
SEMANTIC UNIFICATION FOR CONVERGENT SYSTEMS

BY

SUBRATA MITRA

B.Tech., Indian Institute of Technology, Kanpur, 1988
M.S., University of Delaware, 1991

THESIS

Submitted in partial ful�llment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 1994

Urbana, Illinois

SEMANTIC UNIFICATION FOR CONVERGENT SYSTEMS

Subrata Mitra, Ph.D.
Department of Computer Science

University of Illinois at Urbana-Champaign, 1994
Nachum Dershowitz, Advisor

Equation solving is the process of �nding a substitution of terms for variables that makes

two terms equal in a given theory, while semantic uni�cation is the process that generates a

basis set of such unifying substitutions. A simpler variant of the problem is semantic matching,

where the substitution is made in only one of the terms. Semantic uni�cation and matching

constitute an important component of theorem proving and programming language interpreters.

In this thesis we formulate a uni�cation procedure based on a system of transformation

rules that looks at goals in a lazy, top-down fashion, and prove its soundness and completeness

for equational theories described by convergent rewrite systems (�nite sets of equations that

compute unique output values when applied from left-to-right to input values).

We consider di�erent variants of the system of transformation rules. We describe syntactic

restrictions on the equations under which simpler sets of transformation rules are su�cient for

generating a complete set of semantic matchings. We show that our �rst-order uni�cation pro-

cedure, with slight modi�cations, can be used to solve the satis�ability problem in combinatory

logic together with a convergent set of algebraic axioms, resulting in a complete higher-order

uni�cation procedure for the given algebra. We also provide transformation rules to handle sit-

uations where some of the function symbols additionally satisfy the equivalences of associativity

and commutativity.

Termination of a system of directed equations is essential for proving existence and unique-

ness of normal forms. Furthermore, termination is essential for simpli�cation in theorem

provers. We provide a simple restriction on the well-known \recursive path ordering" which

can be used for proving termination of extended rewriting, modulo the axioms of associativity

and commutativity.

iii

Finally, we formulate various syntactic and semantic conditions on the given equations and

the goal which result in decidability of semantic matching. We also investigate decidable cases

of semantic uni�cation.

iv

ACKNOWLEDGEMENTS

I would like to thank Prof. G. Sivakumar and Prof. Nachum Dershowitz for getting me

interested in the general area of term rewriting, and also for their encouragement and support.

The presentation of this work has been greatly improved by numerous suggestions made by

Prof. Nachum Dershowitz.

I am also indebted to Hubert Comon, Deepak Kapur, Claude Kirchner and a number of

their students for their suggestions on di�erent drafts of papers which previously reported

results contained herein.

The research reported in this thesis was supported in part by the U. S. National Science

Foundation, under Grants CCR-90-07195 and CCR-90-24271.

v

TABLE OF CONTENTS

1 INTRODUCTION : 1
1.1 Motivation : 1
1.2 Outline of the Thesis : 7

2 BACKGROUND : 8
2.1 Terminology : 8
2.2 Previous Uni�cation Methods : 13

2.2.1 Narrowing : 13
2.2.2 Top-Down Decomposition : 16
2.2.3 General E-Uni�cation : 19
2.2.4 Semantic Uni�cation in Speci�c Equational Theories : : : : : : : : : : : : 21

2.3 Discussion : 22

3 UNIFICATION WITH CONVERGENT SYSTEMS : : : : : : : : : : : : : : : : : : : 23
3.1 Transformation Rules for Semantic Uni�cation : : : : : : : : : : : : : : : : : : : 23
3.2 Correctness : 26

3.2.1 Soundness : 26
3.2.2 Completeness : 28
3.2.3 Discussion : 32
3.2.4 Basic Positions : 33

3.3 Re�nements : 34
3.3.1 Normalized Goals : 34
3.3.2 Inductive Simpli�cation : 37
3.3.3 Pruning Unsatis�able Goals : 38

3.4 Example : 41
3.5 Transformation Rules for Semantic Matching : 44
3.6 Discussion : 47

4 HIGHER-ORDER UNIFICATION : 49
4.1 Notations for Combinatory Logic : 50
4.2 Validity : 51
4.3 Uni�cation : 53
4.4 Completeness : 56
4.5 Discussion : 58

5 UNIFICATION IN ASSOCIATIVE-COMMUTATIVE THEORIES : : : : : : : : : : : 60
5.1 Completely De�ned AC Functions : 60
5.2 General AC Theories : 63
5.3 Discussion : 70

6 PATH ORDERINGS FOR TERMINATION OF AC-REWRITING : : : : : : : : : : : 73
6.1 Terminology for AC Systems : 74
6.2 Binary Path Condition : 74

vi

6.3 Examples : 78
6.4 Discussion : 79

7 DECIDABLE EQUATION SOLVING : 81
7.1 Undecidable Matching and Uni�cation Problems : : : : : : : : : : : : : : : : : : 81
7.2 Decidable Matching : 83

7.2.1 Non-Erasing Rules : 84
7.2.2 Erasing Rules : 90
7.2.3 Matching with Restricted Goals : 94
7.2.4 Restricted Left-Linear Rules : 95

7.3 Decidable Uni�cation : 100
7.4 Summary on Decidability Results : 109

8 SUMMARY AND FUTURE WORK : 110
8.1 Uni�cation in Combined Theories : 110
8.2 Higher-Order Matching and Uni�cation : 111
8.3 Associative-Commutative Reduction Orderings : : : : : : : : : : : : : : : : : : : 112

APPENDIX

A Examples using Goal-Directed Approach : 114
A.1 Factorial of Natural Numbers : 114
A.2 Addition and Multiplication of Natural Numbers : : : : : : : : : : : : : : : : : : 117
A.3 Addition and Multiplication of Natural Numbers (AC) : : : : : : : : : : : : : : : 120
A.4 Sorting Lists of Natural Numbers : 124

BIBLIOGRAPHY : 129

VITA : 141

vii

LIST OF TABLES

2.1 Transformation rules for narrowing : 14
2.2 Transformation rules for top-down decomposition : : : : : : : : : : : : : : : : : : 17
2.3 Transformation rules for con
uent systems : 19
2.4 Transformation rules for general E-uni�cation : 20
2.5 Common equational axioms : 21
2.6 Results on equational uni�cation : 21

3.1 Validity using innermost reductions : 23
3.2 Transformation rules for semantic uni�cation : 25
3.3 Transformation for normalizing : 34
3.4 Failure transformation rules : 41
3.5 Solving goals of the form x+ y!? 0 : 42
3.6 Solving goals of the form x � y!? 0 : 43
3.7 Solving goals of the form y + (x � y)!? s(0) : 43
3.8 Solving goals of the form x � y!? 0 : 43
3.9 Transformation rules for semantic matching with non-erasing systems : : : : : : 45
3.10 Transformation rules for semantic matching with left-linear systems : : : : : : : 46

4.1 Transformation rules for innermost reduction (IR) : : : : : : : : : : : : : : : : : 52
4.2 Transformation rules for extension (EXT) : 55

5.1 AC-Mutation for completely de�ned functions : 61
5.2 AC-Mutation for completely de�ned functions : 63
5.3 Abstracting AC-goals : 66
5.4 Transformations for non-AC goals : 67
5.5 Transformation rules for AC-goals : 68
5.6 Using constraints to prune AC-goals : 72
5.7 Transformation rules for constraints : 72

8.1 Inference rules for validity of !� : 110
8.2 Transformation rules for satis�ability of !? : 111

viii

1 INTRODUCTION

1.1 Motivation

Functional programming (see [Henderson, 1980] for an introductory exposition), which origi-

nated from the study of the Lambda-Calculus, is a style of programming based on recursive

function de�nitions. For example, in a typical functional programming language such as ML

(see [Paulson, 1991] for the syntax), we could de�ne append and reverse on lists as:

val rec append =

fn(x; y))

if x = nil then y else hd x � append(tl x; y);

val rec reverse =

fn(x))

if x = nil then nil else append(reverse(tl x); hd x � nil):

(with the operations hd and tl for selecting the �rst element and the remainder of the list,

respectively, nil for the empty list, and � for list constructing). Evaluating an expression like

reverse(1 � 2 � nil) results in the value 2 � 1 � nil.

Given the de�nitions of append and reverse, it is natural to de�ne predicates for checking

if a list represents a palindrome:

palindrome(append(x; reverse(x))) = true;

palindrome(append(x; a � reverse(x))) = true:

We get these de�nitions for \free" once we have those for append and reverse. However, in

order to use such de�nitions in a functional language, it is necessary to match patterns of the

form append(x; reverse(x)) to values like 1 � 2 � 2 � 1 � nil. To perform such matchings (which is

not possible in current functional languages), a decidable matching algorithm is required.

Functional programming is an elegant alternative to the more traditional imperative style

because of its declarative nature. It does not involve the notions of \states" and \side-e�ects,"

which are common to more traditional programming. Other advantages of this paradigm in-

1

clude implicit parallelism (di�erent arguments of a function may be evaluated independently),

the ability to deal with function-valued arguments and outputs (higher-order capability) and

simplicity (due to the complete lack of control structures).

Logic programming is another programming methodology with similar features, which grew

as an outcome of e�orts to mechanize mathematical logic. See [Kowalski, 1979] for a survey on

logic programming. Logic programs, which use Horn clauses to recursively de�ne predicates,

are elegant in their use of \logic-variables." For example, we could de�ne append in Prolog

(see [Clocksin and Mellish, 1981]) as:

append(nil; x; x) :- true ;

append(a � x; y; a � z) :- append(x; y; z)

and solve the query append(x; x; x)
?
= true to obtain the solution fx 7! nilg.

Although functional and logic programming both fall in the category of declarative lan-

guages, there are some signi�cant di�erences: The presence of logic-variables in the latter

makes it more expressive, whereas functional programming entails higher-order capabilities

and has simpler operational semantics. It is, therefore, of interest to combine the essential

features of these two programming paradigms. Over the years, numerous di�erent approaches

have been suggested for this combination, including [Barbuti et al., 1986; Bellia and Levi, 1986;

Reddy, 1986; Subrahmanyam and You, 1986]; see [DeGroot and Lindstrom, 1986] for a survey

of the area. One popular idea is based on conditional equational theories [Dershowitz and

Josephson, 1984; Goguen and Meseguer, 1984; Fribourg, 1985; Lindstrom, 1985; Dershowitz

and Plaisted, 1988; Cheong and Fribourg, 1993]. In the equational programming paradigm

proposed by Dershowitz and Plaisted [1988] (see also [Josephson and Dershowitz, 1989;

Dershowitz and Okada, 1990]), computation consists of solving an equation in the theory spec-

i�ed by the program (program being a set of conditional equations that de�ne unique normal

forms). For example, consider the de�nition of addition (+) over natural numbers (natural

numbers being represented in unary notation, using the constant 0 and the successor function

s):

0 + x = x;

s(x) + y = s(x+ y):

2

Given this system of equations, a query of the form x
?
= s(s(0))+ (s(0)+ s(0)) can be solved (to

give the solution fx 7! s(s(s(s(0))))g) by evaluating the right-hand side of the goal by using the

equations as left-to-right rewrite rules. (We are only interested in solutions that do not involve

+.) This type of a query corresponds to functional-programming, where the inputs are fully

instantiated, and rewriting (based on the notion of \replacements of equals by equals") is the

evaluation mechanism. On the other hand, for a query like x+x
?
= y+s(s(0)), we have to use an

equation solver to �nd the solutions fx 7! s(0); y 7! 0g, fx 7! s(s(0)); y 7! s(s(0))g; and so on.

This corresponds to the logic-programming capability of a Prolog-like language. Furthermore,

given the de�nition of addition we could de�ne subtraction (�), using a conditional equation,

as

x = y + z : x � y = z:

We could now evaluate s(s(s(0)))� s(0)
?
= z by solving the matching goal s(s(s(0)))

?
= s(0) + z

to get the solution fz 7! s(s(0))g. Notice that the de�nitions of append and reverse can also

be formulated as (unconditional) equations

append(nil; y) = y; append(a � x; y) = a � append(x; y);

reverse(nil) = nil; reverse(a � x) = append(reverse(x); a � nil):

Equation solving is the process of �nding a substitution that makes two terms equal in a

given theory, while semantic uni�cation is the process that generates a basis set (for any solution

to the goal, the basis set must subsume one that is equivalent in the underlying theory) of such

unifying substitutions. Here, we formulate a uni�cation procedure, based on transformation

rules, that looks at terms in a lazy, top-down fashion, and prove its soundness and completeness

for theories de�ned by (ground) convergent (terminating and ground con
uent) rewrite systems.

As illustrated by the examples above, semantic uni�cation (and equation solving) provides a

method which cleanly integrates useful features of logic programming in a functional language.

Furthermore, in theorem proving, it is often convenient (and necessary) to formulate deduction

systems modulo speci�c equational theories, rather than treat these equations as primitive

axioms (the theory consisting of the axioms for associativity and commutativity is a prime

3

example). In order to have a refutationally complete deduction system in such cases, complete

sets of uni�ers (in the theories under consideration) are required, as shown in [Plotkin, 1972].

The simpler variant of the problem, semantic matching, where one side of the goal is a

ground (variable free) term, is also of interest. For example, if we could match with respect to

the de�nitions of append and reverse, the function de�nition

palindrome(append(x; reverse(x))) = true;

palindrome(append(x; a � reverse(x))) = true;

could be applied to a term like palindrome (1 �2 �1 �nil) by �nding that the pattern in the second

de�nition matches the term when x = 1 � nil and a = 2. We describe syntactic restrictions on

the equations under which simpler sets of transformation rules are su�cient for generating a

complete set of semantic matchings.

Thereafter, we show that our �rst-order uni�cation procedure, with slight modi�cations,

can be used to solve the satis�ability problem in combinatory logic with a convergent set of

algebraic axioms R, thus resulting in a complete higher-order uni�cation procedure for R that

retains the top-down and lazy features of the �rst-order procedure. Higher-order uni�cation is

of interest in its own right. Furthermore, it has applications in the areas of type-inferencing,

higher-order reasoning, etc. Since the higher-order uni�cation procedure outlined in this thesis

is an extension of the one for the �rst-order case, including the top-down lazy feature, it should

enjoy a reasonably fast implementation.

A large class of functions, including addition (+) and multiplication (�), satisfy the addi-

tional equations of associativity and commutativity (AC, for short), expressed by the following

axioms (here f is the AC-function):

f(x; f(y; z)) = f(f(x; y); z);

f(x; y) = f(y; x):

Therefore, it is important to have complete uni�cation procedures in the presence of AC-

functions. Notice that the second equation cannot be oriented as a rewrite rule without losing

termination, and hence, we cannot directly apply the results for uni�cation in convergent sys-

tems to this case. We deal with AC-functions in two stages. We show that a notion of inductive

4

simpli�cation can be extended to handle completely de�ned AC-functions e�ciently. However,

the general case (that is, without the assumption of completely de�ned AC-functions) is more

di�cult, and a strict top-down approach does not work. We therefore provide a combined

technique to solve the problem, wherein the AC-goals are delayed until some information is

available about the corresponding subgoals.

Most of the completeness proofs described in this thesis require the equational theory to

have a (ground) convergent presentation. Therefore, another relevant line of research is the

formulation of orderings for termination proofs (since termination is essential in proving the ex-

istence and uniqueness of normal forms). Path orderings have been commonly used in theorem

provers, even for AC-rewriting, despite the fact that they do not establish termination in the

AC case. Furthermore, the associativity and commutativity axioms cannot be oriented without

losing termination. Therefore, it is important to �nd orderings which can be used to prove

termination of rewrite systems, modulo the combination of associativity and commutativity.

We show that a simple (and easily implementable) restriction on the recursive path order-

ing [Dershowitz, 1982] is su�cient for establishing termination of extended rewriting, modulo

associativity and commutativity.

It is well-known that any strategy for �nding a complete set of uni�ers (or matchings)

for two terms with respect to a given theory may not terminate, even when the theory is

presented as a �nite and convergent set of rewrite rules [Heilbrunner and H�olldobler, 1987;

Bockmayr, 1987; Dershowitz and Jouannaud, 1990; Jouannaud and Kirchner, 1991]. However,

for some special classes of theories|associativity and commutativity, for instance|semantic

uni�cation is decidable. It is, therefore, of interest to �nd cases for which a particular complete

procedure is provably terminating, thus implying that the semantic uni�cation or matching

problems in the corresponding theories are decidable. In particular, we study the restricted

procedures for semantic matching and formulate di�erent syntactic and semantic conditions

(on the system of equations presenting the theory and the goals being solved) which result in

decidability. Most of the decidable matching problems that we consider are �nitary (that is,

every matching problem has a �nitely expressible set of solutions), and we show that a complete

matching procedure is terminating in each case. We also consider decidable cases of semantic

uni�cation. We describe a notion of
atness on the right-hand sides of equations which results

in decidability. However, unlike matching, the uni�cation problem in this case is in�nitary, and

5

therefore, the decision procedure illustrates that for
at systems, the generated (possibly in�nite

sets of) solutions form subsuming patterns. In most cases, we provide counterexamples to show

that matching and uni�cation become undecidable (as they usually are) when the conditions

we propose are weakened.

The decidable matching problems considered in this thesis are useful in pattern-directed

languages where a matching algorithm is required in order to mechanize pattern-directed invo-

cations of functions. Furthermore, the decidability results formulated in this thesis would be

useful in the areas of constraint solving and inductive theorem proving.

Previous approaches for semantic uni�cation include narrowing and di�erent variants

thereof, such as \normalized" and \basic" narrowing; see, for example, [Fay, 1979; Hullot, 1980;

Fribourg, 1985; Bosco et al., 1987; R�ety, 1987; Nutt et al., 1989]. Martelli and Monta-

nari [1982] used transformations on systems of equations to describe syntactic uni�cation.

The method was later adapted in [Martelli et al., 1989] to provide a complete uni�cation

procedure for convergent rewrite systems. Furthermore, Gallier and Snyder have used trans-

formations for describing equational and higher-order uni�cation [Gallier and Snyder, 1989;

Snyder and Gallier, 1989], while Kirchner [1984] uses the technique for uni�cation in syntactic

theories. Our method is a variant of narrowing, based on the top-down approach outlined

in [Martelli et al., 1989]. We achieve the e�ects of basic and normal narrowing in a lazy, top-

down approach, and the introduction of directed goals (asymmetric goals, unlike the symmetric

goals used, for example, by [Martelli et al., 1989]) removes problems of generating extraneous

reducible solutions.

A number of researchers have addressed the problem of uni�cation in speci�c equational

theories, for example, associativity [Plotkin, 1972; Makanin, 1977], associativity and com-

mutativity [Stickel, 1981], and di�erent variants of distributivity [Arnborg and Tid�en, 1985;

Contejean, 1992]; see [Siekmann, 1989; Jouannaud and Kirchner, 1991; Baader and Siekmann,

1993] for surveys on uni�cation. Here, we study the uni�cation problem with respect to con-

vergent systems, where some of the function symbols in the system additionally satisfy the

equivalences of associativity and commutativity.

We also study other specializations and extensions of the basic system of transformation

rules, for example, for semantic matching and higher-order uni�cation. Higher-order uni�cation

was initially studied by Huet [1975] and has been studied in the context of transformation rules

6

by Snyder [1990] and most recently by Dougherty and Johann [1992; 1993]. Our approach in

this thesis is along the lines of the latter, using typed combinatory-logic as the formulation for

higher-order systems.

Restricted versions of the problem of formulating decision procedures for special cases

of matching and uni�cation were looked at previously by Hullot [1980], Kapur and Naren-

dran [1987] and Christian [1992].

Termination of a system of rewrite rules is important for using rewriting as a computational

tool, and for simpli�cation in theorem provers. Typically, termination proofs are done using

path orderings, or by interpreting function symbols as multivariate polynomials; see [Dershowitz,

1987] for a survey of the area. In this thesis, we develop a precedence-based binary relation

for proving termination of extended rewriting, modulo associativity and commutativity. Our

ordering was inspired by the one in [Kapur et al., 1990]. Similar research has been reported

in [Bachmair and Plaisted, 1985; Bachmair, 1992], and recently in [Delor and Puel, 1993;

Rubio and Nieuwenhuis, 1993].

1.2 Outline of the Thesis

In Chapter 2 we introduce most of the notations that we are going to use, and brie
y provide

some historical perspective on semantic uni�cation. In Chapter 3 we introduce the systems of

transformation rules for uni�cation and matching, and prove their completeness. In Chapter 4

we provide a method for solving the uni�cation problem for typed combinatory-logic, in the

presence of a convergent set of algebraic axioms, while, in Chapter 5, we extend the method

of Chapter 3 to theories containing associative and commutative functions. In Chapter 6 we

discuss a precedence based relation for proving termination of AC systems. Chapter 7 provides

results on di�erent decision procedures for matching and uni�cation. We conclude, in Chapter 8,

with some open problems of interest.

7

2 BACKGROUND

In this chapter we introduce notations that we will use throughout this thesis. We also brie
y

recall important results about semantic uni�cation.

2.1 Terminology

In this section we describe and review basic notation, and indicate some important results that

are needed in the remainder of this thesis. For surveys of rewrite systems refer to [Huet and

Oppen, 1980; Dershowitz and Jouannaud, 1990; Klop, 1992]. Most of the notations that we use

in this thesis have been borrowed from [Dershowitz and Jouannaud, 1990].

Given a set F of function symbols and a (denumerable) set X of variables, the set of (�rst-

order) terms T (F ;X) is the smallest set containing X such that f(t1; : : : ; tn) is in T (F ;X)

whenever f 2 F and ti 2 T (F ;X) for i = 1; : : : ; n. With every function symbol f we associate

a unique natural number called the arity, which denotes the number of immediate subterms f

can have in a well-formed term. Functions with arity 0 are called constants. Sometimes we use

an in�x notation for binary (2-ary) functions, that is, we write x+y instead of +(x; y). It is often

convenient to consider F itself as being built of two sets, namely the set of de�ned functions

(denoted D) and the set of constructors (denoted C), such that C [D = F and C \ D = �.

Variable free terms are called ground, for example s(0) + 0. The set of variables in a term t

is denoted as V(t). We say that a variable x 2 X occurs in a term t, and write occurs(x; t), if

x 2 V(t). A term t is said to be linear in a variable x if x occurs exactly once in t, while a

term is linear if it is linear with respect to each of its variables, for example, x+ (s(y) � z). We

will use � to denote syntactic identity of terms, to distinguish it from other forms of equality.

Unless otherwise stated, we use the letters a through h for function symbols, x through z for

variables and r through t for terms.

A term may be viewed as a �nite ordered tree, the leaves of which are labeled with vari-

ables or constants, and the internal nodes of which are labeled with function symbols (of

positive arity), with outdegree equal to the arity of the label. A position within a term may

be represented|in Dewey decimal notation|as a sequence of positive integers, describing the

8

path from the outermost, \root" symbol to the head of the subterm at that position. Positions

are also called places or occurrences. For example, in the term f(g(h(x); y); h(b(a))) the sub-

term at position 2 �1 is b(a). By t jp we denote the subterm of t rooted at position p. A subterm

of t is called proper if it is distinct from t.

Reasoning with equations requires replacement of subterms by other terms. A term t with

its subterm t jp replaced by s is denoted by t[s]p. We refer to any term u that is the same as t

everywhere except below p (that is, u[s]p = t, for some term s) as the context within which the

replacement takes place.

A substitution is a special kind of replacement operation, uniquely de�ned by a mapping

from variables to terms which is equal to identity almost everywhere, and written out as fx1 7!

s1; : : : ; xm 7! smg. Formally, a substitution � is a function from X to T (F ;X), extended to a

function from T to itself (also denoted as �) in such a way that f(t1; : : : ; tn)� = f(t1�; : : :; tn�),

for each f and for all subterms ti; 1 � i � n. We usually use lower-case Greek letters to denote

substitutions. The composition of two substitutions � and �, denoted by � � � or simply ��, is

a composition of the two functions; thus, if x� = s for some variable x, then x�� = s�. We

say that substitution � is at least as general as substitution � (with respect to a set X 0 � X

of protected variables) if there exists a substitution � such that �� = � (when � and � are

restricted to X 0). We usually keep X 0 implicit, and write � � � to denote that � is at least as

general as �.

A term t matches a term s if s� = t for some substitution �; in this case we also say that t is

an instance of s. For example, 0+ s(0) matches x+ y with the substitution fx 7! 0; y 7! s(0)g.

A term s uni�es with a term t if s� = t�, for some substitution �. A substitution � is called

the most general uni�er (mgu) of two terms s and t if, for any uni�er � of s and t, there exists a

substitution � such that � = ��. The most general uni�er of two terms is unique upto variable

renaming. For example, the most general uni�er of x + y and u + v (u and v are variables)

is the substitution fx 7! u; y 7! vg. However, if the function symbol + is also known to be

associative and commutative then � would be an AC-uni�er of x+y and u+v if, after applying

the unifying substitution, the two terms are equivalent (not identical) upto associativity and

commutativity; for example, fx 7! v; y 7! ug is also a solution in this case. AC-uni�cation is

a costly operation and, in general, it produces a �nite complete basis set of uni�ers [Stickel,

1981], which could potentially be very large.

9

An equation is an unordered pair of terms written in the form s = t, where either or both of

s and t may contain variables, which are understood as being universally quanti�ed. A set of

equations E speci�es an equational theory =E over the terms of T (F ;X), which can be de�ned

using the notion of replacement ($) based on the idea of \replacement of equals for equals."

Given a set of equations E, and two terms s and t, s is a replacement of t (denoted s $ t),

if s = u[l�]p and t = u[r�]p for some context u, position p in u, equation l = r or r = l in E

and a substitution �. Intuitively, this stands for the replacement of an instance of one side of

the equation by the corresponding instance of the other. For example, we have 0+ 0$ 0, with

� = fx 7! 0g.

The central idea of rewriting is to impose directionality on the use of equations in proofs.

Unlike equations which are unordered, a rule over a set of terms T (F ;X) is an ordered pair

hl; ri, usually written as l ! r. Rules di�er from equations by their use. Like equations, rules

are used to replace instances of l by corresponding instances of r; unlike equations, rules are

not used in the reverse direction. A (�nite) set of rules is called a rewrite system (or a term-

rewriting system), and is usually denoted as R. A term s rewrites to another term t in one

step, denoted s! t, if for some rule l! r in R, position p in s and substitution � it is the case

that l� = s jp and t = s[r�]p. In other words, the left-hand side (l) of the rule l ! r matches

a subterm of s, and t is the result of replacing this subterm by the corresponding instance of

the right-hand side (r). We denote s !� t when t is derivable from s, that is, when s rewrites

to t in zero or more steps. In general, given any relation ! we denote its inverse by , its

symmetric closure (! [) by $, and its re
exive-transitive closure by !�. For the rewrite

relation itself, we write s # t if s and t join, that is, s !� u and t !� u for some term u. A

term s is said to be irreducible or in normal form if there is no term t such that s! t, and we

use the notation s# to denote that s is in normal form. We write s !! t if s !� t and t is in

normal form, and we say that t is the normal form of s. A rewrite rule l! r is left-linear if l is

linear, and it is right-linear if r is linear. We say that a rewrite system is left- (right-) linear, if

each of its rules is left- (right-) linear. We say that a rewrite rule l! r is non-erasing if every

variable in l also occurs in r. A rewrite system is non-erasing if all its rules are non-erasing.

A rewrite relation (!) is terminating if there exists no in�nite chain of rewrites of the form

t1 ! t2 ! : : : ! tk : : :, that is, if its transitive closure (!+) is a well-founded ordering. A

rewrite relation is (ground) con
uent if, whenever two (ground) terms s and t are derivable

10

from a term u, then a term v is derivable from both s and t, that is, if u !� s and u !� t

then there must be a term v such that s !� v and t !� v. A rewrite system which is both

terminating and (ground) con
uent is said to be (ground) convergent.

Given an equational theory E, we denote an equational goal as s
?
= t, for terms s and t. We

say that a goal s
?
= t has a solution � if s� =E t�. We usually deal with collections (multisets) of

goals, and write them as fs1
?
= t1; : : : ; sn

?
= tng; a substitution is a solution to this collection, if

it solves each of its subgoals. We are only interested in enumerating a complete set of solutions.

Given a goal s
?
= t, we say that a set S of solutions is complete if for every solution � to s

?
= t,

there exists a � in S such that � is at least as general as � (that is, 9�8x:x�� =E x�).

Convergent rewrite systems are useful for equation solving. For a goal like s(0)+x
?
= s(s(0))

the only solution of interest is fx 7! s(0)g. Solutions of the form fx 7! 0 + s(0)g, although

valid when working with equational theories, are not in the simplest or irreducible form if we

treat the program for addition as a convergent rewrite system. A solution is irreducible if it

maps each of the variables in its domain to an irreducible term. For example, with the usual

de�nition of + over natural numbers, the substitution fx 7! y; z 7! s(0)g is irreducible, while

fx 7! 0 + 0g is not. Thus, convergent rewrite systems allow a compact representation of a set of

solutions to a goal. We will be interested only in irreducible solutions. Also, as we show later,

rewrite systems allow us to work with directed goals, which provide more pruning capabilities.

Next, we consider some extensions of rewriting. A conditional equation is of the form

s1 = t1 ^ � � � ^ sn = tn : l = r;

where n � 0. The �rst part consists of n equations of the form si = ti; 1 � i � n, possibly

containing variables. We can de�ne the notion of \replacement" like in the case of unconditional

equations. For example, if we consider the conditional equation given above and � is a substi-

tution such that l� = u jp and si� $� ti�; 1 � i � n, then u[l�]p $ u[r�]p. In other words, only

those substitutions � that are feasible (for which the condition can be proved recursively by a

sequence of similar replacements) can be used to replace an instance of the left-hand side (l) by

11

the corresponding instance of the right-hand side (r). For example, considering the equations

0 + x = x;

x+ y = z : s(x) + y = s(z);

we have s(0) + s(0) $ s(s(0)) using the second equation. This is because the substitution

fx 7! 0; y 7! s(0); z 7! s(0)g is feasible for the condition x+ y = z (since 0 + s(0)$ s(0) using

the �rst equation).

Like in the case of unconditional equational theories we can talk of rewrite rules derived from

conditional equations. Furthermore, similar concepts like ordering, termination and con
uence

also carry over to the case of conditional theories. For a detailed survey of conditional rewrite

systems refer to [Sivakumar, 1989].

Conditional rules are also very important in equational programming. The rule

x > 0 = true : factorial(x)! x � factorial(x� 1)

has only one premise in the condition. We can replace the left-hand side factorial(x) by the

right-hand side only for those substitutions for which the condition \holds." See [Dershowitz

et al., 1988] for di�erent versions of the operational mechanism for checking if the condition

holds. The simplest is to use rewriting itself to check that the terms in the condition have the

same normal form. Without loss of generality, we assume, in the remainder of this thesis, that

conditional rules are expressed as c : l ! r, where c is a equationally de�ned predicate.

In general, if we allow arbitrary equations as conditions, it is undecidable to even check if

a conditional rule can be applied to a term. By restricting the terms in the condition to be

\smaller" (in some well-founded ordering) we obtain a class of decreasing systems for which we

have methods for checking important properties like con
uence, etc., [Dershowitz et al., 1987].

De�nition 1 (Decreasing). A conditional rewrite rule is decreasing, if there is a well-founded

extension � of the proper subterm ordering that contains !, such that for each rule c : l ! r

and any substitution �, l� � c�.

