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Abstract

Propositional satisfiability (SAT) is an NP-complete problem, holding a

central place in computer science and engineering. SAT has numerous ap-

plications in formal verification, artificial intelligence and other areas. Mod-

ern SAT solvers, using an enhanced version of the backtrack search Davis-

Logemann-Loveland (DLL) algorithm, are able to successfully cope with in-

stances comprising millions of variables. This work is an attempt to shed

new light on the functionality of a modern SAT solver. We also propose a

number of enhancements that are empirically useful, especially in the formal

verification domain.

We propose a framework for presenting and analyzing a modern DLL-

based SAT solver. We provide a basic backtracking algorithm that explicitly

shows the process of resolution refutation construction. Our approach is

based on the notion of a parent resolution derivation – a resolution proof

for validness of a flip operation. We show how to derive the algorithm of a

modern SAT solver from basic backtracking step-by-step.

This resolution-based approach allows us to define new criteria for mea-

suring the practical impact of different schemes for conflict-driven learning

by making the notion of search pruning more formal. We show that the

1UIP scheme, enhanced by conflict clause minimization, is better than other

known schemes in terms of pruning. This explains its empirical advantage

over other schemes.

We propose an enhancement to the minimized 1UIP scheme, called lo-

cal conflict clause recording. This technique improves the performance of a

modern SAT solver by recording additional conflict clauses. Local conflict

clause recording makes the learning less dependent on the variable polarity

selection heuristic.

Assignment stack shrinking is a technique whose goal is to shrink the size

of the assignment stack and conflict clauses. We demonstrate the empiri-

cal usefulness of assignment stack shrinking and analyze its impact on the



performance of a modern SAT solver, comparing it to the impact of conflict

clause minimization and rapid restarts.

Furthermore, a new decision heuristic for SAT, called the clause-based

heuristic, is introduced. This heuristic is designed to increase the likelihood

that interrelated variables will be chosen in proximity. It maintains a clause

list containing both the initial and conflict clauses. The next decision literal

is picked from the first unsatisfied clause. We propose various methods for

initially organizing the clause list and for moving clauses within it. Our

approach results in a significant performance boost over existing heuristics

tested on hard real-world industrial benchmarks.

Finally, we present an algorithm for minimal unsatisfiable core extraction

that is able to find a minimal unsatisfiable core for large real-world formu-

las. Benchmark families, arising in formal verification of hardware, are of

particular interest to us. Modern SAT solvers are able to produce a resolu-

tion refutation of a given unsatisfiable formula, whose sources are the input

clauses and whose sink is the empty clause. Our method’s basic version re-

moves the input clauses connected to the empty clause one by one from the

resolution refutation, preserving the validity of the refutation by adding other

clauses and resolution relations until no more input clauses can be removed.

In the end, all the input clauses, connected to the empty clause, comprise

the minimal unsatisfiable core.
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Chapter 1

Introduction

Propositional satisfiability (SAT) is the problem of determining, for a formula

in propositional calculus, whether a satisfying assignment for its variables ex-

ists. SAT holds a central place in the large family of NP-complete problems

(see, e.g., [12], [21]). Therefore, it is unlikely that there is an algorithm that

can solve it in reasonable time in all cases. Nonetheless, algorithms exist that

are capable of quickly solving many instances resulting from real-world prob-

lems. SAT has numerous applications in formal verification (e.g., [54]), as

well as in artificial intelligence (e.g., [34]) and many other fields of computer

science and engineering.

The basic backtracking algorithm [15] is commonly understood as a

search-based algorithm, which checks whether a satisfying assignment for the

input formula, provided in Conjunctive Normal Form (CNF), exists. The al-

gorithm works by exploring the assignment space in a depth-first search man-

ner. It maintains a partial assignment and extends it by assigning previously

unassigned decision variables until a certain clause is falsified. In this case,

the algorithm backtracks and flips the last assigned decision variable. If all

the assigned variables have already been flipped, the formula is unsatisfiable.

If a model for the input formula is found, the formula is satisfiable.

The plain backtrack algorithm is unable to solve large real-world in-

stances, but it can be enhanced by various algorithms, crucial for practical

efficiency.
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Modern SAT solvers spend 80–90% of their runtime performing Boolean

Constraint Propagation (BCP). BCP, already suggested in the original paper

on solving SAT with backtrack search [15], forces the assignment of values

to variables appearing in unit clauses (clauses having one unassigned literal).

These choices are picked as “decisions” whenever possible. BCP is used

by modern SAT solvers to quickly identify (failure) leaves of the search tree,

referred to as conflicts. Implication relations between assigned literals can be

represented using the so-called “implication graph”. Efficient data structures

for BCP were proposed in [45, 11].

The paper [15] proposed another modification to the plain backtrack

search algorithm, called the pure literal elimination rule. A pure literal is a

literal that appears in only one polarity, that is, only positively or negatively,

in clauses that are not yet satisfied. The pure literal elimination rule removes

all the clauses containing such a literal. However, this modification is not

used in modern SAT solvers, due to the high overhead required for detecting

pure literals.

One key step for making SAT efficient in practice was the introduction

of conflict-driven learning (CDL) by the authors of the GRASP [60] and

rel sat [3] SAT solvers. Conflict-driven learning applies a number of learning

and pruning algorithms when a conflict is identified. The origin of conflict-

driven learning goes back to the work that was done on the constraint satis-

faction problem (CSP) [55].

Modern SAT solvers, such as Minisat [19], Eureka [48], RSAT [53], and

PicoSAT [6], inherit their CDL algorithm from the 2001 version of the Chaff

SAT solver [45], in which the CDL scheme of rel sat and GRASP was further

improved. Chaff’s scheme applies 1UIP-based conflict-directed backjumping,

non-chronological backtracking and 1UIP conflict clause recording [45]. In

the literature on practical design of SAT solvers, all these techniques and BCP

are presented and analyzed together, based on implication graph analysis [60,

45, 27, 56, 69, 62].

Although Chaff’s CDL scheme is widely used, it is not fully understood.

Compare, for example, the statement by the authors of Chaff, provided in the

context of comparison between different CDL schemes: “[T]he effectiveness

2



of certain searching schemes can only be determined by empirical data” [69].

The Chaff algorithm can be viewed as an algorithm for assignment space

or search-tree exploration, yet it can also be seen as an algorithm that con-

structs a resolution refutation of a given formula. The latter approach to

understanding a modern SAT solver is well-known [37, 23, 22, 50], but not

usually used in the literature dedicated to practical aspects of SAT solving.

From our perspective, the main reason for the lack of clarity was the fact

that the Chaff algorithm has not been formulated in a way that shows both

processes of search-tree exploration and resolution refutation construction.

Chapter 2 of this work provides a framework for presenting and analyzing

the functionality of a modern SAT solver. We provide an implementation of

the basic backtrack search algorithm and show how to integrate other algo-

rithms implemented in Chaff into our framework step-by-step. Our algorithm

explicitly demonstrates the construction of a resolution refutation for an un-

satisfiable formula. It does not force the solver to use BCP. We do not use

the notion of implication graph in our analysis, but define all the algorithms

related to conflict analysis based on resolution. Our approach associates each

flipped variable with a parent resolution derivation – a resolution proof for

validness of a flip operation.

A resolution-based approach to understanding the conflict-driven learning

algorithm of a SAT solver was used in [50]. The primary goal of the paper [50]

was to provide a formalism for a SAT solver in a way that allows one to easily

integrate a SAT solver as a DPLL(T) engine into a Satisfiability Modulo

Theories (SMT) solver. In contrast to our framework, oriented towards core

SAT solving, the paper [50] did not provide an explicit algorithm for a modern

SAT solver.

Chapter 3 uses the framework of Chapter 2 to understand and enhance

the conflict-driven learning algorithm of a modern SAT solver.

Section 3.1 shows how to integrate various conflict-driven learning tech-

niques, including the UIP-n scheme, proposed in this work, the AllUIP [69]

scheme and conflict clause minimization algorithm [4, 62], into our frame-

work.

Section 3.2 reviews an implication-based approach to conflict-driven

3



learning.

Section 3.3 makes the commonly used notion of search pruning [41, 58]

more formal. We distinguish between backward pruning and forward prun-

ing. Backward pruning is carried out when the algorithm is backtracking.

It is characterized by the number of nodes in such parent resolution deriva-

tions of unassigned flipped variables, which were not required for deriving a

parent resolution derivation for the new flip. Forward pruning relates to the

impact of recorded conflict clauses on the subsequent search. We define a

new measure for forward pruning, called pre-flip learning uselessness. The

idea is to find, for every flipped variable, in what fraction of conflict clauses it

participated before the flip. The larger this fraction, the less helpful are the

conflict clauses, recorded before the flip, for pruning the search space after

the flip.

Section 3.4 demonstrates that the minimized 1UIP scheme, that is the

1UIP scheme of [45], enhanced by conflict clause minimization [4, 62], is

superior to other schemes in terms of both backward and forward pruning.

This explains the empirical advantage of the 1UIP scheme over other schemes.

Section 3.5 introduces an enhancement to the minimized 1UIP scheme,

called local conflict clause recording. This technique records additional con-

flict clauses, whenever certain conditions hold. The idea behind local con-

flict clause recording is improving the pruning by making the conflict clause

recording less dependent on the heuristic for choosing the polarity of as-

signed variables. We demonstrate the practical usefulness of local conflict

clause recording on industrial benchmarks. Sections 3.3 and 3.5 are based

on our paper [18].

Section 3.6 is dedicated to assignment stack shrinking, a technique, pro-

posed by the author of this work in [47], and further enhanced by the authors

of the 2004 version of Chaff [40]. This technique tries to dynamically reduce

the size of conflict clauses and to unassign irrelevant literals from the assign-

ment stack. If certain conditions hold for a newly learned conflict clause,

shrinking unassigns some of the literals of the conflict clause and reassigns

them to 0. BCP follows each assignment. Section 3.6 reaffirms the em-

pirical usefulness of assignment stack shrinking and shows that it cannot
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be simulated or subsumed by conflict clause minimization or rapid restarts,

disproving a supposition of [6].

A crucial factor influencing the performance of a SAT solver is its decision

heuristic. The heuristic decides which variable to choose at each decision

point during the search and what value to assign it first. Modern decision

heuristics are dynamic – that is, they refocus the search on recently derived

conflict clauses. VSIDS [45] – the first such dynamic heuristic – maintains

a score for each literal. The score is increased when the literal appears in

a conflict clause; once in a while, scores are halved. Another well-known

decision heuristic, which proved to be even more successful than VSIDS on

industrial benchmarks, is that of Berkmin [27]. The Berkmin heuristic [27]

is more dynamic than VSIDS. It organizes all conflict clauses in a list and

picks the next decision literal from the topmost unsatisfied clause in the list.

If no such clause exists, a secondary VSIDS-like choice-heuristic is used.

In Chapter 4, we introduce a new decision heuristic that has been found to

be efficient on hard real-world industrial benchmarks. The Berkmin heuris-

tic is indeed more dynamic than VSIDS, but we claim another advantage

for the Berkmin heuristic over VSIDS in that it tends to pick interrelated

variables, that is, variables whose joint assignment increases the chances of

both quickly reaching a conflict in an unsatisfiable branch and satisfying and

removing “problematic” clauses in satisfiable branches. However, this po-

tential advantage is diluted by the fact that the Berkmin heuristic does not

put the initial clauses in the clause list and applies a secondary VSIDS-like

heuristic. Our proposal, which we call the clause-based heuristic (CBH),

maintains a clause list containing both the initial and the conflict clauses,

thus increasing the chances of picking interrelated variables. The next de-

cision literal is picked from the topmost unsatisfied clause. No secondary

heuristic is required. Also, whenever a new conflict clause is derived, CBH

moves clauses that participated in the resolution derivation of the new con-

flict clause to the top of the list. In addition, we propose various methods

for initially organizing the clause list. Our approach results in a significant

performance boost over both VSIDS and the Berkmin heuristic.

The idea of moving the clauses used for a new conflict clause derivation

5



towards the head of the list was proposed independently of our work in

the papers [25, 26] and implemented in the HaifaSat solver. The HaifaSat

heuristic is called Clause-Move-To-Front (CMTF). Its usefulness is justified

in the framework of an abstraction/refinement model. In contrast to our

approach, CMTF maintains only the conflict clauses in the list, hence it

should tend to pick less interrelated variables than CBH.

Chapter 4 is based upon our paper [16].

When a formula is unsatisfiable, it is often required to find an unsatis-

fiable core – that is, a small unsatisfiable subset of the formula’s clauses.

Example applications include functional verification of hardware [43], field-

programmable gate array routing [49], and abstraction refinement [42]. An

unsatisfiable core is a minimal, if it becomes satisfiable whenever any of its

clauses is removed. It is always desirable to find a minimal unsatisfiable core,

but this problem is very hard. (It is DP -complete; see [52].)

Chapter 5, based upon our paper [17], presents an algorithm that is able

to find a minimal unsatisfiable core for large real-world formulas. The only

approach for unsatisfiable core extraction that scales well for formal verifi-

cation benchmarks was independently proposed in [70] and in [28]. We refer

to this method as the empty-clause cone (EC) algorithm. EC exploits the

ability of modern SAT solvers to produce a resolution refutation, given an

unsatisfiable formula. EC takes initial clauses, connected to the empty clause

�, as the unsatisfiable core. Invoking EC until a fixed point is reached [70]

allows one to reduce the unsatisfiable core even more. However, the resulting

cores can be further reduced. The basic flow of the algorithm for minimal

unsatisfiable core extraction proposed in Chapter 5 is composed of the fol-

lowing steps. First, produce a resolution refutation of a given formula using a

SAT solver. Second, drop from the resolution refutation all clauses not con-

nected to �. At this point, all the initial clauses, connected to �, comprise

an unsatsifiable core. Third, try to remove each remaining clause C from the

unsatisfiable core by invoking the SAT solver on the resolution refutation, ex-

cluding the cone of C. The algorithm terminates when all the initial clauses

remaining in the resolution refutation comprise a minimal unsatisfiable core.

The author of this thesis is the main author of the papers [16, 17, 18].
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In addition, he participated in works on simultaneous satisfiability in model

checking [35] and on bitvector satisfiability [10], not reported herein.
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Chapter 2

Understanding a Modern SAT

Solver

In this chapter we propose a framework for presenting and understanding

the functionality of modern SAT solvers.

Section 2.1 introduces the SAT Solver Skeleton (SSS) in Algorithm 1 –

a formulation of the backtrack search algorithm, where the resolution refu-

tation construction is shown explicitly. We provide a correctness proof of

the algorithm. Section 2.2 shows how to introduce techniques, which en-

hance modern SAT solvers, into SSS. These techniques include Boolean Con-

straint Propagation (BCP), 1UIP-based conflict-directed backjumping, non-

chronological backtracking, conflict clause recording, restarts and conflict

clause deletion. Each above-mentioned enhancement can be added to our al-

gorithm independently of the other. In particular, using BCP is not a must.

This is in contrast to the standard approach to describing the conflict-driven

learning engine of a SAT solver (provided in Section 3.2), where 1UIP-based

CDB, NCB and 1UIP-based CCR are described together, based on implica-

tion graph-analysis which is dependent on BCP.

2.1 SAT Solver Skeleton

We start with basic definitions, related to propositional logic.

8



Definition 1 (Variable; Literal). We denote (propositional) variables by

lowercase Latin letters. A literal is a variable v or its negation ¬v. The

Boolean values are denoted 1 and 0. For variable v and Boolean value κ, vκ

is the corresponding literal; that is, v1 = v and v0 = ¬v.

Definition 2 (Clause; Empty clause; CNF formula). A clause is a disjunc-

tion (or set) of literals. The empty clause is denoted by �. A Conjunctive

Normal Form (CNF) formula is a conjunction of clauses C1 ∧ C2 ∧ . . . ∧ Cm

or equivalently, a set {C1, . . . , Cm}.

Definition 3 (Assignment; Complete assignment; Partial assignment). An

assignment (or partial assignment) σ assigns Boolean values to all (or some)

of the variables in a set of formulas. An assignment that assigns values to

all the variables is called complete. The literal v1 is assigned 1 or 0 by σ, iff

the variable v is assigned 1 or 0 by σ. The literal v0 is assigned 1 or 0 by σ,

iff the variable v is assigned 0 or 1 by σ.

Definition 4 (Satisfied clause; Falsified clause). Suppose that σ is an assign-

ment. Then, a clause C is satisfied by σ, if one of the literals of C is assigned

1 by σ. A clause C is falsified by σ, if all the literals of C are assigned 0 by

σ.

Definition 5 (Satisfied CNF formula; Falsified CNF formula). A CNF for-

mula F is satisfied by σ, if all the clauses of F are satisfied by σ; a CNF

formula F is falsified by σ, if one of the clauses of F is falsified by σ.

Definition 6 (Model). An assignment σ is a model to CNF formula F if F

is satisfied by σ.

Definition 7 (Satisfiable CNF formula; Unsatisfiable CNF formula). A CNF

formula F is satisfiable iff there exists a model to F. Otherwise, the formula

F is unsatisfiable.

Resolution is a widely studied simple proof system that can be used to

prove the unsatisfiability of CNF formulas. We now provide a number of

definitions, related to resolution.

9



Definition 8 (Resolution rule; Resolvent; Pivot variable). The resolution

rule states that given clauses D1 = A ∨ v and D2 = B ∨ ¬v, where A and B

are also clauses, we can derive the clause C = A∨B by resolving on v. The

clause C is called a resolvent of clauses D1 and D2 on pivot variable v. The

resolution rule application is denoted by C = D1 ⊗
v D2.

Definition 9 (Resolution derivation; Size of resolution derivation; Target

clause). A resolution derivation of a target clause C from a CNF formula

F is a sequence π = {C1, C2, . . . , Cp}, where Cp ≡ C and each clause Ci is

either a clause of F (an initial clause) or derived by applying the resolution

rule to Cj and Ck, where j, k < i (a derived clause). The size of π is p, the

number of clauses occurring in it. The target clause of a resolution derivation

π is denoted by πT .

Two resolution derivations from F, whose target clauses are resolvable,

can be composed to obtain a new resolution derivation of F. In the following

definition, we assume that resolution derivations can also be considered sets

of clauses, hence the set difference operation \ is well defined for resolution

derivations.

Definition 10 (Composition of Resolution Derivations). Let π and ρ be two

resolution derivations from F, such that their target clauses πT and ρT are

resolvable on v. Then, the following sequence of clauses is a composition of

π and ρ: τ = π, ρ \ π, πT ⊗v ρT . We denote τ = π ⊗v ρ.

It is not hard to check that a composition of two resolution derivations,

whose target clauses are resolvable, is a resolution derivation.

Proposition 1 (Composition of Resolution Derivations’ Correctness). Let

π and ρ be two resolution derivations from F, such that the clauses πT and

ρT are resolvable on v. Then, τ = π ⊗v ρ is a resolution derivation from F.

Proof. Consider first all the clauses of τ , except the target clause. Each such

clause C belongs to either π or ρ. Hence, C is either an initial clause or is

derived from previous clauses in either π or ρ. However, τ contains all the

10



clauses of π or ρ maintaining the order by construction. Thus, C is either an

initial clause or is derived from previous clauses in τ .

The target clause τT is derived from two previous clauses of τ by con-

struction.

Hence, τ is a resolution derivation from F.

For an example of a resolution composition, consider F =

{a ∨ b, a ∨ ¬b,¬a ∨ b,¬a ∨ ¬b}; π = {a ∨ b, a ∨ ¬b, a}; ρ =

{¬a ∨ b,¬a ∨ ¬b,¬a}. The target clauses πT = a and ρT = ¬a

are resolvable on a. Hence, the composition of π and ρ is

τ = πT ⊗a ρT = {a ∨ b, a ∨ ¬b, a,¬a ∨ b,¬a ∨ ¬b,¬a,�}. The target

clause of τ is the empty clause, hence τ is a refutation of F in the sense

provided in the next definition.

Definition 11 (Resolution refutation; Refutation). Any resolution deriva-

tion of the empty clause � from F is called a resolution refutation or simply

a refutation of F.

The following proposition is well-known.

Proposition 2 (Soundness and Completeness of Resolution). A formula F

is unsatisfiable iff it has a refutation.

A resolution derivation can be conveniently represented by a rooted bi-

nary directed acyclic graph (dag). Vertices of the dag correspond to clauses

of the derivation. Leaves of the dag are clauses in F. The root contains the

target clause. Internal nodes correspond to resolution rule applications. An

internal node contains the resolvent clause of its two children. Each edge

is marked with a literal comprising the negation of the pivot variable ap-

pearance in the clause in its head. More specifically, an edge from A ∨ v to

C = (A ∨ v)⊗v (B ∨ ¬v) is marked with ¬v and an edge from B ∨ ¬v to C

is marked with v.

An example of a refutation, of size 8, appears in Fig. 2.3(a) on page 23.

Now we present an implementation of the backtrack search algorithm,

Algorithm 1, which we refer to as the SAT Solver Skeleton (SSS). SSS uses
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two subroutines Flip and AnalyzeConfBtAndFlip, depicted in Algorithms 2

and 3, respectively.

First, we provide an informal description of the flow of SSS, including

its subroutines. The algorithm checks whether the input formula F is sat-

isfiable or unsatisfiable. In the former case, the algorithm returns a model

to the formula and, in the latter case, it returns a resolution refutation of

the formula. The algorithm works by exploring the assignment space in a

depth-first search manner. It maintains a partial assignment and extends

it by assigning previously unassigned variables until a certain clause of F

is falsified. In this case, the algorithm identifies the last assigned variable

that should be flipped in order to satisfy the falsified clause and flips its

value. (If all the assigned variables have already been flipped, the formula

is unsatisfiable.) The flip ensures that the algorithm will explore previously

unexplored subspaces. Each flip operation is associated with the so-called

parent resolution derivation, whose target clause is called a parent clause. A

parent clause constitutes an implication of the flip from a subset of previ-

ously assigned literals. The parent resolution derivation shows how to derive

the parent clause from the formula, thus providing a proof that there are

indeed no satisfying assignments in the subspace explored by the algorithm

and left with the flip. After the flip, the algorithm may again find a falsified

clause, in which case it would build a parent resolution derivation for the

upcoming flip; then backtrack and flip. This process continues until either

of the following two event occurs:

1. All the clauses are satisfied by the current assignment, in which case

the formula is satisfiable and the assignment is the model, returned by

the algorithm.

2. The algorithm encounteres a falsified clause and all the relevant as-

signed variables have already been flipped. In this case, the algorithm

returns a resolution refutation of the formula, generated while checking

that none of the variables can be flipped.
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We now describe the flow of SSS, including its subroutines, in more detail.

An explanation of all the symbols used by the algorithm and its subroutines

is summarized in Fig. 2.1. We will use the notions of the main loop, conflict

analysis loop and backtracking loop in our analysis. The position of these

loops in the code of our algorithms is provided in Fig. 2.2. We assume that

all the variables and data structures are defined in the global context.

The algorithm starts by initializing the assignment level s to 0 at line 1.

The assignment level is defined as follows:

Definition 12 (Assignment level). The assignment level s, maintained by

Algorithm 1, is the current depth of the backtrack search.

Definition 13 (Assigned variable; Assigned literal). A variable v is assigned

at level i , if 1 ≤ i ≤ s (s is the assignment level) and vi ≡ v. A literal vκ is

assigned at level i , if v is assigned at level i and σi = κ.

The main loop of the search starts at line 2. Each iteration of the main

loop starts by increasing the assignment level s and assigning an unassigned

variable vs a Boolean value σs. Then, the algorithm records that the current

assignment level is non-flipped.

Definition 14 (Flipped assignment level; Non-flipped assignment level). Let

s be the current assignment level. Then, each assignment level i , 1 ≤ i ≤ s,

is either flipped or non-flipped. The flip status is maintained in the array

FlipStatus by Algorithm 1.

Definition 15 (Flipped variable; Non-flipped variable; Flipped literal;

Non-flipped literal). A variable/literal, assigned at assignment level s, is

flipped/non-flipped, if s is flipped/non-flipped.

We will see that assignment level s would become flipped if the algorithm

concluded that none of the complete assignments that are consistent with

σ1...s constitutes a model of F; however it could not conclude that there are

no models under σ1...s−1. In this case, the value of s must be flipped and the

resulting subspace must be checked for models.
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1. s : the current assignment level, the current depth of the search.

2. vi: for each i , 1 ≤ i ≤ s: vi denotes the variable, assigned at assignment
level i .

3. σi: for each i , 1 ≤ i ≤ s: σi denotes the Boolean value, assigned to vi.

4. ChooseNewLiteral: a function that returns a pair 〈vs, σs〉 consisting
of an unassigned variable vs and a Boolean value σs, which can be
either 1 or 0.

5. FlipStatus: an array, indexed by the assignment level i , 1 ≤ i ≤ s,
specifying if the variable vi, assigned at assignment level i , was flipped.
FlipStatus[i ] can either be true or false.

6. σ1...s: The partial assignment to variables, assigned between assignment
levels 1 . . . s .

7. πi: The parent resolution derivation corresponding to the flipped as-
signment level i (see Definition 17).

Figure 2.1: Explanation of symbols, used by Algorithm 1 and its subroutines

1. Main loop: a loop, starting at line 2 of SSS (Algorithm 1)

2. Conflict analysis loop: a while loop, starting at line 10 of SSS (Al-
gorithm 1)

3. Backtracking loop: a while loop, starting at line 2 of
AnalyzeConfBtAndFlip (Algorithm 3)

Figure 2.2: The names of loops, used while analyzing the functionality of
Algorithm 1 and its subroutines
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Algorithm 1 SAT Solver Skeleton or SSS (CNF formula F :=
{C1, C2, . . . , Cm})

1: s := 0
2: loop
3: s := s + 1
4: 〈vs, σs〉 := ChooseNewLiteral()
5: FlipStatus [s] := false
6: if F is satisfied by σ1...s then
7: return F is satisfied by σ1...s

8: if ∃Cl ∈ F : Cl is falsified by σ1...s then
9: Flip({Cl})

10: while ∃Cr ∈ F : Cr is falsified by σ1...s do
11: ρ := AnalyzeConfBtAndFlip(Cr)
12: if s = 0 then
13: return F is unsatisfiable with refutation ρ

Algorithm 2 Flip (Resolution derivation ρ)
1: πs := ρ
2: σs := ¬σs

3: FlipStatus [s] := true

Algorithm 3 AnalyzeConfBtAndFlip (Clause Cr)

1: ρ := {Cr}
2: while s > 0 and (FlipStatus [s] = true or v¬σs

s /∈ ρT ) do
3: if v¬σs

s ∈ ρT then
4: ρ := πs ⊗

vs ρ
5: s := s− 1
6: if s 6= 0 then
7: Flip(ρ)
8: return ρ
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Line 6 checks if the formula is satisfied with the current assignment, in

which case the algorithm returns. Otherwise, the algorithm checks if there

exists a clause that is falsified by the current assignment (line 8). If none of

the clauses is falsified, the main loop continues. If one of the clauses Cl is

falsified, we say that a conflict takes place.

