

F. Bacchus and T. Walsh (Eds.): SAT 2005, LNCS 3569, pp. 408 – 414, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Bounded Model Checking with QBF

Nachum Dershowitz1, Ziyad Hanna2, and Jacob Katz2

1 School of Computer Science., Tel-Aviv University, Israel
nachumd@cs.tau.ac.il

2 Intel Corporation, Haifa, Israel
{ziyad.hanna,jacob.katz}@intel.com

Abstract. Current algorithms for bounded model checking (BMC) use SAT
methods for checking satisfiability of Boolean formulas. These BMC methods
suffer from a potential memory explosion problem. Methods based on the valid-
ity of Quantified Boolean Formulas (QBF) allow an exponentially more suc-
cinct representation of the checked formulas, but have not been widely used,
because of the lack of an efficient decision procedure for QBF. We evaluate the
usage of QBF in BMC, using general-purpose SAT and QBF solvers. We also
present a special-purpose decision procedure for QBF used in BMC, and com-
pare our technique with the methods using general-purpose SAT and QBF
solvers on real-life industrial benchmarks. Our procedure performs much better
for BMC than the general-purpose QBF solvers, without incurring the space
overhead of propositional SAT.

1 Introduction1

Model checking is a technique for the verification of the correctness of a finite-state
system with respect to a desired behavior. The system is traditionally modeled as a la-
beled state-transition graph, and the behavior is specified by a temporal logic formula.
Early implementations, based on explicit-state model checking, suffered from the
state explosion problem. The introduction of symbolic model checking with binary
decision diagrams (BDDs) and other recently developed methods, such as Bounded
Model Checking (BMC), succeeded in partially overcoming this problem and enabled
industrial applications of model checking for real-life systems, mostly in the hardware
design industry. However, all these methods still suffer from the potential memory
explosion problem on modern test cases. In this work we evaluate the application of
Quantified Boolean Formulas (QBF) in BMC of safety properties in attempt to avoid
the memory explosion problem. We also present a special-purpose purpose QBF deci-
sion procedure for a QBF encoding of BMC problems.

Assume a system M=(S, I, TR), where S is the set of states, I is the characteristic
function of the set of the initial states, and TR is the transition relation. Let F be a
characteristic function of the “bad” states violating the property being checked. As in
classical BMC, the fact that a “bad” state Zk is reachable from an initial state Z0 in ex-
actly k steps may be formulated by “unrolling” the transition relation k times:

1 Due to space constraints references have been omitted in this text.

 Bounded Model Checking with QBF 409

0 1 1 0 1

1

0
(,) ,..., : () () (,).k k k k i i

k

i
R Z Z Z Z I Z F Z TR Z Z− +

−

=
= ∃ ∧ ∧∧ (1)

The validity of this formula may be proved or disproved by applying a SAT decision
procedure on its propositional part. Noticeably, the number of copies of the transition
relation TR in this formula is the same as the number of steps being checked. When
iteratively increasing the bound k, each successive iteration checks reachability of the
final states in one more step than the previous iteration. Thus, for a complete check,
the SAT procedure must be invoked on formulas containing an exponential number of
copies of the transition relation.

To partially overcome the potential memory explosion, the following QBF formu-
lation of the bounded reachability problem can be used:

0 1 1 0

1

1

0

(,) ,..., : () ()

, : () () (,).

k k k k

i i

k

i

R Z Z Z Z I Z F Z

U V U Z V Z TR U V

−

+

−

=

= ∃ ∧ ∧
⎛ ⎞
⎜ ⎟∀ ↔ ∧ ↔ →
⎜ ⎟
⎝ ⎠
∨ (2)

The formula (2) contains only one copy of the transition relation. Increasing the
bound, thus, would mean an addition of a new intermediate state and a term of the
form (U↔Zi)∧(V↔Zi+1). Hence, the formula increase from iteration to iteration does
not depend on the size of the transition relation, which is usually the biggest formula
in the specification of the model.