Most useful functions (like factorial) can be de�ned using decreasing systems. Without this

restriction of decreasingness, narrowing is not a complete strategy for solving equations in a

conditional equational theory.

12

2.2 Previous Uni�cation Methods

Semantic uni�cation has been an active �eld of research over the last two decades. In this

section, we give an overview of uni�cation methods which relate to this thesis, namely:

� Semantic uni�cation in convergent systems.

� Semantic uni�cation in a general equational theory.

For completeness sake, we will also mention important results relating to uni�cation in spe-

ci�c equational theories. We will express all the uni�cation procedures in this thesis using

transformation rules, as in [Martelli and Montanari, 1982; Kirchner, 1984].

2.2.1 Narrowing

Narrowing is complete for uni�cation in convergent rewrite systems. The method uses (syntac-

tic) uni�cation (instead of matching) between the left-hand side of a rule and some subterm in

one side of the goal. For the case of conditional narrowing, it must also be possible to extend

this unifying substitution to be feasible for the equations in the condition.

De�nition 2. A term s is said to narrow to another term t via a substitution �, denoted as

s;� t, if s has a non-variable subterm s jp which uni�es via a most general uni�er � with the

left-hand side l of a variant (after variable renaming) of a rule c : l ! r. Furthermore, � is a

substitution such that c�� # true, � = � � � and t = s�[r�]p.

The transformation rules for conditional narrowing are shown in Table 2.1.

To apply this procedure we have a collection of equational goals G (initially consisting of

the single equation fs
?
= tg), which is transformed using the two transformation rules given in

Table 2.1, until no further goals remain to be solved. We now provide some examples:

Example 1. Consider the convergent system of rewrite rules (R) for appending lists (lists are

represented in the usual way, using the constant nil to denote the empty list, and the construct

x � y to denote a list with head x and tail y):

app(nil; x) ! x (2.1)

app(x � y; z) ! x � app(y; z) (2.2)

13

Re
ect fs
?
= tg [G
;

G�

where � = mgu(s; t)

Narrow fs
?
= tg [G
;

fs[r]p�
?
= t�; c�

?
= trueg [G�

where c : l! r is a renamed rule in R, and
� = mgu(l; s jp)

Table 2.1: Transformation rules for narrowing

We show a possible derivation sequence starting with the goal app(app(x; y); z)
?
=nil:

fapp(app(x; y); z)
?
=nilg ;Narrow(2:1) fapp(y; z)

?
=nilg; � = fx 7! nilg

;Narrow(2:1) fz
?
=nilg; � = fx 7! nil; y 7! nilg

;Re
ect �; � = fx 7! nil; y 7! nil; z 7! nilg

where, Narrow(i) stands for narrowing using the ith rule in R.

Here and elsewhere in this thesis, we use the format of the above example to show derivation

sequences. Whenever there is a goal in the left-column, we would show the transformed set of

goals (and substitutions, if need be) in the right-column, after the transformation rule mentioned

in the middle column has been applied. If the �rst column for any line is empty, we apply

the transformation rule to a subgoal on the right-hand column of the previous line. Finally,

whenever multiple possible subgoals are available, we usually underline the one on which (or

the position where) the named transformation rule was used.

Going back to Example 1, with the goal app(app(x; y); z)
?
=nil, there exists in�nite deriva-

tions using the simple narrowing strategy outlined in Table 2.1, for example:

app(x; y)
?
=nil ;Narrow(2:2) fx1 � app(y1; y)

?
=nilg; fx 7! x1 � y1g

;Narrow(2:2) fx1 � x2 � app(y2; y)
?
=nilg; fy1 7! x2 � y2g

14

It is possible to formulate additional (pruning) rules, in this case, to eliminate this in�nite

branch. For example, we could use external information, such as a term of the form x � y can

never be semantically uni�ed with the constant nil, since there are no rules in R to transform

either one of these symbols (� or nil) to the other. However, it is di�cult to uniformly use

pruning information with narrowing, since, in general, a narrowing based method has to explore

all ways of applying rules to goals. The following example illustrates some of the problems:

Example 2. Let R be the convergent rewrite system:

f(x; a) ! 0 (2.3)

g(b) ! 0 (2.4)

Possible derivations for the goal f(g(u); u)
?
=0 are shown below:

ff(g(u); u)
?
=0g ;Narrow(2:3) f0

?
=0g; � = fu 7! a; x 7! g(a)g

;Re
ect �; � = fu 7! a; x 7! g(a)g

ff(g(u); u)
?
=0g ;Narrow(2:4) ff(b; b)

?
=0g; �0 = fu 7! bg

; Fail

This example illustrates the fact that a simple restriction on narrowing, such as innermost

narrowing, is incomplete. This is because if we would have narrowed only at the innermost

position, then in the above diagram the �rst narrowing would be ignored resulting in declaring

that the goal is unsatis�able, which is incorrect. The problem occurs because the term f(g(a); a)

(that is, the term obtained from the left-hand side of the goal, with the solution applied to it)

is irreducible at the g(a) subterm. However, deterministically narrowing at the innermost

position of the goal (g(u)) would only account for the situation in which this subterm would

be reducible, and therefore would not generate the required solution. (It is easy to construct a

similar example to show that outermost narrowing too, in general, is incomplete.) Notice that it

is possible to use any particular position as a choice point in the narrowing tree, by considering

the two cases, either the subterm at that position would eventually be reducible, or it would

remain irreducible. Thus, one branch of the choice would explore di�erent narrowings at any

position, while the other branch would mark that position as irreducible. Completeness of this

15

kind of a narrowing strategy has been explored in [Bosco et al., 1987], wherein an innermost

order has been used for applying narrowings. In Chapter 3 we use a similar idea to provide a

complete uni�cation procedure for convergent systems; however, our solution looks at terms at

the outermost position, and therefore allows for more pruning of unsatis�able goals.

The narrowing strategy discussed above is complete for con
uent rewrite systems (actually,

narrowing is complete with respect to irreducible solutions for con
uent and non-terminating

systems). In fact, if the system is convergent it is possible to use simpli�cation determinis-

tically [Fay, 1979]. For such systems, another re�nement of narrowing, which uses a notion

of basic positions (a proper subset of all available positions) for applying rules from R, was

proposed in [Hullot, 1980]. Basic narrowing is complete for convergent systems, but not for

systems that are con
uent and non-terminating; see [Middeldorp and Hamoen, 1992] for a

counterexample.

Recently, narrowing based uni�cation methods have been studied by way of their optimality.

In general, uni�cation in theories de�ned by convergent rewrite systems is an undecidable prob-

lem (see Chapter 7 for details), and therefore the usual notions of complexity cannot be used.

However, completeness proofs for narrowing and other similar uni�cation procedures (including

the ones in this thesis) is based on the idea of lifting validity proofs to situations where terms

may contain variables (with an appropriate substitution applied to them). Based on this obser-

vation, it is easy to see that whenever there are more than one possible validity proofs between

any two given terms, all but one of these proofs may be ignored without sacri�cing complete-

ness of the resulting uni�cation procedure. Bockmayr et al. [1992] have studied a restriction on

narrowing which uses only the left-most innermost proofs, and is therefore optimal in the sense

that two di�erent narrowing derivations cannot generate the same narrowing substitution.

2.2.2 Top-Down Decomposition

A problem with narrowing is that it provides very little control on the positions where rules

get applied; for a complete strategy, all possibilities have to be tried. Another approach for

semantic uni�cation, therefore, attempts to look at terms in a top-down (or almost top-down)

fashion. In this section we brie
y discuss the top-down strategy due to [Martelli et al., 1989].

Martelli and others [1989] used an idea similar to syntactic uni�cation to provide a system

of transformation rules which is complete for uni�cation with respect to convergent rewrite

16

systems. Their system of transformation rules appear in Table 2.2. We solve the goal from

Bind fx
?
= tg [G
;

Gfx 7! tg
if x does not occur in t.

Decompose f(s1; : : : ; sn)
?
= f(t1; : : : ; tn)
;

s1
?
= t1; : : : ; sn

?
= tn

Mutate f(s1; : : : ; sn)
?
= t

;

s1
?
= l1; : : : ; sn

?
= ln; c

?
= true; r

?
= t

where c : l! r is a renamed rule in R.

Expand x
?
= t

;

x
?
= t[r]p; c�

?
= true; l1

?
= t1; : : : ; ln

?
= tn

where c : l! r is a renamed rule in R,
x occurs in t, and t jp� f(t1; : : : ; tn).

Table 2.2: Transformation rules for top-down decomposition

Example 1 using this new strategy:

fapp(app(x; y); z)
?
=nilg ;Mutate(2:1) fapp(x; y)

?
=nil; z

?
= x1; x1

?
=nilg

;
� fapp(x; y)

?
=nilg; � = fz 7! nil; x1 7! nilg

;Mutate(2:1) fx
?
=nil; y

?
= y1; y1

?
=nilg; �

;
� �; fx 7! nil; y 7! nil; z 7! nil; : : :g

Using top-down decomposition, it is possible to have �nite failure in this example, since a

goal of the form app(x; y)
?
=nil, when mutated using rule 2.2, would generate a new goal of

the form x1 � app(y1; y)
?
=nil; at this point, the procedure would declare failure, since none of

the transformation rules apply. There are, however, other problems with this method, since

it uses goals symmetrically. First of all, whenever Expand is applicable, in e�ect, all possible

narrowings of t have to be attempted, which could potentially be very expensive. Secondly, in

Mutate, the left-hand sides from rules (the li subterms) are used symmetrically in the resulting

subgoals. Therefore, subsequent mutation could apply rules into these subterms, which can

17

only generate reducible solutions, and worse still, may result in non-terminating sequences

in situations which can be handled �nitely by basic narrowing. These problems can be seen

through the following example:

Example 3 ([Sivakumar, 1989]). Consider the convergent rewrite system given below:

f(a(x); b(x)) ! a(x) (2.5)

a(s(x)) ! a(x) (2.6)

b(s(x)) ! b(x) (2.7)

Here, f , a and b are de�ned functions, while s is a constructor.

For this system, the goal f(y; y)
?
= y would stop with �nite failure immediately, when using

narrowing, since rule 2.5 is the only one which could be used, but is not applicable since a(x)

and b(x) are not syntactically uni�able.

On the other hand, using the system of transformations described in Table 2.2, we have the

following sequence:

f(y; y)
?
= y ;Mutate(2:5) fy

?
= a(x); y

?
= b(x); a(x)

?
= yg

;
� a(x)

?
= b(x)

Thereafter, there will be an in�nite failing sequence of derivation from this goal, using

rules 2.6 and 2.7. The problem occurs because the subterms a(x) and b(x), introduced through

the left-hand sides of a previously applied rule, are used for further mutations.

As mentioned in Section 2.2.1, for con
uent and non-terminating theories, narrowing is

complete with respect to irreducible solutions. H�olldobler [1987] developed a system, which

is a variant of the one given in Table 2.2, for generating a complete set of solutions for this

case (including the reducible solutions). This system consists of the transformations Bind,

Decompose and Mutate from Table 2.2, together with the two new ones shown in Table 2.3.

Example 4. Consider the con
uent system:

f ! c(f) (2.8)

18

Imitate fx
?
= f(t1; : : : ; tn)g [G

;

(fx1
?
= t1; : : : ; xn

?
= tng [G)fx 7! f(x1; : : : ; xn)g

if x occurs in t, and, x1; : : : ; xn are new variables.

Expand fx
?
= f(t1; : : : ; tn)g [G

;

(fr1
?
= t1; : : : ; rn

?
= tng [G)fx 7! lg

if x occurs in t, and
l! f(r1; : : : ; rn) is a renamed rule in R.

Table 2.3: Transformation rules for con
uent systems

We can now solve the goal x
?
= c(x), using Expand, to get the solution fx 7! fg.

Notice that narrowing would not generate the (reducible) solution fx 7! fg in the example

above.

2.2.3 General E-Uni�cation

The notions of uni�cation using transformations and top-down goal solving have been extended

to handle the uni�cation problem in a general equational theory, mainly through the work of

Gallier and Snyder [1989; 1991]; we brie
y review their system, which is shown in Table 2.4.

Notice that goals are symmetric in this case, so, for example, elimination could be applied even

when the right-hand side of a goal is a variable. For Lazy Paramodulation, whenever l is not a

variable, we use the following variant:

fs
?
= tg [G; fl1

?
= t1; : : : ; ln

?
= tn; s[r]p

?
= tg [G;

where s jp� f(t1; : : : ; tn) and l � f(l1; : : : ; ln).

Example 5 ([Snyder, 1991]). Let E be the equations:

x = f(g(x)) (2.9)

g(h(y)) = g(k(y)) (2.10)

g(k(f(z))) = z (2.11)

19

Trivial fs
?
= sg [G
;

G

Eliminate fx
?
= tg [G
;

Gfx 7! tg
if x does not occur in t.

Decompose ff(s1; : : : ; sn)
?
= f(t1; : : : ; tn)g [G
;

fs1
?
= t1; : : : ; sn

?
= tng [G

Lazy Paramodulation fs
?
= tg [G
;

fs jp
?
= l; s[r]p

?
= tg [G

where p is a non-variable position in s,
l! r is a renamed rule in E [E�1 [R [R�1.

Table 2.4: Transformation rules for general E-uni�cation

We show some of the derivations starting with the goal h(u)
?
= u, where u is a variable:

h(u)
?
= u ;L:P:(2:9) fh(u)

?
= x; f(g(x))

?
= ug

;L:P:(2:11) fh(u)
?
= x; g(x)

?
= g(k(f(z))); f(z)

?
= ug

;Eliminate fg(h(u))
?
= g(k(f(z))); f(z)

?
= u; x 7! h(u)g

;L:P:(2:10) fg(h(u))
?
= g(h(y)); g(k(y))

?
= g(k(f(z))); f(z)

?
= u; x 7! h(u)g

;
� ff(z)

?
= f(z); x 7! h(f(z)); u 7! f(z); y 7! f(z)g

;Trivial fx 7! h(f(z)); u 7! f(z); y 7! f(z)g

In the above derivation we have used L.P. for lazy paramodulation. Each such step has been

performed with a left-to-right orientation of an equation in E.

There have been di�erent suggestions to improve the system of transformation rules provided in

Table 2.4. For example, the fact that lazy paramodulation can be followed immediately by term

decomposition can be iterated down, until at least one side of each of the equations is a variable.

This action (called top-uni�cation) reduces the positions where further paramodulation can be

applied, and therefore results in a better system. See [Dougherty and Johann, 1990] for further

details. Another suggestion, mentioned in [Hsiang and Jouannaud, 1988], is to consider more

20

cases for the terms on the two sides of the goals, and to perform variable bindings eagerly.

Unfortunately, a proof of completeness of this system is still forthcoming (see [Jouannaud and

Kirchner, 1991] for the actual system of transformation rules).

2.2.4 Semantic Uni�cation in Speci�c Equational Theories

In this section we provide a brief summary of results for uni�cation in speci�c equational the-

ories. Almost all the material in this section has been adapted from [Jouannaud and Kirchner,

1991]. Other surveys of uni�cation include [Siekmann, 1989; Baader and Siekmann, 1993].

A(f) Associativity f(f(x; y); z) = f(x; f(y; z))
C(f) Commutativity f(x; y) = f(y; x)
Dr(f; g) Right Distributivity f(g(x; y); z) = g(f(x; z); f(y; z))
Dl(f; g) Left Distributivity f(z; g(x; y)) = g(f(z; x); f(z; y))
D(f; g) Distributivity Dl(f; g) [Dr(f; g)
I(f) Idempotence f(x; x) = x

Table 2.5: Common equational axioms

Name Decidable Some References

� yes [Robinson, 1965; Paterson and Wegman, 1978;
Martelli and Montanari, 1982]

A(f) yes [Plotkin, 1972; Makanin, 1977]
C(f) yes [Siekmann, 1979; Kirchner, 1986]
I(f) yes [Hullot, 1980]
A(f),C(f) yes [Stickel, 1981; Fages, 1984; Kirchner, 1989]
A(f),I(f) yes [Siekmann and Szab�o, 1984; Baader, 1986]
C(f),I(f) yes [Jouannaud et al., 1983]
A(f),C(f),I(f) yes [Baader and B�uttner, 1988]
Dr(f; g) yes [Arnborg and Tid�en, 1985]
Dl(f; g) yes [Arnborg and Tid�en, 1985]
D(f; g),A(f) no Szabo
D(f; g),A(f),C(f) no Szabo
D(f; g) unknown Szabo

Table 2.6: Results on equational uni�cation

In Table 2.5 we have listed the operators and equational theories that are of interested,

while Table 2.6 contains the main results on uni�cation using the equational axioms (and their

21

combinations) from Table 2.5. The main open problem in this area is determining whether

D(f; g) uni�cation is decidable. A number of researchers have looked at di�erent variants of

the problem; see the surveys mentioned earlier for further references.

2.3 Discussion

In Section 2.2 we have presented some of the known results relating to semantic uni�cation.

We started with uni�cation in con
uent systems, in which case, narrowing is complete with

respect to irreducible solutions, whereas the method of [H�olldobler, 1987] is complete even with

respect to reducible solutions. For convergent systems, narrowing and variants of it, such as

normalized and basic narrowing (and a combination thereof, due to [Nutt et al., 1989]) are all

complete strategies. However, we noted that none of these methods is completely satisfactory,

since they have to apply rules non-deterministically at all possible positions, most of the time.

The top-down solution proposed by [Martelli et al., 1989] overcomes this di�culty, but has

certain other problems of its own, since it uses goals in a symmetric manner. In this thesis

we provide a complete uni�cation method which combines the utilities of both narrowing and

top-down decomposition while preserving the advantages of basic and normal narrowing.

We have brie
y mentioned results on uni�cation with speci�c equational theories for com-

pleteness. Although the approach developed in this thesis could be used to generate a complete

set of uni�ers for some of the equational theories mentioned in Section 2.2.4, our method would

not necessarily result in a decision procedure (for example, consider associativity, uni�cation

for which has been proved to be decidable using techniques speci�c to the equational theory).

Therefore, although our approach is somewhat more general from one perspective, uni�cation

in speci�c equational theories is of interest in its own right. We have also looked at previous

results on general E-uni�cation. Although we do not develop methods for general E-uni�cation

in this thesis, it is conceivable that the procedure outlined in this thesis can be extended for

the general case; we outline a poossible approach in Chapter 8.

22

3 UNIFICATION WITH CONVERGENT SYSTEMS

In this chapter we describe a system of transformation rules for solving the satis�ability problem

in an equational theory, and prove its completeness when the theory has a convergent presen-

tation. We show that the transformation rules integrate the notions of \basic" and \normal"

narrowing into a top-down, lazy approach. We also provide systems of transformation rules

that are complete for matching problems in restricted equational theories.

3.1 Transformation Rules for Semantic Uni�cation

From the de�nition of semantic uni�cation, we see that a substitution � is a uni�er of two terms

s and t in a theory E provided the terms s� and t� are equivalent in E (that is, s� =E t�).

Therefore, in order to generate a complete uni�cation procedure, it is natural to start with

a (decision) procedure for proving equality of terms (the validity problem) in the underlying

theory. When the theory E enjoys a convergent presentation R, there exists a trivial decision

procedure for the validity problem, namely, checking (syntactic) equality of normal forms, that

is, u =R v if and only if u #R v. Furthermore, in this case, any one complete strategy of

reducing a term to its normal form is su�cient. In Table 3.1 we describe inference rules for

proving validity using innermost reductions. In order to reduce a term to its normal form, we

Non-Top
s1!

!t1; :::; sn!
!tn;8l!r2R: 69�: f(t1;:::;tn)�l�

f(s1;:::;sn)!!f(t1;:::;tn)

Top
s1!

!t1; :::; sn!
!tn; l!r2R; f(t1;:::;tn)�l�; r�!!t

f(s1;:::;sn)!!t

Table 3.1: Validity using innermost reductions

�rst reduce all its arguments. Thereafter, there are two cases:

� A rule from R applies to the top-most position (that is, inference rule Top applies), in

which case, we continue to reduce the right-hand side of the matching rule.

23

� If none of the rules from R are applicable at the top-most position, then the term is

already in normal form.

The main idea behind using convergent rewrite systems for semantic uni�cation is that if

� is a solution to s
?
= t, then there must be a common normal form w such that s� !! w and

t� !! w. An equational goal s
?
= t can therefore be converted to two directed goals s!? x and

t!? x, where x 2 X is a variable not in t or s. Another way to achieve the same e�ect is to

introduce a new rule of the form eq(x; x)! true (where eq is a new function symbol and true

is a new constant), and consider matchings with respect to this augmented system. (Notice

that whenever a rewrite system R is convergent, so is R [eq(x; x)! true.) Therefore, solving

s
?
= t in the original system is equivalent to solving the matching goal eq(s; t)!? true in the new

system. We will use these two conventions interchangeably in the remainder of this thesis.

Since we are interested in solutions with respect to a convergent rewrite system, we can

further restrict the equation solving procedure to those solutions � that correspond to innermost

derivations s� !!
i w and t� !!

i w (notice that the particular choice of innermost derivations

is for our convenience; it is su�cient to consider any one complete reduction strategy). We do

not actually demand all solutions for completeness; rather, if x� and x� are equal (in R) for all

x 2 X then (at least) one of � or � is deemed redundant.

We can use the transformation rules of Table 3.2 to solve the semantic uni�cation problem

with a convergent R. Some explanations are in order:

� Each transformation rule consists of an antecedent (the �rst line), a consequent (the third

line) and, optionally, a condition (the fourth line, whenever present). Whenever a subgoal

matches the pattern of the antecedent of a transformation rule, we can replace it with the

corresponding consequent, provided the condition holds.

� The transformation rules given in Table 3.2 are non-deterministic, that is, for completeness

all possibilities have to be tried. Thus, for any initial goal, we generate a tree (which we

will call the solution tree) of such possibilities.

� We use expressions of the form x 7! t, where x is a variable, to keep track of partial

solutions. An \unbound variable" is one that does not occur in the domain of the partial

solution generated so far. Furthermore, in the transformation rule for mutation, we

24

Eliminate x!? t

;

x 7! t

where x is an unbound variable that does not occur in t

Bind x!? s; x 7! t

;

x 7! s;mgu(s; t)
if x does not occur in s

Mutate f(s1; : : : ; sn)!? t

;

s1!? l1; : : : ; sn!? ln; r!? t; c!? true; l1 6!; : : : ; ln 6!
where c : f(l1; : : : ; ln)! r is a renamed rule in R

Decompose f(s1; : : : ; sn)!
? f(t1; : : : ; tn)
;

s1!
? t1; : : : ; sn!

? tn

Imitate f(s1; : : : ; sn)!? x

;

s1!? x1; : : : ; sn!? xn; x 7! f(x1; : : : ; xn)
where x is an unbound variable, and x1; : : : ; xn are new variables

Apply s!? t; �

;

s!? t�; �

Table 3.2: Transformation rules for semantic uni�cation

have used irreducibility predicates: any collection of goals containing the irreducibility

predicate s 6! has a solution � provided s� is irreducible (more detailed de�nitions follow).

� We do not automatically apply resulting substitutions back into left-hand sides of goals.

This gives basic-narrowing-like capabilities without having to keep explicit markers for

basic positions [Hullot, 1980]. However, we now need an additional transformation rule

(Imitate) to handle the situation in which the right-hand side of a goal is a variable.

� Although we show Apply as a transformation rule like the rest, we really require that the

resulting substitutions be applied to the right-hand sides of goals eagerly, as mentioned

in the proof of Theorem 3.

25

3.2 Correctness

We discuss properties of the system of transformations described in Section 3.1. In particular,

we will be interested in showing that the procedure outlined in Table 3.2 indeed generates a

complete set of semantic uni�ers for convergent rewrite systems, and that mutation takes place

only at basic positions in goals. We start with some de�nitions:

De�nition 3 (Node). Let G � fs1!
? t1; : : : ; sn!

? tng be a set of goals, � � fx1 7!

u1; : : : ; xm 7! umg be a substitution and P � fu1 6!; : : : ; uk 6!g be a collection of irreducibility

predicates. Then the collection

fs1
?
! t1; : : : ; sn

?
! tn; x1 7! u1; : : : ; xm 7! um; u1 6!; : : : ; uk 6!g

is called a node.

With G, � and P as de�ned above, we write nodes as hG; �;Pi, or simply as hG; �i when the

irreducibility predicates are not important.

De�nition 4 (Solution). A substitution � is a solution to a node hG; �;Pi if:

� � extends �, that is, � = � �
, for some substitution
,

� si� !! ti�, 1 � i � n, and

� uj� is irreducible, for 1 � j � k.

3.2.1 Soundness

In this section we provide a proof of soundness for the system of transformation rules described

in Section 3.1.

De�nition 5 (Soundness). A transformation rule is sound if its application does not introduce

any new solutions, that is, if Ni ; Ni+1 and � is a solution to the node Ni+1, then � must also

be a solution to the node Ni.

Theorem 1 (Soundness). All the transformation rules of Table 3.2 are sound.

26

Proof. The proof is by inspection of all the transformation rules in question. In each case, we

assume that � is a solution to the consequent of the transformation rule and show that � is

also a solution to the antecedent, provided the conditions associated with the transformation

rule hold. Furthermore, since R is convergent, we can assume � to be irreducible without loss

of generality.

Eliminate Since � is known to be a solution to the consequent, we have x� � t�. Furthermore,

since � is irreducible, x� is a normal form. Thus, x� !� t� if and only if x� � t�, which

means that � must also be a solution to the antecedent.

Bind The argument is similar to the case above. Notice that x� � s� � t� must hold, in order

for � to be a solution of the antecedent (that is, � must be a uni�er of s and t). In e�ect,

this is what we have in the consequent, since we are introducing a most-general uni�er.

Mutate Since � is a solution to the consequent set of goals, we have si� !! li�; 1 � i �

n; c� !! true and r� !! t�. From the following derivation we see that � must also be a

solution to the antecedent:

f(s1; : : : ; sn)� � f(s1�; : : :; sn�)!
� f(l1�; : : : ; ln�)! r� !! t�:

Decompose Since � is a solution to the consequent, we have si� !! ti�; 1 � i � n. Fur-

thermore, because of our formulation of the transformation rules and the initial match-

ing goal (recall that we transform s
?
= t into eq(s; t)!? true, where eq is a new symbol)

f(t1; : : : ; tn) must be a subterm of some lj introduced in a previous mutation step. There-

fore, f(t1; : : : ; tn)� must be irreducible (because of irreducibility predicates introduced

during mutation), and thus, f(s1; : : : ; sn)� � f(s1�; : : :; sn�)!
! f(t1�; : : : ; tn�).

Imitate The proof is similar to the one for Decompose.

Apply In this case, we do not change any solutions, since we are applying the partial solution

to a subgoal.

27

Notice that the irreducibility predicates are useful in proving soundness of decomposition and

imitation, and not for mutation. The main purpose of these predicates is to allow only those

solutions which correspond to an innermost proof; see Section 3.2.3 for further details.

3.2.2 Completeness

We now provide a completeness proof for the system of transformation rules under consider-

ation. As in the proof of soundness of Section 3.2.1, we assume, without loss of generality,

that all solutions are irreducible. We begin with the following de�nition of solution-preserving

application of transformations, which is the inverse of a sound application:

De�nition 6 (Solution Preserving). A transformation rule is solution preserving if its appli-

cation conserves solutions, that is, if Ni � hGi; �ii ; hGi+1; �i+1i � Ni+1 and � is a solution

to the node Ni, then � must also be a solution to the node Ni+1.

De�nition 7 (Completeness). Given an equational theory E and two terms s and t, whenever

s� =E t�, there is a derivation of the form

hs
?
= t;�;�i;! h�;�;Pi;

generating a solution �, such that � �E � (that is, 9�8x:x�� =E x�).

Lemma 2. The transformation rules Bind and Eliminate are solution preserving.

Proof. Here we will assume that � is a solution for the antecedent, and explain why � must

also be a solution for the consequent:

Eliminate By assumption, x� !! t�. However, since � is a normalized substitution, it must

be the case that x� � t�, which is exactly what we have for the consequent.

Bind Since � is a solution to the antecedent, we have x� !! s�. Furthermore, � is a normalized

substitution. Therefore, we have x� � s�. Furthermore, x� � t� (since fx 7! tg is a

part of the partial answer for the antecedent). Thus, � must be a uni�er of s and t, and,

in the consequent, we are introducing a most general uni�er of the two terms into the

substitution.

28

Theorem 3 (Completeness). Let R be a decreasing conditional (ground) convergent rewrite

system, and G � feq(u; v)!? trueg be a goal-set that admits a solution �. Then, there exists a

sequence of transformations, starting with the goal G (see De�nition 7 above), which generates

a solution � which is at least as general as � (that is, � �R �).

We will need the following ordering for the proof of completeness:

De�nition 8 (Ordering ��). Let > be the smallest ordering on terms such that s > t if

and only if s ! t or t is a proper subterm of s. We de�ne the ordering �� on nodes,

with respect to a solution �: Let hG1; �1i and hG2; �2i be two nodes, each of which admit

a solution �; then, hG1; �1i �� hG2; �2i if and only if fs1�; : : : ; sn�g � fu1�; : : : ; un�g; where

G1 � fs1!? t1; : : : ; sn!? tng, G2 � fu1!? v1; : : : ; um!? vmg and � is the multiset extension

of >.

Whenever ! is well-founded, so are > and �, and therefore �� . Note that we have not used

the irreducibility predicates in this de�nition. In fact, we do not need irreducibility predicates

for the completeness proof.

Proof. For the proof, we assume that substitutions are applied eagerly to right-hand sides of

goals, that is, we do not consider the transformation rule Apply in this proof.

Although we start with an empty substitution and the set of goals G as stated above, in

general, we will have both a set of remaining goals and a partial computed solution for the

current node under consideration. The proof proceeds by picking any subgoal s!? t from the

current collection, and showing that some solution preserving transformation rule applies to

this goal. Furthermore, we argue that this application reduces the node in the ordering �� .

Reduction ensures that we eventually reach a node of the form h�;�i. Finally, we show that the

computed answer substitution � is at least as general as the solution �. We sketch the di�erent

aspects of the proof:

Reduction For this part, we consider di�erent possibilities of the left-hand side subterm (s)

of the selected subgoal (s!? t):

29

If s is a variable, then either Bind or Eliminate would apply. Each such application is

solution preserving, by Lemma 2. There is also a reduction in the complexity with respect

to �� , since, in either case, the subgoal s!? t is removed.

On the other hand, if s is not a variable, then we have a selected goal of the form

f(s1; : : : ; sn)!
? t, that is, s � f(s1; : : : ; sn). Since � is a solution to this goal, we have

s� !! t�. Furthermore, this is an innermost derivation sequence, that is,

s� � f(s1; : : : ; sn)� � f(s1�; : : : ; sn�)!
� f(ŝ1; : : : ; ŝn)!

! t�;

where si� !
! ŝi; 1 � i � n. We can distinguish two cases, depending on whether the last

!! (which we call the choice step below) consists of at least one rewrite step, namely:

� If the choice step is identity, then we know that f(ŝ1; : : : ; ŝn) � t�: We consider

further cases, depending on the structure of t:

Variable t In this case, Imitate would apply.

Non-variable t The only possibility which can yield a solution is when t �

f(t1; : : : ; tn), in which case, Decompose would apply. (If the leading function

symbol of t is not f , the the goal s!? t does not have a solution.)

Each of these applications is solution preserving. For example, consider Decompose.

