Tel Aviv University
Raymond and Beverly Sackler Faculty of Exact Sciences
The Blavatnik School of Computer Science

Understanding and Improving
a Modern SAT Solver

Alexander Nadel

Supervised by Professor Nachum Dershowitz

A Thesis Submitted for the Degree of Doctor of Philosophy

Submitted to the Senate of Tel Aviv University
August 2009

Contents

1 Introduction

2 Understanding a Modern SAT Solver
2.1 SAT Solver Skeleton,
2.2 From the SAT Solver Skeleton to a Modern SAT Solver
2.2.1 Boolean Constraint Propagation (BCP)
2.2.2 Non-Chronological Backtracking (NCB)
2.2.3 1UIP-based Conflict-Directed Backjumping (CDB) . .
2.2.4 Conflict Clause Recording
2.2.5 Conflict Clause Deletion (CCD) and Restarts

3 Understanding and Enhancing Conflict-Driven Learning
3.1 Integrating Other Conflict-Driven Learning Schemes into our
Framework
3.1.1 The UIP-n Scheme
3.1.2 The AIIUIP Scheme
3.1.3 Conflict Clause Minimization
3.2 Implication-Based Approach to Conflict-Driven Learning . . .
3.3 Capturing the Notion of Search Pruning
3.4 The Pruning Effect of Different CDL Schemes
3.4.1 Empirical Results
3.5 Local Conflict Clause Recording
3.6 Conflict Clause-Based Assignment Stack Shrinking

28
30
33
35
38
40

43

4 A Clause-Based Heuristic for SAT 86

4.1 Existing Decision Heuristics 86
4.2 The Clause-Based Heuristic 89
4.2.1 Choosing the Decision Literal from the Top-Most Clause 91
4.2.2 Initial Clause List Organization 92
4.3 Experimental Results 93

5 A Scalable Algorithm for Minimal Unsatisfiable Core Extrac-

tion 100
5.1 Related Work 100
5.2 Multi-Resolution Refutation 102
5.3 The Complete Resolution Refutation (CRR) Algorithm 104
5.4 Resolution-Refutation-Based Pruning 109
5.5 Experimental Results 114
6 Conclusion 116
Index of Important Terms 119

Bibliography 124

ii

List of Figures

2.1
2.2

2.3

3.1
3.2
3.3
3.4
3.5
3.6

4.1

5.1
5.2

Explanation of symbols, used by Algorithm 1 and its subroutines 14

The names of loops, used while analyzing the functionality of

Algorithm 1 and its subroutines 14
Examples of search trees, resolution refutations and the impact

of various algorithms. 23
Conflict-driven learning example. 95
Three kinds of backward pruning. 59
One example of the superiority of 1UIP over AI[UIP. 66

Reasons for skipping flipped variables for various CDL schemes. 66
An example showing the need in local conflict clause recording. 70

A generic example showing the need for local conflict clause

recording. 71
CBH effect on MicroCode instances. 99
Multi-resolution refutation example. 107

RRP pruning technique for finding a minimal unsatisfiable core.108

iii

List of Tables

3.1

3.2

3.3

3.4

3.5

3.6

3.7

4.1

4.2

4.3
4.4

4.5

5.1

Comparing 1UIP, 1UIP w/o minimization, UIP-2, UTP-2 w/o

minimization and A/[UIP schemes: Part one. 67
Comparing 1UIP, 1UIP w/o minimization, UIP-2, UIP-2 w/o

minimization and A/[UIP schemes: Part two. 68
Effect of local conflict clause recording. 73

Local conflict clause recording on formal verification instances. 74
Interplay between assignment stack shrinking and conflict
clause minimization. L. 84
Comparing the impact of assignment stack shrinking and rapid
restarts. L. 84
Family information for Tables 3.5 and 3.6. 85

Description of the hard industrial benchmark families used in

our experimentson CBH. 97
Performance of CBH vs. two versions of VSIDS and the Berk-
min heuristic on hard industrial families. 97

CBH vs. the default heuristic within zChaft2004_.2004.11.15. . 97
Performance of different configurations of CBH within the SE
Solver. . ..o 98

Performance of different configurations of CBH within the
zChaff2004 solver. 98

Comparing algorithms for unsatisfiable core extraction. 113

v

To my wife, Miriam

Acknowledgments

First, I would like to thank Prof. Nachum Dershowitz, my research advisor,
for his infinite support throughout my graduate studies at Tel Aviv Univer-
sity. Nachum’s wisdom and knowledge of the field inspired and guided me
over the years. His reviews and suggestions are gratefully acknowledged. 1
also thank my fellow PhD student, Iddo Tzameret, for valuable advice in the
area of his expertise — Proof Complexity. I would like to thank Prof. Orna
Grumberg and the anonymous reviewers for reading the thesis and providing
useful comments, which helped me to improve the thesis considerably.

During the course of this research, I had the great opportunity to be
employed part time in the Formal Technology and Logic Group at Intel,
Haifa. I would like to thank all my colleagues at Intel: Ziyad Hanna, Amit
Palti, Zurab Khasidashvili, Moran Gordon, Baruch Sterin, Vadim Ryvchin,
Yulik Feldman, Jacob Katz, Daher Kaiss, Ranan Fraer, Michael Lifshits, Orly
Cohen, Dmitry Korchemny and others, with whom I shared many discussions
and thoughts. I am especially grateful to my previous and current managers
at Intel — Ziyad Hanna and Amit Palti, whose constant support has been an
invaluable contribution to my work, which combines academic research and
industrial experience. I would like to thank Zurab Khasidashvili for sharing
with me his experience and understanding of the field.

Finally, I would like to thank my parents Lion and Elianora for their
commitment to giving me the best education. I am deeply grateful to my
children Michael, Nicole and Shani for all the great time we spend together.

I am glad to dedicate this thesis to my wife, Miriam, for her sincere love.

vi

Abstract

Propositional satisfiability (SAT) is an NP-complete problem, holding a
central place in computer science and engineering. SAT has numerous ap-
plications in formal verification, artificial intelligence and other areas. Mod-
ern SAT solvers, using an enhanced version of the backtrack search Davis-
Logemann-Loveland (DLL) algorithm, are able to successfully cope with in-
stances comprising millions of variables. This work is an attempt to shed
new light on the functionality of a modern SAT solver. We also propose a
number of enhancements that are empirically useful, especially in the formal
verification domain.

We propose a framework for presenting and analyzing a modern DLL-
based SAT solver. We provide a basic backtracking algorithm that explicitly
shows the process of resolution refutation construction. Our approach is
based on the notion of a parent resolution derivation — a resolution proof
for validness of a flip operation. We show how to derive the algorithm of a
modern SAT solver from basic backtracking step-by-step.

This resolution-based approach allows us to define new criteria for mea-
suring the practical impact of different schemes for conflict-driven learning
by making the notion of search pruning more formal. We show that the
1UIP scheme, enhanced by conflict clause minimization, is better than other
known schemes in terms of pruning. This explains its empirical advantage
over other schemes.

We propose an enhancement to the minimized 1UIP scheme, called lo-
cal conflict clause recording. This technique improves the performance of a
modern SAT solver by recording additional conflict clauses. Local conflict
clause recording makes the learning less dependent on the variable polarity
selection heuristic.

Assignment stack shrinking is a technique whose goal is to shrink the size
of the assignment stack and conflict clauses. We demonstrate the empiri-

cal usefulness of assignment stack shrinking and analyze its impact on the

performance of a modern SAT solver, comparing it to the impact of conflict
clause minimization and rapid restarts.

Furthermore, a new decision heuristic for SAT, called the clause-based
heuristic, is introduced. This heuristic is designed to increase the likelihood
that interrelated variables will be chosen in proximity. It maintains a clause
list containing both the initial and conflict clauses. The next decision literal
is picked from the first unsatisfied clause. We propose various methods for
initially organizing the clause list and for moving clauses within it. Our
approach results in a significant performance boost over existing heuristics
tested on hard real-world industrial benchmarks.

Finally, we present an algorithm for minimal unsatisfiable core extraction
that is able to find a minimal unsatisfiable core for large real-world formu-
las. Benchmark families, arising in formal verification of hardware, are of
particular interest to us. Modern SAT solvers are able to produce a resolu-
tion refutation of a given unsatisfiable formula, whose sources are the input
clauses and whose sink is the empty clause. Our method’s basic version re-
moves the input clauses connected to the empty clause one by one from the
resolution refutation, preserving the validity of the refutation by adding other
clauses and resolution relations until no more input clauses can be removed.
In the end, all the input clauses, connected to the empty clause, comprise

the minimal unsatisfiable core.

ii

Chapter 1
Introduction

Propositional satisfiability (SAT) is the problem of determining, for a formula
in propositional calculus, whether a satisfying assignment for its variables ex-
ists. SAT holds a central place in the large family of NP-complete problems
(see, e.g., [12], [21]). Therefore, it is unlikely that there is an algorithm that
can solve it in reasonable time in all cases. Nonetheless, algorithms exist that
are capable of quickly solving many instances resulting from real-world prob-
lems. SAT has numerous applications in formal verification (e.g., [54]), as
well as in artificial intelligence (e.g., [34]) and many other fields of computer
science and engineering.

The basic backtracking algorithm [15] is commonly understood as a
search-based algorithm, which checks whether a satisfying assignment for the
input formula, provided in Conjunctive Normal Form (CNF), exists. The al-
gorithm works by exploring the assignment space in a depth-first search man-
ner. It maintains a partial assignment and extends it by assigning previously
unassigned decision variables until a certain clause is falsified. In this case,
the algorithm backtracks and flips the last assigned decision variable. If all
the assigned variables have already been flipped, the formula is unsatisfiable.
If a model for the input formula is found, the formula is satisfiable.

The plain backtrack algorithm is unable to solve large real-world in-
stances, but it can be enhanced by various algorithms, crucial for practical

efficiency.

Modern SAT solvers spend 80-90% of their runtime performing Boolean
Constraint Propagation (BCP). BCP, already suggested in the original paper
on solving SAT with backtrack search [15], forces the assignment of values
to variables appearing in unit clauses (clauses having one unassigned literal).
These choices are picked as “decisions” whenever possible. BCP is used
by modern SAT solvers to quickly identify (failure) leaves of the search tree,
referred to as conflicts. Implication relations between assigned literals can be
represented using the so-called “implication graph”. Efficient data structures
for BCP were proposed in [45, 11].

The paper [15] proposed another modification to the plain backtrack
search algorithm, called the pure literal elimination rule. A pure literal is a
literal that appears in only one polarity, that is, only positively or negatively,
in clauses that are not yet satisfied. The pure literal elimination rule removes
all the clauses containing such a literal. However, this modification is not
used in modern SAT solvers, due to the high overhead required for detecting
pure literals.

One key step for making SAT efficient in practice was the introduction
of conflict-driven learning (CDL) by the authors of the GRASP [60] and
rel sat [3] SAT solvers. Conflict-driven learning applies a number of learning
and pruning algorithms when a conflict is identified. The origin of conflict-
driven learning goes back to the work that was done on the constraint satis-
faction problem (CSP) [55].

Modern SAT solvers, such as Minisat [19], Eureka [48], RSAT [53], and
PicoSAT [6], inherit their CDL algorithm from the 2001 version of the Chaff
SAT solver [45], in which the CDL scheme of rel sat and GRASP was further
improved. Chaff’s scheme applies 1UIP-based conflict-directed backjumping,
non-chronological backtracking and 1UIP conflict clause recording [45]. In
the literature on practical design of SAT solvers, all these techniques and BCP
are presented and analyzed together, based on implication graph analysis [60,
45, 27, 56, 69, 62].

Although Chaff’s CDL scheme is widely used, it is not fully understood.
Compare, for example, the statement by the authors of Chaff, provided in the

context of comparison between different CDL schemes: “[T|he effectiveness

of certain searching schemes can only be determined by empirical data” [69].
The Chaff algorithm can be viewed as an algorithm for assignment space
or search-tree exploration, yet it can also be seen as an algorithm that con-
structs a resolution refutation of a given formula. The latter approach to
understanding a modern SAT solver is well-known [37, 23, 22, 50], but not
usually used in the literature dedicated to practical aspects of SAT solving.
From our perspective, the main reason for the lack of clarity was the fact
that the Chaff algorithm has not been formulated in a way that shows both
processes of search-tree exploration and resolution refutation construction.

Chapter 2 of this work provides a framework for presenting and analyzing
the functionality of a modern SAT solver. We provide an implementation of
the basic backtrack search algorithm and show how to integrate other algo-
rithms implemented in Chaff into our framework step-by-step. Our algorithm
explicitly demonstrates the construction of a resolution refutation for an un-
satisfiable formula. It does not force the solver to use BCP. We do not use
the notion of implication graph in our analysis, but define all the algorithms
related to conflict analysis based on resolution. Our approach associates each
flipped variable with a parent resolution derivation — a resolution proof for
validness of a flip operation.

A resolution-based approach to understanding the conflict-driven learning
algorithm of a SAT solver was used in [50]. The primary goal of the paper [50]
was to provide a formalism for a SAT solver in a way that allows one to easily
integrate a SAT solver as a DPLL(T) engine into a Satisfiability Modulo
Theories (SMT) solver. In contrast to our framework, oriented towards core
SAT solving, the paper [50] did not provide an explicit algorithm for a modern
SAT solver.

Chapter 3 uses the framework of Chapter 2 to understand and enhance
the conflict-driven learning algorithm of a modern SAT solver.

Section 3.1 shows how to integrate various conflict-driven learning tech-
niques, including the UIP-n scheme, proposed in this work, the A[[UIP [69]
scheme and conflict clause minimization algorithm [4, 62], into our frame-
work.

Section 3.2 reviews an implication-based approach to conflict-driven

learning.

Section 3.3 makes the commonly used notion of search pruning [41, 58]
more formal. We distinguish between backward pruning and forward prun-
ing. Backward pruning is carried out when the algorithm is backtracking.
It is characterized by the number of nodes in such parent resolution deriva-
tions of unassigned flipped variables, which were not required for deriving a
parent resolution derivation for the new flip. Forward pruning relates to the
impact of recorded conflict clauses on the subsequent search. We define a
new measure for forward pruning, called pre-flip learning uselessness. The
idea is to find, for every flipped variable, in what fraction of conflict clauses it
participated before the flip. The larger this fraction, the less helpful are the
conflict clauses, recorded before the flip, for pruning the search space after
the flip.

Section 3.4 demonstrates that the minimized 1UIP scheme, that is the
1UIP scheme of [45], enhanced by conflict clause minimization [4, 62], is
superior to other schemes in terms of both backward and forward pruning.
This explains the empirical advantage of the 1UIP scheme over other schemes.

Section 3.5 introduces an enhancement to the minimized 1UIP scheme,
called local conflict clause recording. This technique records additional con-
flict clauses, whenever certain conditions hold. The idea behind local con-
flict clause recording is improving the pruning by making the conflict clause
recording less dependent on the heuristic for choosing the polarity of as-
signed variables. We demonstrate the practical usefulness of local conflict
clause recording on industrial benchmarks. Sections 3.3 and 3.5 are based
on our paper [18].

Section 3.6 is dedicated to assignment stack shrinking, a technique, pro-
posed by the author of this work in [47], and further enhanced by the authors
of the 2004 version of Chaff [40]. This technique tries to dynamically reduce
the size of conflict clauses and to unassign irrelevant literals from the assign-
ment stack. If certain conditions hold for a newly learned conflict clause,
shrinking unassigns some of the literals of the conflict clause and reassigns
them to 0. BCP follows each assignment. Section 3.6 reaffirms the em-

pirical usefulness of assignment stack shrinking and shows that it cannot

be simulated or subsumed by conflict clause minimization or rapid restarts,
disproving a supposition of [6].

A crucial factor influencing the performance of a SAT solver is its decision
heuristic. The heuristic decides which variable to choose at each decision
point during the search and what value to assign it first. Modern decision
heuristics are dynamic — that is, they refocus the search on recently derived
conflict clauses. VSIDS [45] — the first such dynamic heuristic — maintains
a score for each literal. The score is increased when the literal appears in
a conflict clause; once in a while, scores are halved. Another well-known
decision heuristic, which proved to be even more successful than VSIDS on
industrial benchmarks, is that of Berkmin [27]. The Berkmin heuristic [27]
is more dynamic than VSIDS. It organizes all conflict clauses in a list and
picks the next decision literal from the topmost unsatisfied clause in the list.
If no such clause exists, a secondary VSIDS-like choice-heuristic is used.

In Chapter 4, we introduce a new decision heuristic that has been found to
be efficient on hard real-world industrial benchmarks. The Berkmin heuris-
tic is indeed more dynamic than VSIDS, but we claim another advantage
for the Berkmin heuristic over VSIDS in that it tends to pick interrelated
variables, that is, variables whose joint assignment increases the chances of
both quickly reaching a conflict in an unsatisfiable branch and satisfying and
removing “problematic” clauses in satisfiable branches. However, this po-
tential advantage is diluted by the fact that the Berkmin heuristic does not
put the initial clauses in the clause list and applies a secondary VSIDS-like
heuristic. Our proposal, which we call the clause-based heuristic (CBH),
maintains a clause list containing both the initial and the conflict clauses,
thus increasing the chances of picking interrelated variables. The next de-
cision literal is picked from the topmost unsatisfied clause. No secondary
heuristic is required. Also, whenever a new conflict clause is derived, CBH
moves clauses that participated in the resolution derivation of the new con-
flict clause to the top of the list. In addition, we propose various methods
for initially organizing the clause list. Our approach results in a significant
performance boost over both VSIDS and the Berkmin heuristic.

The idea of moving the clauses used for a new conflict clause derivation

towards the head of the list was proposed independently of our work in
the papers [25, 26] and implemented in the HaifaSat solver. The HaifaSat
heuristic is called Clause-Move-To-Front (CMTF). Its usefulness is justified
in the framework of an abstraction/refinement model. In contrast to our
approach, CMTF maintains only the conflict clauses in the list, hence it
should tend to pick less interrelated variables than CBH.

Chapter 4 is based upon our paper [16].

When a formula is unsatisfiable, it is often required to find an unsatis-
fiable core — that is, a small unsatisfiable subset of the formula’s clauses.
Example applications include functional verification of hardware [43], field-
programmable gate array routing [49], and abstraction refinement [42]. An
unsatisfiable core is a minimal, if it becomes satisfiable whenever any of its
clauses is removed. It is always desirable to find a minimal unsatisfiable core,
but this problem is very hard. (It is D”-complete; see [52].)