Definition 16 (Conflict; Blocking clause). We say that a conflict takes place

if there exists a clause C ∈ F , falsified by σ1...s. The clause C is called a

blocking clause.

If a conflict is detected by the condition of line 8, the algorithm flips the

value of the assigned variable vs by invoking the function Flip and providing

it with a resolution derivation, consisting of the single blocking clause. The

function Flip receives as input a resolution derivation, which serves as the

parent resolution derivation of the assignment level s after the flip.

Definition 17 (Parent resolution derivation; Parent clause). A resolution

derivation of ρT from F ρ is a parent resolution derivation for a flipped

assignment level s, if ρT = ¬A ∨ vσs
s , where A is a conjunction of a subset

of zero or more literals, assigned at assignment levels 1 . . . s− 1. The target

clause of the parent resolution derivation is called a parent clause.

The parent clause can be understood as the reason for the flip: an impli-

cation of the flip of vs from a conjunction of a subset of previous assignments

¬A ∨ vσs
s ≡ A→ vσs

s . The goals of conflict analyses and backtracking are to

find a non-flipped assignment level to which to backtrack and to build a res-

olution derivation that can serve as the parent resolution derivation after the

flip. We will see that the parent invariant provided below holds. Intuitively,

the invariant ensures that each flip is legitimate.

Invariant 1 (Parent invariant). For each flipped assignment level i , 1 ≤ i ≤

s, πs is a parent resolution derivation.

Now, we return to the flow of the algorithm, at line 9, which invokes the

function Flip, provided in Algorithm 2. The function Flip records the parent
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resolution derivation of s ; flips the Boolean value of vs and marks the assign-

ment level as flipped. If no conflict follows the flip, a new decision is required

and the algorithm returns to the main loop. Otherwise, the algorithm enters

the conflict analysis loop, starting at line 10. The algorithm exits the loop

when a new decision is required or the formula is proved to be unsatisfiable.

The conflict analysis loop invokes the function AnalyzeConfBtAndFlip, im-

plemented in Algorithm 3. AnalyzeConfBtAndFlip either backtracks to an

assignment level that should be flipped and flips it, or backtracks to as-

signment level 0 if the formula is unsatisfiable. In the process, it builds a

resolution derivation that serves either as a parent resolution derivation for

the newly flipped assignment level or as a refutation of the formula.

The resolution derivation, maintained by the function

AnalyzeConfBtAndFlip, is called the backtracking resolution derivation.

Definition 18 (Backtracking resolution derivation; Backtracking clause).

Assume s is the current assignment level. A resolution derivation ρ is a

backtracking resolution derivation, if it either holds that:

1. s > 0 and ρT = ¬A ∨ v¬σs
s , or

2. s ≥ 0 and ρT = ¬A (ρT is the empty clause �, if A is empty).

In both cases, A is a conjunction of a subset of zero or more literals,

assigned at assignment levels 1 . . . s − 1 (A must be empty, if s ≤ 1). The

target clause of the backtracking resolution derivation is called the backtrack-

ing clause.

We will prove later that ρ, maintained by AnalyzeConfBtAndFlip, is

indeed a backtracking resolution derivation. More specifically, we will prove

that the following invariant holds in the beginning of each iteration of the

backtracking loop.

Invariant 2 (Backtracking invariant). The sequence of clauses ρ, maintained

by AnalyzeConfBtAndFlip, is a backtracking resolution derivation.

The main component of function AnalyzeConfBtAndFlip is the back-

tracking loop, starting at line 2. The backtracking loop halts when either:
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(1) the backtracking level s is a non-flipped level and the backtracking clause

contains the negation of the literal, assigned at this level; or (2) the assign-

ment level becomes 0. In the former case, it follows from the definitions of

the backtracking clause and the parent clause that the backtracking clause

can serve as the parent clause for the newly flipped assignment level for the

flip that occurs at line 7. Lemma 2 shows that in the latter case, the back-

tracking resolution derivation becomes the refutation of F. Hence the parent

invariant holds after the algorithm exits the function AnalyzeConfBtAndFlip

and returns to line 12 of SSS. SSS checks if the formula is unsatisfiable, and

continues to check the condition of the conflict analysis loop. If the condition

holds, the algorithm continues with another iteration of the conflict analysis

loop; otherwise, it returns to the main loop.

Now we provide a correctness proof for our algorithm. The flow of

the algorithm will be studied and analyzed in detail during the proof.

We will also provide two examples, demonstrating the functionality of

AnalyzeConfBtAndFlip, after formulating and proving the two lemmas re-

lated to AnalyzeConfBtAndFlip.

We start off with a lemma claiming the consistency of the backtracking

loop.

Lemma 1 (Backtracking loop consistency). Suppose the backtracking invari-

ant holds just before the algorithm checks the condition of the backtracking

loop (line 2 of Algorithm 3), then one of the following three post-conditions

holds:

1. The algorithm enters the backtracking loop. It will reach line 2 of Algo-

rithm 3 – that is, the condition of the backtracking loop once more after

the current iteration is completed. The backtracking invariant will hold

at this point.

2. The algorithm does not enter the backtracking loop; s = 0 and ρ is a

refutation of F.

3. The algorithm does not enter the backtracking loop; s 6= 0; s is a non-

flipped assignment level; ρ is a backtracking resolution derivation and
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v¬σs
s ∈ ρT .

Proof. We distinguish between the following five cases, one of which must

hold when the algorithm checks the condition of the backtracking loop (line 2

of Algorithm 3)). We denote the values of s and ρ in the beginning of the

iteration as simply s and ρ; and at the end of the iteration as s ′ and ρ′,

respectively.

1. The assignment level s is 0. In this case, the backtracking loop condi-

tion does not hold. The backtracking clause must be the empty clause

� by the backtracking invariant. Thus, ρ is a refutation of F. Hence,

the algorithm exits the loop when post-condition 2 holds.

2. The assignment level s > 0 is non-flipped and the negation of the literal

assigned at s belongs to the backtracking clause. In this case, the

algorithm exits the loop, when post-condition 3 holds by construction.

In this case, the algorithm found a variable to flip and constructed the

parent resolution derivation for the flip.

3. The assignment level s > 0 is flipped and the negation of the literal

assigned at s belongs to the backtracking clause. In this case, the

algorithm enters the loop. The backtracking loop resolves the parent

derivation of s πs with the backtracking derivation ρ and updates the

backtracking derivation with the result. To verify that πs ⊗
vs ρ is a

valid composition of resolutions, we need to check that πT
s and ρT are

resolvable. By the parent invariant, it holds that πT
s = ¬A∨vσs

s , where

A is a conjunction of a subset of zero or more literals, assigned at

assignment levels 1 . . . s − 1. By the backtracking invariant and our

assumption that the negation of the literal assigned at s belongs to the

backtracking clause, ρT = ¬B ∨ v¬σs
s , where B is a conjunction of a

subset of zero or more literals, assigned at assignment levels 1 . . . s− 1.

Hence, πT
s and ρT are resolvable on vs; thus πs ⊗

vs ρ is a resolution

derivation. Moreover, after the algorithm decrements s and reaches

the loop condition once again, ρ′ is a backtracking resolution derivation,

since its target clause is composed of a conjunction of a subset of zero or
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more literals, assigned at assignment levels 1 . . . s′ − 1 and, optionally,

v
¬σs′

s′ . Therefore, post-condition 1 holds.

4. The assignment level s is non-flipped and the negation of the literal as-

signed at s does not belong to the backtracking clause. In this case, the

algorithm enters the loop, but does not change the backtracking resolu-

tion derivation. The backtracking invariant still holds after decrement-

ing the assignment level and reaching the loop condition once again,

since the backtracking clause is still composed of a negation of a con-

junction of a subset of zero or more literals, assigned at assignment

levels 1 . . . s′ − 1 and, optionally, v
¬σs′

s′ . Therefore, post-condition 1

holds. The behavior of our algorithm in this case shows the difference

between our resolution-aware algorithm and the original backtracking

algorithm DLL [15], which flips every non-flipped variable.

5. The assignment level s is flipped and the negation of the literal assigned

at s does not belong to the backtracking clause. Post-condition 1 holds

for exactly the same reasons that it held for the previous case (when s

was non-flipped). It is interesting, however, that in our case the parent

resolution derivation of s is not included in the newly created parent

resolution derivation. We say that resolution backward pruning takes

place in this case. Resolution backward pruning corresponds to one of

the three cases of backward pruning, which will be analyzed in Sec-

tion 3.3. We relate search pruning to the algorithm’s ability to reduce

the number of nodes in the final resolution refutation of the formula.

In our case, the parent resolution derivation of vs is not included in

the derivation of the new backtracking clause; thus it will not be in-

cluded in the parent resolution derivation of the newly flipped variable,

which in turn means that it will not be included in the final resolution

refutation of the formula. We will encounter the other two types of

backward pruning when discussing non-chronological backtracking and

1UIP-based conflict-directed backjumping.
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Lemma 2 (Backtracking consistency). Suppose that when the function

AnalyzeConfBtAndFlip is invoked, the following pre-conditions hold:

1. The assignment level s is flipped, s > 0 and Cr = ¬A ∨ v¬σs
s , where

A is a conjunction of a subset of zero or more literals, assigned at

assignment levels 1 . . . s− 1.

2. The parent invariant (invariant 1) holds.

Denote the values of s and ρ, when AnalyzeConfBtAndFlip finishes by

s ′ and ρ′. AnalyzeConfBtAndFlip exits when either of the following post-

conditions hold:

1. The assignment level s ′ is 0 and ρ′ is a resolution refutation of F.

2. The assignment level s ′ is flipped; s ′ < s; the parent invariant holds.

Proof. First, we show that the backtracking invariant holds, when the condi-

tion of the backtracking loop is reached for the first time. At this point ρ is a

backtracking resolution refutation, consisting of the single clause Cr, serving

as the target clause. By pre-condition 1 of the lemma, Cr = ¬A∨v¬σs
s , where

A is a conjunction of a subset of zero or more literals, assigned at assignment

levels 1 . . . s− 1, and s > 0. This condition is sufficient for ensuring that Cr

is a backtracking clause and ρ is a backtracking resolution derivation. Hence,

the backtracking invariant holds.

Observe that the loop must terminate, since s is decreased at each itera-

tion, and the condition s > 0 is a terminating condition for the backtracking

loop. It also holds that s ′ < s , since the condition of the backtracking loop

always holds for the first iteration, hence the assignment level is decreased

at least once. The subsequent iterations of the backtracking loop may only

decrease the assignment level.

From an iterative application of post-condition 1 of Lemma 1, the back-

tracking invariant must hold each time before the algorithm checks the con-

dition of the backtracking loop (line 2), including the last iteration. At the
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last iteration, the condition of the loop does not hold, hence one of post-

conditions 2 or 3 of Lemma 1 must hold. We show that in either case, one

of the post-conditions of our lemma holds.

If the algorithm exits the loop, when s′ = 0 and ρ′ is a resolution refuta-

tion, then the function AnalyzeConfBtAndFlip exits, returning a refutation,

and post-condition 1 of our lemma holds.

Suppose that the algorithm exits the backtracking loop, when s′ 6= 0, s ′

is a non-flipped assignment level, ρ′ is a backtracking resolution derivation

and v
¬σs′

s′ ∈ ρ′T . Then, the function AnalyzeConfBtAndFlip flips the value

of vs′ . In this case, the backtracking resolution derivation ρ′ can serve as a

parent resolution derivation for the new flip. Previously, we proved that ρ

is a resolution refutation. The backtracking clause ρ′T fulfills the require-

ments for serving the parent clause for the following reason: we assumed

that v
¬σs′

s′ ∈ ρ′T ; the rest of the literals of ρ′T must be ¬A, where A is a

conjunction of a subset of zero or more literals, assigned at assignment levels

1 . . . s′ − 1 by the definition of a backtracking clause. Note also that the

algorithm did not modify the parent resolution derivations of the assignment

levels lower than s ′. Hence, the parent invariant holds, when the function

AnalyzeConfBtAndFlip exits. We have already shown that s ′ < s and we

have demonstrated that s ′ is a flipped level. Thus, post-condition 2 holds.

Now we demonstrate the functionality of function AnalyzeConfBtAndFlip

on two examples.

First, consider Fig. 2.3(b), which shows a snapshot of an invocation of SSS

on input formula α just after the third conflict. The rightmost path comprises

the current partial assignment, that is vσ1

1 = ¬a; vσ2

2 = b; vσ3

3 = c. Assignment

level 1 is non-flipped and assignment levels 2 and 3 are flipped. The parent

resolution derivations of levels 2 and 3 are {a ∨ b} and {¬b ∨ c}, respectively.

The function AnalyzeConfBtAndFlip is provided with the blocking clause

¬b∨¬c as a parameter. The algorithm initializes the backtracking resolution

derivation with the blocking clause. The first iteration of the backtracking

loop starts at assignment level 3. The literal ¬c appears in the backtracking

clause; thus the algorithm updates the backtracking resolution derivation.
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a ¬a

a ∨ b ¬b ¬a ∨ b

¬b ∨ c ¬b ∨ ¬c

¬a a

¬b b

¬c c

b
¬b

(a) A refutation of α or α′

a ∨ b

¬b ∨ c ¬b ∨ ¬c

¬a

¬b b

¬c c

(b) Snapshot of invoca-
tion of Algorithm 1 on α

a

a ∨ b ¬b

¬b ∨ c ¬b ∨ ¬c

¬a a

¬b b

¬c c

(c) Backtracking and flip-
ping, given Fig. 2.3(b)

a ∨ ¬b

¬b ∨ c ¬b ∨ ¬c

b

¬a a

¬c c

(d) Snapshot of invocation
of Algorithm 1 on α′

¬b

¬b ∨ c ¬b ∨ ¬c

b
¬b

¬c c

(e) 1UIP-based CDB and flipping given
Fig. 2.3(b); backtracking and flipping
given Fig. 2.3(d)

a ∨ b

a ∨ b

¬a

c

¬b

¬a

¬b
b

(f) NCB effect

Figure 2.3: Examples of search trees, resolution refutations and the impact of
various algorithms, given the formulas α = (a∨b)∧(¬b∨c)∧(¬b∨¬c)∧(¬a∨b)
and α′ = α ∧ (a ∨ ¬b)

The new backtracking clause is ¬b = ¬b ∨ c ⊗c ¬b ∨ ¬c. The algorithm

backtracks to assignment level 2 and enters another iteration of the back-

tracking loop. The literal ¬b appears in the backtracking clause; hence the

backtracking resolution derivation is updated. The new backtracking clause

is a = a ∨ b⊗b ¬b. The algorithm backtracks to the non-flipped assignment

level 1. The negation of the assigned literal ¬a appears in the backtrack-

ing clause. Hence, the backtracking loop terminates. The algorithm flips

the value of ¬a using the newly derived backtracking resolution derivation

as the parent resolution derivation. The situation at this point is shown in

Fig. 2.3(c). The current assignment level is 1 and the only assigned vari-

able is a. The bottom-non-flipped part of the figure, which included nodes

with clauses and arrowed edges, represents the parent resolution derivation,

created by the backtracking loop. This parent resolution derivation can be

represented non-graphically as {¬b ∨ c,¬b ∨ ¬c,¬b, a ∨ b, a}.

Consider now Fig. 2.3(d), representing another snapshot of an invocation

of SSS after the third conflict. The current assignment level is 3. In the first

iteration of the backtracking loop, the backtracking resolution derivation is

updated. The new backtracking clause is ¬b = ¬b ∨ c ⊗c ¬b ∨ ¬c. The

flipped assignment variable a does not appear in the backtracking clause,
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hence backtracking continues and the backtracking resolution derivation is

not updated. The backtracking stops at the non-flipped assignment level 1

when the backtracking clause is ¬b. The situation that results after the flip

appears in Fig. 2.3(e). The bottom-non-flipped part of the figure represents

the parent resolution derivation of ¬b. Note that the parent resolution of ¬a,

which consists of the single clause a∨¬b, does not appear in the new parent

resolution derivation.

Next, we provide a proof that, given a CNF formula, Algorithm 1 termi-

nates and returns a resolution refutation if the input formula is unsatisfiable,

or a model if the formula is satisfiable. We need to formulate an assignment

invariant that states that none of the clauses of F is falsified just before

choosing new assignment literal.

Invariant 3 (Assignment invariant). None of the clauses of the input formula

F is falsified with σ1...s before invoking line 4 of SSS (Algorithm 1).

Now we introduce the termination function for SSS. We will prove ter-

mination of SSS by demonstrating that the finite termination function must

increase.

Definition 19 (Termination function). Let p be the number of variables in

the input CNF formula F. The termination function, which can be calculated

at each point of SSS execution, is a pair of integer numbers 〈t, s〉. The second

component of the pair s is the assignment level. The first component of the

pair t is determined as follows. Suppose bit number 0 is the least significant

bit. Then, bit number i of t is 1 iff i ≤ s and i is a flipped assignment level,

that is FlipStatus [i] = true. Bit number 0 of t and bits, whose number is

greater than s, are set to 0.

Proposition 3. The termination function is finite.

Proof. For termination function 〈t, s〉, the assignment level s is bound by

the number of variables. Only bits 1 to s of t , inclusively, can be assigned 1,

hence t is a finite number as well.

Definition 20 (Comparison of termination functions). Let f1 = 〈t1, s1〉 and

f2 〈t2, s2〉 be two termination functions. Then,
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• f1 > f2 iff t1 > t2 or t1 = t2 and s1 > s2.

• f2 > f1 iff t2 > t1 or t2 = t1 and s2 > s1.

• f1 = f2 iff f1 6> f2 and f1 6< f2.

Lemma 3 (Correctness and termination). Suppose that SSS (Algorithm 1)

is situated just before choosing the new assigned literal at line 4. Suppose

that the assignment and the parent invariants hold and that the termination

function is f1. Then, one of following post-condition holds:

1. The algorithm will reach line 4 once again. The assignment and the

parent invariants will still hold. The new termination function f2 will

be strictly greater than f1.

2. The algorithm will return that the formula is satisfiable with the model

σ1...s. In this case, σ1...s indeed satisfies F.

3. The algorithm will return that the formula is unsatisfiable with the res-

olution refutation ρ. In this case, ρ is indeed a resolution refutation of

F.

Proof. We distinguish between the following events:

1. The algorithm chooses the new literal and then exits immediately, since

σ1...m satisfies F. In this case, post-condition 2 of our lemma holds. The

assignment σ1...m is a model by construction.

2. The algorithm chooses a new literal and does not encounter a model;

the condition for the conflict of line 8 does not hold. In this case, the

algorithm continues with another iteration of the main loop and reaches

line 4 once again. The assignment invariant still holds, since otherwise

the condition of line 8 for the conflict would have held. The parent

invariant still holds, since the flipped levels remained as they were;

the structure of their parent resolution derivations also did not change.

Finally, the new termination function is greater than the previous one,

since the first component of the pair did not change, but the second

one (the assignment level) increased by 1.
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3. The algorithm chooses a new literal and does not encounter a model;

the condition for the conflict of line 8 holds; there is no conflict after the

flip of line 9. In this case, the algorithm continues to another iteration of

the main loop and reaches line 4 once again. The assignment invariant

still holds, since otherwise the condition of line 10 for the conflict would

have held. Now we show that the parent invariant still holds. The

only new flipped assignment level is associated with a parent resolution

derivation, consisting of the single clause Cl that used to be the blocking

clause of the conflict. We know that Cl was falsified by σ1...s before

the flip. We also know that the assignment invariant held before the

flip; hence the assignment at level s before the flip was necessary to

falsify the clause Cl. This means that Cl consists of a negation of a

conjunction of a subset of 0 or more literals assigned at levels 1 . . . s−1

and v
σ′s
s , where σ′ is the partial assignment after the flip. Hence, {Cl} is

a parent resolution derivation and the parent invariant holds. Finally,

the termination function increased, since the first component of the

pair was increased due to the last flip.

4. The algorithm chooses a new literal and does not encounter a model;

the condition for the conflict of line 8 holds and there is a conflict after

the flip of line 9, discovered by the conflict loop condition (line 10).

In this case, the algorithm enters the conflict analysis loop. Note that

when analyzing the previous case, we showed that the parent invariant

still holds after the flip and that the termination function increased.

Consider now the first iteration of the conflict analysis loop. As usual,

we denote the values of s and ρ, when AnalyzeConfBtAndFlip fin-

ishes, by s ′ and ρ′. By Lemma 2, the AnalyzeConfBtAndFlip exits

when either s′ = 0 and ρ′ is a resolution refutation of F, in which case

post-condition 3 of our lemma holds, or when the assignment level s ′

is flipped; s ′ < s and the parent invariant holds. Assume the latter.

In this case the algorithm reaches the condition of the conflict anal-

ysis loop once again. If it holds, then from repeated application of

Lemma 2 it follows that whenever (and if) the condition of the con-
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flict analysis loop is reached once again, the parent invariant holds.

Note that by Lemma 2, the condition of the conflict analysis loop

may be reached a limited number of times, since each application of

AnalyzeConfBtAndFlip decreases the assignment level by 1, and SSS

returns unsatisfiable, if the assignment level is decreased to 0. Suppose

we are at the stage when the condition of the conflict analysis loop

does not hold and the algorithm exits the loop. Then, the algorithm

proceeds to another iteration of the main loop. The assignment invari-

ant must hold at this point, since otherwise the conflict analysis loop

would not have terminated. As we have shown, the parent invariant

must also hold; the new termination function f2 must be greater than

f1, since the first component of the pair increased due to the last flip.

Theorem 1 (Correctness and termination). Given a satisfiable formula F,

SSS (Algorithm 1) will return that the formula is satisfiable with the model

σ1...s. In this case, σ1...s indeed satisfies F. Given an unsatisfiable formula F,

SSS will return that the formula is unsatisfiable with the resolution refutation

ρ. In this case, ρ is indeed a resolution refutation of F.

Proof. Note that the first time SSS reaches line 4, both the assignment and

the parent invariants trivially hold. Hence, both pre-conditions for Lemma 3

are fulfilled and we can apply the lemma iteratively until one of the post-

conditions 2 or 3 of Lemma 3 hold. Indeed, whenever post-condition 1 of

the lemma holds, we can use it as a pre-condition for applying the lemma

once again. Note that each application of the lemma that satisfies post-

condition 1 increases the finite termination function. Hence, in the end,

one of the post-conditions 2 or 3 must hold. Therefore, the algorithm will

terminate returning either a model, if F is satisfiable, or a refutation, if F

is unsatisfiable. The algorithm cannot return a refutation for a satisfiable

formula due to the resolution’s soundness. It cannot return a model for an

unsatisfiable formula, since the algorithm explicitly verifies that the returned

assignment is a model at line 6.
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2.2 From the SAT Solver Skeleton to a Mod-

ern SAT Solver

In this section, we describe a number of widely used techniques that enhance

the basic backtracking algorithm SSS. These techniques include:

• Boolean Constraint Propagation (BCP) [15]

• Non-Chronological Backtracking (NCB) [3, 60]

• 1UIP-based Conflict-Direct Backjumping (CDB) [3, 60, 45]

• Conflict Clause Recording (CCR) [63, 60, 45]

• Restarts [29]

• Conflict Clause Deletion [3]

We show how to augment Algorithm 1 (SSS) with each one for the above-

mentioned algorithms and discuss them in the light of our understanding of

the SAT solver functionality. Our pseudo-code allows one to choose the deci-

sion heuristic, the restart strategy, the clause deletion strategy and the data

structures. Integrating all the algorithms into SSS results in a generalization

of the algorithm, implemented in the Chaff-2001 SAT solver [45]. Fixing

the decision heuristic, the restart strategy, the clause deletion strategy and

the data structures to the ones proposed in [45] would make our algorithm

identical to Chaff-2001.

This section uses a number of concepts, well-known in the literature, but

not yet addressed in our work. We start with a number of definitions.

Definition 21 (Decision). The operation of choosing a new literal at line 4

of SSS (Algorithm 1) is called a decision.

Each assigned variable is associated not only with the assignment level,

but also with a decision level.
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Definition 22 (Decision level). Each variable v, assigned at assignment

level i , is associated with a decision level d, equal to the number of non-

flipped assignment levels between 1 and i, inclusively. The decision level of

an assigned literal vκ is defined to be the decision level of the variable v.

For example, the decision level of all the assigned literals appearing on

Fig. 2.3(b) on page 23 is equal to 1, since the first assignment level is the

only non-flipped assignment level.

Definition 23 (Decision variable; Decision literal). A variable (literal), as-

signed at assignment level i , is a decision variable (literal) iff i is a non-

flipped assignment level.

Proposition 4 (Decision Variable Consistency). Each decision level has only

one decision variable/literal associated with it.

Proof. Follows from Definitions 22 and 23.

The decision variable of decision level 1 on Fig. 2.3(b) is a, whereas its

decision literal is ¬a.

Definition 24 (Current decision level). Each stage of the SSS (Algorithm 1)

invocation is associated with the current decision level: the number of as-

signed decision variables.

It is sometimes convenient to reason about the resolution derivation that

would turn the parent resolution derivation after the flip.

Definition 25 (Asserting resolution derivation; Asserting clause). The res-

olution derivation, supported as a parameter to the function Flip, is called an

asserting resolution derivation. The target clause of the asserting resolution

derivation is called the asserting clause.

Proposition 5 (Asserting Clause Consistency). The asserting clause must

be of the form ρT = ¬A ∨ v¬σs
s , where A is a conjunction of a subset of zero

or more literals, assigned at assignment levels 1 . . . s− 1.
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Proof. One can show that the parent invariant must hold after each flip by

applying arguments similar to those appearing in the proof of Lemma 3.

(We skip the proof, since it would be very similar to that of Lemma 3.) The

algorithm is going to use the asserting resolution derivation as the parent

resolution derivation after the flip. The value of vs will be flipped to ¬σs.

Denote τs = ¬σs. By the parent invariant, the parent clause must be of the

form ¬A ∨ vτs
s , where A is a conjunction of a subset of zero or more literals,

assigned at assignment levels 1 . . . s − 1. The asserting clause is the parent

clause before the flip, that is before negating σs; hence ρT = ¬A ∨ v¬σs
s .

We provide an intuitive notion of the nth highest assignment level.

Definition 26 (nth highest assignment level). Assume C = v
σi1

i1
∨ v

σi2

i2
∨

. . .∨v
σik

ik
be a clause, containing 1 or more literals, assigned by SSS. Suppose

that for each j : 1 < j ≤ k, the assignment level of vσ
ij

ij
is greater than that

of vσ
ij−1

ij−1
. Then, the highest assignment level of C is ik. The nth highest

assignment level of C is ik−n+1 if k > (n− 1) and 0 otherwise.

Definition 27 (Asserting literal; Failure-driven assertion). The literal with

the highest assignment level in an asserting clause is called the asserting

literal. The operation of flipping an asserting literal is called a failure-driven

assertion.

Each remaining section of this chapter is dedicated to an algorithmic

enhancement of SSS. The correctness proofs show how to update the proof

of Theorem 1, which depends on the proofs of Lemmas 1, 2 and 3, when a

specific additional algorithm is applied. We show how to update the proofs

of relevant lemmas.