Since � is a solution to the antecedent, we have f(s1; : : : ; sn)� � f(s1�; : : : ; sn�)!
!

f(t1�; : : : ; tn�). Furthermore, this being an innermost derivation without a rule ap-

plication at the top-most position ensures that si� !! ti�; 1 � i � n, and thus this

application of Decompose is solution preserving. Next, consider Imitate: If � is a

solution to the antecedent, we have f(s1; : : : ; sn)� � f(s1�; : : : ; sn�)!
! x�. Further-

more, since � must be a normalized solution, x� must be of the form f(t1; : : : ; tm).

Also, by assumption, no rule applies to the top-most position of f(s1�; : : : ; sn�) in

this derivation; therefore, we must have si� !
! ti; 1 � i � n. Finally, since x1; : : : ; xn

are new variables, we could set xi� � ti; 1 � i � n, which shows that � is a solution

to the consequent.

30

Furthermore, in each case, there is a decrease in the complexity of the problem

(with respect to ��), because we replace f(s1; : : : ; sn) by the multiset containing

si; 1 � i � n.

� If the choice step consists of at least one rewrite, then some rule from R must be

applicable at the top-most position of f(ŝ1; : : : ; ŝn) (since each of its proper subterms

is already in normal form). In this case, the transformation rule Mutate would apply

to the goal. Suppose, c : f(l1; : : : ; ln) ! r be the �rst applicable rule (from R) in

the reduction f(ŝ1; : : : ; ŝn) !
! t�. Since this is a matching rule, and each ŝi is in

normal form, we must have ŝi � li�. Furthermore, because the rule has a condition,

which must hold for rule-application, we must have c� !! true. Finally, since the

system is convergent, we must have r� !! t�. These arguments demonstrate that

the application of Mutate under consideration is solution preserving.

To establish reduction, we must compare f(s1; : : : ; sn)� with the multiset consisting

of c�; r� and si�; 1 � i � n. We know that f(s1; : : : ; sn)� �� si� because > has

the subterm property, f(s1; : : : ; sn)� �� c� since ! is decreasing conditional, and

f(s1; : : : ; sn)� �� r� since ! is well-founded and stable under substitution.

Generality As an outcome of the above discussion, we see that whenever � is a solution to

some initial equational goal, the transformation system eventually �nds a node with a

computed solution (in which there are no remaining subgoals to be solved).

That this computed solution is at least as general as the solution � under consideration

is a consequence of the fact that each application of a transformation rule is solution

preserving.

A sketch of this completeness proof �rst appeared in [Dershowitz et al., 1990]. However, in

that paper, De�nition 4.4 (Page 289) does not include the subterm property for the ordering

�� , which is incorrect (actually, the completeness proof in Section 5 of [Dershowitz et al., 1990]

uses the correct ordering). This was pointed out by Hanus [1993] and others.

31

3.2.3 Discussion

We have used the concept of irreducibility predicates in the transformation rules, which was

used in the soundness proof, but not for completeness. The following example shows that

irreducibility predicates are indeed necessary:

Example 6. Let R be the convergent rewrite system given below:

g(0; 0) ! 0 (3.1)

f(g(0; x)) ! g(x; 0) (3.2)

f(0) ! 0 (3.3)

Here, f and g are de�ned functions, x is a variable and 0 is a constant. Consider the goal

f(g(y; y))
?
=0 (that is, ff(g(y; y))!? x0; 0!? x0g, for some variable x0). One possible derivation

sequence is shown below:

ff(g(y; y))!? x0; 0!? x0g ;Imitate ff(g(y; y))!? x0; x0 7! 0g

;Mutate fg(y; y)!? g(0; x); g(x; 0)!? x0; x0 7! 0g

;Decompose fy!? 0; y!? x; g(x; 0)!? x0; x0 7! 0g

Consider the last node, that is, fy!? 0; y!? x; g(x; 0)!? x0; x0 7! 0g, which has a solution

� � fy 7! 0; x 7! 0g. However, this � is not a solution for the antecedent (for the application

of Decompose), since the term g(0; 0) (which appears on the right-hand side of a subgoal in

this antecedent) is reducible, and thus, g(y; y)� !! g(0; x)� does not hold. Notice that the

irreducibility predicate for the application of Mutate using Rule 3.2 (that is, g(0; x) 6!) would

disallow this solution.

In Example 6, the problem occurred because there is a critical overlap (the left-hand side of

Rule 3.1 uni�es with a subterm of the left-hand side of Rule 3.2) in R; therefore, a potentially

reducible term (g(0; x)) gets introduced into the right-hand side of a goal after mutation with

the rule f(g(0; x)) ! g(x; 0). In fact, it is possible to incorporate special pruning rules to

eliminate branches of the solution tree which contain goals with reducible right-hand sides. We

will consider pruning rules in Section 3.3.3.

32

3.2.4 Basic Positions

The following de�nition of basic positions is a variation of the one used by Hullot:

De�nition 9 (Basic Positions). Consider a term t and a set of non-variable positions U in t.

Furthermore, if t;p t
0 using a rule l ! r, then the set of basis positions U 0 of t0 is de�ned as:

U 0 = fU � fv 2 U j p � vgg [fp � v j v 2 O(r)g:

Here, p represents the occurrence in U where the rule l! r is applied, while O(r) stands for the

non-variable occurrences of r. In other words, whenever a step of ; is applied at any position

p, we generate the new set of non-variable positions by replacing all positions below p with the

non-variable occurrences from r.

Hullot showed that for a convergent rewrite system, narrowing applied only to basic positions

is a complete strategy. A similar result holds for our system:

Lemma 4 (Basic Positions). The uni�cation procedure outlined in Table 3.2 applies rules only

to basic positions in goals.

Proof. Notice that we are dealing with unconditional rules in De�nition 9 of basic positions.

Thus, in Table 3.2 we do not consider the subgoal c!? true generated by mutation.

The only place where we apply rules to goals is in the transformation for mutation. Poten-

tially, any top-most position of a left-hand side of a goal is available for applying rules. However,

since we have directed goals, the only terms that could appear on the left-hand sides of sub-

goals are either subterms of s or t (recall that we start with the single goal eq(s; t)!? true) or

subterms of r, where r is a variant (after variable renaming) of a right-hand side of a rule (in

R) previously used for mutation. (Furthermore, any time a variable occurs as the left-hand side

of a goal, no further mutation would be possible for that goal.) Therefore, only basic positions

could appear on the left-hand sides of goals.

It is possible to extend De�nition 9 to handle conditional rules also, by including non-variable

positions from the condition. Lemma 4 would still be valid.

33

3.3 Re�nements

Several re�nements of the basic system of transformation rules developed in the previous sec-

tions are suggested here. Wherever necessary, a proof of completeness in presence of the addi-

tional transformation rule(s) is also outlined.

3.3.1 Normalized Goals

The concept of \normal narrowing" has been discussed in detail in the literature. Rewriting

is a special case of narrowing, in which the corresponding narrowing substitution does not

instantiate the goal variables. In normalized narrowing, whenever a term admits a rewrite step,

such a step is taken deterministically, without considering any of the other possible narrowings

of the term. Such a strategy is complete whenever the rewrite system is convergent [Fay, 1979].

In our system, we have to add the transformation rule described in Table 3.3 to have similar

e�ects. Completeness, in presence of this additional transformation rule, can be proved using

Normalize s!? t; �

;

ŝ!? t; �

where s� !+ ŝ

Table 3.3: Transformation for normalizing

the following lemma:

Lemma 5 (Normalization Preserves Solutions). Any application of Normalize is solution pre-

serving. Furthermore, there is also a decrease in the complexity of the resulting goal with respect

to the ordering ��.

Proof. Suppose � is a solution to the antecedent. Thus, s� !! t�. Also, since � is a solution,

it must be an extension of �. Thus, s�� � s� and therefore one way to normalize s�� is to �rst

rewrite s� to get ŝ, and then normalize ŝ�, and because R is convergent, the result should be

the same, that is, ŝ� !! t�.

Decrease in �� can be shown by virtue of the fact that at least one rewrite step must take

place from s� to ŝ.

34

Since normalization causes a decrease in complexity for all solutions, and is solution preserv-

ing, it can be used in a deterministic fashion (unlike, say mutation, which has to be used in

conjunction with decomposition or imitation) very much like normalized narrowing.

In the combined system, it is possible to apply rules to non-basic positions, since Normalize

may result in putting some terms from � into the left-hand side of the new subgoal (via ŝ).

The following example will clarify the point:

Example 7. Consider the convergent rewrite system given below:

f(x; 0) ! x (3.4)

g(0) ! 0 (3.5)

c(0; g(y); 0) ! 0 (3.6)

c(0; 0; 0) ! 0 (3.7)

Here, f; g and c are de�ned functions, 0 is a constant, while x and y are variables. Considering

the goal c(f(x1; x2); x1; x2)!? 0, we have derivations as shown below:

fc(f(x1; x2); x1; x2)!
? 0g ;Mutate(3:6) ff(x1; x2)!

? 0; x1 7! g(y); x2 7! 0g

;Normalize fg(y)!? 0; x1 7! g(y); x2 7! 0g

;Mutate(3:5) fy!? 0; 0!? 0; x1 7! g(y); x2 7! 0g

;
� fx 7! g(0); y 7! 0g

fc(f(x1; x2); x1; x2)!? 0g ;Mutate(3:6) ff(x1; x2)!? 0; x1 7! g(y); x2 7! 0g

;Mutate(3:4) fx1!
? x; x2!

? 0; x!? 0; x1 7! g(y); x2 7! 0g

; Fail

In the �rst part, we have used normalization, which we do not use it in the second. In

the �rst part, we get a reducible (and hence redundant, since we have a convergent rewrite

system) solution, while we obtain failure in the other case, since the two values of x1 (0 and

g(y)) are not (syntactically) uni�able, and Bind is the only possible transformation rule which

could apply to this node. Note that there is a single normalized solution to the above problem

(fx 7! 0; y 7! 0g) which is generated in either case using mutation of the initial goal with

the rule c(0; 0; 0) ! 0. Furthermore, notice that in presence of the irreducibility predicates,

35

even the �rst branch will be eliminated, since the restriction associated with mutation using

Rule 3.6 would dictate that g(y), with the �nal solution applied to it, should be irreducible.

Thus, although we may mutate in positions which are non-basic, we never, in fact, generate the

corresponding reducible solutions, as shown by the following lemma:

Lemma 6 (Basic Solutions). For the system of transformation rules under consideration, any

branch which leads to a solution never uses mutation at a non-basic position.

Proof. By Lemma 4 all transformation rules other than Normalize preserves basic positions

on left-hand sides of goals. Furthermore, considering Normalize, because of our formulation

of the transformation rules and the initial node, every variable in the domain of the partial

solution � must be bound to a term introduced through the left-hand side of a previous rule

application using mutation, and must therefore have a corresponding irreducibility predicate

associated with it. Therefore, any further mutation of such a term (or its subterms) would

cause the irreducibility predicate to be violated and the solution to be discarded.

Finally, when using Normalize, we cannot introduce irreducibility predicates, as shown by

the following example:

Example 8 ([R�ety, 1987]). Consider the convergent rewrite system:

g(a(x0; y0); a(x0; y0)) ! f(h(x0); h(y0)) (3.8)

f(x00; x00) ! x00 (3.9)

h(h(x)) ! x (3.10)

We show the derivations corresponding to the goal g(a(y; y); z)!? 0 below:

g(a(y; y); z)!? 0 ;Mutate(3:8) a(y; y)!? a(x0; y0); z!? a(x0; y0); f(h(x0); h(y0))!? 0

;
� f(h(x0); h(y0))!? 0; y 7! x0; x0 7! y0; z 7! a(x0; y0)

;Normalize h(y0)!? 0; y 7! x0; x0 7! y0; z 7! a(x0; y0)

;Mutate(3:10) y0!? h(x); x!? 0; y 7! x0; x0 7! y0; z 7! a(x0; y0)

;
� y0 7! h(0); y 7! h(0); x0 7! h(0); z 7! a(h(0); h(0))

Notice that if we were to impose an irreducibility requirement on the variable x00 (from Rule 3.9),

then we would not get the solution, since the term matching x00 in this case is h(h(0)), which

36

is reducible. R�ety also uses a similar solution when he extends the concept of basic positions

to weakly-basic position; see [R�ety, 1987].

3.3.2 Inductive Simpli�cation

In Section 3.3.1 we have shown that it is possible to use normalization and have a complete

uni�cation strategy. The main advantage of using simpli�cation (normalization) during uni�-

cation is to keep goals reduced, and even eliminate in�nite branches (see Example 11). In this

section we deal with a special case of simpli�cation, using inductive consequences, as de�ned

below:

De�nition 10 (Inductive Consequence). Given an equational theory E and two terms s and

t, s = t is an inductive consequence of E if and only if for any ground substitution � there

exists a proof of s� =E t�.

A similar notion (using #R instead of =E) can be de�ned in case E admits a convergent pre-

sentation R.

The main idea is the same as before. We want to replace a node of the form hG; �i with a

new node hG0; �i, such that each solution to the former is also a solution to the latter (using the

concept of solution preserving transformation), and the complexity of the latter node (in the

ordering ��) is less than that of the former. Suppose l = r is an inductive consequence of E. If

we have a node s!? t in G, such that a subterm of s at position p matches l with a substitution

�, then we replace the current goal with s[r]�!? t, provided there is a decrease in the ordering

�� . If � is a ground solution of s!? t (that is, s� !! t�), then s[r]p� =E s[l]p� !! t�,

which shows that the application of inductive simpli�cation is solution preserving. The major

advantage of inductive consequences is that they can be used deterministically for simpli�cation,

without having to use them for mutation, since the inductive consequences does not add any

new ground proofs; see Example 11 below.

Inductive simpli�cation is particularly useful for systems which obey the constructor disci-

pline, that is, it is possible to partition the set of functions (F) into two disjoint sets C and

D, such that the normal form of any ground term, with function symbols from F , consists of

symbols from C alone; the rules for addition and multiplication (see Example 11) de�nes such

a system, in which C = f0; sg and D = f+; �g.

37

3.3.3 Pruning Unsatis�able Goals

Semantic uni�cation is expensive to implement, because of the non-deterministic nature of the

transformation rules given in Table 3.2. Furthermore, the uni�cation problem in a convergent

system is only semi-decidable: any complete strategy would enumerate a uni�er, whenever

one exists. However, on the negative side, if there is no uni�er for a given set of equations,

the complete strategy may not terminate|for instance, the uni�cation problem in the the-

ory of addition and multiplication (Rules 3.18 through 3.21 of Example 11) is known to be

undecidable|see Chapter 7 for further details. Thus, one important criterion for judging the

e�ectiveness of a uni�cation procedure is to consider how often the procedure can successfully

detect unsatis�able goals.

We begin this section by showing that an extension to the top-down uni�cation procedure

outlined in Section 3.1 can eliminate unsatis�able goals in situations in which narrowing would

go into an in�nite failing branch:

Example 9. Consider the convergent rewrite system

b(0; 0) ! c (3.11)

b(s(x); y) ! g(x; y) (3.12)

g(s(x); y) ! g(x; y) (3.13)

It is evident that the goal b(y; 1)
?
= c has no solution (since if y = 0, the �rst rule does not apply,

and for any other substitution for y, the normal form of b(y; 1) has either b or g as the root

symbol). Applying narrowing to this goal would lead to an in�nite failing branch (because of

Rule 3.13). However, we could preprocess the rewrite system and make the observation that a

term with g as the root symbol can never be uni�ed with c. In our approach, starting with the

goal b(y; 1)!? c, after the initial mutation (decomposition would fail right away), we would get

a subgoal like g(x0; y0)!? c. At this point, due to the above observation, we could fail the goal.

This example motivates the use of a special transformation rule for failing goals based on a

reachability graph built from the rewrite system, which could eliminate a class of unsatis�able

goals. The reachability graph consists of nodes corresponding to the function symbols in the

rewrite system. For every rule of the form f(l1; : : : ; ln)! x (where x is a variable), we draw a

38

directed arc from f to all the nodes in the graph, while for rules like f(l1; : : : ; ln)! g(r1; : : : ; rm),

we draw an arc from f to g (see [Dershowitz and Sivakumar, 1988] for further details). Notice

that the reachability test can be incorporated into the narrowing process too, with similar

results. In fact, more recently, Chabin and R�ety [1991] have developed an extension of the

reachability test discussed here, for a narrowing based approach.

The uni�cation procedure outlined in Section 3.1 also performs better than the one provided

by Martelli and Montanari [1989] (one major di�erence between the two is that the latter uses

goals symmetrically, and therefore generates reducible solutions), as can be seen from the

following example:

Example 10. Let R be the convergent rewrite system given below:

f(g(x)) ! f(x) (3.14)

g(f(x)) ! g(x) (3.15)

f(f(x)) ! f(x) (3.16)

g(g(x)) ! g(x) (3.17)

Consider the goal f(x)
?
= g(x). Using normalized-narrowing (see [Nutt et al., 1989] for details),

we would get:

f(x)
?
= g(x) ;Narrow(3:14) f(x0)

?
= g(g(x0)); x 7! g(x0)

;Normalize f(x0)
?
= g(x0); x 7! g(x0)

There are other ways to narrow the initial goal (we could either narrow f(x) using Rule 3.16,

or narrow g(x) using Rules 3.15 or 3.17), however, each narrowing derivation leads to a similar

subgoal; thus, there is an in�nite failing branch.

Even when we use the approach outlined in [Martelli et al., 1989], we have a similar problem:

f(x)
?
= g(x) ;Mutate(3:14) x

?
= g(x0); f(x0)

?
= g(x)

; f(x0)
?
= g(g(x0)); x 7! g(x0)

; f(x0)
?
= g(x0); x 7! g(x0)

39

However, if we were to use the procedure outlined in this thesis, we get the following derivation

(we would �rst transform the goal f(x)
?
= g(x) into two directed goals f(x)!? y; g(x)!? y, for

a new variable y):

f(x)!? y; g(x)!? y ;Mutate(3:14) x!? g(x0); f(x0)!? y; g(x)!? y; g(x0) 6!

;Eliminate f(x0)!? y; g(x)!? y; g(x0) 6!; x 7! g(x0)

;Normalize f(x0)!? y; g(x0)!? y; g(x0) 6!; x 7! g(x0)

Since we have the irreducibility predicate g(x0) 6!, any further mutation of the subgoal

f(x0)!? y (or g(x0)!? y) is impossible, since such a mutation would cause g(x0) to become

reducible. A similar situation would occur if we were to solve the initial goal in the other

order, or if we were to mutate using a di�erent rule from R, establishing that we can stop with

�nite failure. This example illustrates the importance of irreducibility predicates in pruning

unsatis�able goals (see Table 3.4 for the appropriate transformation rule).

We are now ready to formalize the failure cases as transformation rules, as shown in Ta-

ble 3.4. Notice that the addition of failure rules do not cause any problem as far as soundness

of the system is concerned (since failure terminates a branch without providing any solution).

However, we would still require to show that completeness holds even when we have these ad-

ditional transformation rules. Since the failure rules are deterministic, we can consider them

one at a time, and argue that each one of them is solution preserving:

Theorem 7. Each transformation rule in Table 3.4 is solution preserving.

Proof.

OccurCheck If x occurs in t, then the goal x!? t can have no �nite solution.

Clash If � is a solution to the antecedent, then, by de�nition, we should have x� !! s� and

x� � t�. Furthermore, since we are only interested in irreducible solutions, we have

s� � t�, which is a contradiction to the fact that s and t are not syntactically uni�able.

Thus, no such � is possible.

Reachable Suppose � is a solution to f(s1; : : : ; sn)!
? g(t1; : : : ; tm), that is, f(s1�; : : : ; sn�)!

!

g(t1�; : : : ; tm�). Therefore, either some collapsing (rule which has a variable as the right-

hand side) rule must have been used in this derivation, or a rule which has f and g as

40

OccurCheck x!? t

;

Fail

if x occurs in t

Clash x!? s; x 7! t

;

Fail

if s and t are not syntactically uni�able

Reachable f(s1; : : : ; sn)!? g(t1; : : : ; tm)
;

Fail

if there is no path from f to g in the reachability graph of R

Reducible t 6!; �

;

Fail
if t� is reducible

Table 3.4: Failure transformation rules

the root symbol of the left- and right-hand sides, respectively, must have been used. In

either case, there should be a path from f to g in the reachability graph of R, which is a

contradiction.

Reducible If � is a solution to ft 6!; �g, then t� must be irreducible. However, since t� is

reducible, and � must extend � to be a solution, no such � can exist.

3.4 Example

The following example illustrates all the notions developed so far:

Example 11. Consider the convergent rewrite system for addition (+) and multiplication (�)

over natural numbers:

0 + x ! x (3.18)

s(x) + y ! s(x + y) (3.19)

41

0 � x ! 0 (3.20)

s(x) � y ! y + (x � y) (3.21)

We also use the following rules, which are provable inductive consequences of the above program,

for simpli�cation:

x+ 0 ! x (3.22)

x � 0 ! 0 (3.23)

The four rule system (that is, Rules 3.18 through 3.21) given above is already complete and

convergent (thus, the inductive consequences need not be used for mutation). Furthermore,

the entire system, consisting of Rules 3.18 through 3.23, is terminating; this ensures that

whenever we use an inductive consequence for simpli�cation, we do indeed have a decrease in

the complexity of the goals.

fx+ y!? 0g ;Mutate(3:18) fx!? 0; y!? x1; x1!
? 0g

;Bind� fx 7! 0; y 7! 0; x1 7! 0g

fx+ y!? 0g ;Mutate(3:19) fx!? s(x2); y!
? y2; s(x2 + y2)!

? 0g

; Fail

Table 3.5: Solving goals of the form x+ y!? 0

We want to solve the goal x�y!? s(0) (this is, in e�ect, the same as solving x�y
?
= s(0)). We

start by showing, in Table 3.5, that a simpler goal, x+ y!? 0 has a unique solution. As before,

we underline the left-hand side of the subgoal whenever mutation is used, and mention the rule

(in R) used in the process. We also make use of failure rules whenever a goal is known to be

unsatis�able, and mention the reason why such goals should be unsatis�able. For example,

failure, in the last branch, occurs because there are distinct constructors on the two sides of

the goal s(x2 + y2)!? 0, which would mean that the goal is unsatis�able.

Next, in Table 3.6, we show derivations corresponding to the initial goal (x�y!? s(0)). We

get failure in the �rst branch since s(0) cannot be the normal form of 0. Thereafter, in Table 3.7,

we show the derivations corresponding to the only remaining subgoal, fy2 + (x2 � y2)!? s(0)g[

42

fx � y!? s(0)g ;Mutate(3:20) fx!? 0; y!? x1; 0!? s(0)g

; Fail

fx � y!? s(0)g ;Mutate(3:21) fx!? s(x2); y!
? y2; y2 + (x2 � y2)!

? s(0)g
;Bind� fy2 + (x2 � y2)!

? s(0)g [�1

Table 3.6: Solving goals of the form x � y!? 0

�1. Finally, the derivation tree for the goal fx2 � y2!
? 0g [�3, is shown in Table 3.8. Thus,

fy2 + (x2 � y2)!? s(0)g [�1 ;Mutate(3:18) fy2!? 0; x2 � y2!? x3; x3!? s(0)g [�1
;Bind� fx2 � y2!

? x3g [�1 [fy2 7! 0; x3 7! s(0)g
;Normalize f0!? s(0)g [�1 [fy2 7! 0; x3 7! s(0)g

; Fail

fy2 + (x2 � y2)!
? s(0)g [�1 ;Mutate(3:19) fy2!

? s(x4); x2 � y2!
? y4;

s(x4 + y4)!
? s(0)g [�1

;Bind fx2 � y2!? y4; s(x4 + y4)!? s(0)g [�2
;Decompose fx2 � y2!

? y4; x4 + y4!
? 0g [�2

;Table 3:5 fx2 � y2!
? 0g [�2 [fx4 7! 0; y4 7! 0g

Table 3.7: Solving goals of the form y + (x � y)!? s(0)

fx2 � y2!
? 0g [�3 ;Mutate(3:20) fx2!

? 0; y2!
? x5; 0!

? y4g [�3
;

� fx 7! s(0); y 7! s(0); : : :g

fx2 � y2!? 0g [fy2 7! s(0); : : :g ;Mutate(3:21) fx2!? x6; y2!? y6; y6 + (x6 � y6)!? 0g
[fy2 7! s(0); : : :g

;Bind� fy6 + (x6 � y6)!? 0g [fy6 7! s(0) : : :g

;Normalize fs(x6 � s(0))!
? 0g [fy6 7! s(0) : : :g

; Fail

Table 3.8: Solving goals of the form x � y!? 0

the only solution (fx 7! s(0); y 7! s(0); : : :g) to the initial goal is obtained from the �rst branch

of Table 3.8. At one point in Table 3.7 we assumed that the goal x4 + y4!? 0 has a single

solution, which was shown in the derivations of Table 3.5. The substitutions �1; �2 and �3 used

43

in the derivation sequence have the following bindings:

�1 = fx 7! s(x2); y 7! y2g

�2 = fx 7! s(x2); y 7! s(x4); y2 7! s(x4)g

�3 = fx 7! s(x2); y 7! s(0); y2 7! s(0); x4 7! 0; y4 7! 0; : : :g

Thus, for the initial goal x + y!? s(0), our system produces the single solution � � fx 7!

s(0); y 7! s(0)g, and terminates in �nite time (since all the branches are closed). Notice

that without normalization, we would not get a �nite solution tree, since a goal of the form

x � 0!? s(0) (Table 3.7, �rst branch) would generate an in�nite branch through successive

mutations. Also, note that in order to use Normalize, an inductive consequence (Rule 3.23) is

required.

3.5 Transformation Rules for Semantic Matching

Although in general semantic matching is as complex as semantic uni�cation (for example,

solving the goal s
?
= t in the convergent theory R is equivalent to solving the goal eq(s; t)!? true

in the theory R[eq(x; x)! true, as discussed before), for a large class of systems, a simpler set

of transformation rules provide a complete set of semantic matches. In this section we consider

simpli�cations of the set of transformation rules provided in Section 3.1. First of all, we look

at matching in theories de�ned by non-erasing convergent systems, using the transformation

rules of Table 3.9. The main di�erence between this system and the one given in Table 3.2

is that Bind and Eliminate, in this case, only has to deal with ground terms; also, we do not

need a transformation for imitation, and, as we show in the proof of Theorem 8, we can apply

substitutions as required, and thus, do not require Apply.

The following theorem provides the completeness result:

Theorem 8 (Completeness). Let R be a non-erasing (ground) convergent rewrite system. If

the goal s!?N has a solution � (that is, s� !! N), then there is a derivation of the form

fs
?
!Ng

!
; �;

such that � is a substitution at least as general as �.

44

Eliminate fx!?Ng
;

fx 7! Ng
where x is a free-variable, N is a ground normal-form

Bind fx!?N; x 7! Ng
;

fx 7! Ng
where N is a ground normal-form

Mutate ff(s1; : : : ; sn)!
? tg

;

fs1!
? l1; : : : ; sn!

? ln; r!
? t; c!? trueg

where c : f(l1; : : : ; ln)! r is a renamed rule in R

Decompose ff(s1; : : : ; sn)!? f(t1; : : : ; tn)g
;

fs1!? t1; : : : ; sn!? tng

Table 3.9: Transformation rules for semantic matching with non-erasing systems

Proof. The proof is almost identical to the one for Theorem 3. The only di�erence is that we

now have to use a selection strategy for picking subgoals to solve.

We show that we need only deal with subgoals which have ground normal forms on their

right-hand sides. Consider a goal of the form s!?N , where N is a ground normal form. De-

composition would preserve the property (that is, decomposition would only generate subterms

of N on the right-hand sides of subgoals). Consider mutation, which generates the subgoals

s1!? l1; : : : ; sn!? ln; r!?N; c!? true. We then solve the r!?N subgoal �rst, to get a partial

solution �. Thereafter, we apply this � to the right-hand sides of the subgoals si!? li; 1 � i � n.

Since � is a solution to r!?N , we have r� !! N . Thus, � must be a ground substitution,

or else we would have a situation in which a non-ground term (r�) would rewrite to a ground

normal form (N) using only non-erasing rules, which is not possible. Finally, since the rule

(f(l1; : : : ; ln) ! r) used for mutation is non-erasing (that is, r contains all variables that col-

lectively appear in l1; : : : ; ln), each li� must be a ground term. The rest of the proof is quite

similar to the one for Theorem 3.

Next, we consider matching in theories de�ned by convergent, left-linear rewrite systems.

A system very close to the one in Table 3.2 works for this case. The new system is given in

Table 3.10. We now state the completeness theorem:

45

Eliminate fx!? tg
;

fx 7! tg
where x is a free-variable that does not occur in t

Bind fx!? s; x 7! tg
;

x 7! s;mgu(s; t)
if x does not occur in s

Mutate ff(s1; : : : ; sn)!
? tg

;

fs1!
? l1; : : : ; sn!

? ln; r!
? t; c!? trueg

where c : f(l1; : : : ; ln)! r is a renamed rule in R

Decompose ff(s1; : : : ; sn)!? f(t1; : : : ; tn)g
;

fs1!? t1; : : : ; sn!? tng

Table 3.10: Transformation rules for semantic matching with left-linear systems

Theorem 9 (Completeness). Let R be a left-linear (ground) convergent rewrite system. If the

goal s!?N has a solution � (that is, s� !! N), then there is a derivation of the form

fs
?
!Ng

!
; �;

such that � is a substitution at least as general as �.

We need the following lemmata for the proof.

Lemma 10. Let R be a left-linear convergent rewrite system. Then, for the initial goal

fs!?Ng, where N is ground, if G [ft!? t0g is the set of subgoals generated by the procedure

at some point and x is a variable in t0, then t0 must be linear with respect to x; furthermore, x

does not occur in any right-hand side of a subgoal in G.

Proof. If �!? t is a subgoal generated by the procedure for the initial goal s!?N , then the

variables of t must come either from N or from the left-hand side of some rule in R. For our

case, N is ground, and R is left-linear, thus this variable cannot occur in any other right-hand

side in the goal set, and again t itself must be linear in this variable.

Lemma 11. Let R be a left-linear convergent rewrite system. Then, in solving fs!?Ng, a

subgoal of the form s!? x can be ignored without having to solve it any further.

46

Proof. Let G denote the remaining set of subgoals when s!? x is encountered. By Lemma 10,

x cannot appear in any right-hand side in G. Furthermore, we always solve subgoals of mutation

using the following strategy: solve the r!? t subgoal �rst, to get a solution �, and then solve

the remaining subgoals si!
? li� in any order. Therefore, if we ever encounter a goal of the

form s!? x, then x must be a variable which does not require instantiation (that is, x does not

appear anywhere in the remaining subgoals). Thus, any such goal is trivially solvable (that is,

it has a solution for any substitution for the variables in s), and can be ignored. (As a result,

all the variables in s would have indeterminate solutions, unless they appear on the left-hand

side of some other goal which causes instantiation.)

We now state the proof of the theorem:

Proof. Notice that the major di�erence between the transformation rules for semantic uni�-

cation (Table 3.2) and those for matching in left-linear systems (Table 3.10) is that the latter

does not have the rule for imitation. However, by Lemma 11, whenever a variable appears as

the right-hand side of a goal, that goal is trivially solvable. Therefore, the remaining transfor-

mation rules are enough to enumerate a complete set of solutions of any matching goal in this

case.