Chapter 5, based upon our paper [17], presents an algorithm that is able
to find a minimal unsatisfiable core for large real-world formulas. The only
approach for unsatisfiable core extraction that scales well for formal verifi-
cation benchmarks was independently proposed in [70] and in [28]. We refer
to this method as the empty-clause cone (EC) algorithm. EC exploits the
ability of modern SAT solvers to produce a resolution refutation, given an
unsatisfiable formula. EC takes initial clauses, connected to the empty clause
O, as the unsatisfiable core. Invoking EC until a fixed point is reached [70]
allows one to reduce the unsatisfiable core even more. However, the resulting
cores can be further reduced. The basic flow of the algorithm for minimal
unsatisfiable core extraction proposed in Chapter 5 is composed of the fol-
lowing steps. First, produce a resolution refutation of a given formula using a
SAT solver. Second, drop from the resolution refutation all clauses not con-
nected to . At this point, all the initial clauses, connected to [, comprise
an unsatsifiable core. Third, try to remove each remaining clause C from the
unsatisfiable core by invoking the SAT solver on the resolution refutation, ex-
cluding the cone of C. The algorithm terminates when all the initial clauses
remaining in the resolution refutation comprise a minimal unsatisfiable core.

The author of this thesis is the main author of the papers [16, 17, 18].

In addition, he participated in works on simultaneous satisfiability in model

checking [35] and on bitvector satisfiability [10], not reported herein.

Chapter 2

Understanding a Modern SAT

Solver

In this chapter we propose a framework for presenting and understanding
the functionality of modern SAT solvers.

Section 2.1 introduces the SAT Solver Skeleton (SSS) in Algorithm 1 —
a formulation of the backtrack search algorithm, where the resolution refu-
tation construction is shown explicitly. We provide a correctness proof of
the algorithm. Section 2.2 shows how to introduce techniques, which en-
hance modern SAT solvers, into SSS. These techniques include Boolean Con-
straint Propagation (BCP), 1UIP-based conflict-directed backjumping, non-
chronological backtracking, conflict clause recording, restarts and conflict
clause deletion. Each above-mentioned enhancement can be added to our al-
gorithm independently of the other. In particular, using BCP is not a must.
This is in contrast to the standard approach to describing the conflict-driven
learning engine of a SAT solver (provided in Section 3.2), where 1UIP-based
CDB, NCB and 1UIP-based CCR are described together, based on implica-
tion graph-analysis which is dependent on BCP.

2.1 SAT Solver Skeleton

We start with basic definitions, related to propositional logic.

Definition 1 (Variable; Literal). We denote (propositional) variables by
lowercase Latin letters. A literal is a wvariable v or its negation —w. The
Boolean values are denoted 1 and 0. For variable v and Boolean value k, v"*

V=9 and v° = —w.

1s the corresponding literal; that s, v
Definition 2 (Clause; Empty clause; CNF formula). A clause is a disjunc-
tion (or set) of literals. The empty clause is denoted by 0. A Conjunctive
Normal Form (CNF) formula is a conjunction of clauses Cy NCy A ... A Cyp,
or equivalently, a set {C1,...,Cp}.

Definition 3 (Assignment; Complete assignment; Partial assignment). An
assignment (or partial assignment) o assigns Boolean values to all (or some)
of the variables in a set of formulas. An assignment that assigns values to
all the variables is called complete. The literal v* is assigned 1 or 0 by o, iff
the variable v is assigned 1 or 0 by o. The literal v° is assigned 1 or 0 by o,

iff the variable v is assigned 0 or 1 by o.

Definition 4 (Satisfied clause; Falsified clause). Suppose that o is an assign-
ment. Then, a clause C is satisfied by o, if one of the literals of C is assigned
1 by o. A clause C is falsified by o, if all the literals of C are assigned 0 by

g.

Definition 5 (Satisfied CNF formula; Falsified CNF formula). A CNF' for-
mula F is satisfied by o, if all the clauses of F are satisfied by o; a CNF
formula F is falsified by o, if one of the clauses of F is falsified by o.

Definition 6 (Model). An assignment o is a model to CNF formula F if F
18 satisfied by o.

Definition 7 (Satisfiable CNF formula; Unsatisfiable CNF formula). A CNF
formula F is satisfiable iff there exists a model to F. Otherwise, the formula

I is unsatisfiable.

Resolution is a widely studied simple proof system that can be used to
prove the unsatisfiability of CNF formulas. We now provide a number of

definitions, related to resolution.

Definition 8 (Resolution rule; Resolvent; Pivot variable). The resolution
rule states that given clauses Dy = AV v and Dy = BV —w, where A and B
are also clauses, we can derive the clause C' = AN B by resolving on v. The
clause C' is called a resolvent of clauses D1 and Dy on pivot variable v. The

resolution rule application is denoted by C' = Dy ®" Ds.

Definition 9 (Resolution derivation; Size of resolution derivation; Target
clause). A resolution derivation of a target clause C' from a CNF formula
Fis a sequence m = {C1,Cy, ..., C,}, where C, = C and each clause C; is
either a clause of F' (an initial clause) or derived by applying the resolution
rule to C; and Cy, where j,k < i (a derived clause). The size of 7 is p, the
number of clauses occurring in it. The target clause of a resolution derivation

7 is denoted by 7' .

Two resolution derivations from F, whose target clauses are resolvable,
can be composed to obtain a new resolution derivation of F. In the following
definition, we assume that resolution derivations can also be considered sets
of clauses, hence the set difference operation \ is well defined for resolution

derivations.

Definition 10 (Composition of Resolution Derivations). Let w and p be two
resolution derivations from F, such that their target clauses 77 and p* are
resolvable on v. Then, the following sequence of clauses is a composition of

T

mand p: T=m p\ T 7 @ pl. We denote T =T QY p.

It is not hard to check that a composition of two resolution derivations,

whose target clauses are resolvable, is a resolution derivation.

Proposition 1 (Composition of Resolution Derivations’ Correctness). Let

T

w and p be two resolution derivations from F, such that the clauses © and

pT are resolvable on v. Then, T = m & p is a resolution derivation from F.

Proof. Consider first all the clauses of 7, except the target clause. Each such
clause C belongs to either m or p. Hence, C is either an initial clause or is

derived from previous clauses in either m or p. However, 7 contains all the

10

clauses of 7 or p maintaining the order by construction. Thus, C is either an
initial clause or is derived from previous clauses in 7.

The target clause 77 is derived from two previous clauses of 7 by con-
struction.

Hence, 7 is a resolution derivation from F. O

For an example of a resolution composition, consider F =

{aVb,aV —b,—-aVb-aV-b};, = = {aVb,aV-ba}l; p =
{=aVb,~aV-b-a}. The target clauses 7/ = a and p! = -a
are resolvable on a. Hence, the composition of 7 and p is

T =7 @ pl' = {aVbaV-ba,~aVb-aV-b-a [} The target
clause of 7 is the empty clause, hence 7 is a refutation of F' in the sense

provided in the next definition.

Definition 11 (Resolution refutation; Refutation). Any resolution deriva-
tion of the empty clause O from F is called a resolution refutation or simply

a refutation of F.
The following proposition is well-known.

Proposition 2 (Soundness and Completeness of Resolution). A formula F

1s unsatisfiable iff it has a refutation.

A resolution derivation can be conveniently represented by a rooted bi-
nary directed acyclic graph (dag). Vertices of the dag correspond to clauses
of the derivation. Leaves of the dag are clauses in F. The root contains the
target clause. Internal nodes correspond to resolution rule applications. An
internal node contains the resolvent clause of its two children. Each edge
is marked with a literal comprising the negation of the pivot variable ap-
pearance in the clause in its head. More specifically, an edge from A V v to
C=(AVv)®"(BV -w)is marked with —v and an edge from BV —w to C
is marked with v.

An example of a refutation, of size 8, appears in Fig. 2.3(a) on page 23.

Now we present an implementation of the backtrack search algorithm,
Algorithm 1, which we refer to as the SAT Solver Skeleton (SSS). SSS uses

11

two subroutines Flip and AnalyzeConfBtAndFlip, depicted in Algorithms 2
and 3, respectively.

First, we provide an informal description of the flow of SSS, including
its subroutines. The algorithm checks whether the input formula F' is sat-
isfiable or unsatisfiable. In the former case, the algorithm returns a model
to the formula and, in the latter case, it returns a resolution refutation of
the formula. The algorithm works by exploring the assignment space in a
depth-first search manner. It maintains a partial assignment and extends
it by assigning previously unassigned variables until a certain clause of F
is falsified. In this case, the algorithm identifies the last assigned variable
that should be flipped in order to satisfy the falsified clause and flips its
value. (If all the assigned variables have already been flipped, the formula
is unsatisfiable.) The flip ensures that the algorithm will explore previously
unexplored subspaces. Each flip operation is associated with the so-called
parent resolution derivation, whose target clause is called a parent clause. A
parent clause constitutes an implication of the flip from a subset of previ-
ously assigned literals. The parent resolution derivation shows how to derive
the parent clause from the formula, thus providing a proof that there are
indeed no satisfying assignments in the subspace explored by the algorithm
and left with the flip. After the flip, the algorithm may again find a falsified
clause, in which case it would build a parent resolution derivation for the
upcoming flip; then backtrack and flip. This process continues until either

of the following two event occurs:

1. All the clauses are satisfied by the current assignment, in which case
the formula is satisfiable and the assignment is the model, returned by

the algorithm.

2. The algorithm encounteres a falsified clause and all the relevant as-
signed variables have already been flipped. In this case, the algorithm
returns a resolution refutation of the formula, generated while checking

that none of the variables can be flipped.

12

We now describe the flow of SSS, including its subroutines, in more detail.
An explanation of all the symbols used by the algorithm and its subroutines
is summarized in Fig. 2.1. We will use the notions of the main loop, conflict
analysis loop and backtracking loop in our analysis. The position of these
loops in the code of our algorithms is provided in Fig. 2.2. We assume that
all the variables and data structures are defined in the global context.

The algorithm starts by initializing the assignment level s to 0 at line 1.

The assignment level is defined as follows:

Definition 12 (Assignment level). The assignment level s, maintained by

Algorithm 1, is the current depth of the backtrack search.

Definition 13 (Assigned variable; Assigned literal). A variable v is assigned
at level i, if 1 < i < s (s is the assignment level) and v; = v. A literal v" is

assigned at level 1, if v is assigned at level i and 0; = K.

The main loop of the search starts at line 2. Each iteration of the main
loop starts by increasing the assignment level s and assigning an unassigned
variable v, a Boolean value o,. Then, the algorithm records that the current

assignment level is non-flipped.

Definition 14 (Flipped assignment level, Non-flipped assignment level). Let
s be the current assignment level. Then, each assignment level i, 1 < i < s,
1s either flipped or non-flipped. The flip status is maintained in the array
FlipStatus by Algorithm 1.

Definition 15 (Flipped variable; Non-flipped variable; Flipped literal;

Non-flipped literal). A wariable/literal, assigned at assignment level s, is

flipped /non-flipped, if s is flipped/non-flipped.

We will see that assignment level s would become flipped if the algorithm
concluded that none of the complete assignments that are consistent with
01..s constitutes a model of F; however it could not conclude that there are
no models under o1_,_7. In this case, the value of s must be flipped and the

resulting subspace must be checked for models.

13

1. s: the current assignment level, the current depth of the search.

2. v;: foreach i, 1 < i < s: v; denotes the variable, assigned at assignment
level 1.

3. o;: for each i, 1 <14 < 's: g; denotes the Boolean value, assigned to v;.

4. ChooseNewLiteral: a function that returns a pair (v, o) consisting
of an unassigned variable vy and a Boolean value o,, which can be
either 1 or 0.

5. FlipStatus: an array, indexed by the assignment level 7, 1 < ¢ < s,
specifying if the variable v;, assigned at assignment level ¢, was flipped.
FlipStatus]i| can either be true or false.

6. 01..s: The partial assignment to variables, assigned between assignment
levels 1...s.

7. m;: The parent resolution derivation corresponding to the flipped as-
signment level ¢ (see Definition 17).

Figure 2.1: Explanation of symbols, used by Algorithm 1 and its subroutines

1. Main loop: a loop, starting at line 2 of SSS (Algorithm 1)

2. Conflict analysis loop: a while loop, starting at line 10 of SSS (Al-
gorithm 1)

3. Backtracking loop: a while loop, starting at line 2 of
AnalyzeConfBtAndFlip (Algorithm 3)

Figure 2.2: The names of loops, used while analyzing the functionality of
Algorithm 1 and its subroutines

14

Algorithm 1 SAT Solver Skeleton or SSS (CNF formula F

{C1,Cy, ..., Cp})
1: s:=0
2: loop
3 s:=s5+1
4: (vs,04) := ChooseNewLiteral()
5. FlipStatus[s] :== false
6 if F is satisfied by o1, then
7: return F is satisfied by o7
8 if AC, € F: () is falsified by o1, then
9 Flip({Ci})
10: while 3C, € F : C, is falsified by 0., do
11: p := AnalyzeConfBtAndFlip(C;)
12: if s =0 then
13: return F is unsatisfiable with refutation p

Algorithm 2 Flip (Resolution derivation p)

1
2
3

LM =
D Oy 1= 0
. FlipStatus[s] := true

Algorithm 3 AnalyzeConfBtAndFlip (Clause C,)

1
2
3
4:
5:
6
7
8

cp={C.}
. while s > 0 and (FlipStatus|s] = true or v, ¢ p’) do
if v;7* € p’ then
pi=Ts®% p
si=s5—1
. if s # 0 then
Flip(p)
: return p

15

Line 6 checks if the formula is satisfied with the current assignment, in
which case the algorithm returns. Otherwise, the algorithm checks if there
exists a clause that is falsified by the current assignment (line 8). If none of
the clauses is falsified, the main loop continues. If one of the clauses Cj is

falsified, we say that a conflict takes place.

Definition 16 (Conflict; Blocking clause). We say that a conflict takes place
if there exists a clause C' € F, falsified by o1.s. The clause C is called a

blocking clause.

If a conflict is detected by the condition of line 8, the algorithm flips the
value of the assigned variable vy by invoking the function Flip and providing
it with a resolution derivation, consisting of the single blocking clause. The
function Flip receives as input a resolution derivation, which serves as the

parent resolution derivation of the assignment level s after the flip.

Definition 17 (Parent resolution derivation; Parent clause). A resolution
derivation of p* from F p is a parent resolution derivation for a flipped

assignment level s, if p¥ = AV v

7s, where A is a conjunction of a subset

of zero or more literals, assigned at assignment levels 1...s — 1. The target

clause of the parent resolution derivation is called a parent clause.

The parent clause can be understood as the reason for the flip: an impli-
cation of the flip of v, from a conjunction of a subset of previous assignments
—~AVv?s = A — v7s. The goals of conflict analyses and backtracking are to
find a non-flipped assignment level to which to backtrack and to build a res-
olution derivation that can serve as the parent resolution derivation after the
flip. We will see that the parent invariant provided below holds. Intuitively,

the invariant ensures that each flip is legitimate.

Invariant 1 (Parent invariant). For each flipped assignment level i, 1 < i <

s, Ts 18 a parent resolution derivation.

Now, we return to the flow of the algorithm, at line 9, which invokes the

function Flip, provided in Algorithm 2. The function Flip records the parent

16

resolution derivation of s; flips the Boolean value of v, and marks the assign-
ment level as flipped. If no conflict follows the flip, a new decision is required
and the algorithm returns to the main loop. Otherwise, the algorithm enters
the conflict analysis loop, starting at line 10. The algorithm exits the loop
when a new decision is required or the formula is proved to be unsatisfiable.
The conflict analysis loop invokes the function AnalyzeConfBtAndFlip, im-
plemented in Algorithm 3. AnalyzeConfBtAndFlip either backtracks to an
assignment level that should be flipped and flips it, or backtracks to as-
signment level 0 if the formula is unsatisfiable. In the process, it builds a
resolution derivation that serves either as a parent resolution derivation for
the newly flipped assignment level or as a refutation of the formula.

The resolution derivation, maintained by the function

AnalyzeConfBtAndFlip, is called the backtracking resolution derivation.

Definition 18 (Backtracking resolution derivation; Backtracking clause).
Assume s is the current assignment level. A resolution derivation p is a

backtracking resolution derivation, if it either holds that:
1. >0 and p! = —=AV v, or
2. 5> 0 and p* = —A (p* is the empty clause O, if A is empty).

In both cases, A is a conjunction of a subset of zero or more literals,
assigned at assignment levels 1...s — 1 (A must be empty, if s < 1). The
target clause of the backtracking resolution derivation is called the backtrack-

ing clause.

We will prove later that p, maintained by AnalyzeConfBtAndFlip, is
indeed a backtracking resolution derivation. More specifically, we will prove
that the following invariant holds in the beginning of each iteration of the

backtracking loop.

Invariant 2 (Backtracking invariant). The sequence of clauses p, maintained

by AnalyzeConfBtAndFlip, is a backtracking resolution derivation.

The main component of function AnalyzeConfBtAndFlip is the back-
tracking loop, starting at line 2. The backtracking loop halts when either:

17

(1) the backtracking level s is a non-flipped level and the backtracking clause
contains the negation of the literal, assigned at this level; or (2) the assign-
ment level becomes 0. In the former case, it follows from the definitions of
the backtracking clause and the parent clause that the backtracking clause
can serve as the parent clause for the newly flipped assignment level for the
flip that occurs at line 7. Lemma 2 shows that in the latter case, the back-
tracking resolution derivation becomes the refutation of F. Hence the parent
invariant holds after the algorithm exits the function AnalyzeConfBt AndFlip
and returns to line 12 of SSS. SSS checks if the formula is unsatisfiable, and
continues to check the condition of the conflict analysis loop. If the condition
holds, the algorithm continues with another iteration of the conflict analysis
loop; otherwise, it returns to the main loop.

Now we provide a correctness proof for our algorithm. The flow of
the algorithm will be studied and analyzed in detail during the proof.
We will also provide two examples, demonstrating the functionality of
AnalyzeConfBtAndFlip, after formulating and proving the two lemmas re-
lated to AnalyzeConfBtAndFlip.

We start off with a lemma claiming the consistency of the backtracking

loop.