2.2.1 Boolean Constraint Propagation (BCP)

Boolean Constraint Propagation (BCP) is the process of repeatedly employ-

ing the unit clause rule, proposed in [15], until a fixed-point is reached. First,

we define concepts, related to BCP, using our terminology.
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Definition 28 (Unit clause). Suppose that SSS (Algorithm 1) is situated

just before making a new decision at line 4. A clause C is a unit clause if

C = ¬A ∨ vκ, where A is a conjunction of a subset of zero or more literals,

assigned at assignment levels 1 . . . s− 1 and vκ is an unassigned literal.

Now we define the unit clause rule.

Definition 29 (Unit clause rule). Suppose that SSS (Algorithm 1) is situated

just before making a new decision at line 4. If there exists a unit clause

C = ¬A ∨ vκ, the algorithm must assign the variable v the value ¬κ. In this

case, one says that the unit clause rule was applied in unit clause C. If there

are a number of unit clauses, the algorithm chooses one of them.

Boolean Constraint Propagation (BCP) forces the algorithm to use unit

clause rule, whenever possible. To implement BCP within SSS, do the fol-

lowing:

BCP (invoked instead of line 4 of Algorithm 1):

if ∃C ∈ F : C = ¬A ∨ vκ is a unit clause then

〈vs, σs〉 := 〈v,¬κ〉

else

〈vs, σs〉 := ChooseNewLiteral()

Our definition of the unit clause rule is different from the original one [15]

in that we enforce the choice of the negation of the unassigned literal, ap-

pearing in the unit clause, rather than the literal itself. This approach allows

one to describe the algorithm implemented in modern SAT solvers in our

terminology without referring to implications and implication graphs, thus

detaching conflict analysis from BCP. In our framework, a conflict always

follows a unit clause rule application; hence the algorithm is forced to flip

the value of vs immediately. Suppose that the unit clause rule is applied to

the unit clause C = ¬A ∨ vκ. The literal assigned as a result of the unit

clause rule application and flipping is an implied literal in the standard ter-

minology of [60]. In our framework, implied literals are treated as regular

flipped literals.

The use of data structure enabling one to implement BCP efficiently is

crucial for a SAT solver. The most popular data structure was introduced in
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Chaff-2001 [45] and is called the Two Watched Literals (2WL) data structure.

The idea is that it is sufficient to maintain pointers to only two of the literals

of each clause to support BCP. The predecessor of 2WL is SATO’s SAT

solver Head/Tail [68]. Recent improvements to 2WL can be found in [11].

A interesting research direction that could follow from our approach is to

try applying BCP selectively, while all the conflict analysis techniques, such

as non-chronological backtracking, 1UIP-based conflict clause recording and

others, can still always be applied. It is widely accepted that BCP helps

accelerate modern SAT solvers, though it typically consumes 80–90% of a

solver’s run-time [45]. The added value of BCP is that it allows the solver to

quickly propagate information and find conflicts. However, the solver must

visit additional clauses in the large clause base of modern SAT solvers, hence

exessive BCP application might result in a high cache miss rate. We suppose

that it could be advantageous not to apply BCP at least in some cases. To

strenthen this hypothesis, we demonstrate below that, in some cases, most

of the propagations carried out by BCP are not relevant for the proof. Note

that it is sufficient to maintain only one watched literal per clause, where the

algorithm is allowed to skip propagation.

Proposition 6. There is a formula whose shortest resolution refutation by

SSS with BCP is linearly longer than in SSS without BCP.

Proof. Consider a formula consisting of (1) eight clauses, each of size 3,

corresponding to all possible disjunctions between literals of variables a, b, c,

excluding tautologies, and (2) the following set of k clauses for each literal p ∈

D = {a, b, c,¬a,¬b,¬c}: Cp = (p∨lp1)∧(¬lp1∨lp2)∧(¬lp2∨lp3)∧. . .∧(¬lpk−1∨lpk).

The variables Lp = {lp1 . . . lpk} are fresh variables for each of D ’s literals.

Clearly, there exists an invocation of SSS generating a refutation of size

7, which ignores clause set (2). BCP, however, forces k additional, useless

inferences. More specifically, if p is the first literal of D that is assigned, then

all the literals of L¬p are assigned either before p or as a result of BCP, after

p’s assignment.

The size of the refutation generated by an invocation of SSS with BCP

on this example is Ω(3+6k), compared to a constant size refutation for plain
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SSS.

As BCP is only a special decision strategy for SSS, the algorithm is still

correct.

Theorem 2 (Correctness and termination of SSS with BCP). Given a satis-

fiable formula F, SSS with BCP will return that the formula is satisfiable with

the model σ1...s. In this case, σ1...s indeed satisfies F. Given an unsatisfiable

formula F, SSS with BCP will return that the formula is unsatisfiable with

the resolution refutation ρ. In this case, ρ is indeed a resolution refutation

of F.

Proof. BCP can be simulated by implementing the function ChooseNewLit-

eral, so that it would choose literals whose negation appears in unit clauses.

The correctness and termination of plain SSS does not depend on the choices

made by ChooseNewLiteral; hence SSS with BCP still terminates with a

correct result.

2.2.2 Non-Chronological Backtracking (NCB)

Non-chronological backtracking (NCB) [3, 60] is a technique, applied before

each flip, which tries to find and eliminate unnecessary assignments. The

notion of NCB was proposed in [60]. It is also related to the ideas of applying

conflict-directed backjumping in constraint satisfaction problem (CSP) [55]

to SAT, discussed in [3].

Suppose that SSS is about to flip a certain variable vs at assignment

level s , after building the asserting resolution derivation ρ (the beginning

of function Flip in Algorithm 2). Non-chronological backtracking removes

assignment levels between the highest assignment level and the second highest

assignment level of the asserting clause, non-inclusively, before each flip (if

possible). After the above-described operation, the NCB implementation of

Chaff also increases s to the closest non-flipped assignment level, that is to

the assignment level of the closest decision variable. This step is carried out

so as not to redo BCP.
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To implement NCB within SSS, do the follow-

ing:

Non-Chronological Backtracking (NCB) (invoked just before starting

the function Flip (Algorithm 2)):

h := Second highest assignment level in ρT

t := First non-flipped assignment level greater than h

if t < s then

vt := vs

σt := σs

s := t

Note that after applying non-chronological backtracking and flipping, the

variable vs is assigned immediately after all the variables of a certain decision

level d ; and the decision level of vs after the flipping becomes d . This decision

level is called the backtrack level.

Definition 30 (Backtrack level). The decision level of a flipped variable after

applying non-chronological backtracking and flipping is called the backtrack

level.

Fig. 2.3(f) on page 23 shows the effect of NCB. A snapshot of an SSS

invocation after the first conflict is depicted on the left-hand side. The as-

serting clause for the first flip is a∨ b. The algorithm identifies the fact that

the assignment level 2 can be deleted. The clause ρT still remains an as-

serting clause. The algorithm deletes assignment level 2 before the flip. The

situation that results appears on the right-hand side of Fig. 2.3(f).

As we will see in more detail in Section 3.3, the NCB algorithm induces

the second type of backward search pruning, which we call NCB backward

pruning. If a flipped assignment level is removed by NCB, the algorithm

also “forgets” its parent resolution derivation. Thus, such parent resolution

derivations will not be part of the final resolution refutation of the given

formula. NCB backward pruning does not occur in the example in Fig. 2.3(f),

since the algorithm does not delete flipped assignment levels.

The correctness NCB follows from the fact that after applying NCB, ρT

is still an asserting clause that becomes a parent clause after the flip.
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Theorem 3 (Correctness and termination of SSS with NCB). Given a satis-

fiable formula F, SSS with NCB will return that the formula is satisfiable with

the model σ1...s. In this case, σ1...s indeed satisfies F. Given an unsatisfiable

formula F, SSS with NCB will return that the formula is unsatisfiable with

the resolution refutation ρ. In this case, ρ is indeed a resolution refutation

of F.

Proof. After applying NCB, ρT is still an asserting clause that would become

a parent clause after the flip, since it is still composed of the literal, assigned

at the current assignment level s and the negation of a conjunction of a subset

of zero or more literals, assigned at assignment levels 1 . . . s− 1. Hence, the

parent invariant is not violated by NCB; thus the proof of correctness of SSS,

provided in Theorem 1, is not affected by applying NCB and our theorem

holds.

2.2.3 1UIP-based Conflict-Directed Backjumping

(CDB)

The idea of conflict-directed backjumping (CDB) was proposed for the con-

text of SAT in [60, 3] and can be traced back to the work on CSP [55]. Using

unique implication points during conflict analysis was proposed in [60]. Back-

jumping, whenever a unique implication point is discovered, was proposed in

Chaff-2001 [45]. We now provide the Chaff-2001 algorithm.

A unique implication point (UIP) [60] is a well-known concept, whose

name is rooted in the implication-based approach to conflict analysis. We

express this notion in our framework.

Definition 31 (nth unique implication point). Suppose that SSS is back-

tracking over a flipped assignment level s in function AnalyzeConfBtAndFlip

(Algorithm 3) visiting line 4, when the condition v¬σs
s ∈ ρT holds. Then,

the variable vs is a Unique Implication Point (UIP) if it is the only variable

of ρT , assigned at the current decision level. Backtracking may find more

than one UIP. UIPs are counted in the order in which they appear during the
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backtracking phase starting with 1. In addition, the decision variable of each

decision level is considered to be the last UIP of that decision level.

Let g be the current decision level. Let t be the assignment level of

the decision variable of g. The idea behind 1UIP-based conflict-directed

backjumping [45] is as follows: once the first UIP variable vs is discovered

during backtracking, continue as if vs was a decision variable, assigned instead

of vt, whose parent clause is the current backtracking clause. One way to

think about 1UIP-based CDB is as substituting the decision vt by vs a-

posteriori. This is implemented as follows:

1UIP-based CDB (invoked just before line 4 of Algorithm 3):

if there exist non-flipped assignment levels then

g := The decision level of vs

if v¬σs
s is the only literal in ρT with the decision level g then

t := The assignment level of the decision variable of g

vt := vs

σt := σs

FlipStatus [t] := false

s := t

Continue to the condition of the while loop

See the transformation of Fig. 2.3(b) into Fig. 2.3(e) on page 23 for an

example of the effect of 1UIP-based CDB. After the algorithm derives a new

backtracking clause ¬b during backtracking, it discovers that it contains only

one variable, b, assigned at the last (and only) decision level. Therefore, it

deletes the decision a, and simulates a situation, identical to the one that

would have been created if the decision b had been taken instead of the

decision ¬a. This situation is shown in Fig. 2.3(e). The parent clause and

parent resolution derivation of the first assignment level are updated to the

backtracking clause and its derivation.

1UIP-based CDB induces the third type of backward pruning, analyzed

in Section 3.3, which we call UIP backward pruning. Consider a flipped

assignment level p that is situated between the assignment level of the last

decision and the assignment level of the first UIP variable, inclusively. The
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parent resolution derivation corresponding to p is not included in the newly

derived parent resolution; thus it will not be included in the final resolution

refutation. We say that it is pruned. In our example, the parent resolution

derivation corresponding to the second assignment level that consists of a

single clause a ∨ b is pruned.

The correctness of 1UIP-based CDB follows from the fact that apply-

ing the 1UIP-based CDB does not break the backtracking invariant; hence

Lemma 1 still holds.

Theorem 4 (Correctness and termination of SSS with 1UIP-based CDB).

Given a satisfiable formula F, SSS with 1UIP-based CDB will return that the

formula is satisfiable with the model σ1...s. In this case, σ1...s indeed satisfies

F. Given an unsatisfiable formula F, SSS with 1UIP-based CDB will return

the fact that the formula is unsatisfiable with the resolution refutation ρ. In

this case, ρ is indeed a resolution refutation of F.

Proof. If the first UIP is the decision variable, then the 1UIP-based CDB

algorithm, described above, is not invoked at all and the correctness of our

theorem trivially follows from Theorem 1.

Suppose that the first UIP is a flipped variable. First, we show that

Lemma 1 still holds after updating the backtracking loop with the 1UIP-

based CDB algorithm. Suppose that the algorithm enters the iteration of the

backtracking loop, where 1UIP-based CDB is applied. The last line of 1UIP-

based CDB application states that the algorithm continues to the condition of

the while loop. After applying 1UIP-based CDB, the backtracking invariant

continues to hold, since the backtracking clause is still composed of the literal

assigned at the updated assignment level s ′ and the negation of a conjunction

of a subset of zero or more literals assigned at assignment levels 1 . . . s′ − 1.

Hence, post-condition 1 of Lemma 1 holds.

The proof of Lemma 2 uses the fact that AnalyzeConfBtAndFlip must

decrease the assignment level, hence it is also important to show that the

assignment level is still decreased by the iteration of AnalyzeConfBtAndFlip

that uses 1UIP-based CDB, even though line 5 of AnalyzeConfBtAndFlip,

which explicitly decreases the assignment level, is not reached by such it-
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eration. This statement is correct, since the assignment level is changed

to the assignment level of the last decision, which must be lower than the

assignment level of the first UIP by construction.

Other parts of the proof of the correctness and termination of plain SSS,

provided in Theorem 1, remain unaffected; hence our theorem holds.

We underscore the fact that we do not consider 1UIP-based conflict clause

recording in this section, but only 1UIP-based CDB. In our analysis, these

two concepts are not necessarily related.

2.2.4 Conflict Clause Recording

Conflict clause recording (CCR) is a powerful algorithm that is used by

modern SAT solvers to prune the search space. Conflict clause recording

grew out of work in AI on explanation-based learning [63]. It was proposed

to be employed in modern SAT solvers in [3, 60]. In our terminology, CCR

is an enhancement to SSS, allowing the algorithm to use some or all of the

derived clauses for conflict identification and propagation.

Definition 32 (Conflict clause). A conflict clause is a clause, derived from

the initial formula F by resolution during SSS invocation.

It has been shown that CCR as practiced in today’s SAT solvers, assum-

ing unlimited restarts (restarts are addressed in Section 2.2.5), corresponds

to a proof system exponentially more powerful than that of plain backtrack-

ing [4] in a sense defined precisely in [13]. Conflict clause recording can be

as powerful as general resolution, while backtracking has been known to cor-

respond to the exponentially weaker tree-like resolution. This is in contrast

to BCP, NCB and 1UIP-based CDB, which can be understood as pruning

techniques or heuristics, but they do not add inference power to the basic

algorithm, which remains as powerful as tree-like resolution. We do not an-

alyze the inference power of algorithms for SAT in this work, concentrating

on more practical aspects of SAT solving. The interested reader is referred

to [4] for more details.
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The most popular scheme for CCR records only the clauses that served

as parent clauses for conflict identification and propagation.

Definition 33 (Parent-based conflict clause recording). Parent-based con-

flict clause recording is a conflict clause recording scheme that records only

the clauses that served as parent clauses for conflict identification and prop-

agation.

Basically, parent-based conflict clause recording was first employed in

Chaff-2001 [45], which used 1UIP-based CDB and recorded only the par-

ent clause for each flip, called the 1UIP conflict clause. Chaff’s scheme for

conflict clause recording is called 1UIP-based conflict clause recording. In

the literature on practical SAT solver design, CCR is defined via implication

graph terminology: when a conflict occurs, a clause, corresponding to a cut

in the implication graph, is added to the formula. We provide a simpler and

a more flexible definition of CCR. This approach is not new, as it already ap-

pears in the literature [50], but it is usually not used in the area of practical

SAT solver design.

To implement conflict clause recording, a set of currently used conflict

clauses L must be maintained. The algorithm should use F ∪ L for conflict

identification and propagation. To implement parent-based conflict clause

recoding within SSS, the following steps must be carried out:

1. Add the following line just after the line 1 of Algo-

rithm 1:

L := {}

2. Replace F by F∪L in lines 6, 10 and 8 of Algorithm 1 and in the first line

of the algorithm for BCP implementation, provided in Section 2.2.1.

3. Insert the following code just after line 7

of function AnalyzeConfBtAndFlip (Algo-

rithm 3):

L := L ∪
{

ρT
}
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To implement any other conflict clause recording scheme, it is sufficient

to add some or all of the clauses, derived by resolution by Algorithm 3, to L.

Employing CCR within SSS does not violate algorithm correctness.

Theorem 5 (Correctness and termination of SSS with CCR). Given a satis-

fiable formula F, SSS with CCR will return that the formula is satisfiable with

the model σ1...s. In this case, σ1...s indeed satisfies F. Given an unsatisfiable

formula F, SSS with CCR will return the fact that the formula is unsatisfi-

able with the resolution refutation ρ. In this case, ρ is indeed a resolution

refutation of F.

Proof. All of the arguments used in the proof of Theorem 1 still hold, even if

conflict clauses are recorded (independently of the conflict clause recording

scheme).

2.2.5 Conflict Clause Deletion (CCD) and Restarts

Recording and keeping too many conflict clauses may lead to memory explo-

sion and BCP deceleration. Conflict clause deletion (CCD) [3], also known

as relevance-based learning, deletes unnecessary conflict clauses. The first

heuristic for CCD was proposed in [3]: clauses are deleted as soon as the

number of unassigned literals becomes greater than some threshold k . A

similar idea is used in GRASP [60] and Chaff [45]. The paper on the Berk-

min SAT solver [27] proposed removing clauses based, not just on their size,

but also on their activity – that is, the number of times the clause was used

for conflict derivation, and age – that is, when the clause was recorded. We

are unaware of any survey paper on conflict clause deletion strategies.

To implemented conflict clause deletion, it is sufficient to allow the solver

to delete any conflict clause at any time:

Conflict Clause Deletion (invoked just before line 3 of SSS (Algo-

rithm 1))

RemoveSomeConflictClausesIfRequired(L)

The function RemoveSomeConflictClausesIfRequired may remove or leave

any conflict clause, whenever invoked.
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A restart stops the backtrack search process, unassigning all the variables

and restarting the search. Restarts have been proposed and shown effective

for real-world SAT instances [29]. Chaff [45] restarts the search after i conflict

clauses are recorded, where i is an integer threshold number, slowly increased

during algorithm invocation. A number of more dynamic restart strategies

were proposed recently [6, 57]. We refer the reader to some recent papers on

this topic for an overview [32, 57].

For implementing a restart strategy within SSS, it is suffi-

cient to allow the algorithm to restart at every point of the

search:

Restarts (invoked just before line 3 of SSS (Algorithm 1))

if RestartNow() then

s := 0

The function RestartNow can return true or false at each invocation.

Employing CCD and restarts violate the termination arguments for SSS.

For example, if the function RestartNow always returns true, the algorithm

never terminates. One way to eliminate this problem is to force the algorithm

to record at least one conflict clause between two subsequent invocations of

restart and never delete it. It should be noticed, though, that conflict clause

deletion and restart strategies, as implemented in modern SAT solvers, seem

to be efficient enough to cope with this problem, even if special measures to

avoid infinite loops are not taken.

Theorem 6 (Correctness and termination of SSS with restarts and conflict

clause deletion). Suppose that at least one new conflict clause that is never

deleted is recorded between two subsequent invocation of restarts. Then, given

a satisfiable formula F, SSS with restarts and conflict clause deletion will

return that the formula is satisfiable with the model σ1...s. In this case, σ1...s

indeed satisfies F. Given an unsatisfiable formula F, SSS with CCR will

return the fact that the formula is unsatisfiable with the resolution refutation

ρ. In this case, ρ is indeed a resolution refutation of F.

Proof. We need to check the impact of restarts and conflict clause deletion

on the proof of Lemma 3, since the other lemmas concentrate on proper
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functionality of backtracking, which is not related to restarts and conflict

clause deletion. It is easy to see that restarts and CCD do not violate the

soundness of post-conditions 2 and 3 of Lemma 3. Also, post-condition 1

holds if a restart is not applied during the new iteration of the main loop.

However, the termination function becomes 0, when a restart is applied,

hence post-condition 2 does not hold, whenever a restart is applied. To

prove termination, we update the termination function to contain a triple

〈c, t, s〉, whose first element is the number of conflict clauses and the other

elements are defined as in Definition 19. Note that there is a finite number of

clauses, given a finite variable domain. Now the termination function must

grow, even if restarts are applied, since it is guaranteed that the algorithm

records at least one new conflict clause between restarts. The parent invariant

trivially holds after a restart. Hence, post-condition 2 holds.
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Chapter 3

Understanding and Enhancing

Conflict-Driven Learning

Conflict-driven learning (CDL) [63, 55, 3, 60, 45] is a series of algorithmic

improvements to the backtrack search algorithm, applied upon detection of

a conflict. Chaff’s CDL algorithm is used as the baseline approach in mod-

ern state-of-the-art solvers, such as Siege [56], Minisat [19], Berkmin [27],

Eureka [48], and PicoSAT [6]. Chaff’s conflict-driven learning algorithm

employs non-chronological backtracking, 1UIP-based conflict-directed back-

jumping and parent-based conflict clause recording. In the literature, Chaff’s

CDL engine is referred to as the 1UIP scheme for conflict-driven learning.

Definition 34 (1UIP scheme for conflict-driven learning). The 1UIP scheme

for conflict-driven learning consists of the application of the following al-

gorithms: 1UIP-based conflict-directed backjumping, non-chronological back-

tracking and parent-based conflict clause recording.

Reference [69] analyzed the performance of various schemes for conflict-

driven learning and reached the conclusion that the 1UIP scheme is the most

efficient one empirically. These empirical results were confirmed in [56]. How-

ever, the reasons for this scheme’s success were never clarified: “[T]he effec-

tiveness of certain searching schemes can only be determined by empirical

data” [69]. Here, we hope to better understand this phenomenon.
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Section 3.1 shows how to integrate the following variations and improve-

ments to Chaff’s conflict-driven learning engine into our framework:

• The AllUIP scheme for CDL, proposed in [69].

• A family of schemes, which we call the UIP-n schemes, proposed by the

author of this work in [18]. These schemes terminate the backtracking

process, when UIP number n is encountered.

• Conflict clause minimization [4, 62] is a technique that is applied to

newly derived conflict clauses. It removes literals from the conflict

clause C if they can be derived from other literals of C. The 1UIP

scheme with conflict clause minimization is called the minimized 1UIP

scheme for conflict-driven learning. It is known to be efficient and

is integrated into several modern SAT solvers, such as Minisat [19],

Eureka [48], RSAT [53] and PicoSAT [6].

Section 3.2 describes the 1UIP scheme and the above-mentioned schemes

for CDL using the implication graph-based approach to conflict-driven learn-

ing used in most of the papers on this subject [60, 45, 27, 56, 69, 4, 62].

Section 3.3 formalizes the concept of search pruning by relating it to the

size of resolution derivations, maintained by the algorithm.

Section 3.4 shows that the minimized 1UIP scheme is better than others

in terms of search pruning both analytically and empirically. Our analysis

justifies the empirical superiority of the minimized 1UIP scheme over other

schemes.

Section 3.5 introduces an enhancement to the minimized 1UIP scheme for

CDL, called local conflict clause recording, proposed by the author of this

work in [18]. Local conflict clause recording enhances the minimized 1UIP

scheme by recording additional conflict clauses. We show that local conflict

clause recording improves the performance of a modern SAT solver.

Section 3.6 is dedicated to conflict clause-based assignment stack shrink-

ing, a technique, proposed by the author of this work in Jerusat [46, 47],

and further fine-tuned in the 2004 version of the Chaff solver, called

Zchaff2004 [40]. Shrinking tries to dynamically reduce the size of conflict
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clauses and to unassign such assigned variables that are irrelevant to con-

flicts. We reaffirm the experimental results of [40], showing that shrinking

often leads to faster solving times, especially for microprocessor verification

benchmarks. We also demonstrate experimentally that assignment stack

shrinking leads to faster solving times, even when conflict clause minimiza-

tion and rapid restarts [6] are used, disproving a supposition of [6] that

assignment stack shrinking is subsumed or simulated by conflict clause min-

imization and rapid restarts.

3.1 Integrating Other Conflict-Driven Learn-

ing Schemes into our Framework

In this section, we show how to employ the UIP-n and the AllUIP schemes

as well as conflict clause minimization in our framework.

3.1.1 The UIP-n Scheme

We start with a description of a family of schemes for conflict-directed back-

jumping, called UIP-n-based CDB. Recall the definition and the discussion

of the 1UIP-based CDB, provided in Section 2.2.3 on page 35. UIP-n-based

CDB is similar to the 1UIP-based CDB with the exception that it skips the

first n− 1 UIP’s for the notion of a UIP). The asserting clause, generated by

applying UIP-n-based CDB, is called the UIP-n conflict clause.

For an example of a UIP-2-based CDB, consider Figure 3.1(a) on page 55.

Suppose the solver is backtracking, following a conflict. Resolving the block-

ing clause a ∨ ¬b ∨ ¬e ∨ f with the parent clause of f : ¬e ∨ ¬f results in

a clause a ∨ ¬b ∨ ¬e. This clause contains only one variable assigned at

the last decision level, namely e; hence e is the first UIP and the 1UIP-

based CDB would stop the backtracking process. The UIP-2-based CDB

continues backtracking. The next resolution operation results in a clause

a∨¬b∨¬c = a∨¬b∨¬e⊗e¬c∨ e. Here the only variable that is assigned at

the last decision level is c, hence we found the second UIP and UIP-2-based

CDB stops backtracking.
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The UIP-1-based CDB is identical to the 1UIP-based CDB, hence the

following algorithm can be seen as a generalization of 1UIP-based CDB:

UIP-n-based CDB (n) (invoked just before line 4 of Algorithm 3):

Require: UIPCount is initialized to 1 at the beginning of Algorithm 3

if there exist non-flipped assignment levels then

g := the decision level of vs

if v¬σs
s is the only literal in ρT with the decision level g then

if UIPCount = n then

t := the assignment level of the decision variable of g

vt := vs

σt := σs

FlipStatus [t] := false

s := t

Continue to the condition of the while loop

else

UIPCount := UIPCount + 1

The definition of the UIP-n scheme for conflict-driven learning is very sim-

ilar to that of the 1UIP scheme for CDL (Definition 34), with the exception

that UIP-n-based CDB is used instead of 1UIP-based CDB.

Definition 35 (UIP-n scheme for conflict-driven learning). The UIP-n

scheme for conflict-driven learning comprises the application of the follow-

ing algorithms: UIP-n-based conflict-directed backjumping, non-chronological

backtracking and parent-based conflict clause recording.

It will be shown in Section 3.4 that the 1UIP-based CDB scheme is ad-

vantageous over UIP-n-based CDB for n > 1 both theoretically – in terms of

search pruning, and empirically – in terms of performance.

Theorem 7 (Correctness and termination of SSS with UIP-n-based CDB).

Given a satisfiable formula F, SSS with UIP-n-based CDB will return that the

formula is satisfiable with the model σ1...s. In this case, σ1...s indeed satisfies

F. Given an unsatisfiable formula F, SSS with UIP-n-based CDB will return
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that the formula is unsatisfiable with the resolution refutation ρ. In this case,

ρ is indeed a resolution refutation of F.