Note that, as in the case of non-erasing systems, we could apply partial solutions as required,

and therefore do not have to explicitly consider Apply.

3.6 Discussion

Most of the results given in Section 3.1 were �rst presented in [Dershowitz et al., 1990], while

the completeness of matching in the restricted case was proved in [Dershowitz et al., 1992].

The main advantage of the method outlined in this thesis, over narrowing, is that our approach

provides more control on positions where rules get applied to goals. Completeness of narrow-

ing strategies (for example, outer narrowing [You, 1989] and innermost narrowing [Fribourg,

1985]) have been investigated. These strategies are complete only when the rewrite system has

additional restrictions, over and above convergence. The method outlined in this thesis, on

the other hand, is complete for any convergent presentation. Furthermore, we only use basic

positions for rule application, and have deterministic simpli�cation to reduce branching in the

solution tree.

47

Methods based on top-down decomposition are known to be complete for convergent sys-

tems [Martelli et al., 1989]. However, in this case, a di�erent problem occurs because they use

symmetric goals, thus allowing mutation of subterms introduced through the left-hand sides of

previous rule applications (see Example 3). It is well-known that solutions generated thus are

reducible, and therefore redundant, since we have a convergent system. We solve this problem

by considering directed goals (!?) as opposed to symmetric goals (
?
=), and using only the left-

hand sides of goals for mutation. Furthermore, since we have directed goals, we have separated

out more cases based on the structure of terms in goals, thus facilitating eager variable binding.

For example, in our case, by virtue of Lemma 2, we know that Bind and Eliminate are solution

preserving, and therefore we can deterministically bind variables whenever they appear as the

left-hand side of a directed goal. (See Section 10 of [Gallier and Snyder, 1989] for a discussion of

the problems of proving completeness in presence of eager binding if symmetric goals are used.)

Therefore, in essence, our method combines the advantages of [Martelli et al., 1989] and [Nutt

et al., 1989] in a single uni�ed framework.

Gallier and Snyder [1989] have addressed a more general problem, that of uni�cation in

arbitrary equational theories, and, as a special case, they discuss the problem of uni�cation

in ground convergent rewrite systems. Their solution is based on the fact that any equational

theory can be completed (using unfailing completion techniques developed by [Bachmair, 1987]

and others) into a (possibly in�nite) ground convergent rewrite system. So, one way to generate

a complete set of uni�ers is to work in this terminally ground convergent system, provided the

rules of inference are powerful enough to generate all the critical pairs which are required

in order to generate this convergent system. However, they have used symmetric goals, and

therefore generate some redundant solutions. This was, in fact, pointed out in [Dougherty and

Johann, 1990], wherein a more e�cient system for general E-uni�cation has been presented.

48

4 HIGHER-ORDER UNIFICATION

There have been di�erent proposals to combine higher-order features with �rst order equational

reasoning (including [Breazu-Tannen, 1988; Dougherty, 1991], and others). These proposals

deal with the combination of lambda-calculus and a �rst-order equational theory. Recently,

Dougherty and Johann ([Dougherty and Johann, 1992; Dougherty, 1993]) proposed a method

for higher-order reasoning by transforming lambda-calculus terms to combinatory logic, that

is, they use a combination of combinatory-logic with an equational theory as the formulation

of higher-order reasoning. In [Dougherty and Johann, 1992], they also provide a complete set

of transformations for solving the satis�ability problem in such a combined system. Some of

the main advantages (pointed out in [Dougherty and Johann, 1992]) of using combinatory logic

as the basis of higher-order uni�cation (as opposed to the traditional lambda-calculus based

methods such as [Snyder, 1990; Nipkow and Qian, 1991], etc.) are: it eliminates some technical

problems associated with bound variables, allows easy incorporation of type-variables, and

facilitates the use of substitution like in the �rst-order case. We extend the �rst-order uni�cation

procedure from Section 3.1 to develop a complete method for solving the satis�ability problem in

(typed) combinatory logic, together with a set of algebraic axioms R, when R can be presented

as a convergent rewrite system.

The main problem with the approach used of [Dougherty and Johann, 1992] is that nar-

rowing as a method for solving equations provides very little control, since a complete method

based on narrowing has to, in general, apply rules to all possible positions in terms. For the �rst

order case, di�erent re�nements of narrowing have been suggested, which include Fay [1979]

(normalized narrowing), Hullot [1980] (basic narrowing), Martelli et al. [1989] (top-down de-

composition), R�ety [1987] (basic-normal narrowing) and the one outlined in this thesis (which

combines features of basic and normal narrowing into a top-down approach). In this chapter

we combine the higher-order formulation of combinatory-logic with the �rst order top-down ap-

proach outlined in Chapter 3. Thus, the combination enjoys the following additional advantages

(over [Dougherty and Johann, 1992]):

49

� It provides more control on positions where rules get applied. In general, we apply rules

only to the top-most position in goals.

� It is possible to incorporate additional pruning rules (for example, reachability analysis

of [Dershowitz and Sivakumar, 1987; Chabin and R�ety, 1991]) directly.

4.1 Notations for Combinatory Logic

We begin with a brief discussion of notations pertaining to combinatory-logic. Types are formed

by closing a set of base types (for example, integer and boolean) under the type forming operation

�1 � �2 (for types �1 and �2).

We have a set of (typed) variables X , and a set of (typed) constants. An atom is either a

variable or a constant. Terms are formed in the usual way: every constant and variable is a

term, and, whenever t1; : : : ; tn are terms and A an atom, A t1; : : : ; tn is a term. We assume the

constants I;K and S (called redex atoms), given types as usual.

For CL (the simply typed combinatory-logic terms), the following convergent rewrite system

(henceforth denoted C) de�nes weak reduction:

Ix ! x

(Kx)y ! x

((Sx)y)z ! (xz)(yz)

Note that this rewrite system is terminating only for typed combinatory logic; in the untyped

situation, we could have SII(SII) ! I(SII)(I(SII)) !� SII(SII) ! � � �. We de�ne

combinatory-R reduction as!C [!R, which is convergent whenever R is a convergent rewrite

system (using a similar result from [Breazu-Tannen, 1988]).

It is well-known that using combinatory reductions is not enough to capture equivalence of

lambda terms. For example, SK and KI are distinct normal forms with respect to!C , though

their translations to lambda-calculus are both equal to �y�z:z. However, it is possible to extend

combinatory-R equality to capture equivalence of functional terms, by using the following rule

of extensionality:

Infer s = t if sD = tD, where D is a new constant.

50

A term is said to be pure if it does not contain any constant introduced by the extensionality

axiom. We use the notation s =RC t (or say that s and t are RC-equal) to denote the equality of

the lambda-calculus translations of s and t with respect to ��R convertibility (which, by virtue

of the above discussion, is identical to the equality induced by C [R with extensionality).

In formulating rules for validity and higher-order uni�cation, we deal with unordered-pairs

of terms. A pair s
?
= t is trivial if s � t, and is RC-valid if s =RC t. A term-pair s

?
= t has a

solution � if s� =RC t�. These notions can be extended to collections of pairs in the usual way;

for example, we say that a collection is valid if and only if each of its pairs is valid.

4.2 Validity

In this section we describe an innermost reduction strategy which solves the validity problem

with respect to combinatory logic terms. This reduction strategy serves as the basis for the

higher-order uni�cation procedure that we develop in a later section.

Given two terms s and t, we want to �nd if s =RC t. The set of transformation rules

(called IR, for innermost reduce) shown is Table 4.1 can be used to solve this problem. The

transformation rules that we provide here are a re�nement of the set RVT used by [Dougherty

and Johann, 1992] (see Section 2.2). For simplicity of exposition we consider the rewrite system

to be left-linear. However, techniques similar to those outlined in [Dougherty and Johann, 1992]

could be used to incorporate non-left-linear rules.

In Table 4.1, we use C to denote the weak reduction rules of combinatory logic, while R

stands for the convergent rewrite system. The only major di�erence between IR and RVT of

[Dougherty and Johann, 1992] is in Reduce; herein we suggest that any rewrite step must be

applied to some innermost position. Furthermore, our system allows additional arguments only

when the corresponding terms are irreducible (with respect to C [R). The following lemma

shows that IR captures the notion of RC-equivalence of combinatory logic terms:

Lemma 12. Let R be a convergent left-linear rewrite system. If there exists a sequence of IR

transformations starting with the pair s
?
= t which yields the collection of term-pairs G, that is,

s
?
= t;!

IR G;

then s =RC t if and only if G is trivial.

51

Reduce s
?
= t

;

s0
?
= t

where s!C[R s0 is any innermost reduction

Decompose Fs1 : : : sn
?
=Ft1 : : : tn
;

s1
?
= t1; : : : ; sn

?
= tn

if Fs1 : : : sn and Ft1 : : : tn are in C [R normal form, where
F is a non-redex constant

Extend s
?
= t

;

sD
?
= tD

if s and t are in C [R normal form,
D is a new constant

Table 4.1: Transformation rules for innermost reduction (IR)

Proof. We indicate a straight forward proof of the lemma by constructing an equivalent RVT

reduction sequence.

Note that IR is a restriction of RVT. Thus, from Theorem 2.5 of [Dougherty and Johann,

1992] it follows that whenever G is trivial, s =RC t must hold.

For the other part, suppose s =RC t. Compare the IR transformation sequence under

question with a possible RVT sequence. Furthermore, suppose that the �rst pair on which the

two di�er is s0
?
= t0. For RVT, the applied transformation rule could have been either for adding

argument or for reduction (C or R). In the latter case, at least one of s0 or t0 must still be

reducible. Thus, in IR, the only applicable transformation rule must be Reduce, although at a

di�erent position as compared to RVT. However, since RVT is non-deterministic with respect

to the position where reduction takes place, the same reduce could have been done �rst. It is

then possible to construct a new RVT sequence which has one more step in common with the

IR sequence under consideration. Similar arguments can also be provided if the transformation

used by RVT was for adding an argument.

Thus, IR is su�cient to prove extensional (RC) equality between CL terms, with respect to

a left-linear rewrite system R.

52

Since IR is a restriction of RVT, we also have that every sequence of IR transformations is

terminating (by virtue of a similar observations made about RVT in [Dougherty and Johann,

1992]). Typing plays an important role in this proof, since it disallows repeated applications of

Extend (it is only sensible to add arguments to terms which have function types, and a �nite

number of these additional arguments would reduce such a term to one of a base type).

The following de�nition encapsulates a decision procedure for checking RC-validity:

De�nition 11. To check validity of s =RC t, where s and t are CL terms, we proceed as

follows:

1. Use innermost-reduction to obtain normal forms u of s and v of t (that is, s !! u and

t!! v).

2. Use decomposition to reduce u
?
= v to non-trivial subgoals fli = ri j i = 1; : : : ; mg.

3. Recursively check validity of liD =RC riD; i = 1; : : : ; m.

4. Return \valid" if all resulting subgoals are trivial.

In the following section we provide a set of transformation rules for higher-order uni�cation,

that relies on De�nition 11 for its proof of completeness.

4.3 Uni�cation

In this section we formulate a RC-uni�cation procedure based on the transformation rules given

in Table 3.2. Given two combinatory-logic terms s and t, we want to �nd a complete set of

their RC-uni�ers; each RC-uni�er being a solution � as indicated before (that is, we want to

enumerate all substitutions � such that s� =RC t�, with the understanding that whenever

two substitutions are RC-equal, at least one of them is redundant). Since =RC has no known

presentation as a convergent rewrite system (so, transformations from Section 3.1 cannot be

used verbatim) we use the idea of combining the convergent relation C [R with extensionality,

as discussed in Section 4.1. Roughly, to decide if s� =RC t�, we reduce s� and t� (using

innermost reductions) with respect to C [R as far as possible, and then invoke extensionality.

We repeating this process until all term-pairs are trivial (see De�nition 11).

Therefore, our top-down method for combining combinatory-logic with a �rst-order rewrite

system proceeds as follows:

53

� Given a goal s
?
=
RC

t, break it into a set of two directed goals of the form: fs!? x; t!? yg,

and solve for x and y, which are new variables. The interpretation of a goal of the form

u!? v is: Find a solution � such that u� !!
C[R v�.

� If the terms bound to x and y are syntactically uni�able with most general uni�er �,

return one solution as the composition of the partial substitution collected so far with �

(details given below).

� If uni�cation fails, s and t may still be RC-uni�able, by virtue of extensionality. We apply

the extensionality axiom as required, and continue goal-solving with respect to C [R.

We now provide details for the di�erent aspects. For the �rst part, we use the system of

transformations given in Table 3.2, with the understanding that the only non-zeroary function

(for example, f in Decompose, Mutate, etc., of Table 3.2) is \function application." In the

rest of our discussion on RC-uni�cation, we will refer to this system of transformation rules as

WR, for weak-R transformations. When using this system of transformations for higher-order

uni�cation, we do not deal explicitly with types. Nevertheless, every transformation rule must

be type preserving. We also insist that only pure terms are bound to variables (in Eliminate

and Bind). Furthermore, we would restrict our attention to left-linear rewrite systems alone.

The more general case can be handled using ideas developed in [Dougherty and Johann, 1992].

The transformation rules in Table 3.2 form the crux of the higher-order semantic uni�ca-

tion procedure, since they provide a strategy of uni�cation with respect to weak-combinatory

equality. However, weak combinatory equality is not identical to =RC . We need to extend

the rules for weak-equality to handle extensionality. In order to introduce extensionality, we

provide a new set of transformation rules (called EXT) shown in Table 4.2. The rules are

non-deterministic (for example, both Bind and Extend would apply to the goal x
?
= t), and, as

usual, all possibilities have to be tried for completeness.

We are now ready to specify the complete goal-solving procedure:

De�nition 12. (RCU) To solve s
?
= t for CL terms s and t, we proceed as follows:

1. Use WR to obtain a partial solution fx 7! u; y 7! vg [� to the goal fs!? x; t!? yg.

2. Use EXT to reduce u�
?
= v�;� to subgoals �; fli

?
= ri j i = 1; : : : ; mg.

54

Bind fx
?
= tg [E;G
)

fx 7! tg [Efx 7! tg;Gfx 7! tg
if x does not occur in t

Decompose fFs1 : : : sn
?
=Ft1 : : : tng [E;G
)

fs1
?
= t1; : : : ; sn

?
= sng [E;G

where F is any constant other than I;K;S,

Extend fs
?
= tg [E;G
)

E;G[fsD
?
= tDg

where D is a new constant,
provided sD and tD are type-correct

Table 4.2: Transformation rules for extension (EXT)

3. Recursively, �nd solutions �i to li
?
= ri; i = 1; : : : ; m.

4. Return fx 7! u; y 7! vg [� [� [�1 [: : :[�m, provided it is a substitution (that is, it

passes the \occur check").

Example 12. Let R be the rule F0x ! x, where 0 and x are, respectively, a constant and a

variable of type integer.

We look for solutions to the goal z
?
=F0. Since both z (a variable) and F0 are in C [R

normal form, we have u� � z and v� � F0 in step 2 of RCU. Therefore, one solution to the

goal is fz 7! F0g. However, there are other solutions, since we can add an argument to the two

sides, and thereafter attempt to solve zD
?
=F0D, that is, zD

?
=D (here D is a new constant of

55

type integer). Some possible derivations with this goal are:

zD
?
=D ;MutateI z 7! I

zD
?
=D ;MutateK z1

?
=D; z 7! Kz1

; Fail

zD
?
=D ;MutateS z1D(z2D)

?
=D; z 7! Sz1z2

z1D(z2D)
?
=D ;MutateK z1 7! K

z1D(z2D)
?
=D ;MutateS z3(z2D)(D(z2D))

?
=D; z1 7! Sz3

; Fail

In the �gure we have shown three di�erent ways of mutating the goal zD
?
=D, corresponding to

the three rules in C. The �rst possibility yields a solution immediately (fz 7! Ig). In the second

case, we get a subgoal of the form z1
?
=D, which has no solution (we cannot use elimination,

since it would not give a pure substitution. Also, we cannot add further arguments, since D is

of type integer). In the last case we have further branches, only one of which yield a solutions,

namely, fz 7! SKz2g, which, in fact, is the same as the previous solution, since SKx =RC I,

for any variable x. We get failure in the last branch, since we have a subterm of the form

D(z2D) which is not type correct, D being of integer type. Finally, we could mutate zD using

the rule from R; this would repeat the solution fz 7! F0g. Therefore, we have exhausted all

possibilities, and have a �nite solution tree in this case.

4.4 Completeness

Our main result is completeness of the transformation rules for �nding solutions to higher-order

equations:

Theorem 13 (Completeness). Let R be a left-linear convergent rewrite system. If � is a RC-

uni�er for two terms s and t, then there exists a RCU-sequence that enumerates a solution �

that is at least as general as �.

Note that any RCU-sequence in general would consist of alternate applications of WR and

EXT. Therefore, the completeness proof is a combination of the following lemmata:

56

Lemma 14. Let R be a left-linear convergent rewrite system. Suppose � is a solution to the

goal s!? t (i.e., s� !!
C[R t�), then there is a sequence of WR steps starting with the goal s!? t

that generates a substitution � which is at least as general as �.

Proof. This lemma is an adaptation of the completeness proof given in Section 3.2.2, when

the convergent rewrite system under consideration is C [R (for a convergent R). Thus, this

lemma follows as a corollary of Theorem 3.

Lemma 15. Let R be a convergent left-linear rewrite system. If s and t are terms in C [R

normal form, such that � is a solution to s
?
= t, then there exists an EXT derivation of the form

s
?
= t;�)! �;G;

such that � [� is at least as general as �, where � is a solution to the set of goals G.

Proof. We have to do a case analysis based on the structure of s and t, like in the proof of

Theorem 3. Without loss of generality, we can assume that � is irreducible (with respect to

C [R). So, when considering a successful IR sequence for the validity-proof of s�
?
= t�, the �rst

step of the proof could either involve a decomposition or an extension. If we were to consider

decomposition, there are further cases, depending on whether s or t is a variable (in which

case, we would use Bind from EXT) or not (then we use Decompose in EXT also). On the

other hand, if we were to Extend in IR, we could use Extend in EXT too. Therefore, for every

possible step in IR, there is a corresponding step which could be performed in EXT. Finally,

one has to show that for each non-deterministic step in EXT, at least for one of the choices,

there is a decrease in the complexity measure for the proof (similar to the ordering �� used in

the proof of Theorem 3). In this case, the appropriate ordering consists of an extension of the

one used to show that all IR sequences are terminating (that is, the ordering used in [Dougherty

and Johann, 1992] to show that all RVT sequences are terminating).

Any innermost reduction steps can be simulated using WR (with respect to C[R). Further-

more, we explicitly add arguments (Extend) and use decomposition to expose inner positions

where arguments need be added.

57

4.5 Discussion

The method for �nding higher-order uni�ers outlined in this chapter was presented in [Der-

showitz and Mitra, 1993]. Higher-order semantic uni�cation is of interest in automated theorem

proving, type inferencing, higher-order extensions of logic-programming, etc. Our higher-order

uni�cation procedure performs better than one based on narrowing. In particular, we provide

an example showing how in�nitely many branches of the solution tree can be eliminated.

Example 13. Let R be the convergent rewrite system:

A(Sx) ! AZ

B(Sx) ! BZ

Here A;B; Z and S are constants, while x is a variable. We also assume that the C rules are

available as usual.

Note that a term with A at its head can never be RC-uni�ed with a term with B as its head,

since there are no rules to change one to the other. Now consider the goal: A(xZ)
?
=BZ. Using

the approach of [Dougherty and Johann, 1992], the subterm xZ could be narrowed inde�nitely:

xZ ; x1Z(y1Z); x 7! (Sx1)y1

; x2Z(y2Z); x1 7! (Sx2)y2

However, using the approach outlined in this thesis, we �rst transform the goal to get

fA(xZ)!? x0; x00 7! (BZ)g, since (BZ) is in ground normal form. We therefore have the

following possible derivation sequences:

fA(xZ)!? x0g ;Imitate fxZ!? x1; x
0 7! Ax1g

; Fail

fA(xZ)!? x0g ;Mutate fxZ!? Sx1; AZ!? x0g

; fxZ!? Sx1; x
0 7! AZg

; Fail

58

Whenever we bind x0 to any term which has A as the head, we can prune the corresponding

branch (because of the observation about R made before); thus, the initial goal is unsatis�able.

This example shows that for RC-uni�cation, the top-down approach works better than one

based on narrowing. Similar pruning capabilities of the top-down approach for the �rst-order

case alone has been mentioned in [Dershowitz and Sivakumar, 1987; Dershowitz et al., 1990],

and they carry over to higher-order solving also. More elaborate pruning mechanisms have

been studied for the �rst order case by Chabin and R�ety [1991], where a graph of terms based

on R and the goals under question has been used. Their approach is top-down, so we believe

that it is possible to combine it with the higher-order capabilities developed here.

59

5 UNIFICATION IN ASSOCIATIVE-COMMUTATIVE

THEORIES

In this chapter we show that the transformation system of Chapter 3 can be extended to

handle theories with associative-commutative (AC) functions. We begin with a special class

of AC-theories in which all the AC-functions are completely de�ned (that is, the normal form

of any ground term containing AC-functions is a constructor only term), and show that for

this restricted class, a complete set of uni�ers can be generated without having to use the

costly AC-uni�cation operation. In fact, the resulting procedure works like the basic system of

Chapter 3 on an extended rewrite system, which includes rules with commuted left-hand sides

for AC-functions. However, for the general case, a strict top-down approach does not work. The

problem occurs because a subgoal for an AC-goal may generate an AC-function (at the root

position) after normalization, and therefore may require further rearrangement (using the AC-

axioms) before a rule can be applied at the top-most position. Therefore, a priori distribution

of subgoals for mutation or decomposition does not work. We show that it is possible to delay

solving the AC-goals until information is available about the subgoals, and then apply rules at

the top-most position.

5.1 Completely De�ned AC Functions

We start by showing that the notion of inductive simpli�cation can be used to provide a simple

and e�cient uni�cation procedure if the AC-functions under consideration are completely de-

�ned (provided we are interested in completeness with respect to ground solutions only). These

restrictions are reasonable in a programming language (as opposed to a theorem proving) en-

vironment. For example, consider functions like addition, multiplication and greatest common

divisor (gcd) over integers.

For uni�cation with AC-systems, where all the AC-functions are completely de�ned, we

need only formulate an additional transformation rule to handle the case when an AC-function

appears at the top-level on the left-hand sides of goals. This new transformation rule, called

AC-Mutate, is shown in Table 5.1. For ease of expression, we have ignored the irreducibility

60

AC-Mutate f(s1; s2)!
? t

;

s1!
? l1; s2!

? l2; r!
? t; c!? true

where c : f(l1; l2)! r or c : f(l2; l1)! r is a renamed rule in R,
f is an AC-function.

Table 5.1: AC-Mutation for completely de�ned functions

predicates in the transformation rule. However, it is due to the irreducibility requirement that

we do not have decomposition rules for AC-functions. Decompose or Imitate would result in

a completely de�ned AC-function on the right-hand side of a goal. This would mean that

for every ground substitution the right-hand side is reducible, and hence the corresponding

solution is redundant. For similar reasons, we also do not have to consider mutation with rules

(in R) which have AC-functions in a proper subterm of its left-hand side (since this eventually

reducible subterm would appear on the right-hand side of the mutated sub-goal).

We assume that all AC-functions are kept in their usual binary form. Completeness can be

proved by virtue of the following lemma:

Lemma 16. Let R be a convergent rewrite system in which all AC-functions are completely

de�ned, then the transformation rule of Table 5.1, together with those from Table 3.2 (used only

for non-AC goals), is complete.

Proof. Let > be the smallest ordering on terms such that u > v if and only if u ! v (by

AC-rewriting) or v is a proper subterm of u (> is well-founded whenever ! is). Let Rcomm

be R [fc : f(l2; l1) ! r j c : f(l1; l2) ! r 2 Rg, for every AC-function f . Notice that Rcomm

is terminating whenever R is (since if u !Rcomm v, then u !AC=R v, and thus u > v). We

show, by induction on the ordering >, that any ground term s can be reduced to its normal

form by standard rewriting, without having to use the AC-axioms, by using the system Rcomm

to reduce s.

If s is a constant and s ! s0, then by inductive hypothesis, the proposition holds for s0,

and thus for s, since s ! s0 could not have used the AC-axioms. In the other case, suppose

s0 � f(s1; : : : ; sn) be the subterm to be rewritten �rst (if there is no such subterm, that is, if s

is already in ground normal form, then by the assumption of the theorem, s cannot contain any

61

AC-function, which are assumed to be completely de�ned). If f is non-AC, then the proposition

holds by using the inductive hypothesis for any rewrite sequence starting from s0. Finally, if f

is AC (thus n = 2), we consider an innermost rewrite of s0. By the inductive hypothesis, the

property holds for the normalization of s1 and s2. Now consider f(s01; s
0
2), where s1 !

! s01 and

s2 !! s02. Since f is completely de�ned, s
0
1 and s

0
2 must be constructor-only terms. Furthermore,

f(s01; s
0
2) must be reducible in R. Considering the �rst step of this reduction, it could either

have been a rule application from R, or may have been the invocation of the commutativity

axiom for f . In either case, in Rcomm, the term is directly reducible, and the lemma follows

by applying the inductive hypothesis on the corresponding reduct.

The argument above shows that for any ground term s, it is possible to mimic the innermost

AC-reduction sequence out of s by using only rules in Rcomm (without having to use the axioms

for associativity or commutativity). Furthermore, R and Rcomm compute the same set of

ground normal forms, and therefore, we could solve goals with respect to Rcomm and still have

a complete procedure. The rest of the proof is identical to that of Theorem 3, using Rcomm as

the convergent rewrite system, and noticing that we are interested in enumerating only ground

solutions.

As a consequence of the above lemma, it is su�cient to consider the extended rewrite system

without the AC-axioms for the uni�cation problem. Also, we do not require AC-uni�cation in

the process, since the only transformation rule which requires uni�cation is Bind. However,

as previously discussed, s and t in this case will not contain AC-functions (or else we would

generate reducible solutions).

Note that, in Lemma 16, we only require that every term of the form f(s01; s
0
2), where s

0
1

and s02 are ground normal forms and f is an AC-function, be directly reducible (in Rcomm).

Therefore, if any of the rules with commuted left-hand sides is an inductive consequence of R,

then the rule is not required. For example, consider the rules f0+x! x; s(x)+ y ! s(x+ y)g.

In this case, Rcomm consists of the additional rules fx+ 0! x; y + s(x)! s(x+ y)g, each of

which is an inductive consequence of R.

62

5.2 General AC Theories

We now consider the situation in which certain AC-functions may not have the completely

de�ned property. We show that this situation needs more than a trivial extension to the

method developed so far, and present a complete uni�cation procedure for this case. For the

remainder of this section, we assume that terms are in
attened form, with respect to the AC-

functions, that is, we convert terms like f(f(a; b); c) into f(a; b; c) for each AC-function f , by

considering such functions to be variadic. We use capital letters to denote variables which range

overs multisets of terms. Furthermore, we need extended rules (for example, the extended rule

corresponding to f(a; b)! c is f(a; b;X)! t, where t is the normal form of f(c;X)) for all the

AC-rules of the system.

We �rst argue that a naive approach of trying all possible partitions for mutation (as shown

in Table 5.2) does not work.

General AC-Mutate f(s1; : : : ; sn)!? t

;

f(S1)!
? l1; : : : ; f(Sm)!

? lm; r!
? t

where f(l1; : : : ; lm)! r is a renamed rule in R,
f is an AC-function,

fS1; : : : ; Smg is a partitioning of fs1; : : : ; sng.

Table 5.2: AC-Mutation for completely de�ned functions

The counterexample below illustrates the di�culties involved:

Example 14.

a(c) ! f(c; d)

b(c) ! f(c; d)

f(c; c) ! e

Here a, b and f are de�ned functions (f is AC), while c, d and e are constructors. Consider

the goal ff(a(x); b(y))!? f(e; d; d)g. In order to get the solution � = fx 7! c; y 7! cg, we have

to �rst mutate the two immediate subterms (a(x) and b(y)) of the left-hand side of the goal

before we can apply the AC-rule (f(c; c)! e). In fact, in order to apply the AC-rule, we have

to pick parts out of the two subterms after mutation. Thus, there seems to be no easy way to

63

look at some AC-term and an AC-rule and decide whether the rule can be used to mutate the

term.

In fact, a similar problem can occur with the transformation for Decompose, even when the

AC-function is a constructor, as illustrated by the next example.

Example 15. Consider the one-rule system:

a(c) ! f(c; d)

Here a is the only de�ned function, f (AC) is a constructor, while c and d are constants.

Considering the goal f(a(z); g(f(c; c)); c)!? f(x; g(x); y), it is easy to see that the solution

fx 7! f(c; c); y 7! d; z 7! cg can be generated if we were to �rst mutate the a(z) subgoal

using the available rule; thereafter, we can AC-unify the two sides of the goal. Notice that,

as in Example 14 above, we have to split the term generated from a(z) in order to get this

solution. Therefore, Decomposition by partitioning the subgoals of an AC-function would not

work. Fortunately, as we prove later, this is the only potential problem with the method.

The following is an outline of a method for resolving the issue for Example 14, which we

later generalize. There are essentially three steps as indicated below:

Abstract Subterms of the AC-term are abstracted out using new variables. For this example,

we get the following two sets of subgoals (x1 and x2 are the new variables, A0 is the initial

set of AC-goals, while N0 is the initial set of non-AC goals):

A0 = ff(x1; x2)!? f(e; d; d)g;

N0 = fa(x)!? x1; b(y)!? x2g:

Solve Subgoals The only subgoals in this case are non-AC equations, therefore, we use the

transformation rules as described in Section 3.1 to solve them. The relevant steps are

shown below:

fa(x)!? x1; b(y)!
? x2g ;Mutate fb(y)!? x2; x 7! c; x1 7! f(c; d)g

;Mutate fx 7! c; y 7! c; x1 7! f(c; d); x2 7! f(c; d)g

Solve AC At this stage all the arguments to the AC-term have been normalized; so, AC-rules

may be applied. In the above example, we can instantiate the bindings for x1 and x2 in

64

the AC-term, and use the AC-rule to show that the left-hand side (f(f(c; d); f(c; d)) �

f(c; c; d; d)) rewrites to the right-hand side (f(e; d; d)). This generates the only solution

fx 7! c; y 7! cg to the initial goal.

Note that, in general, after the subterms have been solved, the left-hand side of the AC-goal may

contain variables. In such cases we would have to use AC-uni�cation with available rules, and

continue goal solving using the corresponding right-hand sides (detailed descriptions follow).

Based on the example, we now outline the important features of our solution:

� Keep the AC and non-AC goals separate.

� The non-variable subterms of the left-hand sides of AC-goals are abstracted using new

variables. In e�ect, the newly formed AC-goal is \frozen."

� Solve non-AC goals, corresponding to the frozen AC-goals. If no such goal exists, there

must be some AC-goal for which the abstracted variables have been bound to fully nor-

malized terms.

� Solve the AC-goals which have fully normalized subterms.

Next, we provide details for the di�erent parts. In order to keep the AC and non-AC goals

separate, we have to rede�ne a node:

De�nition 13 (Node). A node is a collection hA;G; �i, where A is a set of AC-goals, G is a

set of non-AC goals, and � is a partial solution.