Lemma 1 (Backtracking loop consistency). Suppose the backtracking invari-
ant holds just before the algorithm checks the condition of the backtracking
loop (line 2 of Algorithm 3), then one of the following three post-conditions
holds:

1. The algorithm enters the backtracking loop. It will reach line 2 of Algo-
rithm 8 — that is, the condition of the backtracking loop once more after
the current iteration is completed. The backtracking invariant will hold

at this point.

2. The algorithm does not enter the backtracking loop; s = 0 and p is a
refutation of F.

3. The algorithm does not enter the backtracking loop; s # 0; s is a non-

flipped assignment level; p is a backtracking resolution derivation and

18

-0 T
Vg e p.

Proof. We distinguish between the following five cases, one of which must
hold when the algorithm checks the condition of the backtracking loop (line 2
of Algorithm 3)). We denote the values of s and p in the beginning of the
iteration as simply s and p; and at the end of the iteration as s’ and p/,

respectively.

1. The assignment level s is 0. In this case, the backtracking loop condi-
tion does not hold. The backtracking clause must be the empty clause
[J by the backtracking invariant. Thus, p is a refutation of F. Hence,
the algorithm exits the loop when post-condition 2 holds.

2. The assignment level s > 0 is non-flipped and the negation of the literal
assigned at s belongs to the backtracking clause. In this case, the
algorithm exits the loop, when post-condition 3 holds by construction.
In this case, the algorithm found a variable to flip and constructed the

parent resolution derivation for the flip.

3. The assignment level s > 0 is flipped and the negation of the literal
assigned at s belongs to the backtracking clause. In this case, the
algorithm enters the loop. The backtracking loop resolves the parent
derivation of s 7 with the backtracking derivation p and updates the
backtracking derivation with the result. To verify that 7y @ p is a
valid composition of resolutions, we need to check that 7 and p’ are
resolvable. By the parent invariant, it holds that 77 = = AV 1% where
A is a conjunction of a subset of zero or more literals, assigned at
assignment levels 1...s — 1. By the backtracking invariant and our
assumption that the negation of the literal assigned at s belongs to the
backtracking clause, p! = —B V v, where B is a conjunction of a
subset of zero or more literals, assigned at assignment levels 1...s— 1.
Hence, 71" and p” are resolvable on v,; thus 7, ® p is a resolution
derivation. Moreover, after the algorithm decrements s and reaches
the loop condition once again, p’ is a backtracking resolution derivation,

since its target clause is composed of a conjunction of a subset of zero or

19

more literals, assigned at assignment levels 1...s" — 1 and, optionally,

0

vy * . Therefore, post-condition 1 holds.

. The assignment level s is non-flipped and the negation of the literal as-
signed at s does not belong to the backtracking clause. In this case, the
algorithm enters the loop, but does not change the backtracking resolu-
tion derivation. The backtracking invariant still holds after decrement-
ing the assignment level and reaching the loop condition once again,
since the backtracking clause is still composed of a negation of a con-
junction of a subset of zero or more literals, assigned at assignment
levels 1...s" — 1 and, optionally, U;,US'. Therefore, post-condition 1
holds. The behavior of our algorithm in this case shows the difference
between our resolution-aware algorithm and the original backtracking

algorithm DLL [15], which flips every non-flipped variable.

. The assignment level s is flipped and the negation of the literal assigned
at s does not belong to the backtracking clause. Post-condition 1 holds
for exactly the same reasons that it held for the previous case (when s
was non-flipped). It is interesting, however, that in our case the parent
resolution derivation of s is not included in the newly created parent
resolution derivation. We say that resolution backward pruning takes
place in this case. Resolution backward pruning corresponds to one of
the three cases of backward pruning, which will be analyzed in Sec-
tion 3.3. We relate search pruning to the algorithm’s ability to reduce
the number of nodes in the final resolution refutation of the formula.
In our case, the parent resolution derivation of v, is not included in
the derivation of the new backtracking clause; thus it will not be in-
cluded in the parent resolution derivation of the newly flipped variable,
which in turn means that it will not be included in the final resolution
refutation of the formula. We will encounter the other two types of
backward pruning when discussing non-chronological backtracking and

1UIP-based conflict-directed backjumping.

20

Lemma 2 (Backtracking consistency). Suppose that when the function

AnalyzeConfBtAndFlip is invoked, the following pre-conditions hold:

-0
S

1. The assignment level s is flipped, s > 0 and C, = AV v,%, where
A is a conjunction of a subset of zero or more literals, assigned at

assignment levels 1...s — 1.
2. The parent invariant (invariant 1) holds.

Denote the values of s and p, when AnalyzeConfBtAndFlip finishes by
s and p'. AnalyzeConfBtAndFlip exits when either of the following post-

conditions hold:

1. The assignment level s' is 0 and p' is a resolution refutation of F.

2. The assignment level s’ is flipped; s < s; the parent invariant holds.

Proof. First, we show that the backtracking invariant holds, when the condi-
tion of the backtracking loop is reached for the first time. At this point p is a
backtracking resolution refutation, consisting of the single clause C,., serving
as the target clause. By pre-condition 1 of the lemma, C, = =AV v, where
A is a conjunction of a subset of zero or more literals, assigned at assignment
levels 1...s —1, and s > 0. This condition is sufficient for ensuring that C,
is a backtracking clause and p is a backtracking resolution derivation. Hence,
the backtracking invariant holds.

Observe that the loop must terminate, since s is decreased at each itera-
tion, and the condition s > 0 is a terminating condition for the backtracking
loop. It also holds that s’ < s, since the condition of the backtracking loop
always holds for the first iteration, hence the assignment level is decreased
at least once. The subsequent iterations of the backtracking loop may only
decrease the assignment level.

From an iterative application of post-condition 1 of Lemma 1, the back-
tracking invariant must hold each time before the algorithm checks the con-

dition of the backtracking loop (line 2), including the last iteration. At the

21

last iteration, the condition of the loop does not hold, hence one of post-
conditions 2 or 3 of Lemma 1 must hold. We show that in either case, one
of the post-conditions of our lemma holds.

If the algorithm exits the loop, when s’ = 0 and p’ is a resolution refuta-
tion, then the function AnalyzeConfBtAndFlip exits, returning a refutation,
and post-condition 1 of our lemma holds.

Suppose that the algorithm exits the backtracking loop, when s £ 0, s
is a non-flipped assignment level, p’ is a backtracking resolution derivation
and v,” € pf. Then, the function AnalyzeConfBtAndFlip flips the value
of vy. In this case, the backtracking resolution derivation p’ can serve as a
parent resolution derivation for the new flip. Previously, we proved that p
is a resolution refutation. The backtracking clause p'7 fulfills the require-
ments for serving the parent clause for the following reason: we assumed
that v

-
3/

conjunction of a subset of zero or more literals, assigned at assignment levels
1...8 — 1 by the definition of a backtracking clause. Note also that the

algorithm did not modify the parent resolution derivations of the assignment

€ p'T; the rest of the literals of p' must be —=A, where 4 is a

levels lower than s’. Hence, the parent invariant holds, when the function
AnalyzeConfBtAndFlip exits. We have already shown that s’ < s and we
have demonstrated that s’ is a flipped level. Thus, post-condition 2 holds. []

Now we demonstrate the functionality of function AnalyzeConfBt AndFlip
on two examples.

First, consider Fig. 2.3(b), which shows a snapshot of an invocation of SSS
on input formula « just after the third conflict. The rightmost path comprises
the current partial assignment, that is 7' = —a; v3> = b;v5* = c. Assignment
level 1 is non-flipped and assignment levels 2 and 3 are flipped. The parent
resolution derivations of levels 2 and 3 are {a V b} and {—b V c}, respectively.
The function AnalyzeConfBtAndFlip is provided with the blocking clause
—bV —c as a parameter. The algorithm initializes the backtracking resolution
derivation with the blocking clause. The first iteration of the backtracking
loop starts at assignment level 3. The literal —c appears in the backtracking

clause; thus the algorithm updates the backtracking resolution derivation.

22

-a a

N

—a \/ b aVb / b\
Ve -bV —c -bV —\bV—\c -bV -bV —c
(a) A refutation of a or o/ (b) Snapshot of invoca- (c) Backtrackmg and flip-
tion of Algorithm 1 on o ping, given Fig. 2.3(b)

-a

—c ﬂbv\c aVb
—bV =bV —c —bV aVb
(d) Snapshot of 1nvocat10n (o) 1UIP based CDB and flipping given (f) NCB effect
of Algorithm 1 on o/ Fig. 2.3(b); backtracking and flipping

given Fig. 2.3(d)

Figure 2.3: Examples of search trees, resolution refutations and the impact of
various algorithms, given the formulas o = (aVb)A(=bVe) A(—=bV—c)A(—aVb)
and o = a A (aV —b)

The new backtracking clause is =b = bV ¢ ®° =b V —c. The algorithm
backtracks to assignment level 2 and enters another iteration of the back-
tracking loop. The literal =b appears in the backtracking clause; hence the
backtracking resolution derivation is updated. The new backtracking clause
is a = a Vb ®"—b. The algorithm backtracks to the non-flipped assignment
level 1. The negation of the assigned literal —a appears in the backtrack-
ing clause. Hence, the backtracking loop terminates. The algorithm flips
the value of —a using the newly derived backtracking resolution derivation
as the parent resolution derivation. The situation at this point is shown in
Fig. 2.3(c). The current assignment level is 1 and the only assigned vari-
able is a. The bottom-non-flipped part of the figure, which included nodes
with clauses and arrowed edges, represents the parent resolution derivation,
created by the backtracking loop. This parent resolution derivation can be
represented non-graphically as {=bV ¢, =bV —¢, —b,a V b, a}.

Consider now Fig. 2.3(d), representing another snapshot of an invocation
of SSS after the third conflict. The current assignment level is 3. In the first
iteration of the backtracking loop, the backtracking resolution derivation is
updated. The new backtracking clause is =b = —bV ¢ ®° =b V —c. The

flipped assignment variable a does not appear in the backtracking clause,

23

hence backtracking continues and the backtracking resolution derivation is
not updated. The backtracking stops at the non-flipped assignment level 1
when the backtracking clause is =b. The situation that results after the flip
appears in Fig. 2.3(e). The bottom-non-flipped part of the figure represents
the parent resolution derivation of —b. Note that the parent resolution of —a,
which consists of the single clause a V —b, does not appear in the new parent
resolution derivation.

Next, we provide a proof that, given a CNF formula, Algorithm 1 termi-
nates and returns a resolution refutation if the input formula is unsatisfiable,
or a model if the formula is satisfiable. We need to formulate an assignment
invariant that states that none of the clauses of F is falsified just before

choosing new assignment literal.

Invariant 3 (Assignment invariant). None of the clauses of the input formula
F is falsified with o, before invoking line 4 of SSS (Algorithm 1).

Now we introduce the termination function for SSS. We will prove ter-
mination of SSS by demonstrating that the finite termination function must

increase.

Definition 19 (Termination function). Let p be the number of variables in
the input CNF formula F. The termination function, which can be calculated
at each point of SSS execution, is a pair of integer numbers (t,s). The second
component of the pair s is the assignment level. The first component of the
pair t is determined as follows. Suppose bit number 0 is the least significant
bit. Then, bit number ¢ of t is 1 iff 1 < s and i is a flipped assignment level,
that is FlipStatus[i] = true. Bit number 0 of t and bits, whose number is

greater than s, are set to 0.
Proposition 3. The termination function is finite.

Proof. For termination function (¢,s), the assignment level s is bound by
the number of variables. Only bits 1 to s of ¢, inclusively, can be assigned 1,

hence t is a finite number as well. O

Definition 20 (Comparison of termination functions). Let fi; = (t1,s1) and

fa (t2, $2) be two termination functions. Then,

24

o f1>f2 ’Lﬁt1>t2 ort; =ty cmd51>52.
o f2>f1 ’Zﬁt2>t1 orty =t1 and sy > ;.

e fi=fif fi # f2and fi1 £ fo.
Lemma 3 (Correctness and termination). Suppose that SSS (Algorithm 1)

18 situated just before choosing the new assigned literal at line 4. Suppose
that the assignment and the parent invariants hold and that the termination

function is f1. Then, one of following post-condition holds:

1. The algorithm will reach line 4 once again. The assignment and the
parent invariants will still hold. The new termination function fs will

be strictly greater than fi.

2. The algorithm will return that the formula is satisfiable with the model

01..s. In this case, o1, indeed satisfies F.

3. The algorithm will return that the formula is unsatisfiable with the res-
olution refutation p. In this case, p is indeed a resolution refutation of
F.

Proof. We distinguish between the following events:

1. The algorithm chooses the new literal and then exits immediately, since
01..m satisfies F. In this case, post-condition 2 of our lemma holds. The

assignment o, is a model by construction.

2. The algorithm chooses a new literal and does not encounter a model;
the condition for the conflict of line 8 does not hold. In this case, the
algorithm continues with another iteration of the main loop and reaches
line 4 once again. The assignment invariant still holds, since otherwise
the condition of line 8 for the conflict would have held. The parent
invariant still holds, since the flipped levels remained as they were;
the structure of their parent resolution derivations also did not change.
Finally, the new termination function is greater than the previous one,
since the first component of the pair did not change, but the second

one (the assignment level) increased by 1.

25

3. The algorithm chooses a new literal and does not encounter a model;
the condition for the conflict of line 8 holds; there is no conflict after the
flip of line 9. In this case, the algorithm continues to another iteration of
the main loop and reaches line 4 once again. The assignment invariant
still holds, since otherwise the condition of line 10 for the conflict would
have held. Now we show that the parent invariant still holds. The
only new flipped assignment level is associated with a parent resolution
derivation, consisting of the single clause C) that used to be the blocking
clause of the conflict. We know that C; was falsified by oy, before
the flip. We also know that the assignment invariant held before the
flip; hence the assignment at level s before the flip was necessary to
falsify the clause C;. This means that C; consists of a negation of a
conjunction of a subset of 0 or more literals assigned at levels 1...s5—1
and v?g , where o’ is the partial assignment after the flip. Hence, {C}} is
a parent resolution derivation and the parent invariant holds. Finally,
the termination function increased, since the first component of the

pair was increased due to the last flip.

4. The algorithm chooses a new literal and does not encounter a model;
the condition for the conflict of line 8 holds and there is a conflict after
the flip of line 9, discovered by the conflict loop condition (line 10).
In this case, the algorithm enters the conflict analysis loop. Note that
when analyzing the previous case, we showed that the parent invariant
still holds after the flip and that the termination function increased.
Consider now the first iteration of the conflict analysis loop. As usual,
we denote the values of s and p, when AnalyzeConfBtAndFlip fin-
ishes, by s’ and p’. By Lemma 2, the AnalyzeConfBtAndFlip exits
when either s' = 0 and p’ is a resolution refutation of F, in which case
post-condition 3 of our lemma holds, or when the assignment level s’
is flipped; s’ < s and the parent invariant holds. Assume the latter.
In this case the algorithm reaches the condition of the conflict anal-
ysis loop once again. If it holds, then from repeated application of

Lemma 2 it follows that whenever (and if) the condition of the con-

26

flict analysis loop is reached once again, the parent invariant holds.
Note that by Lemma 2, the condition of the conflict analysis loop
may be reached a limited number of times, since each application of
AnalyzeConfBtAndFlip decreases the assignment level by 1, and SSS
returns unsatisfiable, if the assignment level is decreased to 0. Suppose
we are at the stage when the condition of the conflict analysis loop
does not hold and the algorithm exits the loop. Then, the algorithm
proceeds to another iteration of the main loop. The assignment invari-
ant must hold at this point, since otherwise the conflict analysis loop
would not have terminated. As we have shown, the parent invariant
must also hold; the new termination function f, must be greater than

f1, since the first component of the pair increased due to the last flip.

]

Theorem 1 (Correctness and termination). Given a satisfiable formula F,
SSS (Algorithm 1) will return that the formula is satisfiable with the model
01..s- In this case, o1 indeed satisfies F. Given an unsatisfiable formula F,
SSS will return that the formula is unsatisfiable with the resolution refutation

p. In this case, p is indeed a resolution refutation of F.

Proof. Note that the first time SSS reaches line 4, both the assignment and
the parent invariants trivially hold. Hence, both pre-conditions for Lemma 3
are fulfilled and we can apply the lemma iteratively until one of the post-
conditions 2 or 3 of Lemma 3 hold. Indeed, whenever post-condition 1 of
the lemma holds, we can use it as a pre-condition for applying the lemma
once again. Note that each application of the lemma that satisfies post-
condition 1 increases the finite termination function. Hence, in the end,
one of the post-conditions 2 or 3 must hold. Therefore, the algorithm will
terminate returning either a model, if F is satisfiable, or a refutation, if F
is unsatisfiable. The algorithm cannot return a refutation for a satisfiable
formula due to the resolution’s soundness. It cannot return a model for an
unsatisfiable formula, since the algorithm explicitly verifies that the returned

assignment is a model at line 6. 0

27

2.2 From the SAT Solver Skeleton to a Mod-
ern SAT Solver

In this section, we describe a number of widely used techniques that enhance

the basic backtracking algorithm SSS. These techniques include:

e Boolean Constraint Propagation (BCP) [15]

e Non-Chronological Backtracking (NCB) [3, 60]

1UIP-based Conflict-Direct Backjumping (CDB) [3, 60, 45]

Conflict Clause Recording (CCR) [63, 60, 45]
e Restarts [29]

e Conflict Clause Deletion [3]

We show how to augment Algorithm 1 (SSS) with each one for the above-
mentioned algorithms and discuss them in the light of our understanding of
the SAT solver functionality. Our pseudo-code allows one to choose the deci-
sion heuristic, the restart strategy, the clause deletion strategy and the data
structures. Integrating all the algorithms into SSS results in a generalization
of the algorithm, implemented in the Chaff-2001 SAT solver [45]. Fixing
the decision heuristic, the restart strategy, the clause deletion strategy and
the data structures to the ones proposed in [45] would make our algorithm
identical to Chaff-2001.

This section uses a number of concepts, well-known in the literature, but

not yet addressed in our work. We start with a number of definitions.

Definition 21 (Decision). The operation of choosing a new literal at line /
of SSS (Algorithm 1) is called a decision.

Each assigned variable is associated not only with the assignment level,

but also with a decision level.

28

Definition 22 (Decision level). Fach wvariable v, assigned at assignment
level 1, is associated with a decision level d, equal to the number of non-
flipped assignment levels between 1 and i, inclusively. The decision level of

an assigned literal v* is defined to be the decision level of the variable v.