Proof. The arguments are very similar to that of the proof of correctness and

termination of SSS with 1UIP-based CDB provided for Theorem 4. There-

fore, we skip the proof here.

3.1.2 The AllUIP Scheme

One scheme for CDL, whose empirical inferiority to the 1UIP scheme remains

unexplained, is the AllUIP scheme [69]. It terminates the backtracking pro-

cess when the so-called AllUIP conflict clause is derived. After the algorithm

identifies the first UIP, the AllUIP scheme applies the resolution rule on the

backtracking clause using variables of lower decision levels as pivot variables,

thereby ensuring that in the end, the conflict clause does not contain more

than one literal per decision level. The primary goal is to make the clause

shorter, keeping in mind that shorter clauses are more suitable for BCP.

The AllUIP conflict clause is indeed much shorter than the 1UIP conflict

clause, yet the performance of the 1UIP scheme is superior to the AllUIP

scheme [69, 56]. We justify this observation analytically in Section 3.4.

Now we describe AllUIP-based CDB.

Let d be a decision level. It is convenient for the subsequent discussion

to define a restriction of a clause to a decision level.

Definition 36 (Clause restriction to a decision level). Let C be a clause

and d be a decision level. Then C’s restriction to decision level d, denoted

by C ↾d, is a clause D ⊆ C, such that all the literals of D are assigned at

decision level d.

AllUIP-based CDB leaves only one variable per decision level

in the derived clause by performing additional resolution steps:

AllUIP-based CDB (invoked just before line 7 of Algorithm 3):

Require: The 1UIP-based CDB algorithm, provided in Section 2.2.3, is ap-

plied.
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g := The current decision level

d := g − 1

while d > 0 do

while ρT ↾d> 1 do

h := The highest assignment level in ρT ↾d

ρ := πh ⊗
vh ρ

d := d− 1

In our example in Figure 3.1(a), the 1UIP conflict clause is a ∨ ¬b ∨ ¬e.

The algorithm resolves it with the parent clause of b at decision level 1 and

receives the clause a ∨ ¬e = a ∨ ¬b ∨ ¬e ⊗b a ∨ b. This clause contains one

literal from each decision level, hence serving as the AllUIP conflict clause.

As usual, the AllUIP scheme applies AllUIP-based CDB, NCB and

parent-based CCR.

Definition 37 (AllUIP scheme for conflict-driven learning). The AllUIP

scheme for conflict-driven learning comprises the application of the following

algorithms: AllUIP-based conflict-directed backjumping, non-chronological

backtracking and parent-based conflict clause recording.

Theorem 8 (Correctness and termination of SSS with AllUIP-based CDB).

Given a satisfiable formula F, SSS with AllUIP-based CDB will return that

the formula is satisfiable with the model σ1...s. In this case, σ1...s indeed

satisfies F. Given an unsatisfiable formula F, SSS with AllUIP-based CDB

will return that the formula is unsatisfiable with the resolution refutation ρ.

In this case, ρ is indeed a resolution refutation of F.

Proof. Lemma 1 remains valid, since the code of AllUIP-based CDB does

not modify the backtracking loop. The proofs of Lemma 3 and Theorem 1

remain valid as well. It is sufficient to prove that the second post-condition

of Lemma 2 still holds, given that its pre-conditions hold. (If the first post-

condition holds, the AllUIP-based CDB algorithm is not invoked by con-

struction).

The new assignment level s′ is not changed by AllUIP-based CDB. Hence,

it remains to prove that the parent invariant holds after the flip. By Proposi-

tion 5, it is sufficient to show that ρ remains an asserting resolution derivation
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after each application of the resolution rule by the AllUIP-based CDB algo-

rithm. We prove this fact by induction on the number of applications of the

resolution rule.

Consider the situation before AllUIP-based CDB applies the resolution

rule. The clause ρT is the 1UIP clause in this case. It is shown inside the

proof of Theorem 4 on page 37 that Lemma 2 holds for 1UIP-based CDB;

hence by Proposition 5, ρ must be an asserting resolution derivation that

becomes the parent resolution derivation after the flip.

Now consider an arbitrary application of the resolution rule by AllUIP-

based CDB ρ′ := πh ⊗
vh ρ. (We denote by ρ′ the resolution derivation ρ

after the algorithm executes the above statement.) Note that the literal

v
¬σs′

s′ is never used as a pivot variable by the algorithm, since the algorithm

visits decision levels lower than g. Consequently, it remains to show that

ρ′T \
{

v
¬σs′

s′

}

consists of negation of literals, assigned at assignment levels

1 . . . s′ − 1.

By induction, ρ is an asserting resolution derivation. Hence, ρT consists of

the literal v
¬σs′

s′ and negation of literals assigned at assignment levels 1 . . . s′−

1. By the pre-condition of Lemma 2, the parent invariant holds, hence πh

consists of the literal vσh

h and negation of literals assigned at assignment levels

1 . . . h− 1, where h < s′. Thus, the resolution rule application is correct and

ρ′ is still a resolution derivation. Moreover, ρ′T \
{

v
¬σs′

s′

}

consists of negation

of literals, assigned at assignment levels 1 . . . s′ − 1.

3.1.3 Conflict Clause Minimization

Conflict clause minimization tries to remove literals from a conflict clause by

applying additional resolution steps using parent clauses of assigned literals.

Only clauses of decision levels lower than the last decision level are considered

for minimization. Conflict clause minimization was discovered independently

in [4] and by the first author of [62], who implemented it in version 1.13 of

the Minisat SAT solver [20].

Conflict clause minimization may only reduce the size of the conflict clause

or leave it unchanged, thus it should always be advantageous (at least, if the
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Algorithm 4 RemoveIfPossible(ρ, t)

1: if t is a non-flipped assignment level then
2: return ρ
3: else
4: θ := ρ⊗vt πt

5: q := t− 1
6: while q > 0 do
7: if v

¬σq
q ∈ θT and v

¬σq
q /∈ ρT then

8: if t is a non-flipped assignment level then
9: return ρ

10: else
11: θ := θ ⊗vt πt

12: q := q − 1
13: return θ

computation time is not too long.) In practice, conflict clause minimization is

successfully applied in modern SAT solvers, such as Minisat [19], Eureka [48],

RSAT [53] and PicoSAT [6]. According to [6], minimization is able to remove

32% of the literals on average, which means that when minimization is dis-

abled average clause length increases by almost 50%. Experimental results,

provided in Sections 3.4.1 and 3.6 of this work, demonstrate the empirical

usefulness of minimization. The practical usefulness of minimization was also

shown in a recent paper [62].

Algorithm 4 is an auxiliary algorithm that is invoked by the main al-

gorithm for conflict clause minimization to check if a certain literal can be

removed from the conflict clause by applying the resolution rule. It receives

a resolution derivation ρ and an assignment level t of a literal that belongs

to the conflict clause ρT . It tries to remove v¬σt

t from clause ρT by applying

resolution using parent clauses of assigned literals. Algorithm 4 maintains a

current resolution derivation θ, initialized with ρ, resolved with the parent

resolution derivation of v¬σt

t .

The algorithm iterates over the assignment stack. At each assignment

level, it tries to resolve out of θT all the literals that do not belong to conflict

clause ρT . Suppose the algorithm visits assignment level q . Assume that the

negation of the assigned literal belongs to the target clause of the current
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resolution derivation, but not to the target clause of the parent resolution

derivation, that is, v
¬σq
q ∈ θT and v

¬σq
q /∈ ρT . If the assignment level is not

flipped, then it is impossible to resolve upon vq, since it has no parent clause.

In this case, the algorithm concludes that it cannot remove the literal v¬σt

t

from the conflict clause without adding other literals; hence the algorithm

returns the initial resolution derivation ρ. If the assignment level is flipped,

the algorithm resolves θ with the parent clause of vq. If the algorithm com-

pletes iterating over the assignment stack and it does not return, then this

means that it succeeded in generating a resolution derivation θ, whose target

clause is of the form θT = ρT \ {v¬σs
s }.

Now we provide an algorithm for conflict clause minimiza-

tion.

Conflict Clause Minimization (invoked just before line 7 of Algo-

rithm 3):

d := the current decision level

D := ρT \ ρT ↾d

for i from 1 to length of D do

t := ith highest assignment level in D

ρ := RemoveIfPossible(ρ, t)

The algorithm iterates over the conflict clause and checks whether each

literal assigned at lower decision levels can be removed from the clause. If

this is the case, the algorithm replaces the resolution derivation with the

minimized resolution derivation.

In our example in Figure 3.1(a), the 1UIP conflict clause is a ∨ ¬b ∨ ¬e.

The literals a and ¬b belong to decision level 1 – lower than the current

decision level 2. The literal ¬b has the highest assignment level of the two

literals. The algorithm checks if ¬b can be removed from the conflict clause

by invoking RemoveIfPossible. The resolution derivation θ is initialized with

the clause a ∨ ¬e = a ∨ ¬b ∨ ¬e ⊗b a ∨ b. The only remaining assigned

literal a belongs to the conflict clause, hence the minimization succeeds and

the algorithm RemoveIfPossible returns the updated resolution derivation,

which replaces ρ.
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Now, we can define the concept of a minimized scheme for conflict-driven

learning.

Definition 38 (Minimized scheme for conflict-driven learning). A scheme

for conflict-driven learning is minimized if conflict clause minimization is

applied.

It is possible to implement the conflict clause minimization algorithm

more efficiently using a recursive implementation and re-using information

about visited literals between different invocations of the function RemoveIf-

Possible. We refer the reader to the recent papers [62, 24] for more details.

It is left to prove the correctness of conflict clause minimization.

Proposition 7 (Correctness of removing a minimized literal). Suppose that

Algorithm 4 is invoked. Assume that:

1. The parameter ρ is an asserting resolution derivation for s.

2. The parameter t is an assignment level of a literal that belongs to ρT

and that t < s.

3. The parent invariant holds.

4. The algorithm returns at line 13.

Then, the algorithm returns a resolution derivation θ, such that θT =

ρT \ {v¬σt

t }.

Proof. Denote the resolution derivation, returned by the algorithm, by θ′.

It is sufficient to prove the following claim: at the beginning of each

iteration of the while loop just before the termination condition is evaluated,

θT = (ρT \ {v¬σt

t }) ∪ D, where D is a disjunction of 0 or more negations of

the literals, assigned at assignment levels 1 . . . q. Indeed, if the claim holds,

then θ′T = ρT \ {v¬σt

t }, since q = 0 when the termination condition of the

while loop holds.

We prove by induction on the number of iterations of the while loop. At

the first iteration, θ := ρ⊗vt πt. By pre-condition 1, ρT consists of v¬σt

t and
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negation of literals, assigned at assignment levels 0 . . . q. Note that t must

be a flipped assignment level; otherwise the algorithm would have exited. By

pre-conditions 2 and 3, πt consists of vσt

t and negation of literals, assigned at

assignment levels 0 . . . q. Hence, θT consists of ρT without the pivot variable

vt, but possibly with negations of other literals, assigned at assignment levels

0 . . . q. We have now proved the base case.

Consider an arbitrary iteration of the while loop. If θ was not changed

since the beginning of the previous iteration, we are done. Otherwise, denote

by τ the derivation θ at the beginning of the previous iteration. By the

induction hypothesis, τT = (ρT \
{

v
¬σq+1

q+1

}

) ∪D, where D is a disjunction of

0 or more literals, assigned at assignment levels 1 . . . q + 1. We need to show

that the last iteration of the while loop removed the variable vq+1 from τ and

added only negation of literals, assigned at levels 0 . . . q. By construction of

the algorithm, θ := τ ⊗vq+1 πq+1. Hence, the variable vq+1 is removed from τ .

By the parent invariant, which is guaranteed to hold by pre-condition 3, πq+1

does not contain any literals, except vq+1 and negation of literals assigned at

assignment levels 0 . . . q.

Theorem 9 (Correctness and termination of SSS with conflict clause mini-

mization.). Given a satisfiable formula F, SSS with conflict clause minimiza-

tion will return that the formula is satisfiable with the model σ1...s. In this

case, σ1...s indeed satisfies F. Given an unsatisfiable formula F, SSS with

conflict clause minimization will return that the formula is unsatisfiable with

the resolution refutation ρ. In this case, ρ is indeed a resolution refutation

of F.

Proof. The proof is very similar to the proof of Theorem 8. Again, it is

sufficient to prove that the second post-condition of Lemma 2 still holds,

given that its pre-conditions hold.

The new assignment level s′ is not changed by conflict clause minimiza-

tion. Hence, it remains to prove that the parent invariant holds after the flip.

The pre-condition 2 of Lemma 2 guarantees that it holds before the flip. By

Proposition 5, it is sufficient to show that ρ remains an asserting resolution

derivation after minimization. It follows from Proposition 7 that minimiza-
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tion may either remove the literal from ρT by applying the resolution rule

over ρT and parent clauses of assigned literals or return ρ untouched. (It is

not hard to verify that pre-conditions of Proposition 7 hold, whenever Re-

moveIfPossible is applied.) In both cases the returned resolution derivation

is still an asserting resolution derivation.
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a ∨ b

¬c ∨ e

¬e ∨ ¬f a ∨ ¬b ∨ ¬e ∨ f

¬a

¬b b

c

¬e e

f ¬f

(a) Snapshot of SSS invocation. Each edge
corresponds to an assignment level.

b

bc→ {e, f,¬f}

¬a→ {b}

(b) BCP-aware notation of the same situation as
in Figure 3.1(a). Each edge corresponds to a de-
cision level and is marked with the decision vari-
able on the left and implied variables in brackets.

¬a b

f

c e ¬f

1UIP
UIP − 2

(c) Implication graph

Figure 3.1: Conflict-driven learning example. Suppose that the input formula
contains the following clauses: (a∨b); (a∨¬b∨¬e∨f); (¬c∨e); (¬e∨¬f). The
conflict clauses, generated by applying the 1UIP scheme, the UIP-2 scheme,
the AllUIP scheme and the minimized 1UIP-based scheme are a ∨ ¬b ∨ ¬e,
a ∨ ¬b ∨ ¬c, a ∨ ¬e and a ∨ ¬e, respectively.

55



3.2 Implication-Based Approach to Conflict-

Driven Learning

We now describe Chaff’s conflict-driven learning algorithm using the

implication-based approach that forces the solver to use BCP whenever possi-

ble. Our goal is to create a reference point to the standard approach. Almost

all the notions of this section have already been defined in our framework.

At each decision level, a Chaff-like solver picks a decision variable and

assigns it a Boolean value. It propagates the new decision using Boolean

Constraints Propagation (BCP): while there exists a unit clause A ∨ vκ,

where the literals of A are assigned 0 and v is unassigned, assign v the value

κ. The literal vκ, assigned during BCP, is called an implied literal. The

associated unit clause A ∨ vκ of an implied literal is called the parent clause

of literal vκ, denoted by Par(vκ).

BCP invocation may result in a conflict – a situation where BCP finds

that all literals in the so-called blocking clause are forced to be 0. When

this occurs, the solver enters a conflict analysis mode, wherein it records one

or more conflict clauses. One of the conflict clauses must be an asserting

conflict clause – a conflict clause, containing one, and only one literal, called

the asserting literal, assigned at the last decision level. After the conflict,

the solver backtracks to the lowest possible decision level d , such that the

asserting conflict clause has only one unassigned literal – the asserting literal.

This operation is referred to as non-chronological backtracking. The solver

flips the value of the asserting literal and propagates the new value in the

conflict clause using BCP at decision level d . This operation is referred to as

a failure-driven assertion. At this point, the negation of an asserting literal

is called a flipped literal and its variable is called a flipped variable. Note that

Chaff-like solvers consider the flipped literal to be an implied literal, which

does not define a new decision level. This was not the case in GRASP, which

treated flipped literals as literals defining a new decision level. Our definition

of a decision level (Definition 22 on page 29) sticks to the terminology of

Chaff, since it is the standard in the literature. Next we discuss the notions

of an implication graph and express the concept of a unique implication point
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in the implication graph-based terminology.

Implication relations between assigned literals can be visualized using

an implication graph. Each vertex in the graph corresponds to an assigned

literal. (We will use the notions of vertex and literal interchangeably in the

implication graph context.) An edge connects vertices a and b if ¬a appears

in the parent clause of b. Upon conflict, we restrict the implication graph

to contain only literals connected to the blocking clause. An example of

an implication graph appears in Figure 3.1(c). The implication level of an

assigned variable a, denoted by il(a) is the maximal distance between a and

dvar(a), where dvar(a) is the decision variable of the decision level of a. For

example, in Figure 3.1 it is the case that il(c) = 0 and il(e) = 1.

As we have seen, a central notion of conflict analysis is that of the Unique

Implication Point (UIP) [60]. We now define this notion using implication

graph-related terminology. A vertex a in the implication graph dominates

vertex b if every path from dvar(a) to b passes through a. A UIP with respect

to a set of literals A and decision level d , denoted UIP(A, d), is a vertex in

the implication graph, which dominates all the literals of A ↾d , where A ↾d
is the subset of A’s literals, whose decision level is d .1 A decision level d may

have a number of UIPs. The literals UIP(A, d) can be ordered according to

their implication level. We denote the UIPs by UIP i(A, d), where UIP1 has

the maximal implication level.

A UIP(A, d) can be thought of as the unique reason for the implica-

tion of literals A ↾d at decision level d. If one unassigns all the literals

assigned at d , assigns UIP(A, d) and propagates using BCP, all literals of

A are implied. To imply A ↾d without having any assumptions, one is re-

quired to use a subset of literals, assigned at levels lower than d , in addition

to UIP(A, d). Let Πi(A, d) to be the set of literals, appearing on a path

of length greater than 0 from UIP i(A, d) to A ↾d , including A ↾d . Any

UIP i(A, d) corresponds to an edge cut of the implication graph, called a

UIP i(A, d) cut. The literals of Πi(A, d) are on the right-hand side of the

cut. The literals Resi(A, d) = ∪
a∈Πi(A,d)

Par i(a) and UIP i(A, d) are on the

1We provide a definition of UIP that is slightly more extended than the one usually
used in the literature. We also suppose that A ↾d is non-empty.
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left-hand side of the cut. The structure of the implication graph infers that

assigning Resi(A, d) and UIP i(A, d) is sufficient in order to imply A ↾d using

BCP without any assumptions.

Now we are ready to describe various schemes for conflict analysis. We

start with the 1IUP scheme. One conflict clause, called the 1UIP conflict

clause, is recorded. The clause consists of the negation of literals of β1 =

Res1(A, d) ∪ UIP1(A, d). Observe that β1 is sufficient to imply the conflict

itself. For example, the 1UIP clause in Figure 3.1(c) is a∨¬b∨¬e. The 1UIP

clause is an asserting conflict clause; thus it can be used for a failure-driven

assertion.

As we have seen in previous sections, one can think of many other schemes

for conflict-driven learning. A comprehensive analysis and evaluation of dif-

ferent schemes for conflict clause recording is [69]. One idea was to use UIPs

for decision levels lower than d . Suppose that the previous lowest decision

level before d in β1 is d2. Then, β2 is produced by taking β1, substitut-

ing β1 ↾d2
by UIP1(β1, d2) and adding Res1(β1, d2)’s literals to the clause.

The negation of β2 is the 2UIP conflict clause. This operation can be recur-

sively applied at every decision level in βi, in descending order. The resulting

conflict clause is referred to as the AllUIP conflict clause. In our example,

¬a ∨ ¬e is the AllUIP conflict clause.

Another natural family of conflict analysis schemes would be what we call

the UIP-j schemes. UIP-j records one conflict clause, consisting of the nega-

tion of literals of Resj(A, d) ∪ UIP j(A, d). The recorded clause corresponds

to j ’s UIP of the last decision level. Observe that in our terminology the

UIP-1 scheme is identical to 1UIP. In our example, a ∨ ¬b ∨ ¬c is the UIP-2

conflict clause.

Conflict clause minimization is a technique for reducing the size of conflict

clauses. Given a clause B , a literal a ∈ B is B-redundant if its negation is

implied by other literals of B . Minimizing a clause means removing from it

all B -redundant literals. It is not hard to see that the resulting minimized

clause is still a valid clause. In our example, b is β1-redundant, thus ¬b∨¬e

is the minimized 1UIP conflict clause. Note that an initial clause is always

subsumed by the minimized one.
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¬f ∨ e

¬d ∨ ¬e ∨ c

¬f ∨ b

¬f ∨ a ∨ ¬c ¬f ∨ ¬a ∨ ¬c

f

¬e e

d

¬c c

¬b b

¬a a

(a) Before 1UIP-based CDB and NCB.

¬f ∨ ¬c

¬f ∨ a ∨ ¬c ¬f ∨ ¬a ∨ ¬c

f

c ¬c

¬a a

(b) After 1UIP-based CDB and NCB.

Figure 3.2: Three kinds of backward pruning. The variables b/c/e are skipped
due to resolution/UIP/NCB backward pruning.

3.3 Capturing the Notion of Search Pruning

The goal of this section is making the commonly used notion of search prun-

ing [41, 58] more formal. We show in Section 3.4 that the minimized 1UIP

scheme is better than other known schemes in terms of both backward and

forward pruning. This serves as an explanation of its empirical advantage

over other schemes.

We define pruning as the ability of a certain conflict-driven learning

scheme to reduce the number of nodes in the resolution refutation generated

by the algorithm. We distinguish between backward pruning and forward

pruning.

Backward pruning is carried out when backtracking over some flipped

assignment levels. Suppose that the algorithm is backtracking and the as-

signment level is s . Suppose that s is a flipped assignment level. Observe

now that if the resolution rule is not applied during backtracking over s ,

then the parent resolution derivation πs will not be included in the newly

generated asserting resolution derivation.

Definition 39 (Skipped variable/literal/resolution derivation/clause/node).

A flipped assigned variable (literal) is skipped when the algorithm is back-

tracking over it, but its parent resolution is not included into the newly con-

structed asserting resolution derivation. Similarly, a resolution derivation

is skipped, when it is a parent resolution derivation of a skipped variable.
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A clause (node) in a resolution derivation is skipped, when the resolution

derivation is skipped.

If conflict clause recording is not used, clauses that belong to the parent

resolution of a skipped variable will not be included in the final refutation of

the input formula. Otherwise, a clause from the parent resolution derivation

of a skipped variable must be recorded and reused in a new conflict clause

derivation to be included in the final refutation. Consequently, it has a lower

chance of being included into it.

One can distinguish between three types of backward pruning:

1. Resolution backward pruning is carried out by Algorithm 1 without

any enhancements when it does not apply the resolution rule for some

flipped assignment level s , when v¬σs
s /∈ ρT , that is when the condi-

tion at line 3 of Algorithm 3 does not hold. Consider the example in

Figure 3.2(a). The backtracking clause after the first resolution rule

application is ¬f ∨¬c. The variable b will be skipped, since it does not

appear in the target clause of the backtracking resolution derivation.

2. UIP backward pruning is carried out by the UIP-n scheme (or the 1UIP

scheme), after discovering the UIP variable. More specifically, this

condition becomes true when a flipped variable vs is skipped during

backtracking by the UIP-n-based (1UIP-based) CDB algorithm, since

the UIP-n (1UIP) variable belongs to an assignment level, greater than

or equal to s . For example, variable c in Figure 3.2(a) will be skipped

due to UIP backward pruning. Indeed, c itself is the 1UIP variable,

thus, its own parent resolution derivation is substituted by the newly

derived resolution derivation ρ.

3. NCB backward pruning is carried out by the NCB algorithm, when it

skips flipped assignment levels. For example, the variable e is skipped

due to NCB backward pruning in Figure 3.2(a), since the asserting

clause does not contain e and c can be flipped at assignment level 2.

Forward pruning is performed by recording conflict clauses, expected to
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be reused frequently for conflict identification or propagation, if BCP is used.

We define a measure for forward pruning in the next section.

3.4 The Pruning Effect of Different CDL

Schemes

We chose to compare the best known 1UIP scheme with UIP-2 and AllUIP.

We believe that the latter two schemes are representative enough to highlight

the advantages of 1UIP over other schemes. The comparison with AllUIP

shows why it is not worthwhile resolving newly created clauses with parent

clauses of variables that do not belong to the decision level of the 1UIP

variable. The comparison with UIP-2 shows why it is advantageous to pick

the first UIP of the last decision level, rather than other UIPs. We also discuss

the effect of conflict clause minimization. When comparing the contribution

of different schemes to backward pruning, we take into consideration their

impact on one particular conflict. Analyzing the contribution to backward

pruning in additional conflicts is left for future research.

The reason for choosing the first UIP, rather than other UIPs, is because it

is optimal for both backward and forward pruning. Proposition 8 analyzes the

impact of 1UIP-based CDB and UIP-2-based CDB on backward pruning. We

show that the number of the nodes in parent resolution derivations skipped

due to backward pruning by the 1UIP scheme is at least the same compared

with the UIP-2 scheme. We will see in the experimental results section that

the 1UIP scheme allows the algorithm to skip more nodes during backward

pruning in practice.

Proposition 8. Let N1(N2) be the number of resolution refutation nodes

skipped due to backward pruning in one particular conflict due to 1UIP (UIP-

2) backward pruning. Then, it always holds that N1 ≥ N2.

Proof. Denote by t1 the assignment level containing the 1UIP variable; and

by t2 the assignment level containing the UIP-2 variable. Let us compare

the impact of the 1UIP and UIP-2 schemes on UIP, NCB and resolution

backward pruning.
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1. Flipped variables assigned between t2 and t1 contribute to UIP pruning

only for the 1UIP scheme, whereas flipped variables assigned after t1

contribute to both 1UIP and UIP-2 UIP pruning. Thus, 1UIP-based

CDB skips at least the same amount of resolution derivation nodes due

to UIP backward pruning as UIP-2-based CDB.

2. The backtrack level for 1UIP-based NCB is never greater than for UIP-

2-based NCB, since each additional resolution rule application may

only add literals to the asserting clause. Thus, the number of nodes,

skipped due to NCB backward pruning for 1UIP-based CDB, is at least

the same as UIP-2-based CDB.

3. It seems that the number of nodes skipped due to resolution backward

pruning may increase in the UIP-2 scheme, since additional flipped

assignment levels may be skipped while backtracking at levels between

t2 and t1. However, all these variables must be skipped due to UIP

backward pruning by the 1UIP scheme. Therefore, any variable skipped

due to resolution backward pruning by the UIP-2 scheme must also be

skipped by the 1UIP scheme. This may happen as a result of UIP

backward pruning, rather than resolution backward pruning.

Now we analyze why the 1UIP scheme is better than the AllUIP scheme,

although AllUIP conflict clauses are typically much shorter than 1UIP con-

flict clauses [56]. Let the assignment level be s . Resolving at assignment

levels l for l < s does not have any impact on backward pruning. We claim

that 1UIP conflict clauses tend to be used more for conflict identification

and propagation than AllUIP conflict clauses. Thus, 1UIP conflict clauses

are advantageous in terms of forward pruning.

Now we define a more formal measure for forward pruning. First, we need

to extend our terminology.