As before, given the goal s
?
= t, we start with the initial node h�; feq(s; t)!? trueg;�i. We do not

deal with irreducibility predicates for simplicity. Furthermore, we only consider unconditional

rules; the extension to decreasing conditional systems is easy, following the ideas developed for

non-AC systems in Chapter 3.

We need several new transformation rules. First of all, we have to introduce the AC-goals

in the transformation rules of Table 3.2. Furthermore, we would like to keep as much of the

top-down feature as possible. Therefore, we abstract subterms of an AC-goal only when the

AC-function appears at the top-level. In Table 5.3 we provide the transformation rule for

abstracting subterms of an AC-goal. We use two parts of the node structure, one to keep track

of the abstracted goals, and the other for goals which still have to be looked at. The following

lemma provides some useful properties about AC-abstract:

65

AC-abstract hA; ff(s1; : : : ; sn)!
? tg [Gi

;

hA [ff(x1; : : : ; xn)!
? tg; fs1!

? x1; : : : ; sn!
? xng [Gi

where f is an AC-function,
x1; : : : ; xn are new variables.

Table 5.3: Abstracting AC-goals

Lemma 17. Any sequence of AC-abstract steps terminates. Furthermore, if � is a solution to

a set of goals G (containing both AC and non-AC subgoals) then there is a sequence

h�;Gi;!
AC�abstract hA

0;G0i;

such that � is also a solution to hA0;G0i.

Proof. Termination is simple: every application of abstraction reduces the second part of the

node in the multiset extension of the ordering that compares left-hand sides of goals using the

subterm property.

Notice that the result of a sequence of AC-abstract steps starting from the node h�;Gi

as indicated above, would be to separate out the AC and non-AC subgoals in G, after suit-

ably abstracting the AC-subgoals. Consider a single abstraction step. If � is a solution to

f(s1; : : : ; sn)!? t, then f(s1�; : : : ; sn�) !! t�. Since we have used new variables to abstract

the subgoals of the AC-goal, we can extend � (with slight abuse of notation, we will use � for

the extended substitution also), such that si� !
! xi�; 1 � i � n. Thus, f(x1�; : : : ; xn�) !

! t�

follows, since the rewrite system is convergent. Therefore, each application of AC-abstract is

solution preserving.

Next, we provide transformation rules which abstracts subterms of an AC-goal as and when

necessary (that is, whenever the corresponding AC-function appears at the root of the left-hand

side of a subgoal), as shown in Table 5.4. Finally, we deal with AC-goals, using transformations

from Table 5.5, wherein, we use the notion of a variable being fully instantiated, which we now

de�ne:

66

Decompose hA; ff(s1; : : : ; sn)!
? f(t1; : : : ; tn)g [G; �i
;

hA [A0;G[G0; �i
where fs1!? t1; : : : ; sn!? tng;!

AC-abstract
hA0;G0i.

Imitate hA; ff(s1; : : : ; sn)!? xg [G; �i
;

hA [A0;G[G0; � [fx 7! f(x1; : : : ; xn)gi
where fs1!

? x1; : : : ; sn!
? xng;

!
AC-abstract

hA0;G0i.

Mutate hA; ff(s1; : : : ; sn)!? tg [G; �i
;

hA [A0;G[G0; �i
where f(l1; : : : ; ln)! r is a renamed rule in R,

fs1!
? l1; : : : ; sn!

? ln; r!
? tg;!

AC-abstract
hA0;G0i.

Table 5.4: Transformations for non-AC goals

De�nition 14 (Fully Instantiated). A variable x is said to be fully instantiated with respect

to a node hA;G; �i if no variable in x� appears on the right-hand side of a subgoal in either A

or G.

The following lemma states that a node always has a suitable goal to be solved next:

Lemma 18. Let hA;G; �i be a node with the AC-goal f(x1; : : : ; xn)!? t. If there exists an

xi; 1 � i � n; that is not fully instantiated with respect to this node, then either G is non-

empty or A contains another goal which has fully instantiated subterms.

Proof. Since xi is not fully instantiated, xi� must contain a variable (say x) which appears on

the right-hand side of a subgoal. If this subgoal happens to be in G, we are done. Therefore,

suppose the subgoal under question is of the form g(y1; : : : ; yk)!
? x, where g is AC. In this case,

we look at this new subgoal g(y1; : : : ; yk)!
? x and see if all its variables (that is, y1; : : : ; yk) are

fully instantiated, and proceed again as above.

Notice that we cannot continue inde�nitely, since there are only a �nite number of subgoals

in A, and subgoals cannot get repeated in the process, since we use new variables each time we

abstract. Now consider the last such subgoal, say g0(z01; : : : ; z0l)!? z. If any z0j ; 1 � j � l; is

still not fully instantiated, then the variable must be on the right-hand side of a subgoal of G

67

Top-AC hA [ff(x1; : : : ; xn)!
? tg;G; �i

;

hA [A0;G [G0; � [�i
each of x1; : : : ; xn is fully instantiated,

� 2 mguAC(f(x1; : : : ; xn)�; l) for a renamed rule l! r in R,
where h�; fr!? tgi;!

AC-abstract
hA0;G0i.

AC-Imitate hA[ff(x1; : : : ; xn)!? yg;G; �i
;

hA;G; �[fy 7! f(x1; : : : ; xn)gi
each of x1; : : : ; xn is fully instantiated,

y is a free variable.

AC-Bind hA [ff(x1; : : : ; xn)!? tg;G; �i
;

hA;G; �[�i
each of x1; : : : ; xn is fully instantiated,
f(x1; : : : ; xn)� is in normal form,
� 2 mguAC(f(x1; : : : ; xn)�; t).

Table 5.5: Transformation rules for AC-goals

(if not, it has to be in A which would be a contradiction to the assumption that this is the last

subgoal in any such chain), and therefore the result.

We now indicate a proof of completeness for this new system of transformation rules. We

extend the ordering �� to the new structure of nodes, by considering a substitution to be a

solution only if it solves both the non-AC and the AC subgoals of a node. Similarly, we deal

with a notion of solution preserving application of a transformation with regard to this new

node structure.

Theorem 19 (Completeness-AC). Let R be a convergent rewrite system. If G �

feq(u; v)!? trueg be a goal that admits a solution �, then, there exists a sequence of trans-

formations, starting with the goal G, which generates a solution which is at least as general as

�.

Proof. As before, in the general case, we pick a subgoal from the current node, and show

that some solution preserving rule applies to it, and that the resulting node results in smaller

68

decrease with respect to the ordering ��. Let s!
? t be the selected subgoal. There are several

cases to consider:

Non-AC Goal If s has a root function which is non-AC, we apply one of the variants of the

transformations from Table 3.2. Let s � g(s1; : : : ; sn). There are two further cases:

� Each si; 1 � i � n; is a non-AC term. In this case, the argument is identical to the

completeness proof of Section 3.2.2, since there is no abstraction taking place.

� Suppose at least one immediate subterm of s (say si) has an AC-function at the root

(and thus needs abstraction). Let si � g0(s01; : : : ; s
0
k), g

0 is AC. Like in the proof

of Theorem 3 we consider an innermost derivation of t� from s�, and as before, we

have to do a case analysis based on whether a rule applies at the top-most position

of s� in this reduction. For example, consider the case when no rule applies at

this position. Furthermore, t could be either an unbound variable or a term of the

form g(t1; : : : ; tn) (these are the only choices, since we consider, like in the proof of

Theorem 3, that substitutions are applied eagerly to the right-hand sides of goals).

Consider the latter case, so that the Decompose rule from Table 5.4 applies. If �

is a solution to the antecedent, we have f(s1; : : : ; sn)� !! f(t1; : : : ; tn)�. On the

other hand, for � to be a solution to the consequent, � must be a solution to A0 and

G0, which follows from Lemma 17. Thus, this application of Decompose is solution

preserving. The proofs of solution preservation of Imitate and Mutate are along

similar lines.

To show decrease with respect to the ordering �� , one has to do a case analysis as in

the previous part. We again consider Decompose as an example. Let the abstracted

goals corresponding to si be g0(x1; : : : ; xk)!? ti; s
0
1!

? x1; : : : ; s
0
k!

? xk . Therefore,

when comparing nodes for decomposition, we have to show that s� �� g
0(x1; : : : ; xk)�

(since s� > si� � fs
0
1�; : : : ; s

0
k�g; using the subterm property of >). Furthermore,

we know that s0j� !
! xj�; 1 � j � k. Therefore, g0(s01; : : : ; s0k)� !� g0(x1; : : : ; xk)�,

and thus, g0(x1; : : : ; xk)� is no bigger than g0(s01; : : : ; s
0
k)� in >, and hence s� >

g0(x1; : : : ; xk)�. Similarly, it is possible to show decrease for the other transformation

rules.

69

AC Goal If s has an AC-function at the root, then by Lemma 18 either there is another non-

AC goal, in which case we could solve that, or there is another AC-goal (say s0!? t0)

where all the variables of s0 are fully instantiated. In the latter case, we consider this new

subgoal s0!? t0.

Therefore, it is su�cient to solve AC-goals that have fully instantiated variables. As

before, we consider an innermost derivation of s� � f(s1; : : : ; sn)� to its normal form t�,

and have two possibilities:

� At least one rewrite step takes place at the top-most position. The fact that subgoals

from the AC-goals are solved before a rule is applied at the top-most position, each

si�; 1 � i � n; is normalized. So, a rule from R must match f(s1; : : : ; sn). In the

transformations for semantic uni�cation, this situation is handled by the rule for Top-

AC, and the preceding argument shows that this application is solution preserving.

Decrease with respect to �� can be shown by noting that the new abstracted goals

cannot be any more complex than the measure for r� in this ordering.

� If no rule is applied to the top-most position, s� must be in normal form, and must be

identical to t� (modulo the AC axioms). This leads to two further cases, depending

on the structure of t. If t is a variable, we could bind it to s to get the required �,

if not, we have to unify the two sides. In each case, there is a decrease since the

subgoal s!? t is removed.

5.3 Discussion

In Section 5.2 we used a combination of lazy top-down approach (for non-AC functions) and

abstraction (for AC-functions) to solve the problem of semantic uni�cation with respect to

convergent theories. This method|of delaying AC-goals by abstracting and solving subgoals

�rst|was initially presented in [Mitra and Sivakumar, 1991]. Notice that an extension of

narrowing (using AC-uni�cation and extended rules) would also provide a complete strategy

for the semantic uni�cation problem (see Section 3 of [Mitra and Sivakumar, 1991] for more

details). In this section we provide an example to illustrate that the method outlined here

performs better than the one based on narrowing.

70

In the method outlined in Section 5.2, we have simply \frozen" the AC-goals while we solve

their corresponding subgoals. However, it is possible to use information about available AC-

rules and the AC-goals when the non-AC goals are being solved, and in the process eliminate

possibly in�nite paths in the search space. The following example would illustrate the point:

Example 16. Let R be the convergent rewrite system de�ned below:

a(c) ! �(c; d) (5.1)

b(h; h) ! c (5.2)

b(x; s(y)) ! g(x; y) (5.3)

g(x; s(y)) ! g(x; y) (5.4)

�(x; x) ! e (5.5)

�(e; d) ! h (5.6)

Here � is the only AC-function; a, b and g are de�ned functions; c, d, e and h are constructors.

Consider the goal �(a(b(x; y)); c)!? h. Notice that a method based on narrowing would

not terminate in �nite time for this goal, because of the b(x; y) subterm. Using abstraction, we

would �rst transform this goal into AC and non-AC subgoals:

A0 = f�(x0; c)!? hg;

N0 = fa(b(x; y))!
? x0g:

We do not abstract the second subterm of the AC-goal, since it is already in normal form.

Next, we attempt to solve the non-AC goal. The relevant derivations are shown in Table 5.6.

Notice that we get failure in the �rst branch since x0 gets bound to a(x1), and thereafter

the AC abstracted subgoal �(x0; c)!? h is not satis�able any more, because neither Rules 5.5

nor 5.6 would be applicable thereafter. In this sense, we can use the AC-goals as constraints

while solving the non-AC goals. The only solution is generated by applying � from the second

branch to the left-hand side of the AC-goal, and solving it. Finally, the last branch does not

generate a solution since it is evident from the rewrite system that a term with g at its root

can never generate a c. This notion of reachability analysis was �rst introduced in [Dershowitz

and Sivakumar, 1987; Dershowitz and Sivakumar, 1988], and was extended in [Chabin and

71

a(b(x; y))!? x0 ;Imitate b(x; y)!? x1; x
0 7! a(x1)

;Constraint Fail

a(b(x; y))!? x0 ;Mutate(5:1) b(x; y)!? c; �(c; d)!? x0

;
� b(x; y)!? c; x0 7! �(c; d)

b(x; y)!? c; x0 7! �(c; d) ;Mutate(5:2) fx 7! h; y 7! h; x0 7! �(c; d)g = �

b(x; y)!? c; x0 7! �(c; d) ;Mutate(5:3) x!? x0; y!? s(y0); g(x0; y0)!? c

;
� g(x0; y0)!? c; x 7! x0; y 7! s(y0)
;Reachability Fail

Table 5.6: Using constraints to prune AC-goals

R�ety, 1991]. For this example, we have used the notion of reachability from [Dershowitz and

Sivakumar, 1988].

Constraint hA [ff(x1; : : : ; xn)!? tg;G; �i
;

Fail
f(x1; : : : ; xn)� does not unify with any left-hand side of R,

f(x1; : : : ; xn)� and t do not unify.

Table 5.7: Transformation rules for constraints

In Example 16 we introduced the notion of constraints. In fact, we can provide a transfor-

mation rule for pruning in this case, as shown in Table 5.7.

72

6 PATH ORDERINGS FOR TERMINATION OF

AC-REWRITING

The essential idea in rewriting is to use an asymmetric directed equality (!), rather than the

usual symmetric equality relation (�). Termination of a system consisting of such directed

equations means that no in�nite sequences of left-to-right replacements are possible for any

term. Termination is important for using rewriting as a computational tool, and for simpli�ca-

tion in theorem provers. Furthermore, as discussed in Section 2.1, convergence (and therefore

termination) is useful in formulating uni�cation procedures (since, with convergence, one can

ignore reducible solutions without sacri�cing completeness). One popular way of proving ter-

mination of a rewrite system is to use path orderings, based on a precedence relation on the

function symbols of the system. Another common approach interprets function symbols as

multivariate polynomials. For a survey of these techniques, see [Dershowitz, 1987].

In this chapter we will consider extended rewriting modulo the axioms of associativity

and commutativity. Since it is not possible to orient the commutativity axiom without losing

termination, rewriting modulo such a congruence has to be handled in a special way. In essence,

we rewrite AC-equivalence classes, rather than terms. AC-functions are very commonplace in

practice, thus motivating a need for orderings for proving termination of extended rewriting

modulo these axioms.

Polynomials can be used to prove termination of rewriting modulo AC when AC-equivalent

terms have the same interpretation. But this severely restricts the degree of polynomial that

can be used. (See [Lankford, 1979] and [Ben Cherifa and Lescanne, 1987].) Path orderings have

been commonly used in theorem provers, even for AC-rewriting (see the discussion in [Bj�orner,

1982, page 350]), despite the fact that they do not establish termination in the AC case (see

the counterexamples in [Dershowitz et al., 1983]). Extensions of path orderings that do handle

associative and commutative functions properly ([Bachmair and Plaisted, 1985], for example)

have been proposed, most recently in [Kapur et al., 1990]. However, the ordering of [Kapur et

al., 1990] is di�cult to implement, because it requires many nondeterministic operations (like

pseudocopying ; see Section 6.2).

73

In this chapter, we show that if a rewrite system can be proved terminating using the

recursive path ordering (RPO), then it is also AC-terminating|provided that when comparing

two terms with the same (or equivalent) AC symbol at their roots, we compare subterms

component wise, rather than as multisets. This criterion can be easily implemented.

6.1 Terminology for AC Systems

We write s �ac t to denote that s and t are rearrangements using the AC axioms. AC-rewriting

(!R=AC) can be de�ned as follows: u[s]�!R=AC u[t]�, for terms s; t, context u and position �,

if s �ac s
0, s0 !R t0 and t0 �ac t. When dealing with AC systems, it is often convenient to

treat AC symbols as functions with variable arity by considering only
attened terms. We use

t to denote the
attened version of t. An ordering � is AC-compatible if, for all terms s; s0; t; t0,

s �ac s
0 � t0 �ac t implies s � t, in which case, we can also say that s � t. A rewrite system is

AC-terminating if and only if the relation !R=AC is contained in an AC-compatible reduction

ordering.

6.2 Binary Path Condition

In this section we develop a restricted version of RPO|called \binary path condition"|which

can be extended to an AC-compatible reduction ordering.

We �rst show that RPO, in general, is not AC-compatible. Consider the rule

f(a; f(a; b)) ! f(b; f(a; a))

If we consider b �f a, then we can show that f(a; f(a; b))�rpo f(b; f(a; a)), assuming multiset

status for f . However, we also have that f(a; f(a; b)) �ac f(b; f(a; a)). Clearly, RPO with

lexicographic status is not compatible with the commutativity axiom:

f(a; b) ! f(b; a)

If we now have a �f b, then using left-to-right status for f , we have f(a; b) �rpo f(b; a) �ac

f(a; b), which violates irre
exivity. Finally, we show that RPO on
attened terms is not AC-

74

compatible:

f(a; b) ! g(a; b)

f(a; g(a; b)) ! f(a; a; b)

Here f �f g, and f is AC. Now, we have f(a; a; b) � f(a; f(a; b)) �rpo f(a; g(a; b)) �rpo

f(a; a; b), which violates irre
exivity.

These counterexamples show that RPO with status cannot be extended to an AC-compatible

ordering. We therefore de�ne a restricted version of it (�bpc), which uses RPO with status for

the non-AC symbols, but uses RPO without status to compare terms which have equivalent

top-level AC operators. Here we use t ��bpc s to mean t �ac s or t �bpc s.

De�nition 15 (Binary Path Condition). Let �f be a well-founded precedence ordering on the

function symbols. We have t � f(t1; : : : ; tn) �bpc g(s1; : : : ; sm) � s if and only if one of the

following holds:

1. ti ��bpc s for some i, 1 � i � n.

2. f �f g, and t �bpc sj for all j, 1 � j � m.

3. f �f g, f and g are non-AC, and have the same status, and either

� f has multiset status, and ft1; : : : ; tng�mulfs1; : : : ; smg, or,

� f has lexicographic status, and

{ (t1; : : : ; tn)�lex(s1; : : : ; sm), and

{ t �bpc sj for all j, 1 � j � m.

4. f �f g, f; g are AC, t � f(t1; t2) and s � g(s1; s2), and either (t1; t2) �comp (s1; s2) or

(t1; t2) �comp (s2; s1), where (t1; t2) �comp (s1; s2) if and only if either t1 �bpc s1 and

t2 ��bpc s2, or, t1 �bpc s2 and t2 ��bpc s1.

To compare terms with variables, we can use the fact that a ground term t� is greater under

�bpc than x� (x is a variable), for any substitution �, whenever x occurs in t.

Theorem 20. Let R be a rewrite system. If for each rule l ! r 2 R we have l �bpc r, then R

is AC-terminating.

75

We �rst recall the de�nition of AC-RPO (�ac), on ground terms, due to Kapur et al., [1990].

This ordering compares
attened terms.

De�nition 16. Let �f be a well-founded precedence ordering on the function symbols. We

have t � f(t1; : : : ; tn) �ac g(s1; : : : ; sm) � s if and only if one of the following holds:

1. ti ��ac s for some i, 1 � i � n, where ti ��ac s if and only if ti �ac s or ti �ac s.

2. f �f g, and t �ac sj for all j, 1 � j � m.

3. f �f g, f and g are non-AC and have the same status, and either

� f has multiset status, and ft1; : : : ; tng�mulfs1; : : : ; smg, or,

� f has lexicographic status, and

{ (t1; : : : ; tn)�lex(s1; : : : ; sm), and

{ t �ac sj for all j, 1 � j � m.

4. f �f g, f; g are AC, t = f(T), s = g(S), S0 = S�T = fs01; :::; s
0
kg (where \�" denotes the

multiset di�erence performed using �ac, i.e., terms equivalent with respect to �ac can be

dropped from both T and S), and either

� k = 0 and n > m (i.e., S � T = ; and T � S 6= ;), or

� f(T � S))� f(T 0), and T 0 = T1 [: : :[Tk and for all i (1 � i � k) either

{ Ti = fug and u ��ac s0i, or

{ Ti = fu1; : : : ; ulg and f(u1; : : : ; ul) ��ac s0i.

Also, in this case, either t)+ f(T 0), or, for at least one i, we have instead a strict

decrease in �ac.

Case 4 of this de�nition uses the operation), which may be one of the following: pseudo-

copying, elevation or
attening. Here we brie
y explain these notions; for details refer to

[Kapur et al., 1990]. Pseudo-copying is used to allow a single big (that is, with a top-level

function which is higher than f in the precedence relation �f) subterm on the left-hand side to

handle multiple subterms on the right. For example, while comparing the terms t1 � f(g(x))

and t2 � f(h(x); h(x)), where f is AC, and g �f f �f h, we can say that t1 �ac t2, since

76

t1) f(gg(x); gg(x)) �ac t2, where gg(x) is a pseudo-copy of g(x). Note that pseudo-copying

is allowed only for big terms which are immediate subterms of the top-level AC operator of

the left-hand side term. At times, a big term may be nested further down, in which case

elevation is used to bring it up. For example, in comparing f(c(g(x))) with f(h(x); h(x)), where

g �f f �f h �f c, we can use the following steps: f(c(g(x)))) f(g(x)) �ac f(h(x); h(x)).

Finally,
attening can be used to remove immediate nesting of di�erent AC functions which

have the same precedence. For example, we could say f(g(x); y)) f(x; y), if f �f g, and f and

g are AC. The essential idea in this ordering is to partition the subterms of the AC functions

and compare the components, using) to make the relation transitive. It is shown in [Kapur

et al., 1990] that this ordering is well-founded and AC-compatible.

We are ready for a proof of the theorem:

Proof. We show that for any two terms s and t, if t �bpc s then t �ac s, by induction on the

sizes of s and t. There are several cases to be considered, depending on the possible reasons

why t �bpc s. We assume that t is of the form f(t1; : : : ; tn) and s is g(s1; : : : ; sm).

1. If ti ��bpc s, then, by the inductive hypothesis we have ti ��ac s, and hence t �ac s, by

Case 1 of De�nition 16.

2. If f �f g and t �bpc sj , then by the inductive hypothesis, we have t �ac sj ; 1 � j � m.

There are two further possibilities:

� g is not AC. In this case, s � g(s1; : : : ; sm), and therefore we have t �ac s, by Case 2

of De�nition 16.

� Suppose g is AC (thus m = 2). In this case, there are various possibilities for

s, for example we could have: s � g(g(s1:1; s1:2); s2), or s � g(s1; g(s2:1; s2:2)),

or s � g(g(s1:1; s1:2); g(s2:1; s2:2)), and so forth. However, in each case, we have

s � g(s01; : : : ; s
0
k), where each s0j ; 1 � j � k; is either a subterm of s1 or of s2.

Therefore, we have t �ac s.

3. If f and g are both non-AC, and f �f g, then we can use the inductive hypothesis on the

atten subterms of s, and then the proposition follows.

77

4. If f and g are both AC, and f �f g then n = m = 2. Furthermore, without loss of

generality, we can assume that t1 �bpc s1; and t2 ��bpc s2: (The other cases admit similar

proofs.) There are two further possibilities:

� If t2 �bpc s2, then by the inductive hypothesis we have: t1 �ac s1 and t2 �ac s2.

Thus, we could use this partitioning of t to show that t �ac s.

� If t2 �ac s2, then again the proposition holds, because we could ignore t2 and s2

when comparing t with s.

Since �ac is AC-compatible, we have t �ac s, not only when t �bpc s, but also if t �ac

t0 �bpc s. In order to prove termination of a system using �bpc, it is therefore su�cient to

use any rearrangement of the left- and right-hand side terms. We also have, for any AC

function symbol f and terms s and t, that if t �bpc s, then f(t; X) �bpc f(s;X) (and therefore,

f(t; X) �ac f(s;X)).

We have shown that the relation �bpc is embedded in the AC-compatible reduction order-

ing �ac. Therefore, the binary path condition is su�cient for proving AC-termination. It is

important to note that the relation (�bpc) de�ned here is not really an ordering, because it is

not transitive. For example, if we have the precedence relation g �f f �f h, then we can show

that (here f is AC, while g and h are non-AC)

f(g(x); g(y))�bpc f(f(x; x); f(y; y))�ac f(f(x; y); f(x; y))�bpc f(h(x; y); h(x; y)):

However, it is the case that f(g(x); g(y)) 6�bpc f(h(x; y); h(x; y)). The interesting point about

�bpc is that it is easy to implement; much easier than the ordering of [Kapur et al., 1990].

6.3 Examples

The binary path condition developed in the previous section, like �ac, and unlike [Bachmair

and Plaisted, 1985], has no restriction on the precedence relation �f , and can therefore be used

to prove termination of a large class of rewrite systems.

78

Example 17 (Arithmetic over natural numbers). Here � and + are AC, and � �f + �f s �f

0.

0 + x ! x

s(x) + y ! s(x+ y)

0 � x ! 0

s(x) � y ! y + (x � y)

(x+ y) � z ! (x � z) + (y � z)

Example 18 (Free commutative ring). Here � and + are AC, and � �f � �f + �f 0.

0 + x ! x

�x+ x ! 0

�0 ! 0

�� x ! x

�(x+ y) ! �x +�y

0 � x ! 0

�x � y ! �(x � y)

x � (y + z) ! (x � y) + (x � z)

6.4 Discussion

In this chapter, we have considered a simple restriction on RPO that can be extended to an

AC-compatible ordering. The restriction disallows comparison of two terms with equivalent

top-level AC functions when both subterms on the right-hand side are dominated by only one

subterm on the left-hand side.

Independently, Bachmair [1992] presented an AC-compatible rewrite-relation, also based

on [Kapur et al., 1990], and proved its termination using a minimal counterexample argument.

Our termination condition is essentially the same as one rewrite step of [Bachmair, 1992], with

the possibility of multiset status added. It is believed that the transitive closure of our relation

is identical to the ordering in [Kapur et al., 1990], but this remains to be proved.

It will be interesting to be able to extend the relation de�ned here to cases where sim-

ple multiset comparisons may be allowed for subterms of the AC-terms. However, as shown

79

in [Bachmair, 1992], even simple rules like f(g(x; y); z)! f(x; y), may lead to non-terminating

rewrite sequences.

The binary path condition as a su�cient condition for AC-termination was presented in [Der-

showitz and Mitra, 1992]. More recently, Rubio and Nieuwenhuis [1993] have extended the

ordering of [Kapur et al., 1990] to one that is total on (non-AC equivalent) ground terms.

However, one inconvenience with their ordering is that it orients the distributivity axiom (for

example, x � (y + z) = x � y + x � z) the \wrong" way. We believe that a lexicographic com-

bination of BPC (or, for that matter, any other ordering, for example, [Kapur et al., 1990;

Bachmair, 1992; Delor and Puel, 1993], that orients distributivity the right way) together with

the ordering of [Rubio and Nieuwenhuis, 1993] would solve the problem.

80

7 DECIDABLE EQUATION SOLVING

The transformation systems described in Chapter 3 are complete for uni�cation and matching in

convergent rewrite systems. However, it is well-known that both these problems are, in general,

undecidable [Bockmayr, 1987; Heilbrunner and H�olldobler, 1987; Dershowitz and Jouannaud,

1990]. Hullot [1980], Kapur and Narendran [1987] and Christian [1992] have provided di�erent

syntactic restrictions on the rewrite system which result in decidable uni�cation in theories de-

�ned by convergent systems. However, these restrictions are quite strong from a practical point

of view. In this chapter, we approach the problem in two parts, and therefore provide a better

characterization for decidability. We �rst use the restricted sets of transformation rules from

Section 3.5 to provide syntactic and semantic requirements on the rewrite system which result

in decidable matching. Thereafter, we address the general problem, and propose a character-

ization of systems with
at right-hand sides, which results in decidable uni�cation. Roughly,

at systems disallow nested function symbols in the right-hand sides, and allow variables on

the right-hand sides to appear under at most one function symbol.

In this chapter, we say that a function symbol f is a de�ned function if it appears at the

root of some left-hand side of a rule in a rewrite system R; if there is no such rule, then f is a

constructor.

7.1 Undecidable Matching and Uni�cation Problems

Throughout this chapter, we will use some well-known problems to show that certain new

problems are undecidable. In this section we list two such undecidable problems:

Example 19. The following convergent system has an undecidable semantic uni�cation prob-

lem:

1 + x ! s(x)

s(x) + y ! s(x+ y)

1 � x ! x

s(x) � 1 ! s(x)

s(x) � s(y) ! s(y + (x � s(y)))

81

The system de�nes addition (+) and multiplication (�) over positive integers; integers being

represented in unary notation, using the constant 1 and successor function s.

It can be shown that, in general, it is undecidable if an equation has a solution with respect

to the rewrite system given above (since were there a decision procedure for this, it would solve

Hilbert's undecidable Tenth Problem). We will prove later that the semantic matching problem

is, nevertheless, decidable for this theory. ([Bockmayr, 1987; Dershowitz and Jouannaud, 1990]

use similar examples to show that, in general, semantic matching and uni�cation are undecidable

for convergent systems.)

We will also use the following variant of the above example, which has similar properties

(that is, the matching problem is decidable, while the uni�cation problem is not):

Example 20.

0 + x ! x

s(x) + y ! s(x+ y)

0 � x ! 0

x � 0 ! 0

s(x) � s(y) ! s(y + (x � s(y)))

The next example that we use is from [Heilbrunner and H�olldobler, 1987], wherein a scheme

to construct a convergent system of rewrite rules has been discussed, given two (simple) context-

free grammars in Greibach normal form. Here we provide an example (see [Heilbrunner and

H�olldobler, 1987] for details about termination and con
uence of the resulting rewrite system):

Example 21. Let G1 and G2 be two context free grammars, as described below:

G1 � fS1) aB1C1; B1) b; C1) cg

G2 � fS2) aB2; B2) bC2; B2) a; C2) cg

82

Here S1 and S2 are the start symbols; B1; B2; C1 and C2 are the non-terminals, while a; b and

c are the terminal-symbols. Consider the rewrite system R:

f(S1 � x;B2 � y; a � z) ! f(B1 � (C1 � x); y; z)

f(S1 � x; S2 � y; a � z) ! f(B1 � (C1 � x); B2 � y; z)

f(B1 � x;B2 � y; b � z) ! f(x; C2 � y; z)

f(C1 � x; C2 � y; c � z) ! f(x; y; z)

For simplicity, we have used the same signature as the grammars given above. Thus, for R, f

is the only de�ned function, while all the other functions are constructors.

If can be shown that the function f , de�ned by R, has the following property:

f(S1 � $; S2 � $; x)
?
= f($; $; $) if and only if x 2 (G1 \G2);

where $ is the end symbol.

Heilbrunner and H�olldobler [1987] show how f can be constructed given any two arbitrary

context-free grammars G1 and G2 in simple Greibach normal form. Therefore, in general, there

can be no decision procedure to solve the problem f(S1 � $; S2 � $; x)
?
= f($; $; $) (since such a

decision procedure would also decide if the intersection of two simple context-free languages is

empty, which is undecidable [Heilbrunner and H�olldobler, 1987]).