For example, the decision level of all the assigned literals appearing on
Fig. 2.3(b) on page 23 is equal to 1, since the first assignment level is the

only non-flipped assignment level.

Definition 23 (Decision variable; Decision literal). A wvariable (literal), as-
signed at assignment level i, is a decision variable (literal) iff i is a non-

flipped assignment level.

Proposition 4 (Decision Variable Consistency). Fach decision level has only

one decision variable/literal associated with it.
Proof. Follows from Definitions 22 and 23. O]

The decision variable of decision level 1 on Fig. 2.3(b) is a, whereas its

decision literal is —a.

Definition 24 (Current decision level). Fach stage of the SSS (Algorithm 1)
inwvocation is associated with the current decision level: the number of as-

signed decision variables.

It is sometimes convenient to reason about the resolution derivation that

would turn the parent resolution derivation after the flip.

Definition 25 (Asserting resolution derivation; Asserting clause). The res-
olution derivation, supported as a parameter to the function Flip, is called an
asserting resolution derivation. The target clause of the asserting resolution

deriwation is called the asserting clause.

Proposition 5 (Asserting Clause Consistency). The asserting clause must
be of the form pT = —AV v]%, where A is a conjunction of a subset of zero

or more literals, assigned at assignment levels 1...s — 1.

29

Proof. One can show that the parent invariant must hold after each flip by
applying arguments similar to those appearing in the proof of Lemma 3.
(We skip the proof, since it would be very similar to that of Lemma 3.) The
algorithm is going to use the asserting resolution derivation as the parent
resolution derivation after the flip. The value of v, will be flipped to —o,.
Denote 7, = —o,. By the parent invariant, the parent clause must be of the
form - AV vl*, where A is a conjunction of a subset of zero or more literals,
assigned at assignment levels 1...s — 1. The asserting clause is the parent

clause before the flip, that is before negating o,; hence p” = =A VvV v;7s. O
We provide an intuitive notion of the n'* highest assignment level.

Definition 26 (n'" highest assignment level). Assume C = v;* V v, % V
.. .\/vj;k be a clause, containing 1 or more literals, assigned by SSS. Suppose
that for each 7 : 1 < j <k, the assignment level of vfjij 18 greater than that
of v;‘:zl Then, the highest assignment level of C is iy. The n'" highest

assignment level of C is ix_,11 if k> (n— 1) and 0 otherwise.

Definition 27 (Asserting literal; Failure-driven assertion). The literal with
the highest assignment level in an asserting clause is called the asserting
literal. The operation of flipping an asserting literal is called a failure-driven

assertion.

Each remaining section of this chapter is dedicated to an algorithmic
enhancement of SSS. The correctness proofs show how to update the proof
of Theorem 1, which depends on the proofs of Lemmas 1, 2 and 3, when a
specific additional algorithm is applied. We show how to update the proofs

of relevant lemmas.

2.2.1 Boolean Constraint Propagation (BCP)

Boolean Constraint Propagation (BCP) is the process of repeatedly employ-
ing the unit clause rule, proposed in [15], until a fixed-point is reached. First,

we define concepts, related to BCP, using our terminology.

30

Definition 28 (Unit clause). Suppose that SSS (Algorithm 1) is situated
just before making a new decision at line 4. A clause C is a unit clause if
C = -AV*, where A is a conjunction of a subset of zero or more literals,

assigned at assignment levels 1...s — 1 and v™ is an unassigned literal.
Now we define the unit clause rule.

Definition 29 (Unit clause rule). Suppose that SSS (Algorithm 1) is situated
jJust before making a new decision at line 4. If there exists a unit clause
C = -AV", the algorithm must assign the variable v the value —k. In this
case, one says that the unit clause rule was applied in unit clause C. If there

are a number of unit clauses, the algorithm chooses one of them.

Boolean Constraint Propagation (BCP) forces the algorithm to use unit
clause rule, whenever possible. To implement BCP within SSS, do the fol-
lowing:

BCP (invoked instead of line 4 of Algorithm 1):
if 3C € F: C = -A V" is a unit clause then
(vs,05) == (v, DK)
else
(vs,05) := ChooseNewLiteral()

Our definition of the unit clause rule is different from the original one [15]
in that we enforce the choice of the negation of the unassigned literal, ap-
pearing in the unit clause, rather than the literal itself. This approach allows
one to describe the algorithm implemented in modern SAT solvers in our
terminology without referring to implications and implication graphs, thus
detaching conflict analysis from BCP. In our framework, a conflict always
follows a unit clause rule application; hence the algorithm is forced to flip
the value of vy immediately. Suppose that the unit clause rule is applied to
the unit clause C = A V v*. The literal assigned as a result of the unit
clause rule application and flipping is an implied literal in the standard ter-
minology of [60]. In our framework, implied literals are treated as regular
flipped literals.

The use of data structure enabling one to implement BCP efficiently is

crucial for a SAT solver. The most popular data structure was introduced in

31

Chaff-2001 [45] and is called the Two Watched Literals (2WL) data structure.
The idea is that it is sufficient to maintain pointers to only two of the literals
of each clause to support BCP. The predecessor of 2WL is SATO’s SAT
solver Head/Tail [68]. Recent improvements to 2WL can be found in [11].
A interesting research direction that could follow from our approach is to
try applying BCP selectively, while all the conflict analysis techniques, such
as non-chronological backtracking, 1UIP-based conflict clause recording and
others, can still always be applied. It is widely accepted that BCP helps
accelerate modern SAT solvers, though it typically consumes 80-90% of a
solver’s run-time [45]. The added value of BCP is that it allows the solver to
quickly propagate information and find conflicts. However, the solver must
visit additional clauses in the large clause base of modern SAT solvers, hence
exessive BCP application might result in a high cache miss rate. We suppose
that it could be advantageous not to apply BCP at least in some cases. To
strenthen this hypothesis, we demonstrate below that, in some cases, most
of the propagations carried out by BCP are not relevant for the proof. Note
that it is sufficient to maintain only one watched literal per clause, where the

algorithm is allowed to skip propagation.

Proposition 6. There is a formula whose shortest resolution refutation by
SSS with BCP s linearly longer than in SSS without BCP.

Proof. Consider a formula consisting of (1) eight clauses, each of size 3,
corresponding to all possible disjunctions between literals of variables a, b, ¢,
excluding tautologies, and (2) the following set of k clauses for each literal p €
D ={a,b,c,—~a,—b,—c}: C? = (pVI)AN(ENVIE)AN(CEVIEE)A. AR V).
The variables LP = {I7...1}'} are fresh variables for each of D’s literals.

Clearly, there exists an invocation of SSS generating a refutation of size
7, which ignores clause set (2). BCP, however, forces k additional, useless
inferences. More specifically, if p is the first literal of D that is assigned, then
all the literals of L™ are assigned either before p or as a result of BCP, after
p’s assignment.

The size of the refutation generated by an invocation of SSS with BCP

on this example is (3 +6k), compared to a constant size refutation for plain

32

SSS. O

As BCP is only a special decision strategy for SSS, the algorithm is still

correct.

Theorem 2 (Correctness and termination of SSS with BCP). Given a satis-
fiable formula F, SSS with BCP will return that the formula is satisfiable with
the model o1._. In this case, 01,5 indeed satisfies F. Given an unsatisfiable
formula F, 8§85 with BCP will return that the formula is unsatisfiable with
the resolution refutation p. In this case, p is indeed a resolution refutation
of F.

Proof. BCP can be simulated by implementing the function ChooseNewLit-
eral, so that it would choose literals whose negation appears in unit clauses.
The correctness and termination of plain SSS does not depend on the choices
made by ChooseNewLiteral; hence SSS with BCP still terminates with a
correct result.

O

2.2.2 Non-Chronological Backtracking (NCB)

Non-chronological backtracking (NCB) [3, 60] is a technique, applied before
each flip, which tries to find and eliminate unnecessary assignments. The
notion of NCB was proposed in [60]. It is also related to the ideas of applying
conflict-directed backjumping in constraint satisfaction problem (CSP) [55]
to SAT, discussed in [3].

Suppose that SSS is about to flip a certain variable v, at assignment
level s, after building the asserting resolution derivation p (the beginning
of function Flip in Algorithm 2). Non-chronological backtracking removes
assignment levels between the highest assignment level and the second highest
assignment level of the asserting clause, non-inclusively, before each flip (if
possible). After the above-described operation, the NCB implementation of
Chaff also increases s to the closest non-flipped assignment level, that is to
the assignment level of the closest decision variable. This step is carried out
so as not to redo BCP.

33

To implement NCB within SSS, do the follow-
ing:
Non-Chronological Backtracking (NCB) (invoked just before starting
the function Flip (Algorithm 2)):
h := Second highest assignment level in p”

t := First non-flipped assignment level greater than h

if ¢ < s then
Vg = U
O¢ = Oy
s =1

Note that after applying non-chronological backtracking and flipping, the
variable v, is assigned immediately after all the variables of a certain decision
level d; and the decision level of v, after the flipping becomes d. This decision

level is called the backtrack level.

Definition 30 (Backtrack level). The decision level of a flipped variable after
applying non-chronological backtracking and flipping is called the backtrack

level.

Fig. 2.3(f) on page 23 shows the effect of NCB. A snapshot of an SSS
invocation after the first conflict is depicted on the left-hand side. The as-
serting clause for the first flip is @ V b. The algorithm identifies the fact that
the assignment level 2 can be deleted. The clause p’ still remains an as-
serting clause. The algorithm deletes assignment level 2 before the flip. The
situation that results appears on the right-hand side of Fig. 2.3(f).

As we will see in more detail in Section 3.3, the NCB algorithm induces
the second type of backward search pruning, which we call NCB backward
pruning. If a flipped assignment level is removed by NCB, the algorithm
also “forgets” its parent resolution derivation. Thus, such parent resolution
derivations will not be part of the final resolution refutation of the given
formula. NCB backward pruning does not occur in the example in Fig. 2.3(f),
since the algorithm does not delete flipped assignment levels.

The correctness NCB follows from the fact that after applying NCB, p”

is still an asserting clause that becomes a parent clause after the flip.

34

Theorem 3 (Correctness and termination of SSS with NCB). Given a satis-
fiable formula F, SSS with NCB will return that the formula is satisfiable with
the model o1._. In this case, o1, s indeed satisfies F. Given an unsatisfiable
formula F, S§S with NCB will return that the formula is unsatisfiable with
the resolution refutation p. In this case, p is indeed a resolution refutation
of F.

Proof. After applying NCB, pT is still an asserting clause that would become
a parent clause after the flip, since it is still composed of the literal, assigned
at the current assignment level s and the negation of a conjunction of a subset
of zero or more literals, assigned at assignment levels 1...s — 1. Hence, the
parent invariant is not violated by NCB; thus the proof of correctness of SSS,
provided in Theorem 1, is not affected by applying NCB and our theorem
holds.

O

2.2.3 1UIP-based Conflict-Directed Backjumping
(CDB)

The idea of conflict-directed backjumping (CDB) was proposed for the con-
text of SAT in [60, 3] and can be traced back to the work on CSP [55]. Using
unique implication points during conflict analysis was proposed in [60]. Back-
jumping, whenever a unique implication point is discovered, was proposed in
Chaff-2001 [45]. We now provide the Chaff-2001 algorithm.

A unique implication point (UIP) [60] is a well-known concept, whose
name is rooted in the implication-based approach to conflict analysis. We

express this notion in our framework.

Definition 31 (n'* unique implication point). Suppose that SSS is back-
tracking over a flipped assignment level s in function AnalyzeConfBtAndFlip
(Algorithm 3) wisiting line 4, when the condition v;° € p' holds. Then,
the variable vy is a Unique Implication Point (UIP) if it is the only variable
of pr, assigned at the current decision level. Backtracking may find more

than one UIP. UIPs are counted in the order in which they appear during the

35

backtracking phase starting with 1. In addition, the decision variable of each

decision level is considered to be the last UIP of that decision level.

Let g be the current decision level. Let ¢ be the assignment level of
the decision variable of g. The idea behind 1UIP-based conflict-directed
backjumping [45] is as follows: once the first UIP variable v, is discovered
during backtracking, continue as if v, was a decision variable, assigned instead
of vy, whose parent clause is the current backtracking clause. One way to
think about 1UIP-based CDB is as substituting the decision v; by v, a-
posteriori. This is implemented as follows:

1UIP-based CDB (invoked just before line 4 of Algorithm 3):
if there exist non-flipped assignment levels then

g := The decision level of v,

if v;7* is the only literal in p? with the decision level g then

t := The assignment level of the decision variable of g

vy = Vg
Or .— Og

FlipStatus|t] := false
s:=t

Continue to the condition of the while loop

See the transformation of Fig. 2.3(b) into Fig. 2.3(e) on page 23 for an
example of the effect of 1UIP-based CDB. After the algorithm derives a new
backtracking clause —b during backtracking, it discovers that it contains only
one variable, b, assigned at the last (and only) decision level. Therefore, it
deletes the decision a, and simulates a situation, identical to the one that
would have been created if the decision b had been taken instead of the
decision —a. This situation is shown in Fig. 2.3(e). The parent clause and
parent resolution derivation of the first assignment level are updated to the
backtracking clause and its derivation.

1UIP-based CDB induces the third type of backward pruning, analyzed
in Section 3.3, which we call UIP backward pruning. Consider a flipped
assignment level p that is situated between the assignment level of the last

decision and the assignment level of the first UIP variable, inclusively. The

36

parent resolution derivation corresponding to p is not included in the newly
derived parent resolution; thus it will not be included in the final resolution
refutation. We say that it is pruned. In our example, the parent resolution
derivation corresponding to the second assignment level that consists of a
single clause a V b is pruned.

The correctness of 1UIP-based CDB follows from the fact that apply-
ing the 1UIP-based CDB does not break the backtracking invariant; hence
Lemma 1 still holds.

Theorem 4 (Correctness and termination of SSS with 1UIP-based CDB).
Given a satisfiable formula F, SSS with 1UIP-based CDB will return that the
formula is satisfiable with the model oy, 5. In this case, o1, indeed satisfies
F. Given an unsatisfiable formula F, SSS with 1UIP-based CDB will return
the fact that the formula is unsatisfiable with the resolution refutation p. In

this case, p is indeed a resolution refutation of F.

Proof. If the first UIP is the decision variable, then the 1UIP-based CDB
algorithm, described above, is not invoked at all and the correctness of our
theorem trivially follows from Theorem 1.

Suppose that the first UIP is a flipped variable. First, we show that
Lemma 1 still holds after updating the backtracking loop with the 1UIP-
based CDB algorithm. Suppose that the algorithm enters the iteration of the
backtracking loop, where 1UIP-based CDB is applied. The last line of 1UIP-
based CDB application states that the algorithm continues to the condition of
the while loop. After applying 1UIP-based CDB, the backtracking invariant
continues to hold, since the backtracking clause is still composed of the literal
assigned at the updated assignment level s" and the negation of a conjunction
of a subset of zero or more literals assigned at assignment levels 1...s" — 1.
Hence, post-condition 1 of Lemma 1 holds.

The proof of Lemma 2 uses the fact that AnalyzeConfBtAndFlip must
decrease the assignment level, hence it is also important to show that the
assignment level is still decreased by the iteration of AnalyzeConfBtAndFlip
that uses 1UIP-based CDB, even though line 5 of AnalyzeConfBtAndFlip,

which explicitly decreases the assignment level, is not reached by such it-

37

eration. This statement is correct, since the assignment level is changed
to the assignment level of the last decision, which must be lower than the
assignment level of the first UIP by construction.

Other parts of the proof of the correctness and termination of plain SSS,

provided in Theorem 1, remain unaffected; hence our theorem holds.
O]

We underscore the fact that we do not consider 1UIP-based conflict clause
recording in this section, but only 1UIP-based CDB. In our analysis, these

two concepts are not necessarily related.

2.2.4 Conflict Clause Recording

Conflict clause recording (CCR) is a powerful algorithm that is used by
modern SAT solvers to prune the search space. Conflict clause recording
grew out of work in AT on explanation-based learning [63]. It was proposed
to be employed in modern SAT solvers in [3, 60]. In our terminology, CCR
is an enhancement to SSS, allowing the algorithm to use some or all of the

derived clauses for conflict identification and propagation.

Definition 32 (Conflict clause). A conflict clause is a clause, derived from

the initial formula F by resolution during SSS invocation.

It has been shown that CCR as practiced in today’s SAT solvers, assum-
ing unlimited restarts (restarts are addressed in Section 2.2.5), corresponds
to a proof system exponentially more powerful than that of plain backtrack-
ing [4] in a sense defined precisely in [13]. Conflict clause recording can be
as powerful as general resolution, while backtracking has been known to cor-
respond to the exponentially weaker tree-like resolution. This is in contrast
to BCP, NCB and 1UIP-based CDB, which can be understood as pruning
techniques or heuristics, but they do not add inference power to the basic
algorithm, which remains as powerful as tree-like resolution. We do not an-
alyze the inference power of algorithms for SAT in this work, concentrating
on more practical aspects of SAT solving. The interested reader is referred

to [4] for more details.

38

The most popular scheme for CCR records only the clauses that served

as parent clauses for conflict identification and propagation.

Definition 33 (Parent-based conflict clause recording). Parent-based con-
flict clause recording is a conflict clause recording scheme that records only
the clauses that served as parent clauses for conflict identification and prop-

agation.

Basically, parent-based conflict clause recording was first employed in
Chaff-2001 [45], which used 1UIP-based CDB and recorded only the par-
ent clause for each flip, called the 1UIP conflict clause. Chaff’s scheme for
conflict clause recording is called 1UIP-based conflict clause recording. In
the literature on practical SAT solver design, CCR is defined via implication
graph terminology: when a conflict occurs, a clause, corresponding to a cut
in the implication graph, is added to the formula. We provide a simpler and
a more flexible definition of CCR. This approach is not new, as it already ap-
pears in the literature [50], but it is usually not used in the area of practical
SAT solver design.

To implement conflict clause recording, a set of currently used conflict
clauses L must be maintained. The algorithm should use F' U L for conflict
identification and propagation. To implement parent-based conflict clause

recoding within SSS, the following steps must be carried out:

1. Add the following line just after the line 1 of Algo-
rithm 1:

Li={}

2. Replace F by FUL in lines 6, 10 and 8 of Algorithm 1 and in the first line
of the algorithm for BCP implementation, provided in Section 2.2.1.