Definition 40 (Pre-flip conflict clause). Let vσs
s be a flipped literal. Then, a

conflict clause is a pre-flip conflict clause for the literal vσs
s and the variable
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vs, if it was learned before the variable vs was flipped – that is, when the

variable vs was used as a non-flipped variable for the last time.

We analyze what fraction of pre-flip conflict clauses, for a flipped literal

vσs
s , contains vσs

s . Note that if a pre-flip conflict clause for vσs
s contain vσs

s ,

then it becomes satisfied immediately after the flip, hence it cannot help

prune the search space. Consequently, we distinguish between useful and

useless pre-flip conflict clauses.

Definition 41 (Useful pre-flip conflict clause; Useless pre-flip conflict

clause). Let C be a pre-flip conflict clause for a flipped literal vσs
s . The clause

C is useful if it does not contain the literal vσs
s ; otherwise C is useless.

Now, we can characterize the impact of pre-flip learning on the pruning

after the flip.

Definition 42 (Pre-flip learning uselessness). Let vs be a flipped variable.

The pre-flip learning uselessness of vσs
s , denoted by Fr+(vσs

s ), is the fraction

of useless pre-flip conflict clauses, out of all pre-flip conflict clauses.

Note that pre-flip learning usefulness is a real number, varying between 0

to 1. If Fr+(vσs
s ) is 1, then all the conflict clauses recorded before the flip of a

variable vs are useless for pruning after the flip, since they become satisfied.

Observe that Fr+(vσs
s ) cannot be 0, since the parent clause of s must contain

vσs
s . The lower the pre-flip learning uselessness is, the more helpful are the

pre-flip conflict clauses for pruning the search space after flipping the variable

vs.

The key observation for understanding the reasons for the empirical ad-

vantage of the 1UIP scheme over the AllUIP scheme is that, empirically,

pre-flip learning uselessness is twice as high for the AllUIP scheme than for

the 1UIP scheme. The explanation for this phenomenon is as follows. Con-

sider a non-flipped decision literal vσs
s , assigned at assignment level s and

decision level d . Assume that vs would become the asserting literal and

would be flipped. Suppose that the algorithm is exploring the search space

at decision levels higher than d . 1UIP conflict clauses tend to contain liter-

als, implied from vs as a result of BCP, rather than vs itself. AllUIP clauses
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tend to contain vs itself, since the resolution rule is applied on the variable,

assigned at decision level d , even when the current decision level is much

greater than d . See Figure 3.3 for an example of this phenomenon.

The impact of the 1UIP scheme on forward pruning should also be greater

than the UIP-2 scheme for two reasons. First, 1UIP conflict clauses have

at most the same size as UIP-2 conflict clauses for one particular conflict.

Second, UIP-2 conflict clauses have additional variables assigned at lower

decision levels, hence the pre-flip learning uselessness tends to be larger for

the UIP-2 scheme.

Conflict clause minimization has no impact on backward pruning. How-

ever, it should be useful for forward pruning. Apparently, a shorter clause

is better in terms of pruning than a longer clause, subsumed by it. Observe

that an AllUIP conflict clause cannot be minimized. We will see that, em-

pirically, conflict clause minimization is highly beneficial for the 1UIP and

UIP-2 schemes.

3.4.1 Empirical Results

We implemented 1UIP, UIP-2 and AllUIP schemes for conflict analysis within

a version of the industrial SAT solver Eureka [48] that did not employ assign-

ment stack shrinking. Conflict clause minimization was used by default, but

we also included results for 1UIP and UIP-2 schemes without minimization.

Remember that conflict clause minimization has no impact on the AllUIP

scheme. All experiments were carried out on a machine with 4Gb memory

and two Intel Xeon CPU 3.06 processors. We used instances from well-known

industrial benchmark families, taken from bounded model checking (fam-

ily longmult; instances longmult10, longmult11) [7]; microprocessor verifica-

tion (families fvp-unsat.2.0, pipe unsat 1.0; instances 4pipe, 5pipe, 8pipe k,

9pipe k) [67] and equivalence checking (family goldberg03-hard eq check; in-

stances rotmul, term1mul) [5]. The three schemes are compared in Tables 3.1

and 3.2. These tables show the execution time and the number of conflicts.

In addition, they show the average pre-flip learning uselessness Fr+, as well

as the mean number of skipped resolution refutation nodes. Figure 3.4 shows
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the relative distribution of the skipped variables according to the categories

defined at the end of Section 3.3.

The main conclusions of our experiments are as follows:

1. The minimized 1UIP scheme is indeed more powerful and robust than

other schemes. It is always faster than UIP-2, and outperforms AllUIP

by orders of magnitude in four instances, shown in Table 3.1.

2. Pre-flip learning uselessness is double for AllUIP as compared with

1UIP. This data explains 1UIP’s superiority over AllUIP.

3. Of all the schemes, UIP-2 skips the fewest nodes/flipped variables,

mainly due to less powerful UIP pruning. This agrees with our analysis

in Section 3.4. In addition, pre-flip learning uselessness for the UIP-2

scheme is slightly higher than for the 1UIP scheme, hinting that the

1UIP scheme is better for forward pruning, though not by an order of

magnitude.

4. Surprisingly, in some examples the AllUIP scheme allows one to skip

more nodes and flipped variables than 1UIP. Figure 3.4 shows that

this happens mainly due to better resolution pruning by the AllUIP

scheme. According to the analysis in Section 3.4, the number of skipped

variables should be about the same for both schemes. This expected

behavior is indeed observed in the four instances in Table 3.1, where

AllUIP is outperformed by several orders of magnitude. Studying the

reasons for the unexpected behavior in the other four instances (in

Table 3.2), where the gap between 1UIP and AllUIP is not large, is left

for future research.

5. Conflict clause minimization is very helpful indeed for both the 1UIP

and UIP-2 schemes. The number of skipped nodes is not influenced

by minimization, which confirms our observation from Section 3.4 ac-

cording to which conflict clause minimization does not contribute to

backward pruning. Thus, its contribution is to forward pruning. Sec-

tion 3.6 provides additional evidence for the empirical usefulness of

conflict clause minimization.
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1UIP: ¬a→ {b, c, d, g,¬g}
AllUIP: ¬a→ {b, c}

a→ {b, c}

d→ {e,¬e} ¬d→ {f,¬f}

Figure 3.3: One example of the superiority of 1UIP over AllUIP. Suppose the
input formula is (a∨d∨g)∧(a∨d∨¬g)∧(a∨c)∧(a∨b)∧(¬a∨b)∧(¬a∨c)∧
(¬b∨¬c∨¬d∨e)∧(¬b∨¬c∨¬d∨¬e)∧(¬a∨d∨f)∧(¬a∨d∨¬f), and assume
we invoke a modern SAT solver for this formula. For this figure, we suppose
that BCP is used. We mark each edge by variables, propagated as a result
of BCP, in addition to the decision literal. The solver first picks the literal
a, propagates its value, then picks d, propagates and encounters a conflict.
The 1UIP clause is ¬b∨¬c∨¬d; the AllUIP clause is ¬a∨¬d. After flipping
d, both the AllUIP and the 1UIP conflict clauses are ¬a. After propagating,
1UIP would yield a conflict, meaning that the formula is unsatisfiable. In
contrast, AllUIP would not result in a conflict, since all previously recorded
conflict clauses have been satisfied.

1UIP UIP-2 AllUIP
Figure 3.4: Reasons for skipping flipped variables for each of the schemes.
The white slice corresponds to the relative number of variables skipped due
to NCB pruning. The light gray slice corresponds of UIP pruning. The dark
gray slice corresponds to resolution pruning.
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Table 3.1: Comparing 1UIP, 1UIP w/o minimization, UIP-2, UIP-2 w/o
minimization and AllUIP on selected instances. The timeout is 14400 sec.
The rows display: (Tm) execution time in seconds; (Con) number of conflicts,
multiplied by 10−3; (Fr+) average Fr+; (NSk) average number of resolution
derivation nodes skipped per conflict

Instance Res 1UIP 1Unm UIP-2 U-2n AllUIP

4pipe Tm 51 37 148 147 11930
Con 101 77 309 275 29986
Fr+ 0.41 0.40 0.38 0.40 0.83
NSk 0.19 0.19 0.14 0.13 0.24

5pipe Tm 50 39 347 283 t/o
Con 85 62 562 420 28186
Fr+ 0.40 0.37 0.33 0.35 0.84
NSk 0.18 0.19 0.14 0.13 0.21

8pipe k Tm 2426 4035 t/o t/o t/o
Con 1479 1783 10129 8526 13192
Fr+ 0.37 0.38 0.26 0.26 0.81
NSk 0.21 0.22 0.13 0.13 0.19

9pipe k Tm 1493 3412 t/o 14205 t/o
Con 641 1098 6040 4793 6548
Fr+ 0.37 0.38 0.27 0.28 0.85
NSk 0.20 0.20 0.16 0.15 0.20
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Table 3.2: Comparing 1UIP, 1UIP w/o minimization, UIP-2, UIP-2 w/o
minimization and AllUIP on selected instances. The timeout is 14400 sec.
The rows display: (Tm) execution time in seconds; (Con) number of conflicts,
multiplied by 10−3; (Fr+) average Fr+; (NSk) average number of resolution
derivation nodes skipped per conflict

Instance Res 1UIP 1Unm UIP-2 U-2n AllUIP

longmult10 Tm 485 634 513 798 590
Con 238 297 262 367 380
Fr+ 0.37 0.37 0.34 0.35 0.84
NSk 0.13 0.12 0.11 0.10 0.24

longmult11 Tm 559 855 756 1080 690
Con 273 378 346 462 471
Fr+ 0.37 0.38 0.35 0.34 0.83
NSk 0.14 0.12 0.11 0.10 0.25

rotmul Tm 578 985 1186 1548 992
Con 615 1001 1371 1790 1576
Fr+ 0.52 0.51 0.48 0.46 0.84
NSk 0.16 0.15 0.13 0.12 0.27

term1mul Tm 2173 3558 5213 9686 2975
Con 1585 2479 3751 6709 3060
Fr+ 0.55 0.52 0.54 0.52 0.86
NSk 0.15 0.15 0.11 0.10 0.26
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3.5 Local Conflict Clause Recording

In this section, we propose an enhancement to the 1UIP scheme for conflict-

driven learning, called local conflict clause recording, and demonstrate its

positive practical impact. A local conflict clause is a conflict clause, recorded

in addition to the 1UIP conflict clause, if certain conditions hold. A local

conflict clause is not used as an asserting clause. The algorithm may use it

for propagation and conflict identification; thus local conflict clause recording

may be found helpful for forward pruning.

In this section, we assume that the solver uses the basic backtracking

algorithm SSS (Algorithm 1), enhanced by BCP (Section 2.2.1) and parent-

based conflict clause recording (Section 2.2.4).

The observation behind our proposal is that the set of conflict clauses,

recorded by standard conflict clause recording schemes, depends too much

on the initial choice of polarity (sign) of assigned variables. This problem

is illustrated by Figure 3.5. The two subfigures show an invocation of Algo-

rithm 1 on a given formula. In both cases, the algorithm is about to flip a.

The only difference between the two invocations is the choice for the initial

polarity for the variable b. Parent-based conflict clause recording (e.g., the

1UIP scheme) records different clauses, depending on the initial polarity of

b. When the variable b is assigned 1 first, the clause ¬e∨¬a∨¬b serves as a

parent clause and is recorded, but the clause ¬f ∨ ¬a ∨ b is an intermediate

clause, used during backtracking; hence, it is not recorded. The situation is

opposite, when b is assigned 0 first. In this case, the clause ¬f ∨ ¬a ∨ b is

recorded as a parent clause, but ¬e ∨ ¬a ∨ ¬b is not recorded. The clauses

¬f∨¬a∨b and ¬e∨¬a∨¬b are different in two literals – that is, in two-thirds

of their literals overall; so intuitively, it seems that in this example it would

be advantageous to record both clauses.

Now we generalize the above observation. Consider any asserting resolu-

tion derivation, derived for flipping a certain variable. A clause in the assert-

ing resolution derivation was recorded as a conflict clause, only if it served

as a parent clause for a certain flipped variable. (Recall that the widely used

minimized 1UIP scheme uses parent-based conflict clause recording, hence
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b

b

b

¬f ∨ ¬e ∨ ¬a

¬e ∨ ¬a ∨ ¬b ¬f ∨ ¬a ∨ b

¬e ∨ ¬a ∨ ¬b ∨ ¬c ¬a ∨ ¬b ∨ c ¬a ∨ b ∨ ¬d ¬f ∨ ¬a ∨ b ∨ d

f

e

a

d ¬d

b ¬b

c ¬c

(a) The clause ¬e ∨ ¬a ∨ ¬b is recorded, but the clause ¬f ∨ ¬a ∨ b is not recorded, if the
variable b is first assigned 1.

b

b

b

¬f ∨ ¬e ∨ ¬a

¬f ∨ ¬a ∨ b ¬e ∨ ¬a ∨ ¬b

¬a ∨ b ∨ ¬d ¬f ∨ ¬a ∨ b ∨ d ¬e ∨ ¬a ∨ ¬b ∨ ¬c ¬a ∨ ¬b ∨ c

f

e

a

d ¬d

¬b b

c ¬c

(b) The clause ¬f ∨ ¬a ∨ b is recorded, but the clause ¬e ∨ ¬a ∨ ¬b is not recorded, if the
variable b is first assigned 0.

Figure 3.5: An example showing the need in local conflict clause record-
ing. Standard conflict clause recording depends too much on literal selection
heuristic. Different clauses are recorded (by e.g., 1UIP scheme) while explor-
ing the subspace under the assignment f = 1; e = 1; a = 1, depending on the
initial polarity selection for the variable b. Suppose that the input formula
contains the clauses ¬e∨¬a∨¬b∨¬c; ¬a∨¬b∨c; ¬a∨b∨¬d; ¬f ∨¬a∨b∨d.

this problem occurs in modern SAT solvers.) Nonetheless, the structure of

the parent resolution derivation suggests that it is sufficient to change the

polarities of the assigned variables to change the set of conflict clauses. This

is shown in Figure 3.6. The problem is that the algorithm might miss conflict

clauses, important for forward pruning.

One solution would be to record all the clauses, generated while back-

tracking (intermediate clauses in the terminology of [56]), as conflict clauses.

However, this solution would not be useful in practice, since it would mean

recording many similar clauses. This is expected to slow down the BCP pro-
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b

V

V X

V X V X

b b b b b b b b

a

Figure 3.6: A generic example showing the need for local conflict clause
recording. An asserting resolution derivation for the upcoming flip of the
variable a is shown. Nodes, marked by V correspond to clauses, recorded
by parent-based conflict clause recording (e.g., the 1UIP scheme). Nodes,
marked by X, correspond to clauses, appearing in parent resolution deriva-
tions, but are not recorded as conflict clauses. Note that a node is marked
with V iff an outgoing edge from the node goes to the right. This occurs,
since an outgoing edge goes to the right iff the corresponding clause is a
parent clause, responsible for a flip.

cess without providing a real benefit in forward pruning. It is preferable to

add only some of the clauses, according to a certain heuristic.

In the analysis below, we need to distinguish between two kinds of flipped

variables, depending on the circumstances of the flip. (In our framework, a

variable is flipped when the function Flip changes the flip status FlipStatus

of its assignment level to true.) A variable may be flipped as a result of:

1. A conflict, immediately after choosing a new literal (line 9 of Algo-

rithm 1); or

2. Conflict analysis (line 7 of Algorithm 3).

Definition 43 (Conflict-driven flipped variable). A flipped variable is

conflict-driven iff the function Flip was invoked as a result of a flip following

conflict analysis (line 7 of Algorithm 3).

In implication graph-based terminology a flipped variable is conflict-

driven iff it was assigned as a result of a failure-driven assertion, rather than

as a result of BCP. Proposition 9 shows that it also holds in our framework

that a flipped variable is conflict-driven iff it was not assigned as a result of

BCP.
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Suppose that the algorithm is analyzing a certain conflict in function

AnalyzeConfBtAndFlip. Suppose that the last decision level contains at

least one conflict-driven flipped variable. Assume that r is the assignment

level of a conflict-driven flipped variable with the highest assignment level.

The idea of local conflict clause recording is to simulate a situation, when the

last assigned conflict-driven flipped variable v was first assigned the opposite

polarity. When the current backtracking clause contains only one variable,

assigned at r or after r , the local conflict clause recording algorithm records

this clause as a conflict clause. This simulates a situation in which the

last assigned conflict-driven flipped variable becomes a non-flipped decision

variable by recording a 1UIP conflict clause with respect to the fake decision

level.

Local conflict clause recording (invoked just after line 4 of Algo-

rithm 3):

Require: parent-based conflict clause recording algorithm, provided in Sec-

tion 2.2.4, is used. (Recall that conflict clauses are recorded in L.)

if a local conflict clause has not yet been recorded at this invocation of

AnalyzeConfBtAndFlip then

d := the current decision level

if there exists a conflict-driven flipped variable at decision level d then

r := the assignment level of a conflict-driven flipped variable with the

highest assignment level

if ρT contains only one variable assigned at assignment level≥ r then

L := L ∪
{

ρT
}

Memorize that local conflict clause has been used at this invocation

of AnalyzeConfBtAndFlip.

Note that in our example in Figure 3.5, parent-based conflict clause re-

coding in conjunction with local conflict clause recording would record both

clauses ¬f ∨ ¬a ∨ b and ¬e ∨ ¬a ∨ ¬b, independently of the polarity of b.

Applying local conflict clause recording results in a more balanced con-

flict clause recording scheme, in the sense that it depends less on polarity

selection. In addition, this scheme records only selected clauses, so BCP is

72



Table 3.3: Effect of local conflict clause recording (time is in sec.; the “cut”
column indicates the number of instances that timed out)

1UIP 1UIP + LCC
Family Thr. Time Cut Time Cut

sat04 ind maris03 gripper sat [5] 3 hrs 2238 0 986 0
sat04 ind goldberg03 hard eq check [5] 3 hrs 30336 2 15353 0
sat04 ind maris03 gripper unsat [5] 4 hrs 30135 4 17842 2
velev fvp-unsat.3.0 [66] 3 hrs 18199 2 10928 2
velev fvp-sat.3.0 [66] 3 hrs 9041 0 7155 0
velev vliw sat 2.0 [67] 3 hrs 5970 0 4715 0
barrel [7] 3 hrs 260 0 226 0
velev pipe unsat 1.0 [67] 3 hrs 15880 0 13094 0
velev vliw unsat 4.0 [67] 3 hrs 17260 0 14810 0
longmult [7] 3 hrs 5413 0 5076 0
velev vliw sat 4.0 [67] 3 hrs 5116 0 6882 0

not overwhelmed by the number of conflict clauses. Now we demonstrate

that local conflict clause recording contributes to faster SAT solving on real-

life industrial benchmarks. Table 3.3 shows the effect of local conflict clause

recording on 11 industrial families. The technique is helpful overall in ten out

of the eleven families. Table 3.4 shows that local conflict clause recording is

particularly useful on real-life hard formal verification instances of the family

goldberg03-hard eq check [5]. Accordingly, local conflict clause recording can

be recommended as a default strategy for a modern SAT solver, especially

in the formal verification domain.

Now we show that a flipped variable is conflict-driven iff it was not as-

signed as a result of BCP.

Proposition 9. Consider Algorithm 1, enhanced by BCP, as implemented

in Section 2.2.1. A flipped variable is conflict-driven iff it was not assigned

by BCP before the flip.

Proof. BCP assigns literals appearing in unit clauses to 0. Hence, there

must be a conflict following each assignment by BCP; thus any variable

assigned as a result of BCP is flipped immediately after choosing a new
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Table 3.4: Local conflict clause recording on formal verification instances
(time is provided in sec.; the time-out is 3 hours

Instance Eureka without LCC Eureka
rotmul 50 38
term1mul 74 42
desmul 90 89
frg2mul 139 103
c3540mul 213 104
dalumul 835 409
frg1mul 886 289
alu4mul 1077 1076
i10mul 1176 732
i8mul 1560 1089
x1mul 2636 906
c6288mul Time-out 4911
k2mul Time-out 5565

literal. Therefore, a conflict must follow and a flip must occur at line 9

of Algorithm 1. Consequently, a variable assigned by BCP must not be a

conflict-driven variable.

Consider a variable vs, assigned at assignment level s not as a result of

BCP. Recall that BCP is applied whenever there are unit clauses. Hence,

no unit clause exists at the time vs is assigned, since otherwise BCP would

have been invoked, preventing the assignment of vs. Consequently, there

cannot be a new falsified clause, immediately after assigning vs, hence the

function Flip at line 9 is not invoked. Suppose that the algorithm flips vs

before exiting. We show that the flip can only happen during conflict analysis

(function AnalyzeConfBtAndFlip).

Suppose to the contrary that the flip occurs at line 9.

The assignment and the parent invariants must hold immediately before

the assignment of vs. Indeed, they hold before the first assignment. Thus it

follows from repeatedly applying Lemma 3, that they must hold before the

assignment of vs.

Suppose that the algorithm is situated just before assigning vs and the
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termination function is f = 〈t, s〉. The pre-conditions of Lemma 3 hold at this

point. It follows from repeated applications of Lemma 3 that the algorithm

must reach line 4, at which it chooses new decision variables, again and again.

The termination function is increased between each two visits. Suppose that

the algorithm is situated just before assigning a new variable for the last time

before flipping vs at line 9. There must be a conflict, immediately after the

assignment to ensure that vs is flipped at line 9. Let the termination function

at this point be f ′ 〈t′, s′〉. Yet we know that f ′ > f . The termination function

could have grown because either:

• t′ = t; s′ > s. In this case, the conflict occurs at assignment level

s′ 6= s, and the flipped variable is v′s, rather than vs. A contradiction;

or

• t′ > t. In this case, a flip at decision level s′′ < s must have occurred

by definition of termination function. This means that at some stage

the assignment level was decreased beyond s , hence vs was unassigned,

rather than flipped. A contradiction.

The correctness of local conflict clause recording follows from Theorem 5

on page 40.

3.6 Conflict Clause-Based Assignment Stack

Shrinking

Conflict clause-based assignment stack shrinking, known also as assignment

stack shrinking, assignment shrinking, learned clause shrinking or simply

shrinking, is a technique that was proposed by the author of this work in [47]

and implemented in the Jerusat SAT solver [46]. This technique tries to dy-

namically reduce the size of conflict clauses and to unassign irrelevant literals

from the assignment stack to improve both backward and forward pruning.
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If certain conditions hold for a newly learned conflict clause, shrinking unas-

signs the literals of the conflict clause and reassigns them to 0. BCP follows

each assignment. It is guaranteed that after shrinking is applied, a conflict

occurs. Following this operation, the newly generated conflict clause tends

to contain fewer literals. In addition, the assignment stack tends to be more

relevant for the conflict clause in the sense that more assigned variables par-

ticipate in the clause itself or appear as pivot variables in the resolution

derivation of the clause.

Shrinking was fine-tuned in [40] and implemented in the Zchaff2004 SAT

solver. Zchaff2004 had two versions: zchaff.2004.5.13 and zchaff rand. The

latter version performed better in SAT competition 2004 [5], hence we de-

scribe its implementation of shrinking. The interested reader is referred

to [40] for more details on the differences between the two Zchaff2004 ver-

sions.

When a newly learned clause exceeds a certain length x , Zchaff2004 sorts

the clause according to decision levels. The algorithm finds the lowest deci-

sion level that is less than the next higher decision level by at least 2. (If no

such decision level is found, then shrinking is not performed.) The algorithm

backtracks to this decision level, and the decision strategy starts re-assigning

to 0 the unassigned literals of the conflict clause untill a conflict is encoun-

tered again. It was found that when reassigning the variables in the reverse

order, i.e. in descending order of decision levels, the algorithm performed

slightly better than when reassigning the variables in the same order as they

were assigned in previously. Since some assigned variables that did not belong

to the conflict clause, but which were unassigned during the backtrack, may

not get reassigned, the number of assigned variables is likely to drop after

this operation. As the assigned variables are more relevant to derived conflict

clauses, new conflict clauses are expected to be shorter and more likely to

share common literals. In the experiments of [40], no fixed value for x per-

formed well. Instead, x was set dynamically using some measured statistics.

Zchaff2004 measures the mean and standard deviation of the lengths of the

recently learned conflict clauses and tries to adjust x to keep it at a value

greater than the mean. More specifically, Algorithm 5 was used for adjusting
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Algorithm 5 AdjustThresholdForShrinking( Threshold for shrinking x ,
Threshold for learned clauses number y)

Require: x is initialized with the value 95 in the beginning of SAT solving.
mean := mean of recent y learned clause lengths
stdev := standard deviation of last y learned clause lengths
center := mean + 0.5 ∗ stdev
ulimit := mean + stdev
if x ≥ center then

x := x− 5
if x < center then

x := x + 5
if x > ulimit then

x := ulimit
if x < 5 then

x := 5
return x

x after each y conflicts. The threshold on the conflict number y is 600 for

Zchaff2004. Eureka [48] uses the same algorithm with y = 2000. Shrinking

often reduced the average length of learned conflict clauses and led to faster

solving times, especially for the microprocessor verification benchmarks [40].

Shrinking was also discussed in the paper on the PicoSAT SAT solver [6].

Among the improvements, introduced in the PicoSAT solver, was a rapid

restart strategy, triggering restarts with high frequency. PicoSAT does not

use shrinking for the following reasons, provided in the paper: (1) shrinking

is expensive and is partially subsumed by conflict clause minimization; (2)

rapid restarts simulate shrinking, since restarts help the solver recover from

mistakes as shrinking does.

We carried out experiments with assignment stack shrinking, conflict

clause minimization and restart strategies, in order to answer the following

three questions:

1. Can shrinking be considered a useful technique in terms of perfor-

mance?

2. Is shrinking subsumed by conflict clause minimization?
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3. Do rapid restarts simulate shrinking?

The results of the experiments are shown in Tables 3.5 and 3.6. An

explanation for the abbreviated benchmark family names and information

about the benchmark families appears in Table 3.7. All experiments were

carried out on a machine with 4Gb memory and two Intel Xeon CPU 3.60

processors. We used the Eureka-2009 SAT solver for the experiments. The

basic version of the solver, denoted by “base” in Table 3.5, employs the

following algorithms:

• Assignment stack shrinking. The threshold on the length of clauses x

is updated as shown in Algorithm 5. The threshold on the number of

conflicts y is 2000.

• Conflict clause minimization.

• An arithmetic restart strategy: restarts are carried out every 2000 con-

flicts.

Consider first Table 3.5. The version base no min does not employ con-

flict clause minimization, while the version base no shr does not employ

shrinking. Both minimization and shrinking are disabled in the version

base no min no shr.

The main observations are as follows:

• Overall, the base version solves 214/228 benchmarks within the given

time limit. The version without minimization solves 203 benchmarks

– 11 fewer than the base version. The version without shrinking solves

187 benchmarks – 16 fewer than the version without minimization. Fi-

nally, the version without both techniques solves only 168 benchmarks

– 46 fewer than the base version.