7.2 Decidable Matching

As noted earlier, in the most general case, semantic matching can be as di�cult as full semantic

uni�cation: For example, adding a new rule eq(x; x)! true to the system of Example 19 makes

the problem of unifying two terms s and t the same as matching eq(s; t) to true in the augmented

theory. In this section we use the syntactic characterizations given in Section 3.5 (those of non-

erasing and left-linear systems) to show that the matching problem is decidable for special

classes of such systems.

83

7.2.1 Non-Erasing Rules

In looking for decidable matching problems, we started with the following result (a special case

of Theorem 22 which we prove later):

If R is a non-erasing convergent term rewriting system for which:

� all right-hand sides of rules are either variables, or have a constructor at the top-level,

and

� there are no nested de�ned functions in any right-hand side,

then the semantic matching problem is decidable for R.

Example 22. By the above result, the following system has a decidable semantic matching

problem.

app(nil; x) ! x

app(x � y; z) ! x � app(y; z)

In [Heilbrunner and H�olldobler, 1987], there is an example of a system with a single de-

�ned function in every right-hand side, which has an undecidable semantic matching problem

(Example 21 shows the construction for a particular case). There, the de�ned function on the

right-hand side of rules does not appear below a constructor, but it obeys the other restrictions.

This shows that de�ned functions must appear below at least one constructor.

Next, we tried to allow some nested de�ned functions on the right-hand sides of the rewrite

rules. We require the following de�nitions:

De�nition 17 (Suitable Property). A suitable property is a measure P (like depth, size, etc.)

associated with ground terms, along with a well-founded total ordering > that compares values

of P , such that P is strictly larger, under >, for terms than for its subterms.

De�nition 18 (Non-Decreasing). A function symbol f is de�ned to be non-decreasing (with

respect to a suitable property P) if whenever f(bs1; : : : ;csn) !! N , where each bsi and N is in

ground normal form, P(bsi) � P(N). Any function which does not have this property is said to

be a potentially decreasing function (with respect to P).

Similarly, we can de�ne the notion of \strict increasingness" for a function.

84

Unfortunately, it is not possible to always decide whether a function de�ned by a given

convergent rewrite system is non-decreasing with respect to a property P , even for a simple

suitable property like depth:

Lemma 21. It is undecidable if a function symbol is depth non-decreasing.

Proof. Consider the system:

g(x) ! h(f(S1 � $; S2 � $; x); x)

h(f($; $; $); x) ! $

where f is as detailed in [Heilbrunner and H�olldobler, 1987] (Example 21 shows the construction

of f for a particular set of context-free grammars). Assuming convergence of f , it is easy to

show that this combined system is also convergent.

If S1 and S2 are respectively the start symbols for two context free grammars G1 and G2,

we have

f(S1 � $; S2 � $; x)!
! f($; $; $) if and only if x 2 G1 and x 2 G2:

By the above construction, g can be depth non-decreasing if and only if

8x:x 62 (G1 \ G2):

Thus, a decision procedure for this problem could be used to decide if the intersection of two

arbitrary context free grammars is empty, which is impossible.

On the brighter side, certain decidable subclasses of functions that are non-decreasing (in-

creasing) are easy to identify. For example, any function which has a variable dropping rule,

with the dropped variable appearing immediately below the top-level function on the left-hand

side, cannot be depth non-decreasing (increasing). Again, for each rule l ! r which de�nes a

function f , if depth(l) � depth(r) then f is depth non-decreasing. We can also have similar

su�cient conditions using the depth of each variable in the rule. For example, if every variable

occurs below at least the same number of constructors on the right-hand side, as on the left-,

then the corresponding function is depth non-decreasing. We can use the last criterion to show

that +, as de�ned in Example 19, is depth non-decreasing.

85

Unfortunately, if the right-hand sides in rewrite rules have de�ned functions nested below

a potentially (depth) decreasing function, then the resulting system may have undecidable

semantic matching problems:

Example 23. Consider the rules below, together with the de�nitions of + and � given in

Example 19 (the combined system is convergent):

half (s(1)) ! 1

half (s(s(x)) ! s(half (x))

f(1; 1) ! s(1)

f(s(x); s(y)) ! s(half (f(x; y)))

Here half is a potentially (depth) decreasing function. We have the following property for f :

f(x; y) =

8><
>:

s(1) if x = y = sn(1); n � 0

unde�ned otherwise

(Here, we have used the notation sn(1) as a short-hand: s0(1) = 1 and si+1(1) = s(si(1)); i� 0.)

We can now try to solve the goal f(t1; t2)!? s(1), where t1 and t2 are terms involving + and �.

This goal has a solution � if and only if t1� and t2� have the same ground normal form (because

of the observation made about f before). Thus, if this problem has a decision procedure, then

we could use the same for deciding the semantic uni�cation problem mentioned in Example 19.

Therefore, no such decision procedure can exist.

Based on the counterexample above, it can be seen that a function de�nition in terms of

some potentially decreasing functions is not suitable for our purpose. We, therefore, restrict

the right-hand sides of rules to only have potentially decreasing functions at the lowest level

(that is, no other de�ned function symbol can be nested below them). We have:

Theorem 22. Let R be a convergent non-erasing term rewriting system, and P be some suitable

property. If

� all right-hand sides for rules in R are either variables, or have a constructor at the top-

level, and

86

� all right-hand sides are such that no de�ned function is nested below any function decreas-

ing with respect to P,

then the semantic matching problem is decidable for R.

Proof. Let � be a well-founded ordering on goals such that s1!
?N1 � s2!

?N2 if and only

if either P(N1) > P(N2) or P(N1) = P(N2) and s2 is a subterm of s1.

We show that it is possible to �nd all solutions (in �nite time) to any goal of the form

%!?N , where % is a term which has no de�ned function nested below any decreasing function

and N is a ground normal form. This we do by induction with respect to the ordering �.

The interesting case is the one in which % � f(%1; : : : ; %n), and f is a de�ned function. It

is, therefore, possible to use the transformation rule Mutate on this goal, applying some rule

f(l1; : : : ; ln)! �. The essential steps are:

f%!?Ng ;Mutate f%i!
? li; : : : ; %n!

? ln; �!
?Ng

;Decompose f%i!? li; : : : ; %n!? ln; �1!?N1; : : : ; �m!?Nmg

Since every right-hand side of a renamed rule in R, by assumption, has constructors at the

top, at least one application of Decompose is possible, starting with the goal �!?N . In

the derivation above, we have shown such a decomposition step, assuming that the top-level

constructor of � has m immediate subterms.

The subgoals f�j!
?Njg produced after the decomposition step are smaller than the original

goal, that is, f%!?Ng � f�j!
?Njg, for each j. Thus, by applying the inductive hypothesis

we can assume that all the solutions to each of the goals in f�j!?Njg (and therefore also for

their collection, that is, �!?N) can be found in �nite time. Let � be the solution obtained

along one feasible branch for the goal �!?N . Since all rules are non-erasing, � contains all

the variables that appear in any of the li subterms. Furthermore, because of the non-erasing

nature of all rules, � must be a ground solution (if not, we will have a situation where a non-

ground term will rewrite using only non-erasing rules to a ground term, which is not possible).

Thus, for any such �, each li� must be ground. (See the proof of Theorem 8, which discusses

a selection strategy for picking subgoals to be solved; we continue to use the same selection

strategy for solving goals in this proof.)

There are now two di�erent cases to be considered.

87

� Function f is potentially decreasing . By assumption there is no de�ned function below

it, that is, no %i has a de�ned function, and therefore all the %i!? li subgoals can be

decomposed immediately to solved forms (x 7! N 0), or to unsolvable goals with di�erent

constructors at the top. Therefore, all solutions for %!?N can be found in �nite time in

this case.

� Function f is non-decreasing. The important point to note is that each left-hand side in

the list of subgoals (that is, %i; 1 � i � n) has the property that no de�ned function is

nested below a potentially decreasing function. Let us now consider the ground solution

� (for �!?N) as described above. Since f is known to be non-decreasing with respect

to P , each of the li� terms must be such that P(li�) � P(N), or else the partial solution

� violates the condition that f is non-decreasing, and can be ignored. (In this case, the

goal %!?N has no solution, using the rule f(l1; : : : ; ln)! �, for Mutate.)

Thus, for all feasible paths, we have that P(li�) � P(N), and therefore, we get

f%
?
!Ng � f%i

?
! li�g;

for each i, since each %i is a subterm of %. Using the induction hypothesis, each subgoal

%i!
? li� can be solved, and therefore the goal %!?N itself can also be solved.

Using this result, it is easy to show (by induction on the size of the left-hand sides of goals)

that for any term s (even without the restrictions imposed on %), and ground normal form bN ,

the goal s!? bN is solvable. The idea is that for every application of Mutate with the goal

s!? bN , the subgoal r!?N is solvable (by the above argument). Thus, we can replace the

multiset of subgoals generated by Mutate, by a �nite number of such multisets (each without

r!?N) corresponding to each of the solutions of r!?N .

In certain special cases it is possible to relax the requirement that all right-hand sides with

de�ned functions must have a constructor at the top-level. For example, if we assume that the

top-level function on the right-hand side is strictly increasing, and that it eventually generates

a constructor in a �nite number of steps, then the above theorem would still hold for such

systems. The following example illustrates the point:

88

Example 24.

1 + x ! s(x)

s(x) + y ! s(x+ y)

fib(1) ! 1

fib(s(1)) ! 1

fib(s(s(x))) ! fib(s(x)) + fib(x)

Here, + is a strictly (depth) increasing function, and fib de�nes the Fibonacci numbers, both

being de�ned over positive integers. Furthermore, both rules for + have constructors at the top-

level on the right-hand side, and the remaining rules have the properties required by Theorem 22.

Therefore, the semantic matching problem is decidable for this system.

The essential idea is that if any sequence of applications of Mutate for increasing functions

generate a constructor eventually, then the matching problem is decidable. Here is an outline

of the proof:

If the top-level symbol (of % in Theorem 22) is an increasing function, the applicable trans-

formation rule generates the following derivation:

f%!?Ng ;Mutate f%i1!
? li1 ; �1!

?Ng

The goal �!?N is not decreasing as such. However, since we assumed that all such derivations

eventually generate a constructor at the top, we must have at least one step of decomposition

if we continue to mutate this goal. The derivation therefore would look like:

f%!?Ng ;Mutate� f%i1!
? li1 ; : : : ; %im!

? lim ; �m!
?Ng

;Decompose f%i1!
? li1 ; : : : ; %im!

? lim ; ��m!
? �Ng

We assume that we only mutate the �m!
?N subgoal at every stage, in keeping with the

selection strategy mentioned in the completeness proof of Section 3.5. Now, we can show that

the subgoals are decreasing with respect to the ordering �, as in Theorem 22.

89

Notice that the system described in Example 19 obeys all the restrictions of Theorem 22,

and thus has a decidable semantic matching problem.

7.2.2 Erasing Rules

In this section we deal with the possibility of incorporating erasing rules into the rewrite system,

and will try to extend Theorem 22 suitably to handle such cases. However, before we do so, we

point out some cases which cause problems, by way of counterexamples.

Example 25. Consider the rule given below, together with the de�nitions of + and � from

Example 19

eq(x; x) ! true

This is the only erasing rule in the system. For this set of rules, the goal feq(s; t)!? trueg is

not solvable in general, because, once again, a solution to this problem would mean a decision

procedure for some variation of the Hilbert's Tenth Problem.

Example 26. This time we consider two rules and the de�nitions of + and � as before

f(s(x); 0) ! 0

eq(x; x) ! x

Here, the only erasing rule is the one for f . Consider a goal of the form ff(eq(t1; t2); y)!
? 0g,

where t1 and t2 are terms involving + and �. The possible derivation steps for this goal are

shown below:

ff(eq(t1; t2); y)!? 0g ;Mutate feq(t1; t2)!? s(x1); y 7! 0g

;Mutate ft1!
? x; t2!

? x; y 7! 0; x 7! s(x1)g

Thus, if this goal is solvable, then we can also solve the uni�cation problem with respect to

+ and �, which leads to a contradiction, since the latter problem is known to be undecidable.

This example illustrates the fact that a system with a single (left-linear) erasing rule may admit

undecidable matching problems, even when the other rules are non-erasing.

90

It is important to note that a single erased variable may interact with non-linear variables

of the left-hand side of some other rule in a way which may lead to undecidability. Here we

give an example which has a single non left-linear rule, and an erasing rule.

Example 27. Consider the following rules, together with the de�nitions of + and � as before:

eq(x; x; y) ! s(g(x; y))

g(x; 0) ! true

With this system of rules, and the goal eq(t1; t2; z)!
? s(true), where t1 and t2 are terms in-

volving + and �, we have the following derivations:

feq(t1; t2; z)!? s(true)g ;Mutate ft1!? x; t2!? x; z!? y; s(g(x; y))!? s(true)g

;
� ft1!

? x; t2!
? x; y 7! 0; z 7! 0; x 7! x1; : : : ; g

Thus, for reasons similar to Example 26, this problem is undecidable.

The last example shows that even a linear variable occurring immediately below the top-

level symbol on the left-hand side of a rule may result in the elimination of a variable that is

non-linear in another rule. There is a subtle di�erence between Examples 26 and 27. In the

former, the dropped variable x appears below some constructor (in the �rst rule), which implies

that the subgoal eq(t1; t2)!? s(x1) has to be mutated further, thereby causing the problem.

Note that if this rule had a variable (say z) instead of the s(x) term, then the corresponding

subgoal (eq(t1; t2)!? z) would have been trivially solvable. The last example is a variation of

Example 25; the only di�erence being, in this case, eq drops variables one at a time.

It is possible to have erasing rules and still have a decidable semantic matching algorithm:

Theorem 23. Let R be a left-linear rewrite system and P be a suitable property. If

� all right-hand sides of rules are either variables, or have a constructor at the top-level,

and

� there are no nested de�ned functions in any right-hand sides,

then the semantic matching problem is decidable for R.

Proof. Since we now have a left-linear system, we only need to solve for goals of the form

s!? t, where any variable x in t has the property that it is linear in t and does not occur in

91

the right-hand side of any other subgoal. Thus, we can apply a proof quite similar to that of

Theorem 22, and show that the complete matching procedure is terminating.

We use a well-founded ordering (like � in Theorem 22), which compares goals using a

suitable property for right-hand sides and subterm property for the left-hand sides of goals. Let

us consider a goal of the form %!?N(�x), with % is a term without any nested de�ned functions.

We use the notation N(�x) to denote a term which has some variables �x, such that N is linear

with respect to each of them; furthermore, no other subgoal in the multiset of goals being solved

has any of these variables in a right-hand side. We show by induction that all solutions to such

goals can be �nitely generated. As before, consider an application of Mutate, with the rule

f(l1; : : : ; ln) ! � (assume that % � f(%1; : : : ; %n)). We have the following derivation (like in

Theorem 22):

f%!?N(�x)g ;Mutate f%i!
? li; �!

?N(�x)g; 1 � i � n

;Decompose f%i!? li; �j!?N(�x)jg

We can now apply the inductive hypothesis on the �j!
?N(�x)j subgoals, which implies that

�!?N(�x) itself is solvable. Let � be a solution to this subgoal. By assumption, there are

no nested de�ned functions in %. Therefore, each of the remaining goals can be solved using

decomposition alone.

We next attempt to introduce nested de�ned functions on the right-hand sides of rules.

The main di�culty is with the ordering using a suitable property. For the general case, like

in Theorem 22, we have to show that each of the li� terms for goals of the form %i!? li�

are smaller than the original goal, which may not be possible if the right-hand sides of goals

contain variables. Thus, further restrictions are required: We restrict the system so that if � is

the right-hand side of a rule which has a function that has erasing rules, then we require that

all goals of the form �!?N have only ground solutions. If this condition is satis�ed, then we

can assume that all solutions to the goal �!?N(�x) is ground, and the proof of Theorem 22 is

still valid in this situation. (In e�ect, we are trying to combine Theorems 22 and 23.) Here we

provide examples of two systems which have the required property:

Example 28. In this example + is depth non-decreasing, while � is potentially depth decreas-

ing, and has erasing rules. Also, right-hand sides of rules for + only uses the same function

92

recursively (which is acceptable, since + does not have erasing rules). Furthermore, for �, the

last rule (which is the only one which has the function � on the right-hand side) satis�es the

condition mentioned above (that is, y + (x � s(y))!?N admit ground solutions alone, because

of properties of multiplication).

0 + x ! x

s(x) + y ! s(x+ y)

0 � x ! 0

s(x) � 0 ! 0

s(x) � s(y) ! s(y + (x � s(y)))

In the next example, insert is a strictly depth increasing function, which uses min (a variable

erasing function) in its right-hand side (the last rule). However, since both the variables which

can potentially be dropped (x and y of the last rule) also appear in the second subterm of the

root, under a non-variable dropping function max, the entire rule can be treated as non-erasing.

Example 29.

min(x; 0) ! 0

min(0; x) ! 0

min(s(x); s(y)) ! s(min(x; y))

max(x; 0) ! x

max(0; x) ! x

max(s(x); s(y)) ! s(max(x; y))

sort(nil) ! nil

sort(x � y) ! insert(x; sort(y))

insert(x; nil) ! x � nil

insert(x; y � z) ! min(x; y) � insert(max(x; y); z)

Thus, in order to introduce nested de�ned functions on the right-hand sides, we have to ensure

that whenever there is a possibility of a variable being dropped, there must be another subgoal

93

which instantiates that variable. We will continue our discussion on decidable matching in

theories with erasing rules in Section 7.2.4.

7.2.3 Matching with Restricted Goals

In this section we will consider matching problems in which the left-hand side of the initial goal

is restricted, very much like the right-hand sides of rules of the convergent rewrite system under

consideration. For the remainder of this section, we will uniformly use depth as the measure,

when dealing with a suitable property.

To combine the results mentioned in Theorems 22 and 23, so that we could use systems

with erasing rules and nested de�ned functions on the right-hand sides, and still have decidable

semantic matching problems, we restrict the left-hand side of the initial goal to be solved.

De�nition 19 (Admissible Term). A term t is said to be admissible (with respect to depth)

if t does not contain any de�ned function nested below any function which is depth decreasing.

Theorem 24. Let R be a convergent rewrite system. If all right-hand sides for rules in R are

either variables, or have a constructor at the top-level, and all right-hand sides are admissible,

then the semantic matching problem is decidable for all goals of the form t!?N , where t is

also admissible.

Proof. The essential idea is to use the depth of N to bound all fruitless paths in the solution

tree (tree generated by applying all possible transformation rules to a starting goal) of t!?N .

We consider application of the transformation rule Mutate on a goal of the form t0!? t00[�

M], where M is a measure of the right-hand side of the goal (this measure is initially computed

as the depth of the ground term N , and, thereafter, every application of a transformation rule

assigns a measure to the subgoals). Let t0 � f(t1; : : : ; tn), where f is a de�ned function (if not,

we could �rst apply some number of decomposition and imitation steps to reduce the goal to

this form), and let the rule used for mutation be f(l1; : : : ; ln)! r. The main steps are:

ft0!? t00[�M]g ;Mutate ft1!? l1; : : : ; tn!? ln; r!? t00[�M]g

;Decompose ft1!? l1; : : : ; tn!? ln;

r1!
? t001[�M � 1]; : : : ; rm!

? t00m[�M � 1]g

94

Since every right-hand side, by assumption, has constructors at the top, we have shown the

decomposition step which may be applied to r!? t00, assuming that the top-level constructor

of r has m immediate subterms.

Let � be a well-founded ordering on goals such that s1!
? t1[� M1] � s2!

? t2[� M2] if

either M1 > M2 or M1 = M2 and s2 is a proper subterm of s1.

There are two cases to be considered:

� If f is non-decreasing, then it must be the case that each of the ti terms must have a

normal form which is bounded by M . Therefore, we have:

ft0!? t00[�M]g

; � � �;

ft1!
? l1[�M]; : : : ; tn!

? ln[�M]; r1!
? t001 [�M � 1]; : : : ; rm!

? t00m[�M � 1]g;

which means that the new set of goals is smaller than the original set (containing the

single goal t0!? t00), with respect to the multiset extension of �.

� If f is potentially-decreasing, then by assumption there are no de�ned functions in the

subterms ti, and therefore the corresponding goals can be solved using decomposition and

imitation alone.

This shows that every application of the transformation rule for mutation reduces the new

set of goals. It is easy to show that imitation and decomposition also decrease goals in the

ordering �, and hence the result.

Example 30. Consider the rule eq(x; x) ! x, together with the de�nition of + and � as in

Example 20. For this system, a goal of the form eq(x+ z; z � y)!? 0 is solvable.

7.2.4 Restricted Left-Linear Rules

In this section we consider possible extensions of Theorem 24 for left-linear rewrite systems,

but for which the restrictions on the left-hand side of the initial goal are not required. The

main problem with having nested de�ned functions on the right-hand sides of rules together

with erasing rules is that it becomes necessary to compare non-ground terms with respect to

their depth, which may not be possible in general. Here, we attempt to identify a subclass of

95

systems for which such comparisons can be made (essentially by forcing the variables of one

term to be a subset of those in the other). Henceforth, we will assume that constants and

variables have depth one. In Theorem 25 we use syntactic restrictions on the rewrite system

which results in decidable matching (unlike the semantic restriction of admissibility used in

Theorem 24; admissibility, in general, is an undecidable property, even for a convergent rewrite

system; see Lemma 21):

Theorem 25. Let R be a convergent left-linear rewrite system. If for every rule f(l1; : : : ; ln)!

r in R

1. each li; 1 � i � n, is of depth at most two,

2. r is either a variable or has a constructor at the top-level, and

3. whenever at least one lj has depth greater than one, r has depth greater than one,

then the semantic matching problem is decidable for R.

Example 31. The following de�nition of squaring using + and � obeys all the syntactic re-

strictions of Theorem 25, and therefore has a decidable matching problem:

0 + x ! x

s(x) + y ! s(x+ y)

0 � x ! 0

x � 0 ! 0

s(x) � s(y) ! s(y + (x � s(y)))

sq(0) ! 0

sq(s(x)) ! s(sq(x) + (s(s(0)) � x))

We now state a proof of the theorem:

Proof. Since we have a left-linear system, we only need to solve goals of the form s!? t,

where any variable x in t is linear in t and does not occur in the right-hand side of any other

subgoal (this is true because we have directed goals, and terms on the right-hand sides of goals

could either be left-hand sides of (left-linear) rules from previous mutations, or subterms of the

96

ground term N , when solving for a initial goal of the form s0!?N ; see Lemma 10). Thus,

we can apply a proof quite similar to that in Theorem 22, and show that the procedure is

terminating for this case. (As shown in Theorem 9, it is su�cient to consider mutation and

decomposition, that is, one need not consider imitation and application for completeness, for

matching in theories de�ned by left-linear convergent systems. In the proof of Theorem 9 we

used a particular selection strategy for picking subgoals to solve; we continue to use the same

selection strategy for solving subgoals in this proof.)

Let � be the well-founded ordering on goals such that s1!? t1 � s2!? t2 if either

depth(t1) > depth(t2) or depth(t1) = depth(t2) and s2 is a proper subterm of s1.

Consider a goal of the form f(s1; : : : ; sn)!
?N [�x]. (We use the notation N [�x] to denote a

term linear in variables �x and for which no other subgoal in the current set has any of these

variables on the right-hand side; Lemma 10 shows why considering such goals is su�cient.) We

show by induction on the ordering � that any solution to this goal is bounded in depth by that

of N [�x]. There are several cases to be considered:

� If N [�x] is a variable, then by Lemma 11, we do not have to solve this goal any further.

Therefore, the only solution to this goal is an indeterminate (unbound variable) for each

variable of f(s1; : : : ; sn). Thus, the solution is of depth one, which is the same as that of

N [�x].

� If N [�x] is a constant, then for decomposition to work, f(s1; : : : ; sn) must be the identical

constant, which gives the empty substitution as the only solution, and therefore the

hypothesis holds in this case.

Next, consider mutation of the goal f(s1; : : : ; sn)!?N [�x], N [�x] a constant, using a rule

of the form f(l1; : : : ; ln) ! r. The only time such a rule could work is if depth(r) = 1.

(For any other rule, by the assumption of the theorem, there has to be a constructor

at the top-level of r, which would lead to failure when solving the r!?N [�x] subgoal.)

Furthermore, since r has depth one, by the assumption of the theorem, each li; 1 � i � n,

must be of depth one also. If r is a constant, then the only possible solution to the goal

r!?N [�x] is the empty substitution (� = fg). However, if r is a variable, say z, then this

goal has a unique solution, bounded by the depth of N [�x] (the solution is fz 7! N [�x]g). In

either case, each of the subgoals s1!
? l1�; � � � ; sn!

? ln� is smaller than the original goal

97

f(s1; : : : ; sn)!
?N [�x] (since each li is either a variable or a constant), and the proposition

follows by induction on these smaller subgoals.

� For any other case, the depth of N [�x] is at least two; let N [�x] � g(N1; : : : ; Nm). Were

we to decompose this goal, then each of the subgoals thus generated would be smaller

in the ordering �. Thus, for decomposition, the proposition holds by induction on each

of the smaller subgoals. Finally, consider mutation of this goal using a rule of the form

f(l1; : : : ; ln)! r:

f(s1; : : : ; sn)
?
!N [�x];Mutate s1

?
! l1; � � � ; sn

?
! ln; r

?
!N [�x];

there are further cases:

{ If we require r to be of depth one, then r must be a variable, say z. (A constant

for r does not work, since the constant must be a constructor by the requirements

of the theorem, and therefore, the goal r!?N [�x] has no solution.) In this case

the subgoal r!?N [�x] (that is, z!?N [�x]) is trivially solvable, and the proposition

holds for this subgoal. Furthermore, by the assumption of the theorem, each li; 1 �

i � n, has depth one. Suppose � is the (unique) solution to the goal z!?N [�x].

Therefore, as in the previous case, we have depth(li�) � depth(N [�x]); 1 � i � n.

Thus, the proposition holds by applying the hypothesis on the smaller subgoals

s1!
? l1�; � � � ; sn!

? ln�.

{ If r has depth greater than one, then it must have a leading constructor (by assump-

tion of the theorem). Suppose r � g(r1; : : : ; rm), where g is a constructor. Thus, it is

possible to decompose the goal r!?N [�x] at least once, leading to smaller subgoals

of the form r1!?N1; : : : ; rm!?Nm. Then, by applying the inductive hypothesis on

these smaller subgoals, we conclude that the proposition holds for r!?N [�x], pro-

viding a solution �, say. Furthermore, let depth(N [�x]) = d > 1. If x is a variable

in any li; 1 � i � n, such that x appears in r, by the inductive hypothesis, the

depth of the term bound to x in � would be at most d � 1 (since at least one top-

level decomposition was performed on the r!?N [�x], as indicated before). Thus,

98

depth(li�) � d; 1 � i � n, and once again we can apply the inductive hypothesis on

the subgoals s1!? l1�; � � � ; sn!? ln� to get the result.

Each of the restrictions used in Theorem 25 is necessary for decidability: If we drop the

requirement of left-linearity, then we could get undecidability; see Section 7.2.2 for counterex-

amples. If we drop restriction 2 matching becomes equivalent to solving the emptiness problem

for the intersection of two context-free languages, which is undecidable; see [Heilbrunner and

H�olldobler, 1987] for the construction. In the remaining cases, we show that matching of certain

goals would result in uni�cation in the theories of addition (+) and multiplication (�). Notice

that the de�nitions of + and � in Example 20 obey all the syntactic restrictions of Theorem 25.

First of all, we relax restriction 3, that is, we allow subterms of depth greater than one below

the root on the left-hand side, without requiring that the right-hand side be of depth at least

two. The following example illustrates the problem:

Example 32.

f(1) ! 1 (7.1)

f(s(1)) ! 1 (7.2)

g(1; 1) ! s(1) (7.3)

g(s(x); s(y)) ! s(f(g(x; y))) (7.4)

Rule 7.2 is the only one which violates the nesting criterion. It can be shown by induction that

the function g has the property

g(x; y) = s(1) if and only if x = y = sn(1); n � 0:

Therefore, a goal of the form g(s; t)!? s(1) would, in general, be undecidable, when s and t

are terms involving + and � (see Example 20).

Finally, we relax condition 1, and allow depths greater than two below the root function on

left-hand sides of rules (but in order to ensure that the last condition not be violated, we would

insist that whatever depth we have on the left-hand side must show up on every path on the

99

right-hand side, by way of leading constructors). Consider the following example, wherein, we

encode f from Example 32 using new rules:

Example 33.

F (s(x)) ! s(1) (7.5)

G(s(s(1)); s(s(x))) ! s(s(s(x))) (7.6)

g(1; 1) ! s(s(1)) (7.7)

g(s(x); s(y)) ! s(F (G(g(x; y); s(s(1))))) (7.8)

Notice that none of the rules have an immediate subterm which is of greater depth than

the number of leading constructors on the corresponding right-hand side. However, Rule 7.5

erases x, while Rule 7.6 is the only one which violates the depth criterion for left-hand sides

(it allows immediate subterms of depth 3 on its left-hand side). It is easy to check that

F (G(s(s(1)); s(s(z)))) !! s(1) for a variable z (e�ectively, s(s(s(z))) produced by rule 7.6

gets matched with the erased variable, and some of the structure gets removed in the process).

Thus, similar to Example 32 we have

g(x; y) = s(s(1)) if and only if x = y = sn(1); n � 0:

For reasons mentioned in Example 32, the matching problem is undecidable for this system

(together with the de�nitions of + and �).

7.3 Decidable Uni�cation

The class of matching problems that we have considered in the previous section is a simpli�ed

version of the general semantic uni�cation problem. For instance, for the system provided

in Example 31, we showed that the matching problem is decidable; however, the uni�cation

problem for this system is undecidable. Thus, it is evident that we need stronger restrictions

on the rewrite systems in order to have decidable uni�cation. We start with the following:

100

Theorem 26. Let R be a convergent rewrite system, in which every right-hand side is either a

variable, a ground term or a constructor-only term. Then the uni�cation problem is decidable

for R.

Proof. We use the complete uni�cation procedure from Section 3.1 (Table 3.2), and show that

for R (as restricted above) the procedure is terminating.

Consider a goal of the form r!? t, where r is a variant (after variable renaming) of some

right-hand side of a rule, and t is any term. Since r could either be a variable, a ground or

constructor term, this goal can be fully solved without having to use mutation at all. (In case

r is a ground term, its normal form must be uni�able with t. If r is a variable, we could either

eliminate or bind. Finally, if r is a constructor-only term, it must be syntactically uni�able

with t, which, in our case, is checked using some number decomposition and imitation steps,

followed by the use of Eliminate and Bind.) Thus, all solutions to this goal can be generated

in �nite time.

Whenever we have a goal of the form s!? t, for any term s, we could use one of Eliminate,

Bind, Mutate, Decompose or Imitate from Table 3.2. Let � be the well-founded ordering

on goals such that s!? t � s0!? t0 if s0 is a proper subterm of s. We use the (well-founded)

multiset extension of this ordering, which we also denote as �. It is evident that any application

of Eliminate, Bind, Decompose and Imitate cause a reduction in the ordering. For mutation

we have:

s!? t ;Mutate s1!
? l1; � � � ; sn!

? ln; r!
? t:

By previous argument, all solutions to the goal r!? t can be generated in �nite time. Thus, we

could replace the derivation sequence above with �nitely many (since the number of solutions

to r!? t is �nite) sequences of the form:

s!? t ;Mutate s1!
? l1; � � � ; sn!