3. Insert the following code just after line 7
of function AnalyzeConfBtAndFlip (Algo-
rithm 3):

L:=LuU{p"}

39

To implement any other conflict clause recording scheme, it is sufficient
to add some or all of the clauses, derived by resolution by Algorithm 3, to L.
Employing CCR within SSS does not violate algorithm correctness.

Theorem 5 (Correctness and termination of SSS with CCR). Given a satis-
fiable formula F, SSS with CCR will return that the formula is satisfiable with
the model o1 ,. In this case, 01, 5 indeed satisfies F. Given an unsatisfiable
formula F, SSS with CCR will return the fact that the formula is unsatisfi-
able with the resolution refutation p. In this case, p is indeed a resolution
refutation of F.

Proof. All of the arguments used in the proof of Theorem 1 still hold, even if
conflict clauses are recorded (independently of the conflict clause recording
scheme). O

2.2.5 Conflict Clause Deletion (CCD) and Restarts

Recording and keeping too many conflict clauses may lead to memory explo-
sion and BCP deceleration. Conflict clause deletion (CCD) [3], also known
as relevance-based learning, deletes unnecessary conflict clauses. The first
heuristic for CCD was proposed in [3]: clauses are deleted as soon as the
number of unassigned literals becomes greater than some threshold k. A
similar idea is used in GRASP [60] and Chaff [45]. The paper on the Berk-
min SAT solver [27] proposed removing clauses based, not just on their size,
but also on their activity — that is, the number of times the clause was used
for conflict derivation, and age — that is, when the clause was recorded. We
are unaware of any survey paper on conflict clause deletion strategies.

To implemented conflict clause deletion, it is sufficient to allow the solver

to delete any conflict clause at any time:

Conflict Clause Deletion (invoked just before line 3 of SSS (Algo-
rithm 1))
RemoveSomeConflictClausesIfRequired (L)

The function RemoveSomeConflictClausesIfRequired may remove or leave

any conflict clause, whenever invoked.

40

A restart stops the backtrack search process, unassigning all the variables
and restarting the search. Restarts have been proposed and shown effective
for real-world SAT instances [29]. Chaff [45] restarts the search after ¢ conflict
clauses are recorded, where 7 is an integer threshold number, slowly increased
during algorithm invocation. A number of more dynamic restart strategies
were proposed recently [6, 57]. We refer the reader to some recent papers on
this topic for an overview [32, 57].

For implementing a restart strategy within SSS, it is suffi-
cient to allow the algorithm to restart at every point of the

search:

Restarts (invoked just before line 3 of SSS (Algorithm 1))
if RestartNow() then
s:=0
The function RestartNow can return true or false at each invocation.
Employing CCD and restarts violate the termination arguments for SSS.
For example, if the function RestartNow always returns true, the algorithm
never terminates. One way to eliminate this problem is to force the algorithm
to record at least one conflict clause between two subsequent invocations of
restart and never delete it. It should be noticed, though, that conflict clause
deletion and restart strategies, as implemented in modern SAT solvers, seem
to be efficient enough to cope with this problem, even if special measures to

avoid infinite loops are not taken.

Theorem 6 (Correctness and termination of SSS with restarts and conflict
clause deletion). Suppose that at least one new conflict clause that is never
deleted is recorded between two subsequent invocation of restarts. Then, given
a satisfiable formula F, SSS with restarts and conflict clause deletion will
return that the formula is satisfiable with the model o1 4. In this case, o1
indeed satisfies F. Given an unsatisfiable formula F, SSS with CCR will
return the fact that the formula is unsatisfiable with the resolution refutation

p. In this case, p is indeed a resolution refutation of F.

Proof. We need to check the impact of restarts and conflict clause deletion

on the proof of Lemma 3, since the other lemmas concentrate on proper

41

functionality of backtracking, which is not related to restarts and conflict
clause deletion. It is easy to see that restarts and CCD do not violate the
soundness of post-conditions 2 and 3 of Lemma 3. Also, post-condition 1
holds if a restart is not applied during the new iteration of the main loop.
However, the termination function becomes 0, when a restart is applied,
hence post-condition 2 does not hold, whenever a restart is applied. To
prove termination, we update the termination function to contain a triple
(¢, t,s), whose first element is the number of conflict clauses and the other
elements are defined as in Definition 19. Note that there is a finite number of
clauses, given a finite variable domain. Now the termination function must
grow, even if restarts are applied, since it is guaranteed that the algorithm
records at least one new conflict clause between restarts. The parent invariant

trivially holds after a restart. Hence, post-condition 2 holds. O]

42

Chapter 3

Understanding and Enhancing

Conflict-Driven Learning

Conflict-driven learning (CDL) [63, 55, 3, 60, 45] is a series of algorithmic
improvements to the backtrack search algorithm, applied upon detection of
a conflict. Chaff’s CDL algorithm is used as the baseline approach in mod-
ern state-of-the-art solvers, such as Siege [56], Minisat [19], Berkmin [27],
Eureka [48], and PicoSAT [6]. Chaft’s conflict-driven learning algorithm
employs non-chronological backtracking, 1UIP-based conflict-directed back-
jumping and parent-based conflict clause recording. In the literature, Chaft’s

CDL engine is referred to as the 1UIP scheme for conflict-driven learning.

Definition 34 (1UIP scheme for conflict-driven learning). The 1UIP scheme
for conflict-driven learning consists of the application of the following al-
gorithms: 1UIP-based conflict-directed backjumping, non-chronological back-

tracking and parent-based conflict clause recording.

Reference [69] analyzed the performance of various schemes for conflict-
driven learning and reached the conclusion that the 1UIP scheme is the most
efficient one empirically. These empirical results were confirmed in [56]. How-
ever, the reasons for this scheme’s success were never clarified: “[T]|he effec-
tiveness of certain searching schemes can only be determined by empirical

data” [69]. Here, we hope to better understand this phenomenon.

43

Section 3.1 shows how to integrate the following variations and improve-

ments to Chaff’s conflict-driven learning engine into our framework:
e The Al[UIP scheme for CDL, proposed in [69].

e A family of schemes, which we call the UIP-n schemes, proposed by the
author of this work in [18]. These schemes terminate the backtracking

process, when UIP number n is encountered.

e Conflict clause minimization [4, 62] is a technique that is applied to
newly derived conflict clauses. It removes literals from the conflict
clause C if they can be derived from other literals of C. The 1UIP
scheme with conflict clause minimization is called the minimized 1UIP
scheme for conflict-driven learning. It is known to be efficient and

is integrated into several modern SAT solvers, such as Minisat [19],
Eureka [48], RSAT [53] and PicoSAT [6].

Section 3.2 describes the 1UIP scheme and the above-mentioned schemes
for CDL using the implication graph-based approach to conflict-driven learn-
ing used in most of the papers on this subject [60, 45, 27, 56, 69, 4, 62].

Section 3.3 formalizes the concept of search pruning by relating it to the
size of resolution derivations, maintained by the algorithm.

Section 3.4 shows that the minimized 1UIP scheme is better than others
in terms of search pruning both analytically and empirically. Our analysis
justifies the empirical superiority of the minimized 1UIP scheme over other
schemes.

Section 3.5 introduces an enhancement to the minimized 1UIP scheme for
CDL, called local conflict clause recording, proposed by the author of this
work in [18]. Local conflict clause recording enhances the minimized 1UIP
scheme by recording additional conflict clauses. We show that local conflict
clause recording improves the performance of a modern SAT solver.

Section 3.6 is dedicated to conflict clause-based assignment stack shrink-
ing, a technique, proposed by the author of this work in Jerusat [46, 47],
and further fine-tuned in the 2004 version of the Chaff solver, called
Zchaff2004 [40]. Shrinking tries to dynamically reduce the size of conflict

44

clauses and to unassign such assigned variables that are irrelevant to con-
flicts. We reaffirm the experimental results of [40], showing that shrinking
often leads to faster solving times, especially for microprocessor verification
benchmarks. We also demonstrate experimentally that assignment stack
shrinking leads to faster solving times, even when conflict clause minimiza-
tion and rapid restarts [6] are used, disproving a supposition of [6] that
assignment stack shrinking is subsumed or simulated by conflict clause min-

imization and rapid restarts.

3.1 Integrating Other Conflict-Driven Learn-

ing Schemes into our Framework

In this section, we show how to employ the UIP-n and the A/IUIP schemes

as well as conflict clause minimization in our framework.

3.1.1 The UIP-n Scheme

We start with a description of a family of schemes for conflict-directed back-
jumping, called UIP-n-based CDB. Recall the definition and the discussion
of the 1UIP-based CDB, provided in Section 2.2.3 on page 35. UIP-n-based
CDB is similar to the 1UIP-based CDB with the exception that it skips the
first n — 1 UIP’s for the notion of a UIP). The asserting clause, generated by
applying UIP-n-based CDB, is called the UIP-n conflict clause.

For an example of a UIP-2-based CDB, consider Figure 3.1(a) on page 55.
Suppose the solver is backtracking, following a conflict. Resolving the block-
ing clause a V =bV —e V f with the parent clause of f: —e V —f results in
a clause a V =b V —e. This clause contains only one variable assigned at
the last decision level, namely e; hence e is the first UIP and the 1UIP-
based CDB would stop the backtracking process. The UIP-2-based CDB
continues backtracking. The next resolution operation results in a clause
aV-bV-c=aV-bV-e®°cVe. Here the only variable that is assigned at
the last decision level is ¢, hence we found the second UIP and UIP-2-based

CDB stops backtracking.

45

The UIP-1-based CDB is identical to the 1UIP-based CDB, hence the

following algorithm can be seen as a generalization of 1UIP-based CDB:

UIP-n-based CDB (n) (invoked just before line 4 of Algorithm 3):
Require: UIPCount is initialized to 1 at the beginning of Algorithm 3
if there exist non-flipped assignment levels then
g := the decision level of vy
if v;7* is the only literal in p? with the decision level g then
if UIPCount = n then

t := the assignment level of the decision variable of g

Uy 1= Uy

Oy =0,
FlipStatus[t] := false
s:=t

Continue to the condition of the while loop
else
UIPCount := UIPCount + 1
The definition of the UIP-n scheme for conflict-driven learning is very sim-
ilar to that of the 1UIP scheme for CDL (Definition 34), with the exception
that UIP-n-based CDB is used instead of 1UIP-based CDB.

Definition 35 (UIP-n scheme for conflict-driven learning). The UIP-n
scheme for conflict-driven learning comprises the application of the follow-
ing algorithms: UIP-n-based conflict-directed backjumping, non-chronological

backtracking and parent-based conflict clause recording.

It will be shown in Section 3.4 that the 1UIP-based CDB scheme is ad-
vantageous over UIP-n-based CDB for n > 1 both theoretically — in terms of

search pruning, and empirically — in terms of performance.

Theorem 7 (Correctness and termination of SSS with UIP-n-based CDB).
Given a satisfiable formula F, SSS with UIP-n-based CDB will return that the
formula is satisfiable with the model o1, 5. In this case, o1, 5 indeed satisfies
F. Given an unsatisfiable formula F, SSS with UIP-n-based CDB will return

46

that the formula is unsatisfiable with the resolution refutation p. In this case,

p 18 indeed a resolution refutation of F.

Proof. The arguments are very similar to that of the proof of correctness and
termination of SSS with 1UIP-based CDB provided for Theorem 4. There-
fore, we skip the proof here. O]

3.1.2 The Al/UIP Scheme

One scheme for CDL, whose empirical inferiority to the 1UIP scheme remains
unexplained, is the AIIUIP scheme [69]. It terminates the backtracking pro-
cess when the so-called AllUIP conflict clause is derived. After the algorithm
identifies the first UIP, the A/IUIP scheme applies the resolution rule on the
backtracking clause using variables of lower decision levels as pivot variables,
thereby ensuring that in the end, the conflict clause does not contain more
than one literal per decision level. The primary goal is to make the clause
shorter, keeping in mind that shorter clauses are more suitable for BCP.
The AIIUIP conflict clause is indeed much shorter than the 1UIP conflict
clause, yet the performance of the 1UIP scheme is superior to the A/[UIP
scheme [69, 56]. We justify this observation analytically in Section 3.4.

Now we describe AlIUIP-based CDB.

Let d be a decision level. It is convenient for the subsequent discussion

to define a restriction of a clause to a decision level.

Definition 36 (Clause restriction to a decision level). Let C be a clause
and d be a decision level. Then C’s restriction to decision level d, denoted
by C 14, is a clause D C C, such that all the literals of D are assigned at

decision level d.

AllUTP-based CDB leaves only one variable per decision level

in the derived clause by performing additional resolution steps:

AllUIP-based CDB (invoked just before line 7 of Algorithm 3):
Require: The 1UIP-based CDB algorithm, provided in Section 2.2.3, is ap-
plied.

47

g := The current decision level
d:=9g—1
while d > 0 do
while p? [;> 1 do
h := The highest assignment level in pT |4
p =T Q" p
d:=d—-1
In our example in Figure 3.1(a), the 1UIP conflict clause is a V =b V —e.
The algorithm resolves it with the parent clause of b at decision level 1 and
receives the clause a V —e = a V —bV —e ® a V b. This clause contains one
literal from each decision level, hence serving as the AIIUIP conflict clause.
As usual, the AIIUIP scheme applies AlIUIP-based CDB, NCB and
parent-based CCR.

Definition 37 (AlIUIP scheme for conflict-driven learning). The AllUIP
scheme for conflict-driven learning comprises the application of the following
algorithms: AllUIP-based conflict-directed backjumping, non-chronological

backtracking and parent-based conflict clause recording.

Theorem 8 (Correctness and termination of SSS with AllUIP-based CDB).
Given a satisfiable formula F, SSS with AllUIP-based CDB will return that
the formula is satisfiable with the model o1 . In this case, oy s indeed
satisfies F. Given an unsatisfiable formula F, SSS with AllUIP-based CDB
will return that the formula is unsatisfiable with the resolution refutation p.

In this case, p is indeed a resolution refutation of F.

Proof. Lemma 1 remains valid, since the code of All[UIP-based CDB does
not modify the backtracking loop. The proofs of Lemma 3 and Theorem 1
remain valid as well. It is sufficient to prove that the second post-condition
of Lemma 2 still holds, given that its pre-conditions hold. (If the first post-
condition holds, the AllUIP-based CDB algorithm is not invoked by con-
struction).

The new assignment level s’ is not changed by Al[UIP-based CDB. Hence,
it remains to prove that the parent invariant holds after the flip. By Proposi-

tion 5, it is sufficient to show that p remains an asserting resolution derivation

48

after each application of the resolution rule by the A/[UIP-based CDB algo-
rithm. We prove this fact by induction on the number of applications of the
resolution rule.

Consider the situation before Al[UIP-based CDB applies the resolution
rule. The clause p” is the 1UIP clause in this case. It is shown inside the
proof of Theorem 4 on page 37 that Lemma 2 holds for 1UIP-based CDB;
hence by Proposition 5, p must be an asserting resolution derivation that
becomes the parent resolution derivation after the flip.

Now consider an arbitrary application of the resolution rule by AllUIP-
based CDB p' := 7, @ p. (We denote by p’ the resolution derivation p
after the algorithm executes the above statement.) Note that the literal
v,”* is never used as a pivot variable by the algorithm, since the algorithm
visits decision levels lower than g. Consequently, it remains to show that
o\ {v;os'} consists of negation of literals, assigned at assignment levels
1...8 —1.

By induction, p is an asserting resolution derivation. Hence, p! consists of
the literal v’ and negation of literals assigned at assignment levels 1...s" —
1. By the pre-condition of Lemma 2, the parent invariant holds, hence 7
consists of the literal v;" and negation of literals assigned at assignment levels
1...h—1, where h < . Thus, the resolution rule application is correct and
p/ is still a resolution derivation. Moreover, o7\ {v "'} consists of negation

of literals, assigned at assignment levels 1...s" — 1. O

3.1.3 Conflict Clause Minimization

Conflict clause minimization tries to remove literals from a conflict clause by
applying additional resolution steps using parent clauses of assigned literals.
Only clauses of decision levels lower than the last decision level are considered
for minimization. Conflict clause minimization was discovered independently
in [4] and by the first author of [62], who implemented it in version 1.13 of
the Minisat SAT solver [20].

Conflict clause minimization may only reduce the size of the conflict clause

or leave it unchanged, thus it should always be advantageous (at least, if the

49

Algorithm 4 RemowvelfPossible(p, t)

if ¢ is a non-flipped assignment level then
return p
else
0:=pQ” m
qg:=t—1
while ¢ > 0 do
if v,7* € 07 and v, ¢ p” then
if ¢ is a non-flipped assignment level then
return p
else
0 :=0Q% m,
qg:=q—1
: return 0

— = = =
W2

computation time is not too long.) In practice, conflict clause minimization is
successfully applied in modern SAT solvers, such as Minisat [19], Eureka [48],
RSAT [53] and PicoSAT [6]. According to [6], minimization is able to remove
32% of the literals on average, which means that when minimization is dis-
abled average clause length increases by almost 50%. Experimental results,
provided in Sections 3.4.1 and 3.6 of this work, demonstrate the empirical
usefulness of minimization. The practical usefulness of minimization was also
shown in a recent paper [62].

Algorithm 4 is an auxiliary algorithm that is invoked by the main al-
gorithm for conflict clause minimization to check if a certain literal can be
removed from the conflict clause by applying the resolution rule. It receives
a resolution derivation p and an assignment level ¢ of a literal that belongs
to the conflict clause p”. It tries to remove v,°* from clause p’ by applying
resolution using parent clauses of assigned literals. Algorithm 4 maintains a
current resolution derivation 6, initialized with p, resolved with the parent
resolution derivation of v,"".

The algorithm iterates over the assignment stack. At each assignment
level, it tries to resolve out of 7 all the literals that do not belong to conflict
clause p?. Suppose the algorithm visits assignment level q. Assume that the

negation of the assigned literal belongs to the target clause of the current

20

resolution derivation, but not to the target clause of the parent resolution
derivation, that is, v,°* € 67 and v, ¢ pT. If the assignment level is not
flipped, then it is impossible to resolve upon vy, since it has no parent clause.
In this case, the algorithm concludes that it cannot remove the literal v, "
from the conflict clause without adding other literals; hence the algorithm
returns the initial resolution derivation p. If the assignment level is flipped,
the algorithm resolves 6 with the parent clause of v,. If the algorithm com-
pletes iterating over the assignment stack and it does not return, then this
means that it succeeded in generating a resolution derivation 8, whose target
clause is of the form 67 = pT \ {v;7"}.