2 jSAT Decision Procedure

An experimental evaluation of general-purpose QBF solvers on formulas of form (2),
presented in section 3, found them very inefficient, as they failed to solve practically
any of the formulas in our test bench. This fact motivated the development of a spe-
cial-purpose decision procedure, called jSAT, for formulas of this form.

jSAT holds in memory the encoding variables representing the states Z0, Z1, …, Zk,
U and V, but only holds the following propositional formula:

0() (,) ().kI Z TR U V F Z∧ ∧ (3)

The states Zi (0≤i≤k) represent a path; the states U and V represent two neighboring
states in that path. Instead of explicitly storing the fact that U and V represent a pair of
neighboring states, as done in (2) with assistance of the terms of the form
(U↔Zi)∧(V↔Zi+1), our algorithm implicitly assumes this information.

jSAT is based on the classic DPLL algorithm widely used in the current state-of-
the-art SAT and QBF solvers. Intuitively, jSAT algorithm can be seen as a depth-first
search in the state graph of the system from the initial states to the final ones. The al-
gorithm starts by associating U with Z0 and V with Z1; thus the formula (3) becomes
semantically equivalent to:

0 0 1() (,) ().kI Z TR Z Z F Z∧ ∧ (4)

410 N. Dershowitz, Z. Hanna, and J. Katz

jSAT() {

 InitializeCurrentAndNextStates();

 while (true) {

 if (! SelectDecisionVariable()) {

 if (AllStatesDecided()) return true;

 if (! AdvanceCurrentState()) return false;

 }

 while (! BCP()) {

 if (! ResolveConflict()) return false;

 }

 }

}

Fig. 1. Pseudo-code of jSAT decision procedure

The states Z0 and Z1 are then chosen by finding an assignment to their encoding vari-
ables, if possible, so that Z0 is an initial state and Z1 is its successor. As soon as they
are chosen, the algorithm makes Z1 to be the current state and Z2 to be the next one: U
becomes an alias to Z1, and V becomes an alias to Z2. The algorithm proceeds in this
fashion until all states are successfully chosen, or until it discovers that such a choice
is impossible.

The pseudo-code of the algorithm is shown on Fig. 1. The algorithm first initializes
the states U and V to be associated with Z0 and Z1, respectively. The procedure Se-
lectDecisionVariable() selects a still unassigned variable out of the encoding variables
of the current state or, if all the encoding variables of the current state are assigned,
from those of the next state. We restrict the decision strategy to selecting decision
variables in the order of the states in the path: encoding variables of the state Z0 are
selected first, then the variables of Z1, then the variables of Z2, and so on. Such a re-
striction causes the algorithm to implement a depth-first search of the state graph and
to “visit” only the states actually reachable from the initial states. The order of the se-
lection of the encoding variables within one state is not important, and heuristics simi-
lar to the ones used in SAT/QBF solvers can be used.

SelectDecisionVariable() returns true if the decision is made successfully. Boolean
Constraint Propagation is then performed by the procedure BCP(), which returns false
in case of a conflict. If a conflict is produced, ResolveConflict() attempts to analyze it
and backtrack to a previous decision level. In case the conflict cannot be resolved the
algorithm terminates and the given formula is reported invalid.

SelectDecisionVariable() returns false whenever all the encoding variables of the
current and the next states have been decided. If at this point all the states have been
decided, as determined by the call to AllStatesDecided(), then a path has been found
from an initial state to a final one, and the algorithm terminates, reporting the given
formula is valid. Otherwise, if undecided states remain, AdvanceCurrentState()

 Bounded Model Checking with QBF 411

ResolveConflict() {

 nBacktrackingLevel = AnalyzeConflict();

 if (nBacktrackingLevel < 0) return false;

 nFirstUndecidedPathState = Backtrack(nBacktrackingLevel);

 if (! RetractCurrentAndNextStates(nFirstUndecidedState))

 return false;

 return true;

}

Fig. 2. Pseudo-code of jSAT decision procedure

advances U and V to the next pair of states by associating U with whatever was previ-
ously associated with V, and associating V with the next state in the path. During this
operation new relations between the encoding variables become apparent. Thus, for
example, when U and V are moved from the pair of states (Z0, Z1) to the next pair (Z1,
Z2), the relations between the encoding variables of Z1 and Z2 become explicit in
TR(U, V). Since the newly discovered information may contradict some of the already
made decisions, conflicts may arise during the adjustment operations. The procedure
AdvanceCurrentState() returns false in case a conflict occurred that could not be re-
solved; in this case the algorithm terminates and the given formula is invalid.