? ln; r!
? t

;
� s1!

? l1; � � � ; sn!
? ln; �

(we have one such sequence for every solution (�) to the goal r!? t). Thus, for every such

sequence emanating from a mutation, we now have a decrease in �.

Theorem 26 is a slight extension of one in [Hullot, 1980], which considers only ground terms or

variables on the right-hand sides.

101

For the next result we need the following de�nition:

De�nition 20 (Subterm Composing). A rewrite rule l ! r is subterm composing if every

subterm of r with a de�ned function at its root is a proper subterm of l.

Theorem 27. The semantic uni�ability problem is decidable for a convergent rewrite system

in which every rule is subterm composing.

Proof. Consider a goal of the form r!? t, as before. We show that all solutions to this goal

can be generated in �nite time.

By the requirements of the theorem, r is of the form C[r1; : : : ; rn]P , where P is a set of n

disjoint positions in r, the subterms rooted at which have a de�ned function at the top-position

(the subterms are r1; : : : ; rn), and C is the constructor-only context. By assumption, each ri is

a subterm of l; hence, whenever the rule l ! r is used for mutation, we would have irreducibility

predicates corresponding to each ri (or a term which contains ri as a proper subterm). Thus,

further mutation of a subgoal which has any ri as its left-hand side would only lead to reducible

(and thus redundant) solutions, which would imply that all such subgoals can be solved (for

irreducible solutions) without applying mutations. Furthermore, since C is a constructor-only

context, the entire goal r!? t can be solved without further mutation, and thus has only a

�nite number of solutions.

The rest of the proof is similar to the one for Theorem 26.

Theorem 27 is an extension of a decidability result in [Kapur and Narendran, 1987], which deals

with rewrite systems in which every right-hand side is a subterm of the corresponding left-hand

side (that is, for their rules, the constructor context C in Theorem 27 is always empty, P is the

singleton set containing the root position, and r1 � r is a subterm of l). However, they also

show that the problem is NP-complete in their case.

In general, whenever a convergent system allows nested functions (either de�ned functions

or constructors; with the exception that leading constructors never cause a problem) on the

right-hand side, it is possible to have undecidable uni�cation. We, therefore, will only allow

the following kind of terms in right-hand sides of rules:

De�nition 21 (Flat Term). A term is said to be
at if it has a single de�ned function, and all

variables below this function symbol appear directly below it.

102

For example, if f is a de�ned function and s; a and 0 are constructors, then the terms

s(f(x; y)) and s(f(a(0; 0); x)) are
at, while f(s(x); y) (x does not appear directly below f)

and a(f(x; 0); f(0; y)) (there are more than one de�ned function) are not.

Theorem 28. Let R be a (left- and right-) linear convergent rewrite system. If for every func-

tion f de�ned by R there is at most one rule with a right-hand side that is neither a constructor

term nor a variable and that is
at, then the semantic uni�cation problem is decidable for R.

We need the following lemma:

Lemma 29. For R as de�ned in Theorem 28, all solutions to a goal r!? t (where r is a variant

of a right-hand side) can be expressed as a recurrent scheme.

We will require the following de�nitions for the proof of Lemma 29:

De�nition 22 (Simple Substitution). Let X = fx1; : : : ; xng and X 0 = fx01; : : : ; x0ng be two

sets of (pairwise) distinct variables. A substitution � is said to be a simple substitution if:

� The domain of � is identical to X .

� �(xi) = ti[X
0
i]; 1 � i � n, where ti is a context, and X 0

i is a subset of X
0.

De�nition 23 (Iterated-Substitution). Let � be a simple substitution from X to X 0 as above,

and let X 00 = fx001; : : : ; x
00
ng be set of new and distinct variables. Let �0 be the substitution

which is constructed from � by uniformly renaming (in parallel) each variable in X by the

corresponding one in X 0, and each variable in X 0 by the corresponding one in X 00, and by

renaming all other variables using new ones. Then we de�ne �2 = � � �0. This notion can be

extended to de�ne �3; � � � ; �n for any integer n.

For example, � = fx1 7! c(x01; x
0
2; y); x2 7! x02g is a simple substitution, and �2 = fx1 7!

c(c(x001; x
00
2; y

0); x002; y); x2 7! x002g is an iterated substitution (�2 is � iterated to its second power).

Proof. (Of Lemma 29) Consider the goal r!? t. The interesting case is when we have to

apply the transformation rule for mutation. (Without mutation and with r
at, we get a �nite

branch of the solution tree, which is not a problem.) Furthermore, mutation using rules for

which the right-hand sides are either constructor terms or variables leads to �nite branches

103

(see Theorem 26 above). If r has any leading constructors, then we can use Decompose and

Imitate as required, and end up with a goal of the form f(r1; : : : ; rn)!? t0, where f is a de�ned

function. Consider mutation of this goal using the rule f(l1; : : : ; ln)! r0. By the assumptions

of the theorem, each ri is either a variable or a ground term. Therefore, all the subgoals of

the form ri!? li can be solved without mutation, which leaves a single subgoal of the form

r0!? t0. Furthermore, because of
atness and linearity, no variable in r0 could have been bound

when solving the ri!
? li subgoals. Also, along any path in the solution tree, the right-hand

sides of goals cannot get any more complicated (mutation keeps the right-hand side intact;

decomposition reduces the structure and imitation also keeps the right-hand side structure

intact, since it replaces a variable with a new one for each subgoal).

Therefore, if there is an in�nite path in the solution tree it must contain a repetition of the

form:

g1 � fr1!
? t1g ;Mutate� fr2!

? t2g � g2;

where r2 and t2 are renamed versions of r1 and t1, respectively. In this situation we can express

�nitely a complete set of solutions to g1 without having to explore g2 further. Let � denote

the substitution generated in the path from g1 to g2, and �0 be any solution along some other

�nite path to g1. (Since there is a single
at rule, there can be no other in�nite paths.) Then,

corresponding to �0, we get a complete set of solutions, which can be expressed as �n ��0; n � 0

(�n stands for � iterated n times, where n is an integer variable; refer to the example below for

details).

We are now ready to state a proof of Theorem 28:

Proof. In Lemma 29 we have shown that all solutions to a goal of the form r!? t can be

�nitely generated, where r is a variant of a right-hand side of a rule in R.

To prove decidability of uni�cation, we consider a goal of the form s!? t, for any two terms

s and t. As before, any application of Eliminate, Bind, Decompose or Imitate would result in

simpler subgoals. For mutation, we use the following strategy: we keep the r!? t goal intact,

and solve any of the other goals. Therefore, along any path in the solution tree, we would

either have no remaining goals (if Mutation was never used along that path), or a collection of

subgoals, each of the form r!? t, where r is a variant of the right-hand side of a rule in R.

104

By Lemma 29, we can express all solutions to any goal of the form r!? t as a recurrent

schemata. Therefore, whenever we have multiple such subgoals to solve, we have to �nd the

language in the intersection of two such recurrent schemata, which can be done, using a result

from [Socher-Ambrosius, 1993], which itself is an extension of a theorem from [Comon, 1992]

(see discussion after Example 35).

Example 34. Consider the rewrite system for addition:

0 + x ! x (7.9)

s(x) + y ! s(x+ y) (7.10)

The goal

y + (y + z)
?
= z + z

is transformed into two directed goals, fy + (y + z)!? x0; z + z!? x0g. Some of the derivation

steps are:

8><
>:

y + (y + z) !? x0

z + z !? x0

9>=
>;;Mutate(7.10)

8><
>:

y!? s(x1); y + z!? y1;

s(x1 + y1)!
? x0; z + z!? x0

9>=
>;

We can solve the goal z + z!? x0 by changing it to z1 + z2!
? x0; z1 = z2. (This is how we can

handle non-linear variables in the original goal in general.) The steps involved in solving the

goal z1 + z2!? x0 are:

fz1 + z2!
? x0g ;Mutate(7:9) fz1!

? 0; z2!
? z0; z0!

? x0g

; fz1 7! 0; z2 7! x0g

fz1 + z2!? x0g ;Mutate(7:10) fz1!? s(x2); z2!? y2; s(x2 + y2)!? x0g

; fx2 + y2!
? x00; �g

where � � fz1 7! s(x2); z2 7! y2; x
0 7! s(x00)g.

We now have a subsuming pattern of the form

fz1 + z2!
? x0g ;

� fx2 + y2!
? x00g

105

producing the solution z1 = sn(0); z2 = z0; x
0 = sn(z0); which, together with the constraint

z1 = z2, simpli�es to z = sn(0); x0 = s2n(0).

Similarly, we can simplify the remaining goals to get the following: x1 = sm(0); y1 = y0; x
0 =

sm+1(y0) (as a general solution to the goal s(x1 + y1)!
? x0), y = sj(0); z = za; y1 = sj(za) (from

the goal y + z!? y1), and y = s(x1).

We solve these equations (with respect to n;m and j) to get y = sj(0); z = sn(0), where

x0 = s2j+n(0) = s2n(0), which gives 2j = n after simpli�cation.

Example 35. The following rewrite system (append and interleave on lists) has a decidable

semantic uni�cation problem:

append(nil; x) ! x

append(x � y; z) ! x � append(y; z)

interleave(nil; x) ! x

interleave(x; nil) ! x

interleave(x � y; z) ! x � interleave(z; y)

In Example 34, we handled non-linear variables in the original goal by solving additional

constraints, which was simple because we had a unary function (s) to deal with. We now brie
y

indicate how solutions can be represented and such constraints solved in general. According to

the requirements of Theorem 28, if x is a variable in the original goal, then along the in�nite

branch of the solution tree, we have the following:

x 7! u[x1]; x1 7! v[x2]; x2 7! v[x3]; : : : ;

where v is the context which gets repeated due to the subsuming pattern. Thus, in e�ect, the

variable x gets bound to a term-pattern, which we represent as x 7! u[vn[xn+1]]. Therefore,

in solving a constraint of the form x = y, where both x and y could be bound to such term

patterns, we have to \unify" these patterns. These patterns are exactly the ones considered

in [Socher-Ambrosius, 1993, Section 4]. In fact, our patterns are slightly simpler than the ones

handled by [Socher-Ambrosius, 1993], because we have terms which could be iterated along a

single path alone, and additionally, all the variables|
exible-variables in their terminology|

106

are linear in our case. The claim in Section 4 of [Socher-Ambrosius, 1993] is that the uni�cation

algorithm is terminating in the general case (that is, even with non-linear
exible variables)

using the same proof which is sketched in Section 3 (for a similar system without
exible

variables) of [Socher-Ambrosius, 1993]. However, this does not seem to be correct, since the

termination proof makes use of the fact that the number of variables does not increase when

Merge (similar to Bind in our case) is applied, which is not true, since Merge may introduce new

exible variables in the rest of the equations. However, if the
exible-variables are assumed to

be linear (as we require), then there is no problem, since we would never have to merge
exible

variables.

The requirement that every rule should be left- and right-linear for Theorem 28 seems to

be overly restrictive. It may be possible to use a di�erent language (or even an extension of

the one in [Socher-Ambrosius, 1993]) to relax these restrictions. However, for decidability, the

restriction that each function symbol may have at most one rule with a
at right-hand side is

necessary:

Lemma 30. There is no decision procedure for the matching problem in a (left- and right-

) linear convergent rewrite system, in which every right-hand side is either a variable or a

constructor term, or is
at.

Proof. We show that semantic matching in such theories can be used to simulate the unde-

cidable Post's Correspondence Problem (PCP, [Hopcroft and Ullman, 1979]).

An instance of PCP consists of two lists A = w1; : : : ; wk and B = x1; : : : ; xk, of strings

over some alphabet �. This instance has a solution if there exists a sequence of integers

i1; : : : ; im; m � 1, such that

wi1 ; : : : ; wim = xi1 ; : : : ; xim:

The following example illustrates how semantic matching can be used to generate solutions to

a particular instance of the Post's Correspondence Problem:

Example 36. Let � = fs; pg, while A and B are as given below:

107

List A List B

i wi xi

1 s sss

2 spsss sp

3 sp p

We construct the following rewrite system R:

eq(s(x); s(y)) ! eq(x; y)

eq(p(x); p(y)) ! eq(x; y)

firsts(nil) ! nil

firsts(1 � x) ! s(firsts(x))

firsts(2 � x) ! s(p(s(s(s(firsts(x))))))

firsts(3 � x) ! s(p(firsts(x)))

snds(nil) ! nil

snds(1 � y) ! s(s(s(snds(y))))

snds(2 � y) ! s(p(snds(y)))

snds(3 � y) ! p(snds(y))

It is easy to see that this instance of PCP has a solution if and only if the goal

eq(firsts(x � y); snds(x � y))
?
= eq(nil; nil)

is satis�able.

From the construction, it is evident that, given any instance of PCP, we can similarly construct

a convergent rewrite system with the required syntactic restrictions, such that the matching

problem described above has a solution if and only if the instance of PCP under consideration

has one.

108

7.4 Summary on Decidability Results

Most of the results on decidable semantic matching using non-erasing rules were �rst presented

in [Dershowitz et al., 1992], while the theorem for decidable uni�cation (using left- and right-

linear systems with
at right-hand sides) was presented in [Dershowitz and Mitra, 1993].

Decidable matching and uni�cation are particularly useful in pattern directed languages,

constraint solving and theorem proving. In this chapter we have studied these problems for

convergent systems and have shown the there exists di�erent complex characterization (based

on syntactic as well as semantic properties) which provide decidable subproblems. The results

that we provide for matching are \tight," in the sense that whenever any of the conditions that

we impose is violated, the resulting rewrite system may have undecidable matching (uni�cation)

problems. Before our work, almost no such characterization was known for decidable matching

problems, and the ones for uni�cation were very restrictive.

At the end of Section 7.3 we mentioned a problem about a result from [Socher-Ambrosius,

1993]. We believe that a correct proof of termination of the uni�cation procedure mentioned

therein would help generalize decidability results for systems with
at right-hand sides (by

allowing non-linear variables in rules). Another approach for a recurrent schematization of an

in�nite family of terms (using the so called primal grammars) has been mentioned in [Hermann,

1992], wherein a narrowing-like strategy has been used for uni�cation of such families of terms.

However, a proof of termination of this procedure (in the most general case of primal systems,

including marked variables) is still forthcoming.

109

8 SUMMARY AND FUTURE WORK

Semantic uni�cation is of importance in programming language interpreters and theorem

provers. In this thesis we have studied the problem of uni�cation in theories de�ned by con-

vergent rewrite systems. After proving completeness for the resulting uni�cation procedure, we

have discussed several interesting extensions of the problem, and have shown that a complete

set of semantic matchings can be found using a simpler set of transformations for convergent

systems that admit either a left-linear or a non-erasing presentation. Furthermore, we have

used the di�erent transformation systems to derive syntactic and semantic restrictions on the

rewrite system that result in the uni�cation and matching problems being decidable. Solv-

able matching is useful in pattern-directed languages, while solvable uni�cation can be used

in inductive theorem proving. We now brie
y mention some possible extensions of the results

presented here.

8.1 Uni�cation in Combined Theories

Consider the very general method for proving equality of terms (that is, a method for solving the

validity problem), using the inference system of Table 8.1. If we were to use the transformation

Re
ect
s!�s

Axiom
l!r2R;r�!�t

l�!�t

Decompose
s1!

�t1;:::;sn!
�tn;f(t1;:::;tn)!

�u

f(s1;:::;sn)!�u

Table 8.1: Inference rules for validity of !�

system of Table 8.1, we could use rewrite systems (R in Axiom of Table 8.1) that are non-

terminating or non-con
uent (or both).

A very natural question in this general framework is that of �nding a basis set of uni�ers.

Notice that the uni�cation problem in this setup is a generalization of E-uni�cation in the sense

110

Imitate(l) x!? g(t1; : : : ; tn)
;

x = g(x1; : : : ; xn); x1!? t1; : : : ; xn!? tn

Imitate' x!? y

;

x = g(x1; : : : ; xn); y = g(y1; : : : ; yn); x1!? y1; : : : ; xn!? yn

Var-Param x!? y

;

x = f(x1; : : : ; xn); x1!
? l1; : : : ; xn!

? ln; r!
? y

where f(l1; : : : ; ln)! r is a renamed rule in R

Table 8.2: Transformation rules for satis�ability of !?

of [Gallier and Snyder, 1989; Snyder, 1991], since, in our system, we would get E-uni�cation if

we used both variants (l ! r and r ! l) of every equation l = r 2 E. It can be shown that

when the transformation rules of Table 8.2 are used, together with those from Table 3.2, we get

a complete uni�cation procedure in this general setting. One problem with this system is that

the transformation rules (essentially the rules from Table 8.2) are highly non-deterministic. In

fact, even with a simple goal of the form x!? y it is possible to have an in�nite subsuming

derivation, a problem quite similar to the one discussed by Snyder [1991, page 65], for a system

for general E-uni�cation. However, if we were to consider irreducible solutions alone, it can be

shown that the rules from Table 3.2 are su�cient for the purpose (that is, Imitate(l), Imitate'

and Var-Param are redundant in this case). Therefore, an interesting line of research would be

to see if a more e�cient system can be developed for this problem. Another interesting problem

is to come up with examples which illustrate that each of the transformation rules in Table 8.2

is indeed necessary for completeness, without the assumption of irreducible solutions.

8.2 Higher-Order Matching and Uni�cation

In Chapter 4 we looked at a way of combining higher-order features with a �rst-order convergent

rewrite system to get a complete set of transformations for higher-order uni�cation. Two related

problems ought to be addressed:

111

� We have only considered typed combinatory logic, which gives us a system C (see Sec-

tion 4.1) that is convergent. In general (considering the untyped calculus) C would only

be con
uent (but non-terminating). It would be interesting to see if the combination

technique of Chapter 4 would still be valid in this case.

� The second problem concerns decidability of higher-order matching. Higher-order match-

ing seems to be signi�cantly simpler than higher-order uni�cation [Baader and Siekmann,

1993]. Huet [1975] himself showed that second-order matching is decidable and conjec-

tured that this decidability result holds in general, which is still an open problem, except

for the third-order case [Dowek, 1992]. It may be easier to formulate the higher-order

matching problem in combinatory logic and get a better notion of termination of the

resulting system of transformation rules, using the completeness result from Section 3.5

together with techniques from Chapter 7.

Furthermore, our solution for uni�cation in combinatory-logic is, in some sense, very similar

to the solution for the uni�cation problem in general associative-commutative theories. In either

case, we have a convergent system, together with some additional axioms which are handled

outside the basic uni�cation procedure. For the former case, we have to apply the extensionality

axiom non-deterministically, while in the latter case, we use the axioms of associativity and

commutativity (by way of rearranging the subterms). It may be possible to generalize these

two results, so that we could solve the uni�cation problem modulo any general equational

theory.

8.3 Associative-Commutative Reduction Orderings

In Chapter 6 we have discussed a simple restriction on the recursive path ordering which results

in a relation that can be used to prove termination in the presence of associative-commutative

function symbols. Recently, Rubio and Nieuwenhuis [1993] have extended a similar ordering

to one that is total on (non-AC equivalent) ground terms. However, their ordering orients the

distributivity axiom the \wrong" way. It would be interesting to see if a combination of our

ordering and the one proposed in [Rubio and Nieuwenhuis, 1993] would result in an AC ordering

which has the advantages of both.

112

Another important problem, which has not been addressed in this thesis, is that of proving

ground convergence. Our completeness results require the rewrite system to satisfy this (some-

what) weaker notion of convergence, that is, we only require that the system be convergent on

ground terms, and not on all terms. In fact, in the programming context, function de�nitions

usually satisfy this requirement. Unfortunately, only overly restrictive or ad-hoc schemes are

known for proving ground convergence of a set of axioms, and the problem is known to be un-

decidable even for terminating rewrite systems. Therefore, another important line of research

would be to �nd practically useful su�cient conditions for this property.

113

A EXAMPLES USING GOAL-DIRECTED APPROACH

In this appendix, illustrative examples using the top-down equation solving procedure are in-

cluded. The transcripts are taken using the software, SUTRA, which is a Common Lisp version

of RRL (Rewrite Rule Laboratory) [Kapur and Zhang, 1987]. The parts of this system which

interest us are:

1. Completion procedure for converting an equational system into a set of rewrite rules,

2. Special completion for theories with AC-functions,

3. Rewriting techniques for deriving the normal form of terms modulo a conditional theory,

4. Top-down goal directed equation solving procedure, and

5. Goal-directed equation solver for AC theories as discussed in Section 5.1, with the restric-

tion that all AC functions are completely de�ned.

A.1 Factorial of Natural Numbers

In this section we use conditional rules for de�ning factorial, and show how goals can be solved

in the resulting convergent system.

/**/

/* */

/* EXAMPLE I */

/* Factorial of Natural Numbers */

/* */

/**/

RRL-> auto fact

Equations read in are:

114

1. (0 < 0) == FALSE [USER, 1]

2. (0 < S(0)) [USER, 2]

3. (S(X) < S(Y)) == (X < Y) [USER, 3]

4. (0 < S(X)) == TRUE if (0 < X) [USER, 4]

5. (S(X) - S(Y)) == (X - Y) [USER, 5]

6. (X - 0) == X [USER, 6]

7. (0 + X) == X [USER, 7]

8. (S(X) + Y) == S((X + Y)) [USER, 8]

9. (0 * X) == 0 [USER, 9]

10. (S(X) * Y) == (Y + (X * Y)) [USER, 10]

11. FACT(0) == S(0) [USER, 11]

12. FACT(X) == (X * FACT((X - S(0)))) if (0 < X) [USER, 12]

Using Conditional Rewriting Method ...

Your system is possibly canonical.

[1] (0 < 0) ---> FALSE [USER, 1]

[2] (0 < S(0)) ---> TRUE [USER, 2]

[3] (S(X) < S(Y)) ---> (X < Y) [USER, 3]

[4] (0 < S(X)) ---> TRUE if { (0 < X) } [USER, 4]

[5] (S(X) - S(Y)) ---> (X - Y) [USER, 5]

[6] (X - 0) ---> X [USER, 6]

[7] (0 + X) ---> X [USER, 7]

[8] (S(X) + Y) ---> S((X + Y)) [USER, 8]

[9] (0 * X) ---> 0 [USER, 9]

[10] (S(X) * Y) ---> (Y + (X * Y)) [USER, 10]

[11] FACT(0) ---> S(0) [USER, 11]

[12] FACT(X) ---> (X * FACT((X - S(0)))) if { (0 < X) } [USER, 12]

Time used = 1.08 sec

115

Number of rules generated = 12

Number of rules retained = 12

Number of critical pairs = 1

Time spent in normalization = 0.03 sec (3.0 percent of time)

Time spent in unification = 0.03 sec (3.0 percent of time)

Time spent in ordering = 0.08 sec (7.0 percent of time)

Time spent in simplifying the rules = 0.40 sec (36.0 percent of time)

Total time (including 'undo' action) = 67.0 sec

RRL-> sol fact(x) == s(0)

Solving FACT(X) == S(0) [USER, 13]

X |--> (0)

Found at Depth 2.

Time taken for this solution : 0.02 secs

Try Again?(Y,N) y

X |--> (S (0))

Found at Depth 7.

Time taken for this solution : 1.87 secs

Try Again?(Y,N) n

Total Time used for solving = 1.88 seconds

RRL-> sol fact(x + y) == s(s(0))

Solving FACT((X + Y)) == S(S(0)) [USER, 14]

X |--> (0)

Y |--> (S (S (0)))

Found at Depth 14.

Time taken for this solution : 3.60 secs

Try Again?(Y,N) y

Time taken for this depth is : 29.18 secs

Incrementing depth bound to 19

X |--> (S (0))

116

Y |--> (S (0))

Found at Depth 17.

Time taken for this solution : 63.72 secs

Try Again?(Y,N) y

X |--> (S (S (0)))

Y |--> (0)

Found at Depth 18.

Time taken for this solution : 7.68 secs

Try Again?(Y,N) n

Total Time used for solving = 76.47 secs

A.2 Addition and Multiplication of Natural Numbers

In this section we use the system for addition and multiplication to solve a goal of the form x �

y
?
= s(s(s(s(0)))) (which is very similar to the goal we considered in Example 11). As mentioned

therein, for this system, it is possible to �nitely generate all solutions to matching goals as

above, provided we use inductive consequences (Rules [2] and [5] below) for simpli�cation. The

program allows the user to provide a list of rules which will not be used for mutation (see

Section 3.3.2 for correctness issues); in this case, we neglect the same two rules.

/**/

/* */

/* EXAMPLE II */

/* Addition and Multiplication of Natural Numbers */

/* */

/**/

RRL-> auto sol.cmd

117

Equations read in are:

1. (0 + X) == X [USER, 1]

2. (X + 0) == X [USER, 2]

3. (S(X) + Y) == S((X + Y)) [USER, 3]

4. (0 * X) == 0 [USER, 4]

5. (X * 0) == 0 [USER, 5]

6. (S(X) * Y) == (Y + (X * Y)) [USER, 6]

Your system is canonical.

[1] (0 + X) ---> X [USER, 1]

[2] (X + 0) ---> X [USER, 2]

[3] (S(X) + Y) ---> S((X + Y)) [USER, 3]

[4] (0 * X) ---> 0 [USER, 4]

[5] (X * 0) ---> 0 [USER, 5]

[6] (S(X) * Y) ---> (Y + (X * Y)) [USER, 6]

Time used = 0.08 sec

Number of rules generated = 6

Number of rules retained = 6

Number of critical pairs = 3

Time spent in normalization = 0.00 sec (0.0 percent of time)

Time spent in unification = 0.00 sec (0.0 percent of time)

Time spent in ordering = 0.02 sec (20.0 percent of time)

Time spent in simplifying the rules = 0.02 sec (20.0 percent of time)

Total time (including 'undo' action) = 30.0 sec

RRL-> br

Break: to LISP. Type (rrl) to resume.

Broken at START-UP. Type :H for Help.

RRL>>(show-res-rules $rule-set)

118

Rule 1 is - (+ (0) X) --> X

Rule 2 is - (+ X (0)) --> X

Rule 3 is - (+ (S X) Y) --> (S (+ X Y))

Rule 4 is - (* (0) X) --> (0)

Rule 5 is - (* X (0)) --> (0)

Rule 6 is - (* (S X) Y) --> (+ Y (* X Y))

Give rule numbers not needed for restructuring

Enter NIL if all rules are required (2 5)

(2 5)

RRL>>(rrl)

RRL-> sol x * y == s(s(s(s(0))))

Solving (X * Y) == S(S(S(S(0)))) [USER, 7]

X |--> (S (S (0)))

Y |--> (S (S (0)))

Found at Depth 9.

Time taken for this solution : 35.48 secs

Try Again?(Y,N) y

X |--> (S (S (0)))

Y |--> (S (S (0)))

Found at Depth 11.

Time taken for this solution : 1.18 secs

Try Again?(Y,N) y

X |--> (S (0))

Y |--> (S (S (S (S (0)))))

Found at Depth 8.

Time taken for this solution : 0.65 secs

Try Again?(Y,N) y

X |--> (S (0))

Y |--> (S (S (S (S (0)))))

Found at Depth 9.

Time taken for this solution : 2.53 secs

119

Try Again?(Y,N) y

X |--> (S (0))

Y |--> (S (S (S (S (0)))))

Found at Depth 10.

Time taken for this solution : 1.78 secs

Try Again?(Y,N) y

X |--> (S (S (0)))

Y |--> (S (S (0)))

Found at Depth 10.

Time taken for this solution : 3.22 secs

Try Again?(Y,N) y

X |--> (S (S (0)))

Y |--> (S (S (0)))

Found at Depth 12.

Time taken for this solution : 1.35 secs

Try Again?(Y,N) y

X |--> (S (S (S (S (0)))))

Y |--> (S (0))

Found at Depth 14.

Time taken for this solution : 3.22 secs

Try Again?(Y,N) y

No more solutions to this equation.

Total Time used for solving = 49.42 seconds

A.3 Addition and Multiplication of Natural Numbers (AC)

This time around, we use the AC axioms for addition and multiplication. The implementation,

in this case, adheres to the transformation rules described in Section 5 of [Dershowitz et al.,

120

1990], rather than the ones in Table 5.1. Notice that the latter system is more e�cient, since it

looks at AC-goals just like the non-AC ones, unlike the former, where we used
attening, and

therefore had more positions to apply rules.

In the body of the example, we, at one point, ignore the distributivity rule (for mutation).

This rule is required for AC-completion to work, however, since the left-hand side of Rule

[5] x � (y + z) has a de�ned function in a proper subterm (and would therefore produce only

reducible solutions through mutation); see discussion in Section 5.1.

/**/

/* */

/* EXAMPLE III */

/* Addition and Multiplication of Natural Numbers (AC) */

/* */

/**/

RRL-> auto test

Equations read in are:

1. (0 + X) == X [USER, 1]

2. (X + 0) == X [USER, 2]

3. (S(X) + Y) == S((X + Y)) [USER, 3]

4. (0 * X) == 0 [USER, 4]

5. (X * 0) == 0 [USER, 5]

6. (S(X) * Y) == ((X * Y) + Y) [USER, 6]

7. (X * (Y + Z)) == ((X * Y) + (X * Z)) [USER, 7]

ACOPERATOR

* +

'*' is associative & commutative now.

'+' is associative & commutative now.

Your system is canonical.

[1] (X + 0) ---> X [USER, 1]

[2] (Y + S(X)) ---> S((X + Y)) [USER, 3]

[3] (X * 0) ---> 0 [USER, 4]

[4] (Y * S(X)) ---> (Y + (X * Y)) [USER, 6]

121

[5] (X * (Y + Z)) ---> ((X * Y) + (X * Z)) [USER, 7]

Time used = 6.63 sec

Number of rules generated = 5

Number of rules retained = 5

Number of critical pairs = 90

Number of unblocked critical pairs = 43

Time spent in normalization = 4.72 sec (71.0 percent of time)

Time spent in unification = 0.95 sec (14.0 percent of time)

Time spent in ordering = 0.02 sec (0.0 percent of time)

Time spent in simplifying the rules = 0.03 sec (0.0 percent of time)

Time spent in blocking = 0.17 sec (2.0 percent of time)

Total time (including 'undo' action) = 400.0 sec

RRL-> sol x + y + z == s(0)

Solving (X + Y + Z) == S(0) [USER, 9]

X |--> (S (0))

Y |--> (0)

Z |--> (0)

Found at Depth 4.

Time taken for this solution : 0.13 secs

Try Again?(Y,N) y

X |--> (0)

Y |--> (S (0))

Z |--> (0)

Found at Depth 5.

Time taken for this solution : 0.37 secs

Try Again?(Y,N) y

X |--> (0)

Y |--> (0)

Z |--> (S (0))

122

Found at Depth 5.

Time taken for this solution : 0.07 secs

Try Again?(Y,N) y

... ... (some stuff deleted)

No more solutions to this equation.

Total Time used for solving = 1.38 seconds

RRL-> br

Break: to LISP. Type (rrl) to resume.

Broken at RRL.

RRL>>>(show-res-rules $rule-set)

Rule 1 is - (+ X (0)) --> X

Rule 2 is - (+ Y (S X)) --> (S (+ X Y))

Rule 3 is - (* X (0)) --> (0)

Rule 4 is - (* Y (S X)) --> (+ Y (* X Y))

Rule 5 is - (* X (+ Y Z)) --> (+ (* X Y) (* X Z))

Give rule numbers not needed for restructuring

Enter NIL if all rules are required (5)

(5)

RRL>>>(rrl)

RRL-> sol x * y == s(0)

Solving (X * Y) == S(0) [USER, 10]

X |--> (S (0))

Y |--> (S (0))

Found at Depth 4.