• The version without minimization performs worse than the base ver-

sion on 10/12 families (the exceptions are svp and uv2). The version

without shrinking performs worse than the base version on all the fam-

ilies. There is one family containing satisfiable instances, where it is

worthwhile to turn off both techniques – svp.
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• There are four families, where shrinking is an enabler for solving the in-

stances, whereas minimization either helps only slightly or even causes

deterioration of the performance: uv2, uv3, uv4, ug. Overall, turned

off shrinking deteriorates the performance more than turned off mini-

mization on 10/12 families.

Consequently, we reach two main conclusions as follows:

1. It is advantageous to employ both conflict clause minimization and

assignment stack shrinking.

2. Assignment stack shrinking contributes to the performance more than

conflict clause minimization.

Now consider Table 3.6. It shows the performance of a version of Eureka,

employing rapid restarts, as implemented in the PicoSAT solver [6], and a

version with rapid restarts, without shrinking. It can be seen that assignment

stack shrinking is more powerful than rapid restarts. Indeed, switching off

shrinking in the base version causes it to solve 27 fewer instances. Switching

off shrinking and adding rapid restarts causes the solver to solve 32 fewer

instances. Surprisingly, in our experiments rapid restarts were not helpful

overall compared to the default arithmetic restart strategy of Eureka. It

would be interesting to compare the impact of rapid restarts and shrinking

in other solvers, such as PicoSAT, where rapid restarts were found to be

helpful.

In our view, the key algorithmic advantage of shrinking over rapid restarts

is the fact that shrinking not only unassigns some of the literals – in which

case it could have been considered a partial restart strategy – but that it

also reassigns the literals in the conflict clause to 0. This causes both the

assignment stack and the conflict clause to shrink in size. This effect is not

achieved by restarts, which do not handle conflict clauses recorded just before

restarting the search in any special way.

Assignment stack shrinking can be implemented as follows:
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1. Maintain a threshold for shrinking x and a threshold for learned clauses

number y . Algorithm 5 shows how zChaff2004 and Eureka manage both

thresholds, where y = 600 for zChaff2004 and y = 2000 for Eureka.

2. Maintain the following data:

(a) A Boolean variable IfApplyShinkingNow , initialized to false in the

beginning of Algorithm 1.

(b) An array LitsForShrinking , containing the literals that should be

used for shrinking in correct order.

(c) An index for the array LitsForShrinking , called ShrinkingInd .

3. Update the literal selection code with the following algorithm, carrying

out the shrinking, if required. We suppose that both BCP and conflict

clause recording are in use.

Shrink (invoked instead of line 4 of Algorithm 1):

if ∃C ∈ F ∪ L : C = ¬A ∨ vκ is a unit clause then

〈vs, σs〉 := 〈v,¬κ〉

else

if IfApplyShrinkingNow then

〈vs, σs〉 := 〈LitsForShrinking[ShrinkingInd], 0〉

ShrinkingInd := ShrinkingInd + 1

else

〈vs, σs〉 := ChooseNewLiteral()

4. Add the following code that decides whether to apply shrinking be-

fore each flip. The current implementation applies shrinking only to

asserting clauses. It is also possible to apply shrinking to local con-

flict clauses (in fact, this step is carried out by Eureka), but we omit

the implementation for the simplicity of presentation. Also, we do not

specify exactly the condition for when to apply shrinking; instead we

let the user implement the function FindAssLevelForShrinking. This

function is provided with the candidate clause and the threshold x

on the size of the clause. It returns the assignment level, where the
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algorithm should backtrack to apply shrinking. If shrinking is not

to be applied, FindAssLevelForShrinking returns -1. The shrinking

scheme of zChaff2004 or Eureka, described in this section, can be used

for implementing FindAssLevelForShrinking. We suppose in this im-

plementation that the shrunk literals should be sorted in decreasing

order, as in zChaff2004, though other sorting schemes are also possi-

ble.

DecideIfShrink (invoked in the beginning of the function Flip (Al-

gorithm 2):

if IfApplyShinkingNow then

IfApplyShinkingNow := false

else

L := L ∪
{

ρT
}

b := FindAssLevelForShrinking(ρT , x)

if b 6= −1 then

ShrinkingInd := 0

LitsForShrinking := Literals of ρT that are assigned after b,

sorted by assignment level in decreasing order.

s := b

Go to line 3 of Algorithm 1

Now it is left to prove the correctness of shrinking. First, we prove that

the algorithm must enter the conflict analysis loop following shrinking:

Lemma 4 (Conflict analysis loop entry follows shrinking). Let the number

of literals, used for shrinking (the length of LitsForShrinking), be k > 0.

The algorithm must enter the conflict analysis loop when shrinking is applied

(IfApplyShinkingNow = true) after exactly k literals are assigned and BCP

is applied.

Proof. Denote the conflict clause, recorded before applying the shrinking

algorithm by C = l1∨ l2∨ . . .∨ lz. Denote the length of C by z . Suppose that

C is sorted according to the assignment level, where l1 is the literal with the

lowest assignment level. The algorithm assigns 0 to k unassigned literals of
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C that appear in LitsForShrinking . The other z− k literals of C are already

assigned 0 at lower decision levels.

First we show that the algorithm cannot enter the conflict analysis loop

before all k unassigned literals are assigned 0. Indeed, the algorithm assigns

0 to literals that were assigned 0 when the last conflict was encountered. The

algorithm enters the conflict analysis loop, only when an assigned literal must

receive both values 0 and 1 in two different unit clauses. However, such a

situation cannot occur after shrinking is applied, since it did not occur before

shrinking was applied; otherwise the algorithm would have backtracked.

Now consider a situation when the single literal lz remains to be assigned

to complete the shrinking. All the other literals lf , f 6= z are assigned 0. We

claim that after lz is assigned 0, and BCP is applied a number of times, there

must be an unassigned literal that appears in different polarities in two unit

clauses. This would ensure that the solver would enter the conflict analysis

loop after BCP picks this literal as an assignment literal. The simplest argu-

ment for the validity of our claim is based on the implication graph structure.

Every conflict clause corresponds to a cut in the implication graph. When

all the literals of a conflict clause are assigned 0, a situation, when one literal

must be assigned different values, must follow BCP.

Note that the correctness of our lemma guarantees that the index

ShrinkingInd does not go out of bounds.

Now we prove the correctness and termination of Algorithm 1 with as-

signment stack shrinking.

Theorem 10 (Correctness and termination of SSS with assignment stack

shrinking.). Given a satisfiable formula F, SSS with assignment stack shrink-

ing will return that the formula is satisfiable with the model σ1...s. In this case,

σ1...s indeed satisfies F. Given an unsatisfiable formula F, SSS with assign-

ment stack shrinking will return that the formula is unsatisfiable with the

resolution refutation ρ. In this case, ρ is indeed a resolution refutation of F.

Proof. The only lemma that could be affected by shrinking is Lemma 3.

Lemma 3 does not hold at the iteration when shrinking is applied, since the

termination function does not grow. However, our algorithm guarantees that
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shrinking is not applied two times in a row. Hence, Lemma 3 holds for the

next iteration of the main loop, when a new conflict is discovered following

shrinking, which is sufficient for our purposes.
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Table 3.5: Interplay between assignment stack shrinking and conflict clause min-
imization. The first two columns contain the family name abbreviation, explained
in Table 3.7, and the number of instances in the family. Each subsequent two
columns present the results of one particular strategy, including the number of
solved instances and the overall time required for solving. The time threshold,
provided in Table 3.7, was added to the latter number, when a strategy timed-out
on an instance.

base base nomin base noshr base nomin noshr
Family Inst. Solved Time Solved Time Solved Time Solved Time
ufc 24 24 22776618 22 46660416 23 32874542 18 70726847
ufi 12 11 21533064 10 26596304 9 35223194 9 39426202
ufm 21 20 22917097 19 25739589 18 35088018 18 35227260
svp 10 10 1680863 10 994609 10 3787265 10 1032727
uv2 8 7 10339000 7 9818000 1 27069000 0 28800000
uv3 6 6 11276000 5 17647000 1 61729000 1 62857000
sv3 20 20 492889 20 723851 20 1024769 20 969874
uv4 4 4 10722000 3 19977000 0 43200000 0 43200000
ug 13 13 11500000 13 19426000 10 60848000 4 86400000
mm 10 6 16456000 5 21647000 4 26383000 1 35011000
ms1 50 49 25592157 47 38217198 48 42117556 47 63249099
ms2 50 44 89852376 42 104193222 43 98387213 40 139336578
Sum 228 214 245138064 203 331640189 187 467731557 168 606236587

Table 3.6: Comparing the impact of assignment stack shrinking and rapid restarts.
The format is identical to that of Table 3.5

base raprest base raprest no shr
Family Inst. Solved Time Solved Time
ufc 24 24 22034857 22 33093100
ufi 12 11 20131630 9 34375024
ufm 21 20 22059570 19 33090098
svp 10 10 414455 10 1640104
uv2 8 7 10015000 1 28659000
uv3 6 6 10932000 0 64800000
sv3 20 20 896858 20 689353
uv4 4 4 10943000 0 43200000
ug 13 13 12114000 8 64522000
mm 10 6 16770000 3 27835000
ms1 50 48 28745686 47 47084350
ms2 50 44 90286871 43 95274906
Sum 228 213 245343927 182 474262935
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Table 3.7: Family information for Tables 3.5 and 3.6. The first three families
are internal families of Intel benchmarks, generated in the process of bounded
model checking for formal property verification. Other benchmark families were
generated by Miroslav Velev [67, 66], used for SAT competition 2004 [5], or used
for SAT race 2006 [61]. All the benchmarks, except the mixed benchmark set, used
for SAT race 2006, come from the formal verification domain. The last column
specifies the time-out per benchmark.

Abbreviation Family name SAT/UNSAT/Mixed Time-out
ufc fpv cingr UNSAT 3 hours
ufi fpv iotrk1 UNSAT 3 hours
ufm fpv mpiotrk1 UNSAT 3 hours
svp sat04-ind-velev-pipe-sat-1-1 [67] SAT 1 hour
uv2 sat04-ind-velev-vliw unsat 2.0 [67] UNSAT 1 hour
uv3 velev fvp-unsat.3.0 [66] UNSAT 3 hours
sv3 velev fvp-sat.3.0 [66] SAT 3 hours
uv4 velev vliw unsat 4.0 [67] UNSAT 3 hours
ug sat04-ind-goldberg03-hard eq check [5] UNSAT 3 hours
mm sat04-ind-maris03-gripper [5] MIXED 1 hour
ms1 SAT-Race TS 1 [61] MIXED 3 hours
ms2 SAT-Race TS 2 [61] MIXED 3 hours
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Chapter 4

A Clause-Based Heuristic for

SAT

In this chapter, we propose a new decision heuristic for modern SAT solvers.

The heuristic’s core innovation is that both the initial and conflict clauses are

arranged in a list and the next decision variable is chosen from the topmost

unsatisfied clause. Various methods of initially organizing the list and moving

the clauses within it are studied. Our approach is an extension of one used in

Berkmin [27], and adopted by other modern solvers, according to which only

conflict clauses are organized in a list, and a literal-scoring-based secondary

heuristic is used when there are no more unsatisfied conflict clauses. Our

approach, implemented in Eureka [48], in the 2004 version of the Chaff solver

Zchaff2004 [40] and in the Chaff-like SAT solver SE, results in a significant

performance boost on hard industrial benchmarks.

4.1 Existing Decision Heuristics

We now describe the most widely used decision heuristics, known to be ef-

ficient on real-world industrial benchmarks. Early static heuristics (e.g.,

Jeroslaw-Wang [33], Literal Count [59]) picked the next variable based on the

number of appearances (scores) of different variables in unsatisfied clauses.

A major drawback of such an approach is that score calculation requires
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visiting all the clauses at the decision point, which implies a very signifi-

cant overhead. Another disadvantage of static heuristics is that they do not

consider information that can be retrieved during conflict analysis. Heuris-

tics based upon such analysis were found to be several orders of magnitude

faster [27, 45].

The first dynamic heuristic was the Variable State Independent Decay-

ing Sum (VSIDS) [45]. According to VSIDS, each literal is associated with

a counter cl(p), whose value is increased once a new clause containing p is

added to the database. Counters are initialized to 0. Every once in a while, all

counters are halved. The next literal to be picked is the one with the largest

counter. Ties are broken randomly. Two major advantages of VSIDS over

previous heuristics are that: (1) VSIDS is characterized by a negligible com-

putational cost; and (2) VSIDS gives preference to literals that participate

in recent conflict analysis, i.e., it is dynamic. The Minisat SAT solver [19]

implements a variant of VSIDS. Instead of infrequent halving of the scores,

Minisat multiplies the scores after each conflict by 0.95. This makes the

heuristic more dynamic. The authors of the Berkmin SAT solver [27] pro-

posed a successful decision heuristic that has been partially or fully adopted

by SAT solvers such as the 2004 version of Chaff Zchaff2004 [40], Satzoo [19],

and Oepir [1]. We show, in the experimental section, that the Berkmin heuris-

tic is indeed faster than VSIDS on hard industrial benchmarks. The Berkmin

heuristic’s main difference, when compared to VSIDS, is as follows: Conflict

clauses are organized in a list, and every new conflict clause is appended

to the head of the list. The next decision variable is picked from the top-

most unsatisfied clause. If no such clause exists, the next decision variable

is chosen according to a VSIDS-like heuristic. We now describe the Berkmin

heuristic in detail and analyze why it is preferable to VSIDS.

Berkmin maintains a counter cl′(p) measuring the contribution of each

literal to the search. Unlike VSIDS, Berkmin augments cl′(p), not only for

literals that belong to the conflict clause itself, but also for literals that belong

to one of the clauses that were resolved upon to generate the 1UIP conflict

clause on backtracking. At intervals, Berkmin divides all the counters by 4

(compared to 2 for VSIDS). Let cv′(p) be a counter measuring the contri-

87



bution of each variable to the conflicts, defined as cl′(p) + cl′(¬p). Berkmin

maintains all conflict clauses in a list. After each conflict, the new conflict

clause is appended to the top of the list. The next decision variable is the

one with the highest cv′(p) out of all the variables of the topmost unsat-

isfied clauses. If no conflict clauses have yet been generated, or if all the

conflict clauses are satisfied, then the variable with the highest cv′(p) of all

unassigned variables is chosen.

Next, we describe how Berkmin decides which literal, out of the two

possible literals of the already chosen variable, to pick. Berkmin maintains

a counter gcl(p), which measures the global contribution of each literal to

the conflicts. The counter gcl(p) is initialized to 0 and is increased whenever

cl′(p) is increased, but is not divided by a constant. If a topmost unsatisfied

clause exists, Berkmin picks a literal with the highest global score gcl(p). Ties

are broken randomly. If there is no unsatisfied topmost clause, then Berkmin

picks the literal with the highest value of two(p), where two(p) approximates

the number of binary clauses in the neighborhood of literal p. The function

two(p) is computed as follows: First, the number of binary clauses containing

p is calculated. Then, for each binary clause B, containing p, the number

of binary clauses containing q is computed, where q is the other literal of B.

The sum of all computed numbers gives the value of two(p). To reduce the

amount of time spent computing two(p), a threshold value of 100 is used. As

soon as the value of two(p) exceeds the threshold, its computation is stopped.

Once again, ties are broken randomly.

The most important advantage of the Berkmin approach over VSIDS, as

stated by the authors of Berkmin, is its additional dynamicity. It quickly ad-

justs itself to reflect changes in the set of variables relevant to the currently

explored branch. Indeed, Berkmin picks variables from fresh conflict clauses

and thus uses very recent data. Our understanding is that the Berkmin

heuristic has another important advantage over VSIDS: newly assigned vari-

ables tend to embrace more interrelated variables. By interrelated, we mean

variables whose joint assignment increases the chances of both quickly reach-

ing a conflict in an unsatisfiable branch and satisfying problematic clauses in

satisfiable branches. According to the Berkmin heuristic, a series of new de-
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cision variables appears in the newest conflict clauses. This means that these

variables were the ones recently traversed during conflict analysis and con-

sequently contributed to conflict derivation. Moreover, even if the topmost

conflict clauses were recorded a long time ago, the fact that their variables

appeared closely together during conflict analysis, hints that they are inter-

related. However, the impact of this advantage is diluted by the fact that

Berkmin does not put the initial clauses in the list, but instead uses VSIDS

as a secondary heuristic. The novel CBH heuristic, described in the next

section, takes advantage of this observation.

4.2 The Clause-Based Heuristic

In our clause-based heuristic (CBH), all clauses (both the initial and the

conflict clauses) are organized in a list. After each conflict, the conflict

clause is prepended to the top of the list. Conflict-responsible clauses are

clauses used in the resolution process during backtracking to generate the

new 1UIP conflict clause. Conflict-responsible clauses are placed just after

the new conflict clause. The next decision literal is picked from the topmost

unsatisfied clause in the list. One can see that CBH is highly dynamic, since

recently visited clauses are placed at the top of the list. Also, CBH organizes

the list in such way that clauses that were responsible for a recent conflict are

placed together. Hence, when one picks a series of decision variables after

backtracking, it will tend to embrace interrelated variables. Indeed, when

literals are picked from the same clause they must be related, even if the

clause is an initial clause. When literals are picked from adjacent clauses,

they also tend to be related, since by placing conflict clauses at the top and

moving conflict-responsible clauses towards the top, the list is organized such

that interrelated clauses are near each other.

As a variant, CBH can also move clauses found to have exactly two unas-

signed literals during BCP to the top of the list. We refer to this strategy

as 2LitFirst. The added value of this strategy is: (1) More implications are

learned during BCP; and (2) Short and potentially contradictory clauses tend

to be immediately satisfied. The first point guides the solver to find conflicts
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in an unsatisfiable area, and the second one is useful in eliminating conflicts

in a satisfiable area. The disadvantages of 2LitFirst are: (1) It tends to

separate clauses that contain interrelated variables; and (2) it may promote

clauses that have never been responsible for conflicts.

Experimentally, we found that while usually 2LitFirst hurts performance,

it may be helpful for instances having high clause/variable ratios. This can

be explained by the fact that in instances having a high clause/variable ra-

tio, variables tend to appear in a greater number of clauses, since there are

fewer variables per clause overall. Hence, two chains of decisions made using

different decision strategies tend to contain more common variables. This

gives more weight to the order between variables and the local context of the

search. One should prefer variables whose assignment can have an immedi-

ate impact; this is exactly what 2LitFirst does. The default version of CBH

invokes 2LitFirst on instances where the clause/variable ratio exceeds 10.

One can see that the major differences of CBH compared with the Berk-

min heuristic are:

1. CBH organizes both the initial and conflict clauses, rather than only

conflict clauses, in a list; therefore, a second choice heuristic is not

required. Moreover, any set of decision variables picked by CBH tends

to contain more variables from the same clause.

2. After a conflict, in addition to the conflict clause, CBH moves a number

of clauses responsible for the conflict (including initial clauses) towards

the head of the list. Thus, clauses that are adjacent are likely inter-

related. (This idea was proposed independently in [25, 26] and imple-

mented in the HaifaSat solver. However, in contrast to our approach,

HaifaSat’s CMTF heuristic maintains only the conflict clauses in the

list.)

3. As a variant, CBH moves clauses that were discovered to have two

unassigned literals towards the top of the list.

CBH can easily be implemented using a doubly-linked list. A pointer to

the currently watched clause C, initialized to the topmost clause, is main-
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tained. When a decision is required, we seek the topmost unsatisfied clause

D, starting from C moving towards the bottom of the list, and picking a

literal from D (as described in Section 4.2.1). Observe that if no topmost

unsatisfied clause exists, then we have a satisfying assignment, since all the

clauses, including the original ones are satisfied. After each conflict, the

solver updates the clause list and sets the currently watched clause to point

to the top of the list.

Section 4.2.1 explains how CBH chooses the decision literal from the

topmost unsatisfiable clause. Section 4.2.2 explains the initial organization

of the clause list.

4.2.1 Choosing the Decision Literal from the Top-Most

Clause

CBH maintains two counters, lcl(p) and gcl(p), which measure the local

and global contributions of each literal to the conflicts, respectively. The

counter lcl(p) is initialized to 0 for each p, while gcl(p) is initialized with the

number of p’s appearances in initial clauses. Both counters are incremented

whenever a literal belongs to one of the clauses traversed in the implication

graph during 1UIP conflict clause identification. Occasionally, the value of

lcl(p) is divided by 2.

CBH also maintains two counters for variables lcv(p) and gcv(p), which

measure the contribution of each variable to the conflicts. We define:

lcv(p) = (lcl(p) + lcl(¬p)) + 3 ∗min(lcl(p), lcl(¬p)).

The first term gives preference to variables for which both literals are

important, and the second term eliminates variables where only one literal

is important. In a similar manner, we have:

gcv(p) = (gcl(p) + gcl(¬p)) + 3 ∗min(gcl(p), gcl(¬p)).
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CBH chooses the decision variable from the topmost unsatisfied clause

using the following algorithm: A variable p with maximal lcv(p) is chosen,

so as to give preference to variables that participated in recent conflicts.

Ties are broken by preferring variables with the maximal global score gcv(p).

According to the next criterion, variables that used to have the maximal

decision level when assigned the last time are preferred. (If there is still a

tie, it is broken by picking the lexicographically smallest variable.)

CBH chooses the decision literal out of the two possible, based on the

global contribution value gcl(p).

4.2.2 Initial Clause List Organization

In general, we aim to:

1. Place clauses containing frequently appearing literals near the top of

the list; and

2. Place clauses containing common literals nearby.

Point 1 guides the solver to start the search using frequent literals, and

point 2 increases the chances of picking interrelated literals.

First, the initial global score igs(p) is calculated for each literal p. The

function igs(p) is initialized to 0 and is augmented for each clause that con-

tains the literal p. The initial global score reflects the overall frequency of a

literal. In the process of clause list construction, we also maintain the initial

local score ils(p) for each literal p. It is calculated similarly to igs(p), except

that only clauses already placed on the clause list are considered. The local

score reflects the involvement of p in clauses already appended to the clause

list. Initially, no clauses are included in the clause list, hence ils(p)=0 for

each literal p. We also define the initial overall score ios(p) = igs(p) + ils(p)

for each literal p. The initial overall score takes into consideration both the

local and global influences of each literal.

So far, we have defined three functions for each literal reflecting its global,

local and overall influence. Now, we can define the initial overall score for

each variable p:
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iosv(p) = (ios(p) + ios(¬p)) + 3 ∗min(ios(p), ios(¬p)).

The clause list is constructed by repeating the following procedure until

all the clauses are placed in the clause list: Let p be the variable having the

maximal variable overall score amongst all variables that have not already

been picked. (Ties are broken by preferring the smaller variable according to

lexicographical order.) Clauses containing the variable p, which have not yet

been appended, are appended to the end of the clause list. Local and overall

scores are updated for each literal participating in clauses that have been

appended to the list. Such dynamic updating of scores does not require any

overhead, given that we use a priority queue, indexed by the scores. Literals

can be moved within the queues in constant time.

4.3 Experimental Results

First, we tested the impact of CBH inside the SAT solver Eureka [48] on 57

instances from MicroCode verification [2]. The result are shown in Figure 4.1.

As one can see, CBH leads to a substantial improvement in the run-time of

Eureka. In particular, Eureka with CBH was able to solve every instance

within the time limit of 65 minutes, whereas Eureka without CBH timed-out

on 17 instances.

Second, we implemented CBH in two other SAT solvers. The first is

Zchaff2004 or, more specifically, zChaff 2004.11.15 [40]. zChaff won first

place in the Industrial-Overall category of the SAT04 competition [5]. This

new version of zChaff2004 implements the Berkmin heuristic, in contrast

to the 2001 version of Chaff [45], which used VSIDS. The performance of

zChaff2004 was measured on a machine with 4Gb of memory and two Intel

XeonTM CPU 3.06GHz processors with hyper-threading. The second solver

we used in our experiments was SE – a Chaff-like SAT solver that was in

use at Intel. The performance of SE was measured on a stronger machine

with 4Gb of memory and two Intel XeonTM CPU 3.20GHz processors with
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hyper-threading. In what follows, we first analyze the overall performance of

CBH versus the Berkmin heuristic, VSIDS and zChaff2004’s new Berkmin-

like heuristic. We show that CBH outperforms both the Berkmin heuristic

and VSIDS within the SE SAT solver, and also that CBH significantly out-

performs zChaff2004’s new Berkmin-like heuristic. Then, we analyze how

various strategies used by CBH contribute to its performance. We tested

CBH inside two solvers to ensure that its measured impact on performance

is independent of the implementation details of a particular solver. The

main measure for success in our experiments is the number of solved in-

stances within an hour on hard industrial families used during the SAT’04

competition [5]. We find this measure, which was used during the SAT’04

competition, more convincing than a comparison of the number of decisions

or conflicts, since reducing the running time is the final goal of any practical

heuristic. Our experiments required approximately 35 days of computation.

Table 4.2 compares the performance of CBH, VSIDS, VSIDSM – a

Minisat-like VSIDS with frequent score decay – and the Berkmin heuristic,

implemented in SE, on eight hard industrial families used during the SAT’04

competition [5]. The description of these families is provided in Table 4.1.

VSIDSM multiplies the score by 0.95 after every 10 conflicts, rather than

after each conflict. The latter rate is used within Minisat, but the former is

preferable within SE. Other heuristics decay the scores every 6000 conflicts.

CBH solved at least as many instances within each family, when compared

to either the Berkmin heuristic or either version of VSIDS. CBH solved more

instances than both versions of VSIDS in 7 out of 8 cases, and solved more

instances than the Berkmin heuristic in 5 out of 8 cases.

Table 4.3 shows the performance of CBH within the new version of

zChaff2004. The performance of a version of CBH that does not use 2LitFirst

is also provided. One can see that zChaff2004, CBH-enabled, outperformed

zChaff2004 in a very convincing manner for 6 out of 8 families and was infe-

rior in only one case. Moreover, when the 2LitFirst strategy was not used,

CBH was never inferior.

One can conclude that CBH definitely improves the performance of a

modern SAT solver, outperforming both VSIDS and the Berkmin heuristic.
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Our experiments also confirm that the Berkmin heuristic is preferable to

VSIDS, though the gap narrows if VSIDS decays scores frequently. This is

to be expected, but – to the best of our knowledge – has never been reported,

despite the fact that the Berkmin heuristic has been partially or fully adopted

by most modern SAT solvers [1, 19, 27, 40].1

What remains is to analyze the performance of CBH when disabling some

of its specific strategies. Accordingly, we consider CBH NM, a version that

does not move conflict-responsible clauses to the top of the list (but still ap-

pends the conflict clause itself to the top of the list), and CBH NI, which does

not use the initial strategy, described in Section 4.2.2, but rather appends

all clauses to the list in their order of appearance in the input instance. We

also experimented with CBH 2L A, which always uses 2LitFirst, and with

CBH 2L N, which never does. Tables 4.4 and 4.5 compare the performance

of CBH within SE and zChaff2004, respectively.

