formulas of all kinds for the bounds in range 
from 3 to 20, resulting in the total amount of 234 formulas of each kind. Some of the 
formulas of form (3) were publicly disclosed and participated in the QBF solver 
evaluation during SAT2004 conference. We used a dual Intel® Xeon™ 2.8 GHz 
Linux RH7.1 workstation with 4GB of memory for the experiments, and set a 600 
second time out and 1 GB memory limits on all solvers. 

We first used QuBE state-of-the-art QBF solver to solve formulas of form (2) for 
all the test cases and to compare its run-time to the run-time of SAT solvers on the 
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corresponding instances of form (1). We discovered that QuBE was able to solve only 
a few of the 234 formulas within the set time limits.  This fact served as our motiva-
tion for the development of jSAT. We expected that jSAT, as a special-purpose deci-
sion procedure, would demonstrate memory consumption as low as the general-
purpose QBF solvers, but a better run-time. We did not expect that jSAT run-time 
would be as good as that of the SAT solvers on the corresponding instances. 

Fig. 3. Number of instances solved by each solver vs. the CPU time consumed 

Our implementation is based on an existing solver2 (base solver), which is reported 
to have slightly slower performance than zChaff. To perform a fair analysis we chose 
to compare our algorithm to that base solver, but also provide a comparison to zChaff 
II, as one of the best-known state-of-the-art solvers. 

Table 1 shows the sizes of the test cases in terms of the state variables in the model, 
and the number of formulas each of the solvers successfully coped with (QuBE has been 
omitted in this table for brevity). The numbers of solved SAT and UNSAT instances are 
shown separately. (We use the terms “SAT” and “UNSAT” in case of jSAT for consis-
tency, even though jSAT solves a QBF. SAT result in this case means that the instance 
was proved valid; UNSAT means it was proved invalid.) Interestingly, jSAT’s results 
are especially close to those of the base solver on SAT instances, where jSAT managed 
to solve 104 versus 106 instances solved by the base solver. 

On UNSAT instances, the distance between jSAT and the base solver is much 
more significant. Fig. 3 graphically shows the run-time performance of the solvers. 
The x-axis shows the number of instances solved, and y-axis shows the time taken to 
solve a particular instance; the curve is obtained by sorting the run-times in an as-
cending order. It is evident that jSAT significantly outperformed the general-purpose 
QBF solver QuBE. It still did not achieve the same run-times as the SAT solvers, 
though in the biggest test case test01 (see Table 1) it managed to solve in seconds all 
the instances, which required a much longer time for the other solvers. Also it is no-

                                                           
2 Y. Feldman, N. Dershowitz, Z. Hanna. “Parallel Multithreaded Satisfiability Solver: Design 

and Implementation”. Workshop on Parallel and Distributed Model Checking (PDMC), 2004. 
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ticeable that on most of the instances that jSAT succeeded to solve the run-time 
achieved by jSAT is similar to that of the SAT solvers. However, jSAT performance 
degrades much faster than that of the SAT solvers when coming to the more complex 
instances: the slope of the performance curve of jSAT is much higher than that of the 
other solvers. 
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Fig. 4. Memory consumption of each solver on the instances generated for the test case test13 

Fig. 4 graphically shows the memory consumed by jSAT, the base solver and 
zChaff when solving instances generated from the test case test13, which is the largest 
test case fully solved by all the three tools. The x-axis shows the BMC bound, and the 
y-axis shows the memory consumed when solving the corresponding instance. The 
run-time of jSAT on these instances varied from 1 to 3 seconds; the run-time of 
zChaff 1 to 6 seconds; and the run-time of the base solver from 3 to 146 seconds. As 
expected, the graph indicates that jSAT memory consumption practically does not de-
pend on the BMC bound being solved, while for SAT-based BMC approaches the 
memory consumption is proportional to the bound. The same behavior has been ob-
served on the other test cases, including those that jSAT fails to complete. 

4   Conclusions 

We have presented an evaluation of the usage of QBF in BMC, comparing a classical 
SAT-based BMC method to one using a QBF encoding of the problem, which avoids 
the memory explosion problem because it does not require the “unrolling” of the transi-
tion relation. We found that modern state-of-the-art general-purpose QBF solvers are 
still unable to handle the real-life instances of BMC problems in an efficient manner. 

As the main contribution of our work, we presented a special-purpose QBF deci-
sion procedure for the solution of QBF instances encoding BMC problems in form 
(2). A performance evaluation of our algorithm shows that it achieves the expected 
memory savings, and succeeds to solve significantly more instances than a general-
purpose QBF solver. Still, jSAT does not achieve run-times as short as the state-of-
the-art SAT solvers on the corresponding SAT instances of the same problems, even 
though on some benchmarks it shows similar, and sometimes better, run-times. 
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