Now we provide an algorithm for conflict clause minimiza-

tion.

Conflict Clause Minimization (invoked just before line 7 of Algo-

rithm 3):
d := the current decision level
D:=p"\p" Ia

for ¢ from 1 to length of D do
t := i'" highest assignment level in D

p := RemovelfPossible(p, t)

The algorithm iterates over the conflict clause and checks whether each
literal assigned at lower decision levels can be removed from the clause. If
this is the case, the algorithm replaces the resolution derivation with the
minimized resolution derivation.

In our example in Figure 3.1(a), the 1UIP conflict clause is a V =b V —e.
The literals ¢ and —b belong to decision level 1 — lower than the current
decision level 2. The literal —b has the highest assignment level of the two
literals. The algorithm checks if =b can be removed from the conflict clause
by invoking RemovelfPossible. The resolution derivation 8 is initialized with
the clause a V —e = a V =bV —e ®" a V b. The only remaining assigned
literal a belongs to the conflict clause, hence the minimization succeeds and
the algorithm RemovelfPossible returns the updated resolution derivation,

which replaces p.

51

Now, we can define the concept of a minimized scheme for conflict-driven

learning.

Definition 38 (Minimized scheme for conflict-driven learning). A scheme
for conflict-driven learning is minimized if conflict clause minimization is

applied.

It is possible to implement the conflict clause minimization algorithm
more efficiently using a recursive implementation and re-using information
about visited literals between different invocations of the function Removelf-
Possible. We refer the reader to the recent papers [62, 24] for more details.

It is left to prove the correctness of conflict clause minimization.

Proposition 7 (Correctness of removing a minimized literal). Suppose that

Algorithm 4 is invoked. Assume that:
1. The parameter p is an asserting resolution derivation for s.

2. The parameter t is an assignment level of a literal that belongs to p*
and that t < s.

3. The parent invariant holds.
4. The algorithm returns at line 13.

Then, the algorithm returns a resolution derivation 0, such that 67 =
Pt \{v 7'}

Proof. Denote the resolution derivation, returned by the algorithm, by €'

It is sufficient to prove the following claim: at the beginning of each
iteration of the while loop just before the termination condition is evaluated,
67 = (p" \ {v;7*}) U D, where D is a disjunction of 0 or more negations of
the literals, assigned at assignment levels 1...q. Indeed, if the claim holds,
then 07 = p" \ {v;7'}, since ¢ = 0 when the termination condition of the
while loop holds.

We prove by induction on the number of iterations of the while loop. At

the first iteration, 6 := p ®* ;. By pre-condition 1, p! consists of v;"’* and

52

negation of literals, assigned at assignment levels 0...q. Note that ¢ must
be a flipped assignment level; otherwise the algorithm would have exited. By
pre-conditions 2 and 3, m; consists of v/ and negation of literals, assigned at
assignment levels 0. ..¢. Hence, 7 consists of p! without the pivot variable
v¢, but possibly with negations of other literals, assigned at assignment levels
0...q. We have now proved the base case.

Consider an arbitrary iteration of the while loop. If 6 was not changed
since the beginning of the previous iteration, we are done. Otherwise, denote
by 7 the derivation 6 at the beginning of the previous iteration. By the
induction hypothesis, 77 = (p \ {v;ﬁ“}) U D, where D is a disjunction of
0 or more literals, assigned at assignment levels 1...q+ 1. We need to show
that the last iteration of the while loop removed the variable vy from 7 and
added only negation of literals, assigned at levels 0...q. By construction of
the algorithm, 0 := 7 ®"+! 7,4,. Hence, the variable v,4; is removed from 7.
By the parent invariant, which is guaranteed to hold by pre-condition 3, mq41
does not contain any literals, except v,41 and negation of literals assigned at

assignment levels 0. .. q. O]

Theorem 9 (Correctness and termination of SSS with conflict clause mini-
mization.). Given a satisfiable formula F, SSS with conflict clause minimiza-
tion will return that the formula is satisfiable with the model o1 5. In this
case, 01, indeed satisfies F. Given an unsatisfiable formula F, SSS with
conflict clause minimization will return that the formula is unsatisfiable with

the resolution refutation p. In this case, p is indeed a resolution refutation
of F.

Proof. The proof is very similar to the proof of Theorem 8. Again, it is
sufficient to prove that the second post-condition of Lemma 2 still holds,
given that its pre-conditions hold.

The new assignment level s’ is not changed by conflict clause minimiza-
tion. Hence, it remains to prove that the parent invariant holds after the flip.
The pre-condition 2 of Lemma 2 guarantees that it holds before the flip. By
Proposition 5, it is sufficient to show that p remains an asserting resolution

derivation after minimization. It follows from Proposition 7 that minimiza-

23

tion may either remove the literal from p? by applying the resolution rule
over pT and parent clauses of assigned literals or return p untouched. (It is
not hard to verify that pre-conditions of Proposition 7 hold, whenever Re-
movelfPossible is applied.) In both cases the returned resolution derivation

is still an asserting resolution derivation. O]

o4

—eV-of aV-bV-eVf
(a) Snapshot of SSS invocation. Each edge
corresponds to an assignment level.

—|a—>{b}
Cﬁ{eva_'f}

(b) BCP-aware notation of the same situation as (c¢) Implication graph
in Figure 3.1(a). Each edge corresponds to a de-
cision level and is marked with the decision vari-
able on the left and implied variables in brackets.

Figure 3.1: Conflict-driven learning example. Suppose that the input formula
contains the following clauses: (aVb); (aV—-bV=eV f); (-cVe); (meV—f). The
conflict clauses, generated by applying the 1UIP scheme, the UIP-2 scheme,
the AIIUIP scheme and the minimized 1UIP-based scheme are a V —bV —e,
aV bV ¢, aV —e and aV —e, respectively.

95

3.2 Implication-Based Approach to Conflict-

Driven Learning

We now describe Chaff’s conflict-driven learning algorithm using the
implication-based approach that forces the solver to use BCP whenever possi-
ble. Our goal is to create a reference point to the standard approach. Almost
all the notions of this section have already been defined in our framework.

At each decision level, a Chaff-like solver picks a decision variable and
assigns it a Boolean value. It propagates the new decision using Boolean
Constraints Propagation (BCP): while there exists a unit clause A V 0",
where the literals of A are assigned 0 and v is unassigned, assign v the value
k. The literal v", assigned during BCP, is called an implied literal. The
associated unit clause A V v"™ of an implied literal is called the parent clause
of literal v", denoted by Par(v"®).

BCP invocation may result in a conflict — a situation where BCP finds
that all literals in the so-called blocking clause are forced to be 0. When
this occurs, the solver enters a conflict analysis mode, wherein it records one
or more conflict clauses. One of the conflict clauses must be an asserting
conflict clause — a conflict clause, containing one, and only one literal, called
the asserting literal, assigned at the last decision level. After the conflict,
the solver backtracks to the lowest possible decision level d, such that the
asserting conflict clause has only one unassigned literal — the asserting literal.
This operation is referred to as non-chronological backtracking. The solver
flips the value of the asserting literal and propagates the new value in the
conflict clause using BCP at decision level d. This operation is referred to as
a failure-driven assertion. At this point, the negation of an asserting literal
is called a flipped literal and its variable is called a flipped variable. Note that
Chaff-like solvers consider the flipped literal to be an implied literal, which
does not define a new decision level. This was not the case in GRASP, which
treated flipped literals as literals defining a new decision level. Our definition
of a decision level (Definition 22 on page 29) sticks to the terminology of
Chaff, since it is the standard in the literature. Next we discuss the notions

of an implication graph and express the concept of a unique implication point

26

in the implication graph-based terminology.

Implication relations between assigned literals can be visualized using
an implication graph. Each vertex in the graph corresponds to an assigned
literal. (We will use the notions of vertex and literal interchangeably in the
implication graph context.) An edge connects vertices a and b if —a appears
in the parent clause of b. Upon conflict, we restrict the implication graph
to contain only literals connected to the blocking clause. An example of
an implication graph appears in Figure 3.1(c). The implication level of an
assigned variable a, denoted by il(a) is the maximal distance between a and
dvar(a), where dvar(a) is the decision variable of the decision level of a. For
example, in Figure 3.1 it is the case that il(c) = 0 and il(e) = 1.

As we have seen, a central notion of conflict analysis is that of the Unique
Implication Point (UIP) [60]. We now define this notion using implication
graph-related terminology. A vertex a in the implication graph dominates
vertex b if every path from dvar(a) to b passes through a. A UIP with respect
to a set of literals A and decision level d, denoted UIP(A, d), is a vertex in
the implication graph, which dominates all the literals of A | ;, where A [
is the subset of A’s literals, whose decision level is d.! A decision level d may
have a number of UIPs. The literals UIP(A,d) can be ordered according to
their implication level. We denote the UIPs by UIP;(A,d), where UIP, has
the maximal implication level.

A UIP(A,d) can be thought of as the unique reason for the implica-
tion of literals A [; at decision level d. If one unassigns all the literals
assigned at d, assigns UIP(A,d) and propagates using BCP, all literals of
A are implied. To imply A [; without having any assumptions, one is re-
quired to use a subset of literals, assigned at levels lower than d, in addition
to UIP(A,d). Let II;(A,d) to be the set of literals, appearing on a path
of length greater than 0 from UIP;(A,d) to A [;, including A [;. Any
UIP;(A,d) corresponds to an edge cut of the implication graph, called a
UIP;(A,d) cut. The literals of II;(A4,d) are on the right-hand side of the

cut. The literals Res;(A,d) = Unerr,(A d)Pam-(a) and UIP;(A,d) are on the

"'We provide a definition of UIP that is slightly more extended than the one usually
used in the literature. We also suppose that A [; is non-empty.

a7

left-hand side of the cut. The structure of the implication graph infers that
assigning Res;(A, d) and UIP;(A, d) is sufficient in order to imply A [; using
BCP without any assumptions.

Now we are ready to describe various schemes for conflict analysis. We
start with the 1IUP scheme. One conflict clause, called the 1UIP conflict
clause, is recorded. The clause consists of the negation of literals of §; =
Resi(A,d) UUIP(A,d). Observe that (; is sufficient to imply the conflict
itself. For example, the 1UIP clause in Figure 3.1(c) is aV=bV —e. The 1UIP
clause is an asserting conflict clause; thus it can be used for a failure-driven
assertion.

As we have seen in previous sections, one can think of many other schemes
for conflict-driven learning. A comprehensive analysis and evaluation of dif-
ferent schemes for conflict clause recording is [69]. One idea was to use UIPs
for decision levels lower than d. Suppose that the previous lowest decision
level before d in (3 is dy. Then, (5 is produced by taking (;, substitut-
ing (1 [4, by UIP1(01,ds) and adding Res;(0;,d>)’s literals to the clause.
The negation of (35 is the 2UIP conflict clause. This operation can be recur-
sively applied at every decision level in 3;, in descending order. The resulting
conflict clause is referred to as the AIIUIP conflict clause. In our example,
—a V —e is the AIIUIP conflict clause.

Another natural family of conflict analysis schemes would be what we call
the UIP-j schemes. UIP-j records one conflict clause, consisting of the nega-
tion of literals of Res;(A,d) U UIP;(A,d). The recorded clause corresponds
to j’s UIP of the last decision level. Observe that in our terminology the
UIP-1 scheme is identical to 1UIP. In our example, a V —=bV —c is the UIP-2
conflict clause.

Conflict clause minimization is a technique for reducing the size of conflict
clauses. Given a clause B, a literal a € B is B-redundant if its negation is
implied by other literals of B. Minimizing a clause means removing from it
all B-redundant literals. It is not hard to see that the resulting minimized
clause is still a valid clause. In our example, b is #;-redundant, thus —bV —e
is the minimized 1UIP conflict clause. Note that an initial clause is always

subsumed by the minimized one.

28

Cc -c

—a ~f Ve a

—fVaV-c —fV-aV-oe -fVaV-e =fV-aV-e
(a) Before 1UIP-based CDB and NCB. (b) After 1UIP-based CDB and NCB.

Figure 3.2: Three kinds of backward pruning. The variables b/c/e are skipped
due to resolution/UIP/NCB backward pruning.

3.3 Capturing the Notion of Search Pruning

The goal of this section is making the commonly used notion of search prun-
ing [41, 58] more formal. We show in Section 3.4 that the minimized 1UIP
scheme is better than other known schemes in terms of both backward and
forward pruning. This serves as an explanation of its empirical advantage
over other schemes.

We define pruning as the ability of a certain conflict-driven learning
scheme to reduce the number of nodes in the resolution refutation generated
by the algorithm. We distinguish between backward pruning and forward
pruning.

Backward pruning is carried out when backtracking over some flipped
assignment levels. Suppose that the algorithm is backtracking and the as-
signment level is s. Suppose that s is a flipped assignment level. Observe
now that if the resolution rule is not applied during backtracking over s,
then the parent resolution derivation mw, will not be included in the newly

generated asserting resolution derivation.

Definition 39 (Skipped variable/literal /resolution derivation/clause/node).
A flipped assigned variable (literal) is skipped when the algorithm is back-
tracking over it, but its parent resolution is not included into the newly con-
structed asserting resolution derivation. Similarly, a resolution derivation

1s skipped, when it is a parent resolution derivation of a skipped variable.

29

A clause (node) in a resolution derivation is skipped, when the resolution

derivation is skipped.

If conflict clause recording is not used, clauses that belong to the parent
resolution of a skipped variable will not be included in the final refutation of
the input formula. Otherwise, a clause from the parent resolution derivation
of a skipped variable must be recorded and reused in a new conflict clause
derivation to be included in the final refutation. Consequently, it has a lower
chance of being included into it.

One can distinguish between three types of backward pruning:

1. Resolution backward pruning is carried out by Algorithm 1 without
any enhancements when it does not apply the resolution rule for some
flipped assignment level s, when v;°* ¢ p!, that is when the condi-
tion at line 3 of Algorithm 3 does not hold. Consider the example in
Figure 3.2(a). The backtracking clause after the first resolution rule
application is = f V —c. The variable b will be skipped, since it does not

appear in the target clause of the backtracking resolution derivation.

2. UIP backward pruning is carried out by the UIP-n scheme (or the 1UIP
scheme), after discovering the UIP variable. More specifically, this
condition becomes true when a flipped variable v, is skipped during
backtracking by the UIP-n-based (1UIP-based) CDB algorithm, since
the UIP-n (1UIP) variable belongs to an assignment level, greater than
or equal to s. For example, variable ¢ in Figure 3.2(a) will be skipped
due to UIP backward pruning. Indeed, ¢ itself is the 1UIP variable,
thus, its own parent resolution derivation is substituted by the newly

derived resolution derivation p.

3. NCB backward pruning is carried out by the NCB algorithm, when it
skips flipped assignment levels. For example, the variable e is skipped
due to NCB backward pruning in Figure 3.2(a), since the asserting

clause does not contain e and ¢ can be flipped at assignment level 2.
Forward pruning is performed by recording conflict clauses, expected to

60

be reused frequently for conflict identification or propagation, if BCP is used.

We define a measure for forward pruning in the next section.

3.4 The Pruning Effect of Different CDL

Schemes

We chose to compare the best known 1UIP scheme with UIP-2 and Al[UIP.
We believe that the latter two schemes are representative enough to highlight
the advantages of 1UIP over other schemes. The comparison with Al[UIP
shows why it is not worthwhile resolving newly created clauses with parent
clauses of variables that do not belong to the decision level of the 1UIP
variable. The comparison with UIP-2 shows why it is advantageous to pick
the first UIP of the last decision level, rather than other UIPs. We also discuss
the effect of conflict clause minimization. When comparing the contribution
of different schemes to backward pruning, we take into consideration their
impact on one particular conflict. Analyzing the contribution to backward
pruning in additional conflicts is left for future research.

The reason for choosing the first UIP, rather than other UIPs, is because it
is optimal for both backward and forward pruning. Proposition 8 analyzes the
impact of 1UIP-based CDB and UIP-2-based CDB on backward pruning. We
show that the number of the nodes in parent resolution derivations skipped
due to backward pruning by the 1UIP scheme is at least the same compared
with the UIP-2 scheme. We will see in the experimental results section that
the 1UIP scheme allows the algorithm to skip more nodes during backward

pruning in practice.

Proposition 8. Let Ni(Ns) be the number of resolution refutation nodes
skipped due to backward pruning in one particular conflict due to 1UIP (UIP-
2) backward pruning. Then, it always holds that Ny > Ns.

Proof. Denote by t; the assignment level containing the 1UIP variable; and
by to the assignment level containing the UIP-2 variable. Let us compare
the impact of the 1UIP and UIP-2 schemes on UIP, NCB and resolution

backward pruning.

61

1. Flipped variables assigned between ¢y and ¢; contribute to UIP pruning
only for the 1UIP scheme, whereas flipped variables assigned after t;
contribute to both 1UIP and UIP-2 UIP pruning. Thus, 1UIP-based
CDB skips at least the same amount of resolution derivation nodes due
to UIP backward pruning as UIP-2-based CDB.

2. The backtrack level for 1UIP-based NCB is never greater than for UIP-
2-based NCB, since each additional resolution rule application may
only add literals to the asserting clause. Thus, the number of nodes,
skipped due to NCB backward pruning for 1UIP-based CDB, is at least
the same as UIP-2-based CDB.

3. It seems that the number of nodes skipped due to resolution backward
pruning may increase in the UIP-2 scheme, since additional flipped
assignment levels may be skipped while backtracking at levels between
to and t;. However, all these variables must be skipped due to UIP
backward pruning by the 1UIP scheme. Therefore, any variable skipped
due to resolution backward pruning by the UIP-2 scheme must also be
skipped by the 1UIP scheme. This may happen as a result of UIP

backward pruning, rather than resolution backward pruning.

]

Now we analyze why the 1UIP scheme is better than the AI[UIP scheme,
although AlIUIP conflict clauses are typically much shorter than 1UIP con-
flict clauses [56]. Let the assignment level be s. Resolving at assignment
levels [for [< s does not have any impact on backward pruning. We claim
that 1UIP conflict clauses tend to be used more for conflict identification
and propagation than AlIUIP conflict clauses. Thus, 1UIP conflict clauses
are advantageous in terms of forward pruning.

Now we define a more formal measure for forward pruning. First, we need

to extend our terminology.

Definition 40 (Pre-flip conflict clause). Let v7* be a flipped literal. Then, a

conflict clause is a pre-flip conflict clause for the literal v7* and the variable

62

vs, if 1t was learned before the variable vy was flipped — that is, when the

variable v, was used as a non-flipped variable for the last time.