Time taken for this solution : 0.07 secs

Try Again?(Y,N) y

X |--> (S (0))

Y |--> (S (0))

123

Found at Depth 5.

Time taken for this solution : 0.12 secs

Try Again?(Y,N) y

... ... (some stuff deleted)

No more solutions to this equation.

Total Time used for solving = 2.17 seconds

A.4 Sorting Lists of Natural Numbers

In this section we show an example of sorting lists of numbers. We use a system for sorting lists

of numbers into an increasing order. Although it is possible to de�ne sorting using conditional

rules, in this example we only use unconditional ones (therefore, we need the auxiliary functions

max and min).

We use uni�cation to generate all solutions to the goal sort(x)
?
=0 � s(0) � s(s(0)) � nil. As

discussed in Section 7.2.2, the matching problem is decidable in the theory under consideration,

and, in fact, the program stops after enumerating all possible solutions to the goal.

In the example below, at one point, we have introduced a marker to show that the program

may repeat solutions. This is so since an iterative depth-�rst search has been used to generate

the solution space. By default, the program starts with some prede�ned value of depth, and

searches the tree until such point. However, if after the speci�ed depth, certain paths still have

to be explored, the depth bound is incremented, and the search starts again at the root, thus

generating duplicate solutions.

/**/

/* */

/* EXAMPLE IV */

/* Sorting Lists of Natural Numbers */

/* */

/**/

124

RRL-> auto insort

RRL-> ADD

New constant set is: { E, 0 }

Equations read in are:

1. MAX(X, 0) == X [USER, 1]

2. MAX(0, X) == X [USER, 2]

3. MAX(S(X), S(Y)) == S(MAX(X, Y)) [USER, 3]

4. MIN(X, 0) == 0 [USER, 4]

5. MIN(0, X) == 0 [USER, 5]

6. MIN(S(X), S(Y)) == S(MIN(X, Y)) [USER, 6]

7. SORT(E) == E [USER, 7]

8. SORT((X + Y)) == INSERT(X, SORT(Y)) [USER, 8]

9. INSERT(X, E) == (X + E) [USER, 9]

10. INSERT(X, (Y + Z)) == (MIN(X, Y) + INSERT(MAX(X, Y), Z)) [USER, 10]

Type Add, Akb, Auto, Break, Clean, Delete, Grammar, History, Init, Kb, List,

Load, Log, Makerule, Modal, Narrow, Norm, Option, Operator, Prove, Quit,

Read, Refute, Save, Solve, Stats, Suffice, Undo, Unlog, Write or Help.

RRL-> OPERATOR

PRECEDENCE

SORT INSERT MAX MIN S +

Precedence relation, SORT > INSERT, is added.

Precedence relation, INSERT > MAX, is added.

Precedence relation, MAX > MIN, is added.

Precedence relation, MIN > S, is added.

Precedence relation, S > +, is added.

Type Add, Akb, Auto, Break, Clean, Delete, Grammar, History, Init, Kb, List,

125

Load, Log, Makerule, Modal, Narrow, Norm, Option, Operator, Prove, Quit,

Read, Refute, Save, Solve, Stats, Suffice, Undo, Unlog, Write or Help.

RRL-> kb

Your system is locally confluent.

[1] MAX(X, 0) ---> X [USER, 1]

[2] MAX(0, X) ---> X [USER, 2]

[3] MAX(S(X), S(Y)) ---> S(MAX(X, Y)) [USER, 3]

[4] MIN(X, 0) ---> 0 [USER, 4]

[5] MIN(0, X) ---> 0 [USER, 5]

[6] MIN(S(X), S(Y)) ---> S(MIN(X, Y)) [USER, 6]

[7] SORT(E) ---> E [USER, 7]

[8] SORT((X + Y)) ---> INSERT(X, SORT(Y)) [USER, 8]

[9] INSERT(X, E) ---> (X + E) [USER, 9]

[10] INSERT(X, (Y + Z)) ---> (MIN(X, Y) + INSERT(MAX(X, Y), Z)) [USER, 10]

Time used = 0.25 sec

Number of rules generated = 10

Number of rules retained = 10

Number of critical pairs = 1

Time spent in normalization = 0.00 sec (0.0 percent of time)

Time spent in unification = 0.02 sec (6.0 percent of time)

Time spent in ordering = 0.07 sec (26.0 percent of time)

Time spent in simplifying the rules = 0.03 sec (13.0 percent of time)

Total time (including 'undo' action) = 16.0 sec

Type Add, Akb, Auto, Break, Clean, Delete, Grammar, History, Init, Kb, List,

Load, Log, Makerule, Modal, Narrow, Norm, Option, Operator, Prove, Quit,

Read, Refute, Save, Solve, Stats, Suffice, Undo, Unlog, Write or Help.

126

RRL-> sol

Give the equation you wish to solve. Use 'option solve' from RRL's

top-level for help and setting options.

Type your equation in the format: L == R (if C)

Enter a ']' to exit when no equation is given.

sort(X) == (0 + (S(0) + (S(S(0)) + E)))

Solving SORT(X) == (0 + (S(0) + (S(S(0)) + E))) [USER, 11]

X |--> (+ (S (S (0))) (+ (S (0)) (+ (0) (E))))

Found at Depth 16.

Try Again?(Y,N) y

X |--> (+ (S (S (0))) (+ (0) (+ (S (0)) (E))))

Found at Depth 16.

Try Again?(Y,N) y

X |--> (+ (S (0)) (+ (S (S (0))) (+ (0) (E))))

Found at Depth 16.

Try Again?(Y,N) y

X |--> (+ (S (0)) (+ (0) (+ (S (S (0))) (E))))

Found at Depth 16.

Try Again?(Y,N) y

/**/

/* The system cannot exhaust all solutions within given depth bound, and */

/* therefore has to increase the depth-bound to complete the search. Thus */

/* it generates some of the initial solutions a second time. */

/**/

X |--> (+ (S (S (0))) (+ (S (0)) (+ (0) (E))))

Found at Depth 16.

Try Again?(Y,N) y

X |--> (+ (S (S (0))) (+ (0) (+ (S (0)) (E))))

Found at Depth 16.

Try Again?(Y,N) y

127

X |--> (+ (S (0)) (+ (S (S (0))) (+ (0) (E))))

Found at Depth 16.

Try Again?(Y,N) y

X |--> (+ (S (0)) (+ (0) (+ (S (S (0))) (E))))

Found at Depth 16.

Try Again?(Y,N) y

X |--> (+ (0) (+ (S (S (0))) (+ (S (0)) (E))))

Found at Depth 17.

Try Again?(Y,N) y

X |--> (+ (0) (+ (S (0)) (+ (S (S (0))) (E))))

Found at Depth 17.

Try Again?(Y,N) y

No more solutions to this equation.

Total Time used for solving = 29.65 seconds

Type Add, Akb, Auto, Break, Clean, Delete, Grammar, History, Init, Kb, List,

Load, Log, Makerule, Modal, Narrow, Norm, Option, Operator, Prove, Quit,

Read, Refute, Save, Solve, Stats, Suffice, Undo, Unlog, Write or Help.

RRL-> quit

128

BIBLIOGRAPHY

[Arnborg and Tid�en, 1985] A. Arnborg and E. Tid�en. Uni�cation problems with one-sided dis-

tributivity. In Proceedings of the First International Conference on Rewriting Techniques

and Applications. Volume 202, pages 398{406, of Lecture Notes in Computer Science,

Springer-Verlag, 1985.

[Baader, 1986] A. Baader. Uni�cation in idempotent semigroups is of type zero. Journal of

Automated Reasoning, Volume 2, Number 3, pages 283{286, 1986.

[Baader and B�uttner, 1988] F. Baader and W. B�uttner. Uni�cation in commutative, idempo-

tent monoids. Theoretical Computer Science, Volume 56, Number 1, pages 345{352,

1988.

[Baader and Siekmann, 1993] F. Baader and J. H. Siekmann. Uni�cation theory. In D. M. Gab-

bay, C. J. Hogger and J. A. Robinson, editors, Handbook of Logic in Arti�cial Intelligence

and Logic Programming, Oxford University Press, 1993.

[Bachmair, 1987] L. Bachmair. Proof methods for equational theories. PhD thesis, Department

of Computer Science, University of Illinois, Urbana, IL, 1987.

[Bachmair, 1992] L. Bachmair. Associative-commutative reduction orderings. Information Pro-

cessing Letters, Volume 43, pages 21{27, 1992.

[Bachmair and Plaisted, 1985] L. Bachmair and D. A. Plaisted. Termination orderings for

associative-commutative rewrite systems. Journal of Symbolic Computation, Volume

1, pages 329{349, 1985.

[Barbuti et al., 1986] R. Barbuti, M. Bellia, G. Levi and M. Martelli. Leaf: a language which

integrates logic, equations and functions. In D. DeGroot and G. Lindstrom, editors,

Logic Programming: Functions, Relations and Equations, pages 201{238, Prentice-Hall,

Englewood Cli�s, NJ, 1986.

129

[Ben Cherifa and Lescanne, 1987] A. Ben Cherifa and P. Lescanne. Termination of rewriting

systems by polynomial interpretations and its implementation. Science of Computer

Programming, Volume 9, pages 137{159, 1987.

[Bellia and Levi, 1986] M. Bellia and G. Levi. The relation between logic and functional lan-

guages: a survey. Journal of Logic Programming, Volume 3, Number3, pages 217{236,

1986.

[Bj�orner, 1982] D. Bj�orner, editor. Proceedings of the IFIP working conference on formal de-

scription of programming concepts{II. Garmisch-Partenkirchen, West Germany, North-

Holland, 1982.

[Bockmayr, 1987] A. Bockmayr. A note on a canonical theory with undecidable uni�cation and

matching problem. Journal of Automated Reasoning, Volume 3, pages 379{381, 1987.

[Bockmayr et al., 1992] A. Bockmayr, S. Krischer and A. Werner. An optimal narrowing strat-

egy for general canonical systems. In Proceedings of the Third International Workshop

on Conditional Term Rewriting Systems, France, 1992. Volume 656, pages 483{497, of

Lecture Notes in Computer Science, Springer Verlag.

[Bosco et al., 1987] P. G. Bosco, E. Giovanneti and C. Moiso. Re�ned strategies for semantic

uni�cation. In Proceedings of the International Joint Conference on Theory and Practice

of Software Development. Volume 250, pages 276-290, of Lecture Notes in Computer

Science, Springer Verlag, 1987.

[Breazu-Tannen, 1988] V. Breazu-Tannen. Combining algebra and higher-order types. In Pro-

ceedings of the Third Annual IEEE Symposium on Logic in Computer Science, pages 82{

90, 1988.

[Chabin and R�ety, 1991] J. Chabin and P. R�ety. Narrowing directed by a graph of terms. In

Proceedings of the Fourth International Conference on Rewriting Techniques and Appli-

cations, Como, Italy, 1991. Volume 488, pages 112{123, of Lecture Notes in Computer

Science, Springer Verlag.

[Cheong and Fribourg, 1993] P. H. Cheong and L. Fribourg. Implementation of narrowing: the

prolog-based approach. In K. R. Apt, J. W. de Bakker, and J. Rutten, editors, Logic

130

Programming Languages, Constraints, Functions and Objects, chapter 1, pages 1{20,

MIT Press, 1993.

[Christian, 1992] J. Christian. Some termination criteria for narrowing and E-narrowing. In

Proceeding of the Eleventh International Conference on Automated Deduction, Saratoga

Springs, New York, 1992. Volume 607, pages 582{588, of Lecture Notes in Arti�cial

Intelligence, Springer Verlag.

[Clocksin and Mellish, 1981] W. F. Clocksin and C. S. Mellish. Programming in Prolog.

Springer Verlag, 1981.

[Comon, 1992] H. Comon. On uni�cation of terms with integer exponents. Technical Report

770, Universite de Paris-Sud, Laboratoire de Recherche en Informatique, 1992.

[Comon et al., 1991] H. Comon, M. Haberstrau and J.-P. Jouannaud. Decidable problems in

shallow equational theories. Technical Report 718, Universite de Paris-Sud, Laboratoire

de Recherche en Informatique, 1991.

[Contejean, 1992] E. Contejean. A partial solution for D-uni�cation based on a reduction to

AC1-uni�cation. Journal of Symbolic Computation, to appear.

[DeGroot and Lindstrom, 1986] D. DeGroot and G. Lindstrom, editors. Logic programming:

Functions, Relations and Equations. Prentice-Hall, Englewood Cli�s, NJ, 1986.

[Delor and Puel, 1993] C. Delor and L. Puel. Extension of the associative path ordering to

a chain of associative-commutative symbols. In Proceedings of the Fifth International

Conference on Rewriting Techniques and Applications, Montreal, Canada, 1993. Volume

690, pages 389{404, of Lecture Notes in Computer Science, Springer Verlag.

[Dershowitz, 1982] N. Dershowitz. Orderings for term-rewriting systems. Theoretical Computer

Science, Volume 17, pages 279{301, 1982.

[Dershowitz, 1987] N. Dershowitz. Termination of rewriting. Journal of Symbolic Computation,

Volume 3, pages 69{116, 1987.

131

[Dershowitz and Josephson, 1984] N. Dershowitz and A. N. Josephson. Logic programming by

completion. Proceedings of the Second International Logic Programming Conference,

Uppsala, Sweden, pages 313{320, 1984.

[Dershowitz et al., 1983] N. Dershowitz, J. Hsiang, N. A. Josephson and D. A. Plaisted.

Associative-commutative rewriting. In Proceedings of the Eighth International Joint

Conference on Arti�cial Intelligence, Karlsruhe, West Germany, pages 940{944, 1983.

[Dershowitz and Jouannaud, 1990] N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In

J. van Leeuwen, editor, Handbook of Theoretical Computer Science, chapter 6, pages 243{

320, North-Holland, Amsterdam, 1990.

[Dershowitz and Manna, 1979] N. Dershowitz and Z. Manna. Proving termination with multi-

set orderings. Communications of the ACM, Volume 22, pages 465{476, 1979.

[Dershowitz and Mitra, 1992] N. Dershowitz and S. Mitra. Path orderings for termination of

associative-commutative rewriting. In Proceedings of the Third International Workshop

on Conditional Term Rewriting Systems, France, 1992. Volume 656, pages 168{174, of

Lecture Notes in Computer Science, Springer Verlag.

[Dershowitz and Mitra, 1993] N. Dershowitz and S. Mitra. Higher-order and semantic uni�-

cation. In Proceedings of the Thirteenth International Conference on Foundations of

Software Technology and Theoretical Computer Science, Bombay, India, 1993. Volume

761, pages 139{150, of Lecture Notes in Computer Science, Springer Verlag.

[Dershowitz et al., 1992] N. Dershowitz, S. Mitra and G. Sivakumar. Decidable matching for

convergent systems. In Proceedings of the Eleventh Conference on Automated Deduction,

1992. Volume 607, pages 589{602, of Lecture Notes in Arti�cial Intelligence, Springer

Verlag.

[Dershowitz et al., 1990] N. Dershowitz, S. Mitra and G. Sivakumar. Equation solving in con-

ditional AC-theories. In Proceedings of the Second International Conference on Algebraic

and Logic Programming, Nancy, France, 1990. Volume 463, pages 283{297, of Lecture

Notes in Computer Science, Springer Verlag.

132

[Dershowitz and Okada, 1990] N. Dershowitz and M. Okada. A rationale for conditional equa-

tional programming. Theoretical Computer Science, Volume 75, pages 111{138, 1990.

[Dershowitz et al., 1987] N. Dershowitz, M. Okada and G. Sivakumar. Con
uence of condi-

tional rewrite systems. In Proceedings of the First International Workshop on Condi-

tional Term Rewriting Systems, Orsay, France, 1987. Volume 308, pages 31{44, of Lecture

Notes in Computer Science, Springer Verlag.

[Dershowitz et al., 1988] N. Dershowitz, M. Okada and G. Sivakumar. Canonical conditional

rewrite systems. In Proceedings of the Ninth Conference on Automated Deduction, Ar-

gonne, IL, 1988. Volume 310, pages 538{549, of Lecture Notes in Computer Science,

Springer Verlag.

[Dershowitz and Plaisted, 1988] N. Dershowitz and D. A. Plaisted. Equational programming.

In J. E. Hayes, D. Michie and J. Richards, editors, Machine Intelligence 11: The logic

and acquisition of knowledge, chapter 2, pages 21{56, Oxford Press, Oxford, 1988.

[Dershowitz and Sivakumar, 1987] N. Dershowitz and G. Sivakumar. Solving goals in equa-

tional languages. In Proceedings of the First International Workshop Conditional Term

Rewriting System, Orsay, France, 1987. Volume 308, pages 45{55, of Lecture Notes in

Computer Science, Springer Verlag.

[Dershowitz and Sivakumar, 1988] N. Dershowitz and G. Sivakumar. Goal-directed equation

solving. In Proceedings of the Seventh National Conference on Arti�cial Intelligence, St.

Paul, MN, pages 166{170, 1988.

[Dougherty, 1991] D. J. Dougherty. Adding algebra to the untyped lambda-calculus. In Proceed-

ings of the Fourth International Conference on Rewriting Techniques and Applications,

Como, Italy, 1991. Volume 488, pages 37{48, of Lecture Notes in Computer Science,

Springer Verlag.

[Dougherty, 1993] D. J. Dougherty. Higher-order uni�cation via combinators. Theoretical Com-

puter Science, Volume 114, pages 273{298, 1993.

[Dougherty and Johann, 1990] D. J. Dougherty and P. Johann. An improved general E-

uni�cation method. In Proceedings of the Tenth Conference on Automated Deduction,

133

1990. Volume 449, pages 261{275, of Lecture Notes in Arti�cial Intelligence, Springer

Verlag.

[Dougherty and Johann, 1992] D. J. Dougherty and P. Johann. A combinatory logic approach

to higher-order E-uni�cation. In Proceedings of the Eleventh Conference on Automated

Deduction, Saratoga Springs, New York, 1992. Volume 607, pages 79{93, of Lecture Notes

in Computer Science, Springer Verlag.

[Dowek, 1992] G. Dowek. Third-order matching is decidable. In Proceedings of the 7th Annual

IEEE Symposium on Logic in Computer Science, pages 1{10, Santa Cruz, California,

1992.

[Fages, 1984] F. Fages. Associative-commutative uni�cation. In Proceedings of the Seventh

International Conference on Automated Deduction, 1984. Volume 170, pages 194{208,

of Lecture Notes in Computer Science, Springer Verlag.

[Fay, 1979] M. Fay. First-order uni�cation in an equational theory. In Proceedings of the Fourth

Workshop on Automated Deduction, pages 161{167, Austin, TX, 1979.

[Fribourg, 1985] L. Fribourg. Slog: a logic programming language interpreter based on clausal

superposition and rewriting. In Proceedings of the IEEE Symposium on Logic Program-

ming, pages 172{184, Boston, MA, 1985.

[Gallier and Snyder, 1989] J. H. Gallier and W. Snyder. Complete sets of transformations for

general E-uni�cation. Theoretical Computer Science, Volume 67, pages 203-260, North-

Holland, 1989.

[Goguen and Meseguer, 1984] J. A. Goguen and J. Meseguer. Equality, types, modules and

generics for logic programming. In Proc. of the Second International Logic Programming

Conference, pages 115{125, 1984.

[Hanus, 1993] M. Hanus. Presonal Communication, summer 1993.

[Heilbrunner and H�olldobler, 1987] S. Heilbrunner and S. H�olldobler. The undecidability of the

uni�cation and matching problem for canonical theories. Acta Informatica, Volume 24,

pages 157{171, 1987.

134

[Henderson, 1980] P. Henderson. Functional programming: application and implementation.

Prentice-Hall International Series in Computer Science, 1980.

[Hermann, 1992] M. Hermann. On the relation between primitive recursion, schematization

and divergence. In Proceedings of the Third International Conference on Algebraic and

Logic Programming, Volterra, Italy, 1992. Volume 632, pages 115{127, of Lecture Notes

in Computer Science, Springer Verlag.

[H�olldobler, 1987] S. H�olldobler. A uni�cation algorithm for con
uent theories. In Proceedings

of the Fourteenth International Conference on Automata, Languages and Programming,

1987. Volume 267, pages 31{41, of Lecture Notes in Computer Science, Springer Verlag.

[Hopcroft and Ullman, 1979] J. E. Hopcroft and J. D. Ullman. Introduction to automata the-

ory, languages and computation. Addison Wesley, 1979.

[Hsiang and Jouannaud, 1988] J. Hsiang and J.-P. Jouannaud. General E-uni�cation revisited.

In Proceedings of the Second International Workshop on Uni�cation, 1988.

[Huet, 1975] G. P. Huet. A uni�cation algorithm for typed �-calculus. Theoretical Computer

Science, Volume 1, Pages 27{57, 1975.

[Huet and Oppen, 1980] G. Huet and D. C. Oppen. Equations and rewrite rules: a survey. In,

R. Book, editor, Formal Language Theory: Perspectives and Open Problems, pages 349{

405, Academic Press, New York, 1980.

[Hullot, 1980] J.-M. Hullot. Canonical forms and uni�cation. In Proceedings of the Fifth In-

ternational Conference on Automated Deduction, Les Arcs, France, 1980. Volume 87,

pages 318{334, of Lecture Notes in Computer Science, Springer Verlag.

[Josephson and Dershowitz, 1989] N. A. Josephson and N. Dershowitz. An implementation of

narrowing. Journal of Logic Programming, Volume 6 (1&2), pages 57{77, 1989.

[Jouannaud et al., 1983] J.-P. Jouannaud, C. Kirchner and H. Kirchner. Incremental construc-

tion of uni�cation algorithms in equational theories. In Proceedings of the International

Colloquium on Automata, Languages and Programming, 1983. Volume 154, pages 361{

373, of Lecture Notes in Computer Science, Springer Verlag.

135

[Jouannaud and Kirchner, 1991] J.-P. Jouannaud and C. Kirchner. Solving equations in ab-

stract algebras: a rule-based survey of uni�cation. In J.-L. Lassez and G. Plotkin, edi-

tors, Computational Logic: Essays in Honor of Alan Robinson, MIT Press, Cambridge,

MA, 1991.

[Kamin, 1990] S. N. Kamin. Programming languages: an interpreter-based approach. Addison-

Wesley, 1990.

[Kapur and Narendran, 1987] D. Kapur and P. Narendran. Matching, uni�cation and com-

plexity. ACM SIGSAM Bulletin, Volume 21, Number 4, pages 6{9, 1987.

[Kapur et al., 1990] D. Kapur, G. Sivakumar and H. Zhang. A new method for proving termi-

nation of AC-rewrite systems. In Proceedings of the Tenth International Conference of

Foundations of Software Technology and Theoretical Computer Science, 1990. Volume

472, pages 133{148, of Lecture Notes in Computer Science, Springer Verlag.

[Kapur and Zhang, 1987] D. Kapur and H. Zhang. RRL: a rewrite rule laboratory, user's man-

ual, 1987.

[Kirchner, 1984] C. Kirchner. A new equational uni�cation method: a generalization of

Martelli-Montanari's algorithm. In Proceedings of the Seventh International Conference

on Automated Deduction, 1984.

[Kirchner, 1986] C. Kirchner. Computing uni�cation algorithms. In Proceedings of the �rst

IEEE Symposium on Logic in Computer Science, pages 206{216, 1986.

[Kirchner, 1989] C. Kirchner. From uni�cation in combination of equational theories to a new

AC-uni�cation algorithm. In H. Ait-Kaci and M. Nivat, editors, Resolution of Equations

in Algebraic Structures, Volume 2, pages 171{210, Academic Press, New York, 1989.

[Klop, 1992] J. W. Klop. Term rewriting systems. In S. Abramsky, D. M. Gabbay and T. S.

E. Maibaum, editors, Handbook of Logic in Computer Science, Volume 2, pages 1{117,

Oxford University Press, Oxford, 1992.

[Kowalski, 1979] R. A. Kowalski. Logic for problem solving. North Holland Publishing Com-

pany, 1979.

136

[Lankford, 1979] D. S. Lankford. On proving term rewriting systems are Noetherian. Memo

MTP-3, Mathematics Department, Louisiana Tech. University, Ruston, LA, 1979.

[Lescanne, 1990] P. Lescanne. On the recursive decomposition ordering with lexicographic

status and other related orderings. Journal of Automated Reasoning, Volume 6, pages 39{

49, 1990.

[Lindstrom, 1985] G. Lindstrom. Functional programming and the logical variable. In Proc. of

the ACM Symposium on Principles of Programming Languages, 1985.

[Makanin, 1977] G. S. Makanin. The problem of solvability of equations in a free semigroup,

1977.

[Martelli and Montanari, 1982] A. Martelli and U. Montanari. An e�cient uni�cation algo-

rithm. ACM Transactions on Programming Languages and Systems, Volume 4, Number

2, pages 258{282, 1982.

[Martelli et al., 1989] A. Martelli, G. F. Rossi and C. Moiso. Lazy uni�cation algorithms for

canonical rewrite systems. In H. Ait-Kaci and M. Nivat, editors, Resolution of Equations

in Algebraic Structures, pages 245{274, Academic Press, New York, 1989.

[Middeldorp and Hamoen, 1992] A. Middledorp and E. Hamoen. Counterexamples to com-

pleteness results for basic narrowing. In Proceedings of the Third International Confer-

ence on Algebraic and Logic Programming, Volterra, Italy, 1992. Volume 632, pages 244{

258, of Lecture Notes in Computer Science, Springer Verlag.

[Mitra, 1990] S. Mitra. Top-down equation solving and extensions to associative and com-

mutative theories. Master's thesis, Department of Computer and Information Sciences,

University of Delaware, Newark, DE, 1990.

[Mitra and Sivakumar, 1991] S. Mitra and G. Sivakumar. AC-equation solving. In Proceedings

of the Eleventh International Conference on Foundations of Software Technology and

Theoretical Computer Science, New Delhi, India, 1991. Volume 560, pages 40{56, of

Lecture Notes in Computer Science, Springer Verlag.

137

[Nipkow and Qian, 1991] T. Nipkow and Z. Qian. Modular higher-order E-uni�cation. In

Proceedings of the Fourth International Conference on Rewriting Techniques and Appli-

cations, Como, Italy, 1991. Volume 488, pages 200{214, of Lecture Notes in Computer

Science, Springer Verlag.

[Nutt et al., 1989] W. Nutt, P. R�ety and G. Smolka. Basic narrowing revisited. Journal of

Symbolic Computation, Volume 7, pages 295{317, 1989.

[Paulson, 1991] L. C. Paulson. ML for the working programmer. Cambridge University Press,

1991.

[Paterson and Wegman, 1978] M. S. Paterson and M. N. Wegman. Linear uni�cation. Journal

of Computer and System Sciences, Volume 16, Number 2, pages 158{167, 1978.

[Plotkin, 1972] G. Plotkin. Building in equational theories. Machine Intelligence, Volume 7,

pages 73{90, 1972.

[Reddy, 1986] U. S. Reddy. On the relationship between logic and functional languages. In

D. DeGroot and G. Lindstrom, editors, Logic Programming: Functions, Relations and

Equations, pages 3{36, Prentice-Hall, Englewood Cli�s, NJ, 1986.

[R�ety, 1987] P. R�ety. Improving basic narrowing techniques. In Proceedings of the Second

International Conference on Rewriting Techniques and Applications, Bordeaux, France,

1987. Volume 256, pages 228{241, of Lecture Notes in Computer Science, Springer Verlag.

[Robinson, 1965] J. A. Robinson. A machine oriented logic based on the resolution principle.

Journal of the ACM, Volume 12, Number 1, pages 23{41, 1965.

[Robinson and Wos, 1969] G. A. Robinson and L. Wos. Paramodulation and theorem proving

in �rst order theories with equality. In B. Meltzer and D. Michie, editors, Machine

Intelligence, Volume 4, American Elsevier, New York, pages 135{150, 1969.

[Rubio and Nieuwenhuis, 1993] A. Rubio and R. Nieuwenhuis. A precedence-based total AC-

compatible ordering. In Proceedings of the Fifth International Conference on Rewriting

Techniques and Applications, Montreal, Canada, 1993. Volume 690, pages 374{388, of

Lecture Notes in Computer Science, Springer Verlag.

138

[Siekmann, 1979] J. H. Siekmann. Uni�cation of commutative terms. In Proceedings of the

Conference on Symbolic and Algebraic Manipulation, 1979. Volume 72, pages 531{545,

of Lecture Notes in Computer Science, Springer Verlag.

[Siekmann, 1989] J. H. Siekmann. Uni�cation theory. Journal of Symbolic Computation, Vol-

ume 7 (3 & 4), pages 207{274, 1989.

[Siekmann and Szab�o, 1984] J. H. Siekmann and P. Szab�o. Universal uni�cation and classi-

�cation of equational theories. In Proceedings of the Seventh International Conference

on Automated Deduction, 1984. Volume 170, pages 1{42, of Lecture Notes in Computer

Science, Springer Verlag.

[Sivakumar, 1989] G. Sivakumar. Proofs and computations in conditional equational theories.

PhD thesis, Department of Computer Science, University of Illinois, Urbana, IL, 1989.

[Snyder, 1990] W. Snyder. Higher-order E-uni�cation. In Proceedings of the Tenth Interna-

tional Conference on Automated Deduction, Kaiserslautern, FRG, 1990. Volume 449,

pages 573{587, of Lecture Notes in Computer Science, Springer Verlag.

[Snyder, 1991] W. Snyder. A proof theory for general E-uni�cation. Volume 11, Progress in

Computer Science and Applied Logic, Birkh�auser, 1991.

[Snyder and Gallier, 1989] W. Snyder and J. Gallier. Higher-order uni�cation revisited: com-

plete sets of transformations. Journal of Symbolic Computation, Volume 8, pages 101{

140, 1989.

[Socher-Ambrosius, 1993] R. Socher-Ambrosius. Uni�cation of terms with exponents. Technical

Report, MPI-I-93-217, Max-Plank Institute fur Informatik, 1993.

[Stickel, 1981] M. E. Stickel. A uni�cation algorithm for associative-commutative functions.

JACM, Volume 28, pages 423{434, 1981.

[Subrahmanyam and You, 1986] P. A. Subrahmanyam and J.-H. You. Funlog: a computa-

tional model integrating logic programming and functional programming. In D. DeGroot

and G. Lindstrom, editors, Logic Programming: Functions, Relations and Equations,

pages 157{200, Prentice-Hall, Englewood Cli�s, NJ, 1986.

139

[You, 1989] J.-H. You. Enumerating outer narrowing derivations for constructor-based term

rewriting systems. Journal of Symbolic Computation, Volume 7, pages 319{341, 1989.

140

VITA

Subrata Mitra was born on September 29, 1965 in Calcutta, India. He attended the Indian

Institute of Technology, Kanpur, India, and received his Bachelor of Technology degree in

Computer Science and Engineering, in May 1988.

Subrata attended the University of Delaware between September, 1988, and December 1990,

and received the Master of Science degree in Computer and Information Sciences, in January

1991. Thereafter, Subrata joined the University of Illinois at Urbana-Champaign for his doc-

toral studies. On completion of his Ph.D., Subrata has joined the I.B.M. Corporation as a

Development Sta� Member at the Santa Teresa Laboratories.

141