Fig. 2 shows the pseudo-code of ResolveConflict() procedure. The call to Ana-
lyzeConflict() checks whether the conflict is resolvable, and if yes, produces a con-
flict clause and returns the decision level to which to backtrack. Then, by the call to
Backtrack(), the algorithm undoes the assignments made on the decision levels higher
than the level to which the algorithm should backtrack. Backtrack() returns the earli-
est state among all the states, which does not have all its encoding variables assigned
after the backtracking. If this earliest state is the one currently associated with U (i.e.
is the current state) or an earlier one, U and V are retracted by RetractCurren-
tAndNextStates(), so that V is associated with the earliest undecided state in the path.
This retraction implements the retreating step of the depth-first search in the state
graph, so that the search is directed into another part of the graph. Noticeably, as with
the operation of advancement of the current and the next states, the retraction may
also produce conflicts, because the relations that were not explicit in the formula be-
come explicit. RetractCurrentAndNextStates() returns false in case an irresolvable
conflict occurred during the operation.

An important aspect of our algorithm follows from the fact that U and V represent
different states at different points of time. It is therefore generally incorrect to produce
learned conflict clauses that involve the encoding variables of U or V, or any artificial
variable resulting from the translation of TR(U, V) to CNF, as they will become use-
less as soon as U and V are adjusted to represent another pair of states. Therefore, the
learned clauses must be formulated in terms of the encoding variables of Zi. Our con-
flict analysis technique achieves this by using only decision variables in the learned
clauses, somewhat similar to Last UIP learning scheme described in.

412 N. Dershowitz, Z. Hanna, and J. Katz

3 Experimental Results

We have implemented jSAT algorithm to measure its applicability to the problem of
BMC. We used a bounded model checker to generate formulas of the forms (1), (2)
and (3). The formulas of form (1) were generated in DIMACS format and could be
fed into many available SAT solvers. The formulas of forms (2) were generated in
QDIMACS format and could be fed into the available QBF solvers. The formulas of
form (3) were generated in a slightly customized DIMACS format, which adds the
specification of the encoding variables to the formula description; our implementation
of jSAT reads this modified DIMACS format.

Table 1. Number of instances solved by each solver per test case. There is a total of 18
instances in each test case, corresponding to BMC problems with bounds 3 to 20. SAT and
UNSAT instances are shown separately. '-' sign specifies that there are no instances with the
specific result for the corresponding test case

SAT UNSAT SAT UNSAT SAT UNSAT
test08 10 - 16 - 18 - 18

test12 11 18 - 18 - 18 -

test10 12 - 18 - 18 - 18

test03 39 18 - 18 - 18 -

test06 160 - 1 - 12 - 18

test09 160 18 - 18 - 18 -

test05 199 - 0 - 18 - 18

test11 220 14 4 14 4 14 4

test04 626 0 1 4 2 13 2

test13 662 18 - 18 - 18 -

test02 914 - 0 - 13 - 18

test07 1055 0 - 11 - 17 -

test01 2013 18 - 5 - 11 -

104 40 106 85 127 96

vars

Total (out of 234)

jSat Base zChaff

144 191 223

We used a set of thirteen proprietary Intel® model checking test cases of different
sizes to compare the run-time and memory consumption of the different BMC meth-
ods. For each test case we generated formulas of all kinds for the bounds in range
from 3 to 20, resulting in the total amount of 234 formulas of each kind. Some of the
formulas of form (3) were publicly disclosed and participated in the QBF solver
evaluation during SAT2004 conference. We used a dual Intel® Xeon™ 2.8 GHz
Linux RH7.1 workstation with 4GB of memory for the experiments, and set a 600
second time out and 1 GB memory limits on all solvers.

We first used QuBE state-of-the-art QBF solver to solve formulas of form (2) for
all the test cases and to compare its run-time to the run-time of SAT solvers on the

 Bounded Model Checking with QBF 413

corresponding instances of form (1). We discovered that QuBE was able to solve only
a few of the 234 formulas within the set time limits. This fact served as our motiva-
tion for the development of jSAT. We expected that jSAT, as a special-purpose deci-
sion procedure, would demonstrate memory consumption as low as the general-
purpose QBF solvers, but a better run-time. We did not expect that jSAT run-time
would be as good as that of the SAT solvers on the corresponding instances.