Switching off the initial strategy resulted in a performance degradation

for three families within SE, and in a performance gain for one family. In

zChaff2004, switching off the initial strategy resulted in a performance degra-

dation for two families. In general, the initial strategy improved the perfor-

mance within both SE and zChaff2004, although it was not the most crucial

factor contributing to CBH performance. Even if the initial strategy was

switched off, CBH performed better than other decision heuristics. This can

be explained by the fact that during the search, CBH quickly reorganizes the

clause list to contain groups of interrelated clauses.

Switching off the moving of conflict-responsible clauses to the top of the

list resulted in a performance degradation for four families and a performance

gain for three families in zChaff2004. The overall number of solved instances

was higher when the strategy was switched on. Switching off the moving of

conflict-responsible clauses to the top of the list led to mixed results in the

case of SE. Performance seriously degraded for the SCH family, and also for

the ST2 family; however, there was a performance-boost for the GR, ST2B

1Now, in the year 2008, one can see that some of the academic solvers, including the
recent SAT competition winners RSAT and TiniSAT have gone back to VSIDSM. CBH
remains the default heuristic for Intel’s SAT solver Eureka [48], since it is faster than other
heuristics on Intel’s internal benchmarks.
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and VUN families. The overall number of solved instances remained the

same. One can conclude that moving the conflict-responsible clauses to the

top of the list can be useful for some families, but detrimental to others. We

recommend invoking it by default, since it resulted in an overall performance

boost in the case of zChaff2004 and did not hurt the overall performance of

SE.

Regarding the impact of the 2LitFirst strategy, first observe that ac-

cording to Tables 4.4 and 4.5, invoking 2LitFirst at every instance is not

justifiable. Note that the default strategy used by CBH invokes 2LitFirst

if the clause/variable rate is greater than 10. The motivating experimental

observation for designing CBH in this manner is that SE without 2LitFirst

performed the same as the default version on all families, except VUN, where

performance seriously degraded. VUN is the only family, other than PST,

for which the clause/variable ratio was greater than 10 in all instances. To

confirm that SE performs better when 2LitFirst is invoked in instances with

a high clause/variable ratio, we launched SE on 26 handmade families that

were submitted to SAT’04. SE was able to solve at least one instance from

13 families. The default CBH strategy performed better than a strategy

with 2LitFirst disabled on two out of 13 families, and it performed the same

on other families. In the case of zChaff2004, we found that the 2LitFirst

invocation hurt performance in a dramatic manner on families with a low

clause/variable ratio, and left the performance the same or slightly degraded

on families having a high clause/variable ratio. The families HEQ, GR, SCH

and ST2 are those with a ratio for all their instances lower than 10. When

2LitFirst was always used, zChaff2004 was able to solve only four instances

of these four families, compared to 20 instances solved by the version that

never used 2LitFirst. The other four families had either a mixed or high

clause/variable ratio. For these families, when 2LitFirst was always used,

zChaff2004 was able to solve 12 instances, compared to 16 for a version that

never used 2LitFirst. One can conclude that within zChaff2004, 2LitFirst

usage is not justified. Overall, 2LitFirst performed much better on instances

having a high clause/variable ratio.
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Abbr. Family Name Num. C/V Av. C/V Mx C/V Mn
HEQ goldberg03-hard eq check 13 6.4 6.7 6.1
GR maris03-gripper 10 9.1 9.7 8.5
SCH schuppan03-l2s 11 3.2 3.3 3.0
ST2 simon03-sat02 9 3.3 4.2 2.7
ST2B simon03-sat02bis 10 23.9 71.9 2.9
CLR vangelder-cnf-color 12 42.9 195.4 4.0
PST velev-pipe-sat-1-1 10 33.7 33.8 33.7
VUN velev-vliw unsat 2.0 8 15.6 20.1 10.7

Table 4.1: Description of the hard industrial benchmark families used in our
experiments. Family name, number of instances in each family as well as the
average, and maximal and minimal clause/variable ratios are provided

Family CBH Berkmin VSIDSM VSIDS
HEQ 5 4 4 3
GR 1 1 0 1
SCH 5 2 2 0
ST2 5 4 4 2
ST2B 2 2 2 1
CLR 6 4 4 4
PST 10 10 4 5
VUN 4 2 1 0
ALL 38 29 21 16

Table 4.2: Performance of CBH vs. two versions of VSIDS and the Berk-
min heuristic, implemented in the SE SAT solver, on eight hard industrial
families. The first column contains an abbreviated family name. Each pair
of subsequent columns is dedicated to a specific heuristic. The number of
instances, solved within one hour, is provided.

Family zChaff2004+CBH zChaff2004+CBH 2L N zChaff2004 default

HEQ 8 8 4
GR 3 3 0
SCH 5 5 2
ST2 4 4 1
ST2B 2 2 1
CLR 3 4 1
PST 5 8 8
VUN 2 2 2
ALL 32 36 19

Table 4.3: CBH vs. the default heuristic within zChaff2004 2004.11.15.
CBH 2L N is a version of CBH that does not use the 2LitFirst strategy.
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Family CBH CBH NM CBH NI CBH 2L A CBH 2L N
HEQ 5 4 5 3 5
GR 1 2 2 0 1
SCH 5 2 4 5 5
ST2 5 4 5 2 5
ST2B 2 3 1 2 2
CLR 6 7 5 5 6
PST 10 10 10 10 10
VUN 4 6 4 4 1
ALL 38 38 36 31 35

Table 4.4: Performance of different configurations of CBH in terms of solved
instances within one hour in the SE solver.

Family CBH CBH NM CBH NI CBH 2L A CBH 2L N
HEQ 8 4 8 4 8
GR 3 1 3 0 3
SCH 5 2 4 0 5
ST2 4 2 4 0 4
ST2B 2 3 2 2 2
CLR 3 3 3 3 4
PST 5 10 3 5 8
VUN 2 3 2 2 2
ALL 32 28 29 16 36

Table 4.5: Performance of different configurations of CBH in terms of solved
instances within one hour in the zChaff2004 solver.
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Eureka vs. Eureka without CBH on MicroCode Instances
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Figure 4.1: CBH effect on MicroCode instances.
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Chapter 5

A Scalable Algorithm for

Minimal Unsatisfiable Core

Extraction

The only approach for unsatisfiable core extraction that scales well for formal

verification benchmarks was independently proposed in [70] and in [28]. We

refer to this method as the EC (Empty-clause Cone) algorithm. EC exploits

the ability of modern SAT solvers to produce a resolution refutation, given

an unsatisfiable formula. EC traverses a reversed refutation, starting with �

and taking initial clauses, connected to �, as the unsatisfiable core. Invoking

EC until a fixed point is reached [70] allows one to reduce the unsatisfiable

core even more. We refer to this algorithm as EC-fp. However, the resulting

cores can be reduced further.

In this chapter we propose a new algorithm for minimal unsatisfiable core

extraction, based on a deeper exploration of resolution refutation properties.

5.1 Related Work

Algorithms for unsatisfiable core extraction built on top of modern SAT

solvers [70, 28] are the most relevant for our purposes for two reasons. First,

this approach allows one to deal with real-world examples arising in formal
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verification. Second, it serves as the basis of our algorithm. We have already

described the EC and EC-fp algorithms above. Here we briefly consider other

approaches.

Theoretical work (e.g., [64]) has concentrated on developing efficient algo-

rithms for formulas with a small deficiency (the number of clauses minus the

number of variables). However, real-world formulas have an arbitrary (and

usually large) deficiency. A number of works considered the harder problem

of finding the smallest minimal unsatisfiable core [39, 44], or even finding all

minimally unsatisfiable formulas [38]. As one can imagine, these algorithms

are not scalable for even moderately large real-world formulas.

In [8, 9], an “adaptive core search” was applied for finding a small unsat-

isfiable core. The algorithm starts with a very small satisfiable subformula,

consisting of hard clauses. The unsatisfiable core is built by an iterative

process that expands or contracts the current core by a fixed percentage of

clauses. The procedure succeeded in finding small, though not necessarily

minimal, unsatisfiable cores for the problem instances it was tested on, but

these are very small and artificially generated.

Another approach that allows one to find small, but not necessarily min-

imal, unsatisfiable cores is called AMUSE [51]. In this approach, selector

variables are added to each clause and the unsatisfiable core is found by a

branch-and-bound algorithm on the updated formula. Selector variables al-

low the program to implicitly search for unsatisfiable cores using an enhanced

version of DLL on the updated formula. The authors noted their method’s

ability to locate different unsatisfiable cores, as well as its inability to cope

with large formulas.

The above described algorithms do not guarantee the minimality of the

extracted cores. One folk algorithm for minimal unsatisfiable core extraction,

which we dub Näıve, works as follows: For every clause C in an unsatisfiable

formula F , Näıve checks if it belongs to the minimal unsatisfiable core, by

invoking a SAT solver on F \ C. Clause C does not belong to MUC if and

only if the solver finds that F \C is unsatisfiable, in which case C is removed

from F . In the end, F contains a minimal unsatisfiable core.

The only non-trivial algorithm existing in the current literature that guar-
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antees minimality is MUP [31]. MUP is mainly a prover of minimal unsatisfi-

ability, as opposed to an unsatisfiable core extractor. It decides the minimal

unsatisfiability of a CNF formula through BDD manipulation. When MUP

is used as a core extractor, it removes one clause at a time until the remain-

ing core is minimal. MUP is able to prove minimal unsatisfiability of some

particularly hard classical problems quickly, whereas even just proving un-

satisfiability is a challenge for modern SAT solvers. However, the formulas

described in [31] are small and arise in areas other than formal verification.

We will see in Section 5.5 that MUP is significantly outperformed by Näıve

on formal verification benchmarks.

5.2 Multi-Resolution Refutation

A multi-resolution refutation is a resolution refutation, such that each resol-

vent clause C may have more than two sources, but it is guaranteed that

a resolution derivation of C from the sources exists. In this chapter, it will

be more convenient to view a SAT solver as on an engine, producing multi-

resolution refutations.

A formal definition of a multi-resolution refutation appears below.

Definition 44 (Multi-resolution refutation). Let F be an unsatisfiable CNF

formula (set of clauses) and let Π(V,E) be a dag whose vertices are clauses.1

Suppose V = V i ∪ V c, where V i are all the sources of Π, referred to as

initial clauses, and V c = Cc
1, . . . , C

c
m is an ordered set of non-source vertices,

referred to as conflict clauses. Then, the dag Π(V,E) is a multi-resolution

refutation of F if:

1. V i = F ;

2. For every conflict clause Cc
i , there exists a resolution derivation

{D1, D2, . . . , Dk, C
c
i }, such that:

1From this point on, we use the terms “vertex” and “clause” interchangeably in the
context of multi-resolution refutation.
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(a) for every j = 1, . . . , k, Dj is either an initial clause or a prior

conflict clause Cc
f , f < i, and

(b) there are edges D1 → Cc
i , . . . , Dk → Cc

i ∈ E (these are the only

edges in E);

3. The sink vertex Cc
m is the only empty clause in V .

A modern SAT solver employing conflict clause recording can generate

a multi-resolution refutation as follows. Each conflict clause C, derived by

resolution on a set of exiting clauses L, corresponds to a node in the multi-

resolution derivation, whose sources are the clauses of L.

For the following discussion, it will be helpful to remember the notion of

vertices that are “reachable”, or “backward reachable”, from a given clause

in a given dag.

Definition 45 (Reachable vertices). Let Π be a dag. A vertex D is reachable

from C if there is a path (of 0 or more edges) from C to D. The set of all

vertices reachable from C in Π is denoted Re(Π, C). The set of all vertices

unreachable from C in Π is denoted by Re(Π, C)

Definition 46 (Backward reachable vertices). Let Π be a dag. A vertex D

is backward reachable from C if there is a path (of 0 or more edges) from

D to C. The set of all vertices backward reachable from C in Π is denoted

by BRe(Π, C). The set of all vertices not backward reachable from C in Π is

denoted BRe(Π, C).

For example, consider the multi-resolution refutation in Figure 5.1. We

have Re(Π, Ci
5) = {Ci

5, C
c
2, C

c
3, C

c
4, C

c
5} and BRe(Π, Cc

4) = {Cc
4, C

i
5, C

i
6}.

Multi-resolution refutations trace all resolution derivations of conflict

clauses, including the empty clause. Generally, not all clauses of a multi-

resolution refutation are required to derive �, but only those that are back-

ward reachable from �. It is not hard to see that even if all other clauses

and related edges are omitted, the remaining graph is still a multi-resolution

refutation. We refer to such multi-resolution refutations as non-redundant
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(see Definition 47). The multi-resolution refutation in Figure 5.1 is non-

redundant.

To retrieve a non-redundant subgraph of a multi-resolution refutation,

it is sufficient to take BRe(Π,�) as the vertex set and to restrict the edge

set E to edges having both ends in BRe(Π,�). We denote a non-redundant

subgraph of a multi-resolution refutation Π by Π ↾BRe(Π,�)
. Observe that

Π↾BRe(Π,�)
is a valid non-redundant multi-resolution refutation.

Definition 47 (Non-redundant multi-resolution refutation). A multi-

resolution refutation Π is non-redundant if there is a path in Π from every

clause to �.

Lastly, we define the relative hardness of a multi-resolution refutation.

Definition 48 (Relative hardness). The relative hardness of a multi-

resolution refutation is the ratio between the total number of clauses and

the number of initial clauses.

5.3 The Complete Resolution Refutation

(CRR) Algorithm

Our goal is to find the minimal unsatisfiable core of a given unsatisfiable

formula F . The proposed CRR method is displayed as Algorithm 6.

First, CRR builds a non-redundant multi-resolution refutation. Invoking

a SAT solver for constructing a (possibly redundant) multi-resolution refu-

tation Π(V,E) and restricting it to Π↾BRe(Π,�)
is sufficient for this purpose.

Suppose Π(V i ∪ V c, E) is a non-redundant multi-resolution refutation.

CRR checks, for every unmarked clause C left in V i, whether C belongs to

the minimal unsatisfiable core. Initially, all clauses are unmarked. At each

stage of the algorithm, CRR maintains a valid multi-resolution refutation of

F .

Recall from Definition 45 that Re(Π, C) is the set of all vertices in Π

unreachable from C. By construction of Π, the Re(Π, C) clauses were derived

independently of C. To check whether C belongs to the minimal unsatisfiable
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Algorithm 6 (CRR). Returns a MUC, given an unsatisfiable formula F .

1: Build a non-redundant multi resolution-refutation Π(V i ∪ V c, E)
2: while unmarked clauses exist in V i do
3: C ← PickUnmarkedClause(V i)
4: Invoke a SAT solver on Re(Π, C)
5: if Re(Π, C) is satisfiable then
6: Mark C as a MUC member
7: else
8: Let G = Re(Π, C)
9: Build multi-resolution refutation Π′(V i

G ∪ V c
G, EG)

10: V i ← V i \ {C}
11: V c ← (V c \Re(Π, C)) ∪ V c

G

12: E ← (E \ReE(Π, C)) ∪ EG

13: Π(V i ∪ V c, E)← Π(V i ∪ V c, E) ↾BRe(Π,�)

14: return V i

core, we provide the SAT solver with Re(Π, C), including the conflict clauses.

We are trying to complete the multi-resolution refutation, while not using C

as one of the sources. Observe that � is always reachable from C, since Π

is a non-redundant multi-resolution refutation; thus � is never input to the

SAT solver. We let the SAT solver try to derive �, using Re(Π, C) as the

input formula, or else prove that Re(Π, C) is satisfiable.

In the latter case, we conclude that C must belong to the minimal un-

satisfiable core, since we found a model for an unsatisfiable subset of initial

clauses minus C. Hence, if the SAT solver returns satisfiable, the algorithm

marks C (line 6) and moves to the next initial clause. However, if the SAT

solver returns unsatisfiable, we cannot simply remove C from F and move

to the next clause, since we need to keep a valid multi-resolution refutation

for our algorithm to work properly. We describe the construction of a valid

refutation (lines 8–13) next.

Let G = Re(Π, C). The SAT solver produces a new multi-resolution refu-

tation Π′(V i
G ∪ V c

G, EG) for G, whose sources are the clauses Re(Π, C). We

cannot use Π′ as the multi-resolution refutation for the subsequent iterations,

since the sources of the refutation may only be initial clauses of F . However,

the “superfluous” sources of Π′ are conflict clauses of Π, unreachable from C,
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and thus are derivable from V i\C using resolution relations, corresponding to

edges of Π. Hence, it is sufficient to augment Π′ with such edges of Π that con-

nect V i \C and Re(Π, C) to obtain a valid multi-resolution refutation whose

initial clauses belong to F . Algorithm CRR constructs a new multi-resolution

refutation, whose sources are V i \ C; the conflict clauses are Re(Π, C) ∪ V c
G

and the edges are (E \(V1, V2)|(V1 ∈ Re(Π, C) or V2 ∈ Re(Π, C)))∪EG. This

new refutation might be redundant, since Π′(V i
G ∪ V c

G, EG) is not guaranteed

to be non-redundant. Therefore, prior to checking the next clause, we reduce

the new refutation to a non-redundant one. Observe that in the process of

reduction to a non-redundant subgraph, some initial clauses of F may be

omitted; hence, each time a clause C is found not to belong to the minimal

unsatisfiable core, we potentially drop not only C, but also other clauses.

We demonstrate the process of completing a multi-resolution refutation

on the example in Figure 5.1. Suppose we are checking whether Ci
1 be-

longs to the minimal unsatisfiable core. In this case, G = Re(Π, Ci
1) =

{Ci
2, C

i
3, C

i
4, C

i
5, C

i
6, C

i
7, C

c
2, C

c
4}. The SAT solver receives G as the input for-

mula. It is not hard to check that G is unsatisfiable. One multi-resolution

refutation of G is Π′(V i
G∪V c

G, EG), where V i
G = {Ci

2, C
c
2, C

i
7, C

c
4}, V c

G = (D1 =

�, D2 = a ∨ b), and EG = {(Ci
2, D2), (C

c
2, D2), (D2, D1), (C

i
7, D1), (C

c
4, D1)}.

Therefore, Ci
1, Cc

1, Cc
3, Cc

5 and related edges are excluded from the refutation

of F , whereas D2, D1 and related edges are added to the refutation of F . In

this case, the resulting multi-resolution refutation is non-redundant.

We did not define how the function PickUnmarkedClause should pick

clauses (line 3). Our current implementation picks clauses in the order in

which clauses appear in the given formula. Development of sophisticated

heuristics is left for future research.

Another direction that may lead to a speed-up of CRR is adjusting the

SAT solver for the purposes of the CRR algorithm, considering that the SAT

solver is invoked thousands of times on rather easy instances. Integrating

the data structures of CRR and the SAT solver, fine-tuning the SAT solver’s

heuristics for CRR, and holding the refutation in-memory rather than on

disk (as suggested in [70] for EC), could be helpful.
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2

¬c ∨ b Ci
4

a ∨ b ∨ ¬d Ci
3

a ∨ d Cc
1

a ∨ d ∨ b Ci
2

a ∨ d ∨ ¬b Ci
1

Figure 5.1: Multi-resolution refutation example.
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Figure 5.2: Function RRP Decide represented as a transition relation. This
function is invoked by the decision engine of a SAT solver, implementing the
RRP pruning technique.
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5.4 Resolution-Refutation-Based Pruning

In this section, we propose an enhancement of Algorithm CRR by developing

multi-resolution refutation-based pruning techniques for when a SAT solver is

invoked on Re(Π, C) to check whether it is possible to complete a refutation

without C. We refer to the pruning technique, proposed in this section, as

Resolution Refutation-Based Pruning (RRP).

In this section, we suppose that the SAT solver uses BCP and non-

chronological backtracking.

Recall from Definition 4 that an assignment σ falsifies a clause C, if every

literal of C is false under σ. An assignment σ falsifies a set of clauses P if

every clause C ∈ P is falsified by σ. We claim that a model for Re(Π, C)

can only be found under such a partial assignment, which falsifies every

clause in some path from C to the empty clause in Re(Π, C). The intuitive

reason is that every other partial assignment satisfies C and must falsify

Re(Π, C), since F is unsatisfiable. A formal statement and proof is provided

in Proposition 10 below.

Consider the example in Figure 5.1. Suppose the currently visited clause

is Ci
5. Two paths from Ci

5 to the empty clause Cc
5 exist – namely {Ci

5, C
c
4, C

c
5}

and {Ci
5, C

c
2, C

c
3, C

c
5}. A model for Re(Π, Ci

5) can only be found in a subspace

under the partial assignment {a = 1, c = 0}, falsifying all the clauses of the

first path. The clauses of the second path cannot be falsified, since a must

be 1 to falsify clause Ci
5 and 0 to falsify clause Cc

3.

Denote a subtree connecting C and � by Π ↾C . The proposed pruning

technique, RRP, is integrated into the decision engine of the SAT solver. The

solver receives Π↾C , together with the input formula Re(Π, C). The decision

engine of the SAT solver explores Π ↾C in a depth-first manner, picking

unassigned variables in the currently explored path as decision variables and

assigning them 0. As usual, BCP follows each assignment. Backtracking

in Π ↾C is tightly related to backtracking in the assignment space. Both

events happen when a satisfied clause in Π ↾C is found or when a conflict is

encountered by the SAT solver. After a particular path in Π ↾C has been

falsified, a general purpose decision heuristic is used until the SAT solver
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either finds a satisfying assignment or proves that no such assignment can be

found under the currently explored path. This process continues until either

a model is found or the decision engine has completed exploring Π↾C . In the

latter case, one can be sure that no model for Re(Π, C) exists. However, the

SAT solver should continue its work to produce a multi-resolution refutation.

We need to describe in greater detail the changes in the decision and

conflict analysis engines of the SAT solver required to implement RRP. The

decision engine first invokes function RRP Decide, depicted in Figure 5.2, as

a state transition relation. Each transition edge has a label consisting of a

condition under which the state transition occurs and an operation, executed

upon transition. The state can be one of the following:

(Norm) normal;

(Sat) the currently explored clause is satisfied;

(False) the currently explored clause is falsified;

(EoT) subgraph Π↾C has been explored;

(EoF) all clauses in the currently explored path are falsified.

The states are managed globally, that is, if RRP Decide moves to state S,

it will start in state S when next invoked. A pointer D to the currently

visited clause of Π↾C is also managed globally. The state transition relation

is initialized prior to the first invocation of the decision engine. Pointer D is

initialized to C and the initial state is Norm.

State Norm corresponds to a situation when the algorithm does not know

what the status of D is. If D is neither satisfied nor falsified, RRP Decide

returns a negation of some literal of D, which will serve as the next decision

variable. If D is satisfied, the algorithm moves to Sat. Observe that a

clause may become satisfied only as a result of BCP. Encountering a satisfied

clause means that the currently explored path cannot be falsified, and we

can backtrack. Suppose we are in Sat, meaning that D is satisfied. If D has

a parent, the algorithm backtracks by moving D to point to its parent, and

goes back to Norm; otherwise, the tree is explored and the algorithm moves

to EoT. In this case, RRP Decide returns an unknown value and a general

purpose heuristic must be used. Consider now the case when the state is
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Norm and D is falsified. The algorithm moves to False. Here, one of the

three following conditions holds:

(a) D has an unvisited child S. In this case D is updated to point to S

and RRP Decide moves back to Norm.

(b) All children of D are visited. In this case, we backtrack by moving D

back to its parent and go back to Norm.

(c) D has no children. In this case, all the clauses in the currently explored

path are falsified. The algorithm moves to EoF; RRP Decide returns

an unknown value; and a general purpose heuristic must be used.

To complete the picture, we describe the changes to the conflict analysis

engine required to implement RRP. One of the main tasks of conflict analysis

in modern SAT solvers is to decide on the backtrack level (recall Definition 30

of a backtrack level on page 34). Let the backtrack level be bl . When

invoked in RRP mode, the conflict analysis engine must also find whether it

is required to backtrack in Π↾C , and to which clause. The goal is to backtrack

to the highest clause B in the currently explored path in Π ↾C , such that B

has unassigned literals. Recall that D is a pointer to the currently visited

clause of Π↾C . Denote by mdl(D) the maximal decision level of D’s literals.

If bl ≥ mdl(D), the algorithm does nothing; otherwise, it finds the first

predecessor of D in Π↾C , such that bl < mdl(B) and sets D ← B.

We found experimentally that the optimal performance for RRP is

achieved when it explores Π ↾C starting from � and moving toward C (and

not vice-versa). In other words, prior to the search, the SAT solver reverses

all the edges of Π↾C and sets the pointer D to �, rather than to C. (By de-

fault, the current version of RRP explores the graph only until a predefined

depth of 50.) The next literal from the currently visited clause is chosen

by preferring an unassigned literal with the maximal number of appearances

in recent conflict clause derivations (similar to Berkmin’s [27] heuristic for

SAT). The next visited child is chosen arbitrarily. Further fine-tuning of the

algorithm is left to future research.
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Proposition 10. Let Π(V i, V c) be a non-redundant multi-resolution refu-

tation. Let C ∈ V i be an initial clause and σ be an assignment. Then, if

σ |= Re(Π, C), there is a path P = {C, . . . , Cc
m} in Re(Π, C), connecting C

to the empty clause2, such that σ falsifies every clause in P .

Proof. Suppose, on the contrary, that no such path exists. Then, there exists

a satisfiable vertex cut U in Π. However, the empty clause is derivable from

U , since it is a vertex cut; thus U is unsatisfiable, a contradiction.

2The empty clause always belongs to Re(Π, C), since Π(V i, V c) is non-redundant.
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Table 5.1: Comparing algorithms for unsatisfiable core extraction. Columns
Instance, Var and Cls contain instance name (where, p/bl/lm stand for
pipe/barrel/longmult), number of variables, and clauses, respectively. The
next seven columns contain execution times (in seconds) and core sizes (in
number of clauses) for each algorithm (AM is AMUSE). The cut-off time
was 24 hours. Column R. Hd. contains the relative hardness of the final
multi-resolution refutation, produced by CRR+RRP. Bold times are the best
among algorithms guaranteeing minimality. Values “to” and “mo” stand for
time-out and memory-out.

Subopt. CRR Näıve MUP R.
Inst Var Cls EC EC-fp RRP plain EC-fp AM EC-fp Hd.