We analyze what fraction of pre-flip conflict clauses, for a flipped literal

o

v7s, contains v7*. Note that if a pre-flip conflict clause for v?

7, ¢ contain vZ®,

then it becomes satisfied immediately after the flip, hence it cannot help
prune the search space. Consequently, we distinguish between useful and

useless pre-flip conflict clauses.

Definition 41 (Useful pre-flip conflict clause; Useless pre-flip conflict
clause). Let C be a pre-flip conflict clause for a flipped literal v7. The clause

C is useful if it does not contain the literal v7*; otherwise C is useless.

Now, we can characterize the impact of pre-flip learning on the pruning
after the flip.

Definition 42 (Pre-flip learning uselessness). Let v, be a flipped variable.
The pre-flip learning uselessness of v7¢, denoted by Fr+(v?), is the fraction

of useless pre-flip conflict clauses, out of all pre-flip conflict clauses.

Note that pre-flip learning usefulness is a real number, varying between 0
to 1. If Frt(v?)is 1, then all the conflict clauses recorded before the flip of a
variable vy are useless for pruning after the flip, since they become satisfied.
Observe that Fr*(v?*) cannot be 0, since the parent clause of s must contain
v7s. The lower the pre-flip learning uselessness is, the more helpful are the
pre-flip conflict clauses for pruning the search space after flipping the variable
Vs.

The key observation for understanding the reasons for the empirical ad-
vantage of the 1UIP scheme over the AIIUIP scheme is that, empirically,
pre-flip learning uselessness is twice as high for the AII[UIP scheme than for
the 1UIP scheme. The explanation for this phenomenon is as follows. Con-
sider a non-flipped decision literal v7*, assigned at assignment level s and
decision level d. Assume that v, would become the asserting literal and
would be flipped. Suppose that the algorithm is exploring the search space
at decision levels higher than d. 1UIP conflict clauses tend to contain liter-

als, implied from v, as a result of BCP, rather than v, itself. AIIUIP clauses

63

tend to contain vy itself, since the resolution rule is applied on the variable,
assigned at decision level d, even when the current decision level is much
greater than d. See Figure 3.3 for an example of this phenomenon.

The impact of the 1UIP scheme on forward pruning should also be greater
than the UIP-2 scheme for two reasons. First, 1UIP conflict clauses have
at most the same size as UIP-2 conflict clauses for one particular conflict.
Second, UIP-2 conflict clauses have additional variables assigned at lower
decision levels, hence the pre-flip learning uselessness tends to be larger for
the UIP-2 scheme.

Conflict clause minimization has no impact on backward pruning. How-
ever, it should be useful for forward pruning. Apparently, a shorter clause
is better in terms of pruning than a longer clause, subsumed by it. Observe
that an AIIUIP conflict clause cannot be minimized. We will see that, em-
pirically, conflict clause minimization is highly beneficial for the 1UIP and
UIP-2 schemes.

3.4.1 Empirical Results

We implemented 1UIP, UIP-2 and AlIUIP schemes for conflict analysis within
a version of the industrial SAT solver Eureka [48] that did not employ assign-
ment stack shrinking. Conflict clause minimization was used by default, but
we also included results for 1UIP and UIP-2 schemes without minimization.
Remember that conflict clause minimization has no impact on the A/[UIP
scheme. All experiments were carried out on a machine with 4Gb memory
and two Intel Xeon CPU 3.06 processors. We used instances from well-known
industrial benchmark families, taken from bounded model checking (fam-
ily longmult; instances longmult10, longmult11) [7]; microprocessor verifica-
tion (families fvp-unsat.2.0, pipe_unsat_1.0; instances 4pipe, 5pipe, 8pipe_k,
9pipe_k) [67] and equivalence checking (family goldberg03-hard_eq_check; in-
stances rotmul, termImul) [5]. The three schemes are compared in Tables 3.1
and 3.2. These tables show the execution time and the number of conflicts.
In addition, they show the average pre-flip learning uselessness Fr*, as well

as the mean number of skipped resolution refutation nodes. Figure 3.4 shows

64

the relative distribution of the skipped variables according to the categories
defined at the end of Section 3.3.

The main conclusions of our experiments are as follows:

1.

The minimized 1UIP scheme is indeed more powerful and robust than
other schemes. It is always faster than UIP-2, and outperforms Al[UIP

by orders of magnitude in four instances, shown in Table 3.1.

Pre-flip learning uselessness is double for AlIUIP as compared with
1UIP. This data explains 1UIP’s superiority over AI[UIP.

. Of all the schemes, UIP-2 skips the fewest nodes/flipped variables,

mainly due to less powerful UIP pruning. This agrees with our analysis
in Section 3.4. In addition, pre-flip learning uselessness for the UIP-2
scheme is slightly higher than for the 1UIP scheme, hinting that the
1UIP scheme is better for forward pruning, though not by an order of

magnitude.

. Surprisingly, in some examples the AIIUIP scheme allows one to skip

more nodes and flipped variables than 1UIP. Figure 3.4 shows that
this happens mainly due to better resolution pruning by the AIIUIP
scheme. According to the analysis in Section 3.4, the number of skipped
variables should be about the same for both schemes. This expected
behavior is indeed observed in the four instances in Table 3.1, where
AIIUIP is outperformed by several orders of magnitude. Studying the
reasons for the unexpected behavior in the other four instances (in
Table 3.2), where the gap between 1UIP and AIIUIP is not large, is left

for future research.

Conflict clause minimization is very helpful indeed for both the 1UIP
and UIP-2 schemes. The number of skipped nodes is not influenced
by minimization, which confirms our observation from Section 3.4 ac-
cording to which conflict clause minimization does not contribute to
backward pruning. Thus, its contribution is to forward pruning. Sec-
tion 3.6 provides additional evidence for the empirical usefulness of

conflict clause minimization.

65

b 1UIP: =a — {b,¢,d, g, g
a— .} \itprog (b, e} J

d— {e,—e} [\ ~d— {f,~f}

Figure 3.3: One example of the superiority of 1UIP over AIIUIP. Suppose the
input formula is (aVdVg)A(aVdV—g)A(aVe)A(aVb)A(=aVb)A(—-aVc)A
(=bV =V =dVe)A(=bV eV —dV—e)A(-aVdV f)N(-aVdV—f), and assume
we invoke a modern SAT solver for this formula. For this figure, we suppose
that BCP is used. We mark each edge by variables, propagated as a result
of BCP, in addition to the decision literal. The solver first picks the literal
a, propagates its value, then picks d, propagates and encounters a conflict.
The 1UIP clause is bV —cV —d; the AIIUIP clause is —a VvV —d. After flipping
d, both the AIIUIP and the 1UIP conflict clauses are —a. After propagating,
1UIP would yield a conflict, meaning that the formula is unsatisfiable. In
contrast, AIlUIP would not result in a conflict, since all previously recorded
conflict clauses have been satisfied.

1UIP UIP-2 AllUIP
Figure 3.4: Reasons for skipping flipped variables for each of the schemes.
The white slice corresponds to the relative number of variables skipped due
to NCB pruning. The light gray slice corresponds of UIP pruning. The dark
gray slice corresponds to resolution pruning.

66

Table 3.1: Comparing 1UIP, 1UIP w/o minimization, UIP-2, UIP-2 w/o
minimization and AlI/UIP on selected instances. The timeout is 14400 sec.
The rows display: (Tm) execution time in seconds; (Con) number of conflicts,
multiplied by 1073; (F'r™) average Fr™; (NSk) average number of resolution
derivation nodes skipped per conflict

Instance ‘ Res ‘ 1UIP ‘ 1Unm ‘ UIP-2 ‘ U-2n ‘ AllUIP

dpipe | Tm | 51 37| 148 | 147] 11930
Con 101 77 309 275 | 29986
Frt | 041 0.40 0.38 0.40 0.83
NSk | 0.19 0.19 0.14 0.13 0.24
Spipe | Tm | 50| 39| 347 283 t/o
Con 85 62 062 420 | 28186
Frt | 0.40 0.37 0.33 0.35 0.84
NSk | 0.18 0.19 0.14 0.13 0.21
S8pipek | Tm | 2426 | 4035 t/o t/o t/o
Con | 1479 | 1783 | 10129 | 8526 13192
Frt | 0.37 0.38 0.26 0.26 0.81
NSk | 0.21 0.22 0.13 0.13 0.19
9pipe k | Tm | 1493 | 3412 t/o | 14205 t/o
Con 641 1098 | 6040 | 4793 6548
Frt | 0.37 0.38 0.27 | 0.28 0.85
NSk | 020| 020| 0.16| 0.15 0.20

67

Table 3.2: Comparing 1UIP, 1UIP w/o minimization, UIP-2, UIP-2 w/o
minimization and AlI/UIP on selected instances. The timeout is 14400 sec.
The rows display: (Tm) execution time in seconds; (Con) number of conflicts,
multiplied by 1073; (F'r™) average Fr™; (NSk) average number of resolution
derivation nodes skipped per conflict

Instance Res ‘ 1UIP ‘ 1Unm ‘ UIP-2 ‘ U-2n ‘ AlUIP

longmult10 | Tm 485 634 513 | 798 590
Con 238 297 262 | 367 380
Frt | 0.37 0.37 0.34 | 0.35 0.84
NSk | 0.13 0.12 0.11 | 0.10 0.24
longmult1l | Tm 559 855 756 | 1080 690
Con 273 378 346 | 462 471
Frt | 0.37 0.38 0.35] 0.34 0.83
NSk | 0.14 0.12 0.11 | 0.10 0.25
rotmul Tm 578 985 1186 | 1548 992
Con 615 | 1001 1371 | 1790 1576
Frt | 0.52 0.51 0.48 | 0.46 0.84
NSk | 0.16 0.15 0.13| 0.12 0.27
term1mul Tm | 2173 | 3558 | 5213 | 9686 2975
Con | 1585 | 2479 | 3751 | 6709 3060
Frt | 0.55 0.52 0.54 | 0.52 0.86
NSk | 0.15 0.15 0.11 | 0.10 0.26

68

3.5 Local Conflict Clause Recording

In this section, we propose an enhancement to the 1UIP scheme for conflict-
driven learning, called local conflict clause recording, and demonstrate its
positive practical impact. A local conflict clause is a conflict clause, recorded
in addition to the 1UIP conflict clause, if certain conditions hold. A local
conflict clause is not used as an asserting clause. The algorithm may use it
for propagation and conflict identification; thus local conflict clause recording
may be found helpful for forward pruning.

In this section, we assume that the solver uses the basic backtracking
algorithm SSS (Algorithm 1), enhanced by BCP (Section 2.2.1) and parent-
based conflict clause recording (Section 2.2.4).

The observation behind our proposal is that the set of conflict clauses,
recorded by standard conflict clause recording schemes, depends too much
on the initial choice of polarity (sign) of assigned variables. This problem
is illustrated by Figure 3.5. The two subfigures show an invocation of Algo-
rithm 1 on a given formula. In both cases, the algorithm is about to flip a.
The only difference between the two invocations is the choice for the initial
polarity for the variable b. Parent-based conflict clause recording (e.g., the
1UIP scheme) records different clauses, depending on the initial polarity of
b. When the variable b is assigned 1 first, the clause —e V —aV —b serves as a
parent clause and is recorded, but the clause —f V —a V b is an intermediate
clause, used during backtracking; hence, it is not recorded. The situation is
opposite, when b is assigned 0 first. In this case, the clause =f V —a V b is
recorded as a parent clause, but —e V —a V —b is not recorded. The clauses
= fV-aVband —eV-aV-b are different in two literals — that is, in two-thirds
of their literals overall; so intuitively, it seems that in this example it would
be advantageous to record both clauses.

Now we generalize the above observation. Consider any asserting resolu-
tion derivation, derived for flipping a certain variable. A clause in the assert-
ing resolution derivation was recorded as a conflict clause, only if it served
as a parent clause for a certain flipped variable. (Recall that the widely used

minimized 1UIP scheme uses parent-based conflict clause recording, hence

69

/
€
a

b

—fV-oeVoa
b =
-fVv

—e \.—aV —b —a Vb
—eV -aV bV e —aV -bVe —a VbV - -fV-oavbvd

(a) The clause —e V —a V —b is recorded, but the clause =f V —a V b is not recorded, if the
variable b is first assigned 1.

f

a

b —fV—-eV-a

/ —
-a VbV -d -fV-oaVvbvd —eV-aV bV -c —aV -bVc

(b) The clause =f V —=a V b is recorded, but the clause —e V —a V —b is not recorded, if the
variable b is first assigned 0.

Figure 3.5: An example showing the need in local conflict clause record-
ing. Standard conflict clause recording depends too much on literal selection
heuristic. Different clauses are recorded (by e.g., 1UIP scheme) while explor-
ing the subspace under the assignment f = 1;e = 1;a = 1, depending on the
initial polarity selection for the variable b. Suppose that the input formula
contains the clauses —eV-aV—-bV-c; —aV-bVc;, =aVbV—d; = fV-aVbVd.

this problem occurs in modern SAT solvers.) Nonetheless, the structure of
the parent resolution derivation suggests that it is sufficient to change the
polarities of the assigned variables to change the set of conflict clauses. This
is shown in Figure 3.6. The problem is that the algorithm might miss conflict
clauses, important for forward pruning.

One solution would be to record all the clauses, generated while back-
tracking (intermediate clauses in the terminology of [56]), as conflict clauses.
However, this solution would not be useful in practice, since it would mean

recording many similar clauses. This is expected to slow down the BCP pro-

70

v/ \\
N
Figure 3.6: A generic example showing the need for local conflict clause
recording. An asserting resolution derivation for the upcoming flip of the
variable a is shown. Nodes, marked by V correspond to clauses, recorded
by parent-based conflict clause recording (e.g., the 1UIP scheme). Nodes,
marked by X, correspond to clauses, appearing in parent resolution deriva-
tions, but are not recorded as conflict clauses. Note that a node is marked
with V iff an outgoing edge from the node goes to the right. This occurs,

since an outgoing edge goes to the right iff the corresponding clause is a
parent clause, responsible for a flip.

cess without providing a real benefit in forward pruning. It is preferable to
add only some of the clauses, according to a certain heuristic.

In the analysis below, we need to distinguish between two kinds of flipped
variables, depending on the circumstances of the flip. (In our framework, a
variable is flipped when the function Flip changes the flip status FlipStatus

of its assignment level to true.) A variable may be flipped as a result of:

1. A conflict, immediately after choosing a new literal (line 9 of Algo-
rithm 1); or

2. Conflict analysis (line 7 of Algorithm 3).

Definition 43 (Conflict-driven flipped variable). A flipped wvariable is
conflict-driven iff the function Flip was invoked as a result of a flip following
conflict analysis (line 7 of Algorithm 3).

In implication graph-based terminology a flipped variable is conflict-
driven iff it was assigned as a result of a failure-driven assertion, rather than
as a result of BCP. Proposition 9 shows that it also holds in our framework
that a flipped variable is conflict-driven iff it was not assigned as a result of
BCP.

71

Suppose that the algorithm is analyzing a certain conflict in function
AnalyzeConfBtAndFlip. Suppose that the last decision level contains at
least one conflict-driven flipped variable. Assume that r is the assignment
level of a conflict-driven flipped variable with the highest assignment level.
The idea of local conflict clause recording is to simulate a situation, when the
last assigned conflict-driven flipped variable v was first assigned the opposite
polarity. When the current backtracking clause contains only one variable,
assigned at r or after r, the local conflict clause recording algorithm records
this clause as a conflict clause. This simulates a situation in which the
last assigned conflict-driven flipped variable becomes a non-flipped decision
variable by recording a 1UIP conflict clause with respect to the fake decision

level.

Local conflict clause recording (invoked just after line 4 of Algo-
rithm 3):
Require: parent-based conflict clause recording algorithm, provided in Sec-
tion 2.2.4, is used. (Recall that conflict clauses are recorded in L.)
if a local conflict clause has not yet been recorded at this invocation of
AnalyzeConfBtAndFlip then
d := the current decision level
if there exists a conflict-driven flipped variable at decision level d then
r := the assignment level of a conflict-driven flipped variable with the
highest assignment level
if pT contains only one variable assigned at assignment level > r then
L:=LuU{p"}
Memorize that local conflict clause has been used at this invocation
of AnalyzeConfBtAndFlip.

Note that in our example in Figure 3.5, parent-based conflict clause re-
coding in conjunction with local conflict clause recording would record both
clauses —f V —a V b and —e V —a V —b, independently of the polarity of b.

Applying local conflict clause recording results in a more balanced con-
flict clause recording scheme, in the sense that it depends less on polarity

selection. In addition, this scheme records only selected clauses, so BCP is

72

Table 3.3: Effect of local conflict clause recording (time is in sec.; the “cut”
column indicates the number of instances that timed out)

1UIP 1UIP + LCC
Family Thr. | Time | Cut | Time | Cut

sat04_ind_maris03_gripper_sat [5] 3 hrs | 2238 0 986 0
sat04_ind_goldberg03_hard_eq_check [5] | 3 hrs | 30336 2 | 15353 0
sat04_ind_maris03_gripper_unsat [5] 4 hrs | 30135 41 17842 2
velev_fvp-unsat.3.0 [66] 3 hrs | 18199 2 | 10928 2
velev_fvp-sat.3.0 [66] 3 hrs | 9041 0| 7155 0
velev_vliw_sat_2.0 [67] 3 hrs | 5970 0] 4715 0
barrel [7] Shrs| 260 0| 226 0
velev_pipe_unsat_1.0 [67] 3 hrs | 15880 0| 13094 0
velev_vliw_unsat_4.0 [67] 3 hrs | 17260 0 | 14810 0
longmult [7] 3 hrs | 5413 0| 5076 0
velev_vliw_sat_4.0 [67] Shrs| 5116 | 0| 6882 0

not overwhelmed by the number of conflict clauses. Now we demonstrate
that local conflict clause recording contributes to faster SAT solving on real-
life industrial benchmarks. Table 3.3 shows the effect of local conflict clause
recording on 11 industrial families. The technique is helpful overall in ten out
of the eleven families. Table 3.4 shows that local conflict clause recording is
particularly useful on real-life hard formal verification instances of the family
goldberg03-hard_eq_check [5]. Accordingly, local conflict clause recording can
be recommended as a default strategy for a modern SAT solver, especially
in the formal verification domain.