Fig. 3. Number of instances solved by each solver vs. the CPU time consumed

Our implementation is based on an existing solver2 (base solver), which is reported
to have slightly slower performance than zChaff. To perform a fair analysis we chose
to compare our algorithm to that base solver, but also provide a comparison to zChaff
II, as one of the best-known state-of-the-art solvers.

Table 1 shows the sizes of the test cases in terms of the state variables in the model,
and the number of formulas each of the solvers successfully coped with (QuBE has been
omitted in this table for brevity). The numbers of solved SAT and UNSAT instances are
shown separately. (We use the terms “SAT” and “UNSAT” in case of jSAT for consis-
tency, even though jSAT solves a QBF. SAT result in this case means that the instance
was proved valid; UNSAT means it was proved invalid.) Interestingly, jSAT’s results
are especially close to those of the base solver on SAT instances, where jSAT managed
to solve 104 versus 106 instances solved by the base solver.

On UNSAT instances, the distance between jSAT and the base solver is much
more significant. Fig. 3 graphically shows the run-time performance of the solvers.
The x-axis shows the number of instances solved, and y-axis shows the time taken to
solve a particular instance; the curve is obtained by sorting the run-times in an as-
cending order. It is evident that jSAT significantly outperformed the general-purpose
QBF solver QuBE. It still did not achieve the same run-times as the SAT solvers,
though in the biggest test case test01 (see Table 1) it managed to solve in seconds all
the instances, which required a much longer time for the other solvers. Also it is no-

2 Y. Feldman, N. Dershowitz, Z. Hanna. “Parallel Multithreaded Satisfiability Solver: Design

and Implementation”. Workshop on Parallel and Distributed Model Checking (PDMC), 2004.

jSA
T

Ba
se

zC
ha
ff

Qu
BE

0

100

200

300

400

500

600

1 21 41 61 81 101 121 141 161 181 201 221

Formulas

R
un

-ti
m

e
(s

ec
)

414 N. Dershowitz, Z. Hanna, and J. Katz

ticeable that on most of the instances that jSAT succeeded to solve the run-time
achieved by jSAT is similar to that of the SAT solvers. However, jSAT performance
degrades much faster than that of the SAT solvers when coming to the more complex
instances: the slope of the performance curve of jSAT is much higher than that of the
other solvers.

jSAT

Base

zChaff

0
20
40
60
80

100
120

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

BMC bound

M
em

o
ry

 c
o

n
su

m
p

ti
o

n

(M
B

)

Fig. 4. Memory consumption of each solver on the instances generated for the test case test13

Fig. 4 graphically shows the memory consumed by jSAT, the base solver and
zChaff when solving instances generated from the test case test13, which is the largest
test case fully solved by all the three tools. The x-axis shows the BMC bound, and the
y-axis shows the memory consumed when solving the corresponding instance. The
run-time of jSAT on these instances varied from 1 to 3 seconds; the run-time of
zChaff 1 to 6 seconds; and the run-time of the base solver from 3 to 146 seconds. As
expected, the graph indicates that jSAT memory consumption practically does not de-
pend on the BMC bound being solved, while for SAT-based BMC approaches the
memory consumption is proportional to the bound. The same behavior has been ob-
served on the other test cases, including those that jSAT fails to complete.

4 Conclusions

We have presented an evaluation of the usage of QBF in BMC, comparing a classical
SAT-based BMC method to one using a QBF encoding of the problem, which avoids
the memory explosion problem because it does not require the “unrolling” of the transi-
tion relation. We found that modern state-of-the-art general-purpose QBF solvers are
still unable to handle the real-life instances of BMC problems in an efficient manner.

As the main contribution of our work, we presented a special-purpose QBF deci-
sion procedure for the solution of QBF instances encoding BMC problems in form
(2). A performance evaluation of our algorithm shows that it achieves the expected
memory savings, and succeeds to solve significantly more instances than a general-
purpose QBF solver. Still, jSAT does not achieve run-times as short as the state-of-
the-art SAT solvers on the corresponding SAT instances of the same problems, even
though on some benchmarks it shows similar, and sometimes better, run-times.

	Introduction
	jSAT Decision Procedure
	Experimental Results
	Conclusions