4p 4237 9 171 3527 4933 24111 to to 1.4
80213 23305 17724 17184 17180 17182

4p 1 ooo 4647 10 332 4414 10944 25074 to mo 1.7
74554 24703 14932 12553 12515 12374

4p 2 ooo 4941 13 347 5190 12284 49609 to mo 1.7
82207 25741 17976 14259 14192 14017

4p 3 ooo 5233 14 336 6159 15867 41199 to mo 1.6
89473 30375 20034 16494 16432 16419

4p 4 ooo 5525 16 341 6369 16317 47394 to mo 1.6
96480 31321 21263 17712 17468 17830

3p k 2391 2 20 411 493 2147 12544 mo 1.5
27405 10037 6953 6788 6786 6784 6790

4p k 5095 8 121 3112 3651 15112 to to 1.5
79489 24501 17149 17052 17078 17077

5p k 9330 16 169 13836 17910 83402 to mo 1.4
189109 47066 36571 36270 36296 36370

bl5 1407 2 19 93 86 406 326 mo 1.8
5383 3389 3014 2653 2653 2653 2653

bl6 2306 35 322 351 423 4099 4173 mo 1.8
8931 6151 5033 4437 4437 4437 4437

bl7 3523 124 1154 970 1155 6213 24875 mo 1.9
13765 9252 7135 6879 6877 6877 6877

bl8 5106 384 9660 2509 2859 to to mo 1.8
20083 14416 11249 10076 10075

lm4 1966 0 0 8 7 109 152 13 2.6
6069 1247 1246 972 972 972 976 972

lm5 2397 0 1 74 31 196 463 35 3.6
7431 1847 1713 1518 1518 1518 1528 1518

lm6 2848 2 13 288 311 749 2911 5084 5.6
8853 2639 2579 2187 2187 2187 2191 2187

lm7 3319 17 91 6217 3076 6154 32791 68016 14.2
10335 3723 3429 2979 2979 2979 2993 2979



5.5 Experimental Results

We implemented CRR and RRP in the Eureka SAT solver [48]. We used

benchmarks from four well-known unsatisfiable families, taken from bounded

model checking (barrel, longmult) [7] and microprocessor verification (fvp-

unsat.2.0, pipe unsat 1.0) [67]. All the instances we used appear in the

first column of Table 5.1. The experiments on the barrel and fvp-unsat.2.0

families were carried out on a machine with 4Gb of memory and two Intel

Xeon CPU 3.06 processors. A machine with the same amount of memory

and two Intel Xeon CPU 3.20 processors was used for experiments with the

longmult and pipe unsat 1.0 families.

Table 5.1 summarizes the results of a comparison of the performance of

two algorithms for suboptimal unsatisfiable core extraction and five algo-

rithms for minimal unsatisfiable core extraction in terms of execution time

and core sizes.

First, we compared algorithms for minimal unsatisfiable core extraction,

namely, Näıve, MUP, plain CRR, and CRR enhanced by RRP. In prelimi-

nary experiments, we found that Näıve demonstrated its best performance on

formulas that were first trimmed down by a suboptimal algorithm for unsat-

isfiable core extraction. We tried Näıve in combination with EC, EC-fp and

AMUSE and found that EC-fp is the best front-end for Näıve. In our main

experiments, we used Näıve, combined with EC-fp, and Näıve combined with

AMUSE. We also found that MUP demonstrated its best performance when

combined with EC-fp, while CRR performed the best when the first refu-

tation is constructed by EC, rather than EC-fp. Consequently, we provide

results for MUP combined with EC-fp and CRR combined with EC. MUP

required a so-called “decomposition tree”, in addition to the CNF formula.

We used the c2d package [14] for decomposition tree construction.

The sizes of the cores did not vary greatly between MUC algorithms, so

we concentrate on a performance comparison. One can see that the combi-

nation of EC-fp and Näıve outperformed the combination of AMUSE and

Näıve, as well as MUP. Plain CRR outperformed Näıve on every benchmark,

whereas CRR+RRP outperformed Näıve on 15 out of 16 benchmarks (the
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exception being the hardest instance of longmult). This demonstrates that

our algorithms are justified in practice. Usually, the speed-up of these algo-

rithms over Näıve varied between 4 and 10x, but it was as large as 34x (for

the hardest instance of the barrel family) and as small as 2x (for the hard-

est instance of longmult). RRP improved performance in most instances.

The most significant speed-up of RRP was about 2.5x, achieved on hard

instances of the fvp-unsat.2.0 family. The only family for which RRP was

usually unhelpful was longmult.

A natural question is why the complex instances of the longmult family

are hard for CRR, and even harder for RRP. The key difference between

longmult and other families was the hardness of the resolution proof. The

relative hardness of a multi-resolution refutation produced by CRR+RRP

varied between 1.4 to 2 for every instance of every family, except longmult,

where it reached 14.2 for the longmult7 instance. When the refutation was

too complex, the exploration of Re(Π, C) executed by RRP was too com-

plicated; thus, plain CRR is advantageous over CRR+RRP. Also, when the

refutation is too complex, it is costly to perform traversal operations, as re-

quired by CRR. This explains why the advantage of CRR over Näıve was as

small as 2x.

Comparing CRR+RRP on one side and EC and EC-fp on the other, we

find that CRR+RRP always produced smaller cores than both EC and EC-

fp. The average gain on all instances of cores produced by CRR+RRP over

cores produced by EC and EC-fp was 53% and 11%, respectively. The biggest

average gain of CRR+RRP over EC-fp was achieved on the fvp-unsat.2.0

and longmult families (18% and 17%, respectively). Unsurprisingly, both

EC and EC-fp were usually much faster than CRR+RRP. However, for the

three hardest instances of the barrel family, CRR+RRP outperformed EC-fp

in terms of execution time.
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Chapter 6

Conclusion

Chapter 2 of this work proposed a new framework for presenting and under-

standing the functionality of modern SAT solvers. The framework exploits

the inherent relationships between search and resolution. A formulation of

the basic backtracking algorithm, including an exact description of the on-

the-fly resolution refutation creation, has been provided. We called this for-

mulation the SAT Solver Skeleton (SSS). We introduced a notion of a parent

resolution derivation: a resolution proof for the validity of each flip opera-

tion. Chapter 3 demonstrated that the notion of parent resolution derivation

is useful for analyzing and improving modern SAT solvers.

Another important feature of our framework in Chapter 2 is that it defined

all the modern algorithms for conflict-driven learning, including 1UIP-based

conflict-directed backjumping, non-chronological backtracking and conflict

clause recording, without using the notion of an implication graph. Instead,

our approach is based on resolution.

We also showed in Chapter 2 how to augment SSS with each one of the

following six enhancements, used already in the Chaff-2001 SAT solver [45]

and widely used in modern SAT solvers. These techniques include1:

• Boolean Constraint Propagation (BCP) [15]

• Non-Chronological Backtracking (NCB) [60, 3]

1The references are to first applications or important milestones of applying these
technique in the context of SAT.
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• 1UIP-based Conflict-Direct Backjumping (CDB) [60, 3, 45]

• Conflict Clause Recording (CCR) [60, 45]

• Restarts [29]

• Conflict Clause Deletion (CCD) [3]

Chapter 3 formalized the notion of search pruning, relating it to the

size of the constructed resolution derivation. We introduced the concepts of

backward pruning – the number of resolution derivation nodes skipped during

backtracking; and forward pruning – the potential impact on reusing conflict

clauses in the subsequent search. We showed that the 1UIP scheme [60, 3, 45]

with conflict clause minimization [4, 62] for conflict-driven learning is better

than other known schemes in terms of both backward and forward pruning,

and explained its empirical advantage over other schemes.

We introduced an enhancement to the 1UIP scheme with minimization,

called local conflict clause recording. This algorithm records additional con-

flict clauses to improve forward pruning by making it less dependent on the

polarity selection heuristic. We demonstrated that local conflict clause con-

tributes to the performance of a modern SAT solver.

In addition, we reaffirmed the empirical usefulness of assignment stack

shrinking [47, 40], a technique for reducing the size of conflict clauses and re-

moving irrelevant literals from the assignment stack. We showed that assign-

ment stack shrinking contributes to the performance of modern SAT solvers.

We also illustrated that the effect of assignment stack shrinking cannot be

achieved by using conflict clause minimization and/or rapid restarts.

Chapter 4 presented a novel clause-based heuristic (CBH). This heuristic

maintains a clause list organized in a manner that allows the algorithm to

choose sequences of interrelated variables that were responsible for recent

conflict derivation. CBH maintains both the initial and the conflict clauses

in a single list. The next decision literal is picked from the topmost unsatisfied

clause in the list. After each conflict, the conflict clause is prepended to the

top of the list. Clauses visited during conflict-clause identification are placed

just after the new conflict clause. As a variant, if the clause/variable ratio
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of the input instance is greater than a predefined value (10 is a reasonable

choice), newly identified binary clauses are moved to the top of the list.

We demonstrated that using CBH results in a significant performance boost

for hard industrial families, when compared with the Berkmin heuristic or

VSIDS.

Chapter 5 proposed an algorithm for minimal unsatisfiable core extrac-

tion, called CRR. This algorithm builds a resolution refutation using a SAT

solver and finds a first approximation of the minimal unsatisfiable core. Then

it checks every remaining initial clause C to see whether it belongs to the

minimal unsatisfiable core. The algorithm reuses conflict clauses and resolu-

tion relations throughout its execution. We demonstrated that our algorithm

is faster than currently existing algorithms by a factor of six or more on large

problems with non-overly hard resolution proofs, and that it can find minimal

unsatisfiable cores for real-world formal verification benchmarks.
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 ברב הפרכה Πהחלף את , אפוא. ס" אינו שייך ללמבCאזי , אם הפסוקיות אינן ספיקות  .ב

 .Cברזולוציה תקפה אשר אינה כוללת את 

  .ס"ת הריקה מהוות למבהמקושרות לפסוקי, סיים כאשר כל פסוקיות הקלט .4

-ו בעבודות על ספיקות בהוא השתתף, כמו כן]. 16,17,18[מחבר תזה זו הינו המחבר הראשי של המאמרים 

 .אשר אינן מוצגות בתזה זו, ]10[על ספיקות מערכי סיביות ו] 35[זמנית בבדיקת מודלים 

  

  



 הוא בכך שהוא נוטה ה"סיבתביתרון נוסף של מסייע ברקמין על , אך לטענתנו, ה"סיבתבאכן יותר דינאמי מ

ספיקים - שבחירתם המשותפת מעלה את הסיכוי להגיע לסתירה בענפים אימשתנים  – לבחור משתנים קשורים

יתרון זה איננו מנוצל עד תום בגלל העובדה שמסייע , ברם. פים ספיקיםפסוקיות במהרה בענוגם לספק 

עים מסייע ציאנו מ. ה"סיבתבו מוסיף לרשימה את פסוקיות הקלט ומשתמש במסייע משני דמוי ברקמין איננ

אשר מחזיק רשימה הכוללת הן פסוקיות קלט והן פסוקיות סתירה , )פ"ממ(מסייע מבוסס פסוקיות ששמו 

משתנה ההחלטה הבא נבחר מן הפסוקית הלא ספיקה . וריםת הסבירות לבחירת משתנים קש בכך אומעלה

 ראשוני של הרשימה וכן להזזת פסוקיות לארגוןעים שיטות שונות יאנו מצ. אין צורך במסייע משני. העליונה

   . ולמסייע ברקמיןה"סיבתבגישתנו גורמת להתייעלות ביצועים משמעותית בהשוואה ל. בתוך הרשימה

קבוצה בלתי -  תת–  הינה מציאת הליבה הבלתי ספיקהבעיה שכיחה המתעוררת עבור נוסחאות בלתי ספיקות

ניתוב , ]43 [ של חומרהידוגמאות ליישומיים לבעיה זו הן אימות פונקציונאל. ספיקה של פסוקיות הקלט

ליבה מזערית בלתי  ליבה בלתי ספיקה הינה .]42 [הפשטההעידון  ,]49 [בשדהבמערך שערים בר תכנון 

רצוי למצוא ליבה בלתי תמיד  .היא הופכת לספיקה, אם כאשר מוציאים פסוקית ממנה, )ס"למב(ספיקה 

 שלמה- DP הינה (ידועה להיות מאוד קשה חישוביתס "בעיית מציאת למבאך ,  שהיא גם מזעריתספיקה

אימות צורני תחום מ במיוחד תס לבעיות מעשיות גדולו"צוא למבהמסוגל למם  מציג אלגורית5פרק . )]52[

לה מעשית למציאת יהציעו בצורה בלתי תלויה את הגישה היחידה היע] 28[-ו] 70[העבודות . של חומרה

 אנו .צורני של חומרההאימות תחום ה מסימני מדידה גדוליםעבור ) לא בהכרח מזעריתאך (ליבה בלתי ספיקה 

ר עושה שימוש ביכולת של פותרי ספיקות "חפ. )ר"חפ(חרוט פסוקית ריקה מתייחסים לשיטה זו בשם 

ר נעה לאחור על ההפרכה ההפוכה החל "חפ.  בלתי ספיקהנוסחא רכה ברזולוציה בהינתןעכשוויים לחולל הפ

 .מן הפסוקית הריקה ומחזירה את פסוקיות הקלט המחוברות לפסוקית הריקה בתור הליבה הבלתי ספיקה

אך ניתן לצמצם את , ר עד לנקודה קבועה"מפעיל את החפ, ק"רנחפשאנו מתייחסים אליו בשם , אלגוריתם

ת ליבה מזערית מציא התזרים הבסיסי של אלגוריתמנו ל.ק"חפרנהליבה המחוללת עוד יותר גם לאחר הפעלת 

  : כדלקמןבלתי ספיקה הינו

  .ות הפעלת פותר ספיקות של נוסחה בלתי ספיקה נתונה באמצעΠחולל רב הפרכה ברזולוציה  .1

כל פסוקיות הקלט שלא , כעת. Π-ת כל הפסוקיות הלא מקושרות לפסוקית הריקה מהשמט א .2

 .הושמטו מהוות ליבה בלתי ספיקה

 Cהורד את : ס באופן הבא"בדוק האם היא שייכת ללמב, Π- אשר נשארה בCעבור כל פסוקית קלט  .3

כולל גם את (מסור את שארית הפסוקיות . C יחד עם כל פסוקיות הסתירה שגזירתם כוללת את Π-מ

 .לפותר ספיקות) פסוקיות הסתירה

 ס וניתן לעבור לפסוקית הקלט הבאה" שיים ללמבCאזי , אם הן ספיקות  .א



י ניתוח ההשפעה של "הושגו ע, 3- ו2מרבית התוצאות המוצגות בפרקים .  לכל היפוך–הפסוקית ההורית 

  .ס על הבנייה של הרזולוציה ההורית"אלגוריתמי למ

בכדי להבין ולשפר את , 2אשר מתוארת בפרק ,  עושה שימוש בגישה החדשה לבעיית הספיקות3פרק 

ת המושג השימושי של גיזום  אאנו מצרינים. אלגוריתם הלמידה מונחית סתירות של פותר ספיקות עכשווי

ס מסוימת לצמצם את מספר הצמתים בהפרכה "י הגדרתו כיכולת של שיטת למ" ע]41,58 [החיפוש

ס "גיזום החיפוש משמש כאמת מידה למדידת ההשפעה של שיטות למ. י האלגוריתם"ברזולוציה המחוללת ע

וגיזום ; שר תהליך הנסיגה דילג מעליהם  מספר צמתי הרזולוציה א– אנו מבדילים בין גיזום אחורי. שונות

אנו מבדילים בין , כמו כן.  ההשפעה האפשרית של שימוש חוזר בפסוקיות סתירה בהמשך החיפוש–קדמי 

אנו . )כ"נא (כרונולוגית-נסיגה איי וב"בנא,  גיזום אחורי ברזולוציה–שלושה סוגים שונים של גיזום אחורי 

גיזום האחורי והן חינת הבמהן גוברת על שיטות אחרות י צמצום " המשופרת ע1י"נים כי שיטת הנאמפגי

  .  על שיטות אחרות1י"עובדה זו מהווה הסבר ליתרון הניסויי של שיטת הנא. גיזום הקדמיהחינת במ

 הקלטת פסוקיות סתירה תאשר נקרא,  המצומצמת1י"שיטת הנאשיטה חדשה המשפרת את אנו גם מציעים 

הרעיון מאחורי הקלטת פסוקיות סתירה . םו על סימני מדידה תעשייתיייותתועלתמקומיות ומפגינים את 

  .מקומיות היא לגרום לכך שהקלטת פסוקיות סתירה תהיה פחות תלויה במסייע עבור בחירת קיטוב משתנים

י מחבר "אשר הוצגה ע, לפיהם שיטת צימצום מחסנית ההשמות, ]40[אנו מאמתים את התוצאות של , כמו כן

אנו מראים כי השפעת צימצום מחסנית . משפרת את הביצועים של פותר ספיקות חדשני, ]47[-בעבודה זו 

  .סתירה והתחדשויות מקומיותהההשמות גדולה יותר מהשפעת צמצום פסוקיות 

מסייע ההחלטה קובע .  ספיקות מודרניהינו רכיב קריטי לביצועיו של פותרככל האפשר מסייע החלטה יעיל 

אשר נמצא ,  מציג מסייע החלטה חדש4פרק .  בכל נקודת החלטהיואת ערכו הבוליאנאת משתנה הבחירה 

 הוא תוכנן במטרה להעלות את הסבירות שמשתנים קשורים ייבחרו .סימני מדידה תעשייתייםלהיות יעיל על 

 תהיינו עדים לפריצת דרך בתכנון מסייעי החלטה יעילים על דוגמאות תעשייתיו, לאחרונה. בסמיכות

למקד את החיפוש כלומר עליהם לחזור ו, םתצפית המפתח היא שעל מסייעי ההחלטה להיות דינאמיי. תיותאמי

 – ]45 [)ה"סיבתב(סכום יורד בלתי תלוי במצב המשתים .  אשר נגזרו זה לא מכברעל פסוקיות סתירה

ר הוא מופיע כאש, ניקוד הליטרל עולה באחד.  מחזיק ניקוד עבור כל ליטרל–המסייע הדינאמי הראשון 

אסטרטגיה זו מבטיחה שהפותר בוחר . מחלקים את ניקודי הליטרלים בשניים, מעת לעת. בפסוקית סתירה

אשר נמצא יעיל יותר , מסייע החלטות ידוע נוסף. בליטרלים שהשתתפו בגזירת פסוקיות סתירה אחרונות

  ה"סיבתבכי , יוצריו טענו]. 27 [נו זה של פותר הספיקות ברקמיןהי, מדידה תעשייתיים סימני על ה"סיבתבמ

הם הציעו . במובן שהוא עלול לבחור במשתנים הלא רלוונטיים לענף הנחקר באותו זמן, איננו דינאמי דיו

לארגן את פסוקיות הסתירה ברשימה ולבחור את משתנה ההחלטה הבא מן הפסוקית הלא מסופקת העליונה 

מסייע ברקמין הוא . ה"סיבתבמש במסייע משני דמוי במקרה שפסוקית כזאת לא קיימת יש להשת. ברשימה



 

 תקציר

 

אם קיימת השמה מספקת למשתני נוסחא נתונה ה הכרעהה יתהינה בעיפסוקית בור לוגיקה  הספיקות עתבעיי

ככל  אשר ,שלמות- NPבעיית הספיקות תופסת מקום מרכזי במשפחה גדולה של בעיות . פסוקיתבלוגיקה 

  אלגוריתם המסוגל לפתור את הבעיה בזמן סבירקייםנראה כי לא , ןלכ.  יעיל ניתנות לחישובאינן ,הנראה

 באופן ת תעשייתיונוסחאות הנובעות מבעיות המסוגלים לפתור אלגוריתמים קיימים , ובכל זאת.בכל המקרים

 ותחומים רבים אחרים בינה מלאכותית,  יישומים רבים לבעיית הספיקות באימות צורניםישנ. מהיר ויעיל

  .מדעי המחשב והנדסת מחשביםב

 על גרסה משופרת של יםוססמב ,]48 [ ואיריקה]19 [מיניסט, ]45 [ף’כגון צ, פותרי ספיקות חדישים

 אך, ל נחקר ושופר במשך השנים"דל. ]16 [)ל"דל(לוגמן ולובלנד , יסואלגוריתם החיפוש בנסיגה של ד

י יוצרי "נעשתה עצורני האימות תחום ה מםתייתעשיי סימני מדידהפותרי ספיקות על פריצת דרך בביצועיי 

אשר הוצגו ,  מספר חידושים באלגוריתם הנסיגהוכללורלסט  גרספ. ]3 [ ורלסט]60 [גרספ הספיקות יפותר

פותרי ספיקות . עידן חידושים אלה בצורה ניכרת] 45[ף ’צ הספיקותפותר ". ניתוח סתירה"יחד תחת הכותרת 

  . הכוללות מיליוני פסוקיות ומשתניםתנוסחאות תעשייתיו מסוגלים להתמודד עם עכשוויים

ניתן לראות את  .איננו מובן במלואו, אשר ממומש במרבית הפותרים החדישים, ף’אלגוריתם של הפותר צה

הפרכה  חקירת מרחב ההשמות באמצעות בניית עץ חיפוש והן כאלגוריתם אשר בונהף הן כאלגוריתם ל’צ

כיצד ניתן , במילים אחרות, כיצד ניתן לחבר בין שתי הגישות או,  לא היה ברור. של נוסחא נתונהברזולוציה

 חקירת מרחב ההשמות ובניית ההפרכה  לעקוב אחר תהליכיף כך שניתן יהיה’לנסח את האלגוריתם של צ

 של רבההעוצמה האלגוריתם בעל חוסר הבנה של המקור אחר להעדר הבהירות הייתה . ברזולוציה גם יחד

אשר נאמרה בהקשר של השוואה של , ף’צאת הטענה של יוצרי , למשל, ראה. )ס"למ(ונחית סתירות למידה מ

 מידע באמצעותניתן לקבוע את היעילות של שיטות חיפוש שונות אך ורק : "כדלקמן, ס שונות"שיטות למ

  .  ]69 ["יניסיונ

המגשרת בין הגישה , רני של פותר ספיקות מודלהצגה וניתוח מסגרת חדשה עמצישל עבודה זו  2 פרק

 נוחה עבור המחקר המעשי הצרנהמטרתנו היא לספק . המבוססת חיפוש לבין הגישה המבוססת רזולוציה

ס של "צעד את רכיבי אלגוריתם הלמ- אחר- מראים כיצד ניתן להוסיף צעדאנו . בנושא של בעיית הספיקות

פסוקית ף משייך ’ צ.ף’ס של צ"וריתם הלמהתוצר הינו אלג. תלויה-ל הבסיסי בצורה מבודדת ובלתי"ף לדל’צ

המטרה של אלגוריתם ניתוח , למעשה. אשר מהווה סיבה מספקת להיפוך המשתנה,  לכל פעולת היפוךהורית

 נגזרת רזולוציה של –  רזולוציה הוריתאנו מציעים לשייך. ף היא הסקת הפסוקית ההורית’הסתירה של צ



אשר מסוגלת למצוא  ,הקמזערית בלתי ספיהוצאת ליבה אנו מציגים שיטת חישוב חדשה עבור בעיית , ולבסוף

של חומרה  באימות צורני בעיות המופיעותהמשפחות . ות תעשייתיות גדולותא נוסחעבורליבה מזערית 

 מסוגל לייצר הפרכה ברזולוציה של נוסחה בלתי ספיקה חדיש ספיקות פותר. חד עבורנוו עניין מיררותומע

בוחנת את פסוקיות הקלט שיטתנו . א הפסוקית הריקהה הומקוריה הן פסוקיות הקלט וכיוראשר , נתונה

שיטתנו . הפרכה ברזולוציהמן ההמקושרות לפסוקית הריקה זו אחר זו ומסירה כל פסוקית הניתנת להסרה 

כל , בסופו של התהליך. ולוציה אחריםי השלמתה עם פסוקיות אחרות וקשרי רז"שומרת על נכונות ההפרכה ע

  .ליבה מזערית בלתי ספיקהלפסוקית הריקה מהוות פסוקיות הקלט המקושרות 



 תמצית

 

, ראה (שלמה אשר תופסת מקום מרכזי במדעי המחשב-NPבעיית הספיקות עבור לוגיקה פסוקית הינה בעיה 

מים ותחו] 34[בינה מלאכותית , ]54 [לבעיית הספיקות ישנן שימושים רבים באימות צורני. )]12,21[, למשל

-לוגמן- המשתמשים בגרסה משופרת של אלגוריתם החיפוש בנסיגה דויס, פותרי ספיקות עכשוויים. נוספים

עבודה זו היא .  בעלות מיליוני משתנים ופסוקיותנוסחאותמתמודדים בהצלחה עם , ]15 [)ל"דל(לובלנד 

עים מספר שיפורים מעשיים אנו מצי, כמו כן. של פותר ספיקות חדשניתפקודיות  לשפוך אור חדש על הןניסיו

  .תחום האימות הצורניהמתאימים במיוחד ל

גישתנו עושה  . נסיגהי מבוססחדישים ספיקות יתרואנו מציעים מסגרת חדשה להצגה וניתוח של פ, ראשית

אנו מראים צעד אחר צעד כיצד ניתן ליצור פותר ספיקות . שימוש בקשר האינהרנטי בין הנסיגה לרזולוציה

 ההוכחה ברזולוציה לתקפות של – ורית הו מבוססת על המושג של רזולוציה גישתינ.ל"יתם הדלחדיש מאלגור

  .כל היפוך

 של שיטות שונות עבור למידה מונחית מעשיתההשפעה ה  להערכתת מידות חדשות מגדירים אמאנו, שנית

 ההשפעה – קדמיזום וגי;  דילג מעליהם  מספר צמתי הרזולוציה אשר תהליך הנסיגה– אחוריגיזום : סתירות

אנו מראים כי שיטת נקודת אימפליקציה . האפשרית של שימוש חוזר בפסוקיות סתירה בהמשך החיפוש

 עבור למידה מונחית סתירות טובה ]4,62[ום פסוקיות הסתירה מצי צ"המוגברת ע] 45 [)1י"נא (1ייחודית 

 של שיטת י מהווה הסבר ליתרון הניסיונ זועובדה. קדמיהגיזום מבחינת האחורי והן הגיזום  ה מבחינתהן יותר

   . המצומצמת על שיטות אחרות1י"נא-ה

 שיטה זו . הקלטת פסוקיות סתירה מקומיות הנקרא1י"נא-יעיל מעשית לשיטת ה שיפוראנו מציעים , שלישית

הקלטת פסוקיות סתירה מקומיות גורמת . י הוספת פסוקיות חדשות" המצומצמת ע1י"משפרת את שיטת הנא

  .חירת קיטוב משתניםבלמידה להיות פחות תלויה במסייע עבור ל

אנו מראים כי שיטת צימצום מחסנית ההשמות הינה שיטה המשפרת את הביצועים של פותר ספיקות , רביעית

אנו משווים את ההשפעה של צימצום מחסנית ההשמות להשפעה של צמצום פסוקיות סתירה . חדשני

  .והתחדשויות מקומיות

 תוכנן מסייע זה. סס פסוקיותהנקרא מסייע מבו, אנו מציעים מסייע החלטות חדש לבעיית הספיקות, חמישית

מחזיק רשימת פסוקיות הכוללת הוא  . של משתנים קשוריםבכדי להעלות את הסבירות לבחירה מקורבת

 הבלתי  ההחלטה הבא נבחר מן הפסוקיתליטרל. ופסוקיות סתירה כאחד) קלטפסוקיות (פסוקיות התחלתיות 

פסוקיות בתוך הים שיטות מגוונות לארגון ראשוני של רשימת הפסוקיות ולהזזת עאנו מצי. ספיקה העליונה

על בעיות תעשייתיות אמיתיות בהשוואה למסייעים רת כ ני ביצועייםהתייעלותגישתנו מובילה ל. הרשימה

  .קיימים
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