Now we show that a flipped variable is conflict-driven iff it was not as-

signed as a result of BCP.

Proposition 9. Consider Algorithm 1, enhanced by BCP, as implemented

in Section 2.2.1. A flipped variable is conflict-driven iff it was not assigned
by BCP before the flip.

Proof. BCP assigns literals appearing in unit clauses to 0. Hence, there
must be a conflict following each assignment by BCP; thus any variable

assigned as a result of BCP is flipped immediately after choosing a new

73

Table 3.4: Local conflict clause recording on formal verification instances
(time is provided in sec.; the time-out is 3 hours

Instance || Eureka without LCC | Eureka
rotmul 50 38
termlmul 74 42
desmul 90 89
frg2mul 139 103
¢3540mul 213 104
dalumul 835 409
frglmul 886 289
aludmul 1077 1076
110mul 1176 732
i8mul 1560 1089
x1mul 2636 906
c6288mul Time-out 4911
k2mul Time-out 5565

literal. Therefore, a conflict must follow and a flip must occur at line 9
of Algorithm 1. Consequently, a variable assigned by BCP must not be a
conflict-driven variable.

Consider a variable vy, assigned at assignment level s not as a result of
BCP. Recall that BCP is applied whenever there are unit clauses. Hence,
no unit clause exists at the time v, is assigned, since otherwise BCP would
have been invoked, preventing the assignment of vs;. Consequently, there
cannot be a new falsified clause, immediately after assigning v,, hence the
function Flip at line 9 is not invoked. Suppose that the algorithm flips v,
before exiting. We show that the flip can only happen during conflict analysis
(function AnalyzeConfBtAndFlip).

Suppose to the contrary that the flip occurs at line 9.

The assignment and the parent invariants must hold immediately before
the assignment of v,. Indeed, they hold before the first assignment. Thus it
follows from repeatedly applying Lemma 3, that they must hold before the
assignment of vy.

Suppose that the algorithm is situated just before assigning v, and the

4

termination functionis f = (¢, s). The pre-conditions of Lemma 3 hold at this
point. It follows from repeated applications of Lemma 3 that the algorithm
must reach line 4, at which it chooses new decision variables, again and again.
The termination function is increased between each two visits. Suppose that
the algorithm is situated just before assigning a new variable for the last time
before flipping v, at line 9. There must be a conflict, immediately after the
assignment to ensure that v, is flipped at line 9. Let the termination function
at this point be f' (', s'). Yet we know that f’ > f. The termination function

could have grown because either:

et/ =1t; ¢ > s. In this case, the conflict occurs at assignment level
s" # s, and the flipped variable is v, rather than vs. A contradiction;

or

e t' > t. In this case, a flip at decision level s” < s must have occurred
by definition of termination function. This means that at some stage
the assignment level was decreased beyond s, hence v5 was unassigned,

rather than flipped. A contradiction.

]

The correctness of local conflict clause recording follows from Theorem 5

on page 40.

3.6 Conflict Clause-Based Assignment Stack
Shrinking

Conflict clause-based assignment stack shrinking, known also as assignment
stack shrinking, assignment shrinking, learned clause shrinking or simply
shrinking, is a technique that was proposed by the author of this work in [47]
and implemented in the Jerusat SAT solver [46]. This technique tries to dy-
namically reduce the size of conflict clauses and to unassign irrelevant literals

from the assignment stack to improve both backward and forward pruning.

1)

If certain conditions hold for a newly learned conflict clause, shrinking unas-
signs the literals of the conflict clause and reassigns them to 0. BCP follows
each assignment. It is guaranteed that after shrinking is applied, a conflict
occurs. Following this operation, the newly generated conflict clause tends
to contain fewer literals. In addition, the assignment stack tends to be more
relevant for the conflict clause in the sense that more assigned variables par-
ticipate in the clause itself or appear as pivot variables in the resolution
derivation of the clause.

Shrinking was fine-tuned in [40] and implemented in the Zchaff2004 SAT
solver. Zchaff2004 had two versions: zchaff.2004.5.13 and zchaff rand. The
latter version performed better in SAT competition 2004 [5], hence we de-
scribe its implementation of shrinking. The interested reader is referred
to [40] for more details on the differences between the two Zchaff2004 ver-
sions.

When a newly learned clause exceeds a certain length z, Zchaff2004 sorts
the clause according to decision levels. The algorithm finds the lowest deci-
sion level that is less than the next higher decision level by at least 2. (If no
such decision level is found, then shrinking is not performed.) The algorithm
backtracks to this decision level, and the decision strategy starts re-assigning
to 0 the unassigned literals of the conflict clause untill a conflict is encoun-
tered again. It was found that when reassigning the variables in the reverse
order, i.e. in descending order of decision levels, the algorithm performed
slightly better than when reassigning the variables in the same order as they
were assigned in previously. Since some assigned variables that did not belong
to the conflict clause, but which were unassigned during the backtrack, may
not get reassigned, the number of assigned variables is likely to drop after
this operation. As the assigned variables are more relevant to derived conflict
clauses, new conflict clauses are expected to be shorter and more likely to
share common literals. In the experiments of [40], no fixed value for z per-
formed well. Instead, z was set dynamically using some measured statistics.
Zchaff2004 measures the mean and standard deviation of the lengths of the
recently learned conflict clauses and tries to adjust z to keep it at a value

greater than the mean. More specifically, Algorithm 5 was used for adjusting

76

Algorithm 5 AdjustThresholdForShrinking(Threshold for shrinking z,
Threshold for learned clauses number y)
Require: z is initialized with the value 95 in the beginning of SAT solving.
mean := mean of recent y learned clause lengths
stdev := standard deviation of last y learned clause lengths
center := mean + 0.5 *x stdev
ulimit := mean + stdev
if x > center then
T:=T—5
if © < center then
T:=T+5
if © > ulimit then
x = ulimit
if x <5 then
=29
return z

z after each y conflicts. The threshold on the conflict number y is 600 for
Zchaff2004. Eureka [48] uses the same algorithm with y = 2000. Shrinking
often reduced the average length of learned conflict clauses and led to faster
solving times, especially for the microprocessor verification benchmarks [40].

Shrinking was also discussed in the paper on the PicoSAT SAT solver [6].
Among the improvements, introduced in the PicoSAT solver, was a rapid
restart strategy, triggering restarts with high frequency. PicoSAT does not
use shrinking for the following reasons, provided in the paper: (1) shrinking
is expensive and is partially subsumed by conflict clause minimization; (2)
rapid restarts simulate shrinking, since restarts help the solver recover from
mistakes as shrinking does.

We carried out experiments with assignment stack shrinking, conflict
clause minimization and restart strategies, in order to answer the following

three questions:

1. Can shrinking be considered a useful technique in terms of perfor-

mance?

2. Is shrinking subsumed by conflict clause minimization?

7

3. Do rapid restarts simulate shrinking?

The results of the experiments are shown in Tables 3.5 and 3.6. An
explanation for the abbreviated benchmark family names and information
about the benchmark families appears in Table 3.7. All experiments were
carried out on a machine with 4Gb memory and two Intel Xeon CPU 3.60
processors. We used the Eureka-2009 SAT solver for the experiments. The
basic version of the solver, denoted by “base” in Table 3.5, employs the

following algorithms:

e Assignment stack shrinking. The threshold on the length of clauses z
is updated as shown in Algorithm 5. The threshold on the number of
conflicts y is 2000.

e Conflict clause minimization.

e An arithmetic restart strategy: restarts are carried out every 2000 con-
flicts.

Consider first Table 3.5. The version base no_min does not employ con-
flict clause minimization, while the version base no_shr does not employ
shrinking. Both minimization and shrinking are disabled in the version
base_no_min_no_shr.

The main observations are as follows:

e Overall, the base version solves 214/228 benchmarks within the given
time limit. The version without minimization solves 203 benchmarks
— 11 fewer than the base version. The version without shrinking solves
187 benchmarks — 16 fewer than the version without minimization. Fi-
nally, the version without both techniques solves only 168 benchmarks

— 46 fewer than the base version.

e The version without minimization performs worse than the base ver-
sion on 10/12 families (the exceptions are svp and uv2). The version
without shrinking performs worse than the base version on all the fam-
ilies. There is one family containing satisfiable instances, where it is

worthwhile to turn off both techniques — svp.

78

e There are four families, where shrinking is an enabler for solving the in-
stances, whereas minimization either helps only slightly or even causes
deterioration of the performance: uv2, uv3, uv4, ug. Overall, turned
off shrinking deteriorates the performance more than turned off mini-

mization on 10/12 families.

Consequently, we reach two main conclusions as follows:

1. It is advantageous to employ both conflict clause minimization and

assignment stack shrinking.

2. Assignment stack shrinking contributes to the performance more than

conflict clause minimization.

Now consider Table 3.6. It shows the performance of a version of Eureka,
employing rapid restarts, as implemented in the PicoSAT solver [6], and a
version with rapid restarts, without shrinking. It can be seen that assignment
stack shrinking is more powerful than rapid restarts. Indeed, switching off
shrinking in the base version causes it to solve 27 fewer instances. Switching
off shrinking and adding rapid restarts causes the solver to solve 32 fewer
instances. Surprisingly, in our experiments rapid restarts were not helpful
overall compared to the default arithmetic restart strategy of Eureka. It
would be interesting to compare the impact of rapid restarts and shrinking
in other solvers, such as PicoSAT, where rapid restarts were found to be
helpful.

In our view, the key algorithmic advantage of shrinking over rapid restarts
is the fact that shrinking not only unassigns some of the literals — in which
case it could have been considered a partial restart strategy — but that it
also reassigns the literals in the conflict clause to 0. This causes both the
assignment stack and the conflict clause to shrink in size. This effect is not
achieved by restarts, which do not handle conflict clauses recorded just before
restarting the search in any special way.

Assignment stack shrinking can be implemented as follows:

79

1. Maintain a threshold for shrinking x and a threshold for learned clauses
number y. Algorithm 5 shows how zChaff2004 and Eureka manage both
thresholds, where y = 600 for zChaff2004 and y = 2000 for Eureka.

2. Maintain the following data:

(a) A Boolean variable IfApplyShinkingNow, initialized to false in the
beginning of Algorithm 1.

(b) An array LitsForShrinking, containing the literals that should be

used for shrinking in correct order.

(¢) An index for the array LitsForShrinking, called ShrinkingInd.

3. Update the literal selection code with the following algorithm, carrying
out the shrinking, if required. We suppose that both BCP and conflict

clause recording are in use.

Shrink (invoked instead of line 4 of Algorithm 1):
if 3C e FUL:C =—-AV " is a unit clause then
(vg,04) := (v, 7K)
else
if IfApplyShrinkingNow then
(vg,05) := (LitsFor Shrinking[ShrinkingInd],0)
ShrinkingInd := ShrinkingInd + 1
else
(vg,05) := ChooseNewLiteral()

4. Add the following code that decides whether to apply shrinking be-
fore each flip. The current implementation applies shrinking only to
asserting clauses. It is also possible to apply shrinking to local con-
flict clauses (in fact, this step is carried out by Eureka), but we omit
the implementation for the simplicity of presentation. Also, we do not
specify exactly the condition for when to apply shrinking; instead we
let the user implement the function FindAssLevelForShrinking. This
function is provided with the candidate clause and the threshold z

on the size of the clause. It returns the assignment level, where the

80

algorithm should backtrack to apply shrinking. If shrinking is not
to be applied, FindAssLevelForShrinking returns -1. The shrinking
scheme of zChaff2004 or Eureka, described in this section, can be used
for implementing FindAssLevelForShrinking. We suppose in this im-
plementation that the shrunk literals should be sorted in decreasing

order, as in zChaff2004, though other sorting schemes are also possi-
ble.
DecidelfShrink (invoked in the beginning of the function Flip (Al-
gorithm 2):
if IfApplyShinkingNow then
IfApplyShinkingNow = false

else
L:=LuU{p"}
b := FindAssLevel ForShrinking(p®, x)
if b # —1 then

ShrinkingInd := 0

LitsForShrinking := Literals of p! that are assigned after b,
sorted by assignment level in decreasing order.

s: =10

Go to line 3 of Algorithm 1

Now it is left to prove the correctness of shrinking. First, we prove that

the algorithm must enter the conflict analysis loop following shrinking:

Lemma 4 (Conflict analysis loop entry follows shrinking). Let the number
of literals, used for shrinking (the length of LitsForShrinking), be k > 0.
The algorithm must enter the conflict analysis loop when shrinking is applied
(IfApplyShinkingNow = true) after exactly k literals are assigned and BCP
18 applied.

Proof. Denote the conflict clause, recorded before applying the shrinking
algorithm by C=1; VI, V...VI,. Denote the length of C by z. Suppose that
C is sorted according to the assignment level, where [y is the literal with the

lowest assignment level. The algorithm assigns 0 to £ unassigned literals of

81

C that appear in LitsForShrinking. The other z — k literals of C are already
assigned 0 at lower decision levels.

First we show that the algorithm cannot enter the conflict analysis loop
before all k£ unassigned literals are assigned 0. Indeed, the algorithm assigns
0 to literals that were assigned 0 when the last conflict was encountered. The
algorithm enters the conflict analysis loop, only when an assigned literal must
receive both values 0 and 1 in two different unit clauses. However, such a
situation cannot occur after shrinking is applied, since it did not occur before
shrinking was applied; otherwise the algorithm would have backtracked.

Now consider a situation when the single literal [, remains to be assigned
to complete the shrinking. All the other literals Iy, f # z are assigned 0. We
claim that after [, is assigned 0, and BCP is applied a number of times, there
must be an unassigned literal that appears in different polarities in two unit
clauses. This would ensure that the solver would enter the conflict analysis
loop after BCP picks this literal as an assignment literal. The simplest argu-
ment for the validity of our claim is based on the implication graph structure.
Every conflict clause corresponds to a cut in the implication graph. When
all the literals of a conflict clause are assigned 0, a situation, when one literal
must be assigned different values, must follow BCP.

Note that the correctness of our lemma guarantees that the index

ShrinkingInd does not go out of bounds. OJ

Now we prove the correctness and termination of Algorithm 1 with as-

signment stack shrinking.

Theorem 10 (Correctness and termination of SSS with assignment stack
shrinking.). Given a satisfiable formula F, SSS with assignment stack shrink-
ing will return that the formula is satisfiable with the model o1 ,. In this case,
01..s indeed satisfies F. Given an unsatisfiable formula F, SSS with assign-
ment stack shrinking will return that the formula is unsatisfiable with the

resolution refutation p. In this case, p is indeed a resolution refutation of F.

Proof. The only lemma that could be affected by shrinking is Lemma 3.
Lemma 3 does not hold at the iteration when shrinking is applied, since the

termination function does not grow. However, our algorithm guarantees that

82

shrinking is not applied two times in a row. Hence, Lemma 3 holds for the
next iteration of the main loop, when a new conflict is discovered following

shrinking, which is sufficient for our purposes. O

83

Table 3.5: Interplay between assignment stack shrinking and conflict clause min-
imization. The first two columns contain the family name abbreviation, explained
in Table 3.7, and the number of instances in the family. Each subsequent two
columns present the results of one particular strategy, including the number of
solved instances and the overall time required for solving. The time threshold,
provided in Table 3.7, was added to the latter number, when a strategy timed-out
on an instance.

base base_nomin base_noshr base_nomin_noshr
Family | Inst. Solved Time Solved Time Solved Time Solved Time
ufc 24 24 22776618 22 46660416 23 32874542 18 70726847
ufi 12 11 21533064 10 26596304 9 35223194 9 39426202
ufm 21 20 22917097 19 25739589 18 35088018 18 35227260
SVp 10 10 1680863 10 994609 10 3787265 10 1032727
uv2 8 7 10339000 7 9818000 1 27069000 0 28800000
uv3 6 6 11276000 5 17647000 1 61729000 1 62857000
sv3 20 20 492889 20 723851 20 1024769 20 969874
uv4 4 4 10722000 3 19977000 0 43200000 0 43200000
ug 13 13 11500000 13 19426000 10 60848000 4 86400000
mm 10 6 16456000 5 21647000 4 26383000 1 35011000
ms1 50 49 25592157 47 38217198 48 42117556 47 63249099
ms2 50 44 89852376 42 | 104193222 43 98387213 40 | 139336578
Sum 228 214 | 245138064 203 | 331640189 187 | 467731557 168 | 606236587

Table 3.6: Comparing the impact of assignment stack shrinking and rapid restarts.
The format is identical to that of Table 3.5

base_raprest base_raprest_no_shr
Family | Inst. Solved Time Solved Time
ufc 24 24 22034857 22 33093100
ufi 12 11 20131630 9 34375024
ufm 21 20 22059570 19 33090098
SVp 10 10 414455 10 1640104
uv2 8 7 10015000 1 28659000
uv3 6 6 10932000 0 64800000
sv3 20 20 896858 20 689353
uv4 4 4 10943000 0 43200000
ug 13 13 12114000 8 64522000
mm 10 6 16770000 3 27835000
msl 50 48 28745686 47 47084350
ms2 50 44 90286871 43 95274906
Sum 228 213 | 245343927 182 474262935

84

Table 3.7: Family information for Tables 3.5 and 3.6. The first three families
are internal families of Intel benchmarks, generated in the process of bounded
model checking for formal property verification. Other benchmark families were
generated by Miroslav Velev [67, 66], used for SAT competition 2004 [5], or used
for SAT race 2006 [61]. All the benchmarks, except the mixed benchmark set, used
for SAT race 2006, come from the formal verification domain. The last column
specifies the time-out per benchmark.

Abbreviation | Family name SAT/UNSAT/Mixed | Time-out
ufc fpv_cingr UNSAT 3 hours
ufi fpv_iotrkl UNSAT 3 hours
ufm fpv_mpiotrkl UNSAT 3 hours
sSVp sat04-ind-velev-pipe-sat-1-1 [67] SAT 1 hour
uv2 sat04-ind-velev-vliw_unsat_2.0 [67] UNSAT 1 hour
uv3 velev_fvp-unsat.3.0 [66] UNSAT 3 hours
sv3 velev_fvp-sat.3.0 [66] SAT 3 hours
uv4d velev_vliw_unsat_4.0 [67] UNSAT 3 hours
ug sat04-ind-goldberg03-hard_eq_check [5] | UNSAT 3 hours
mm sat04-ind-maris03-gripper [5] MIXED 1 hour
msl SAT-Race_TS_1 [61] MIXED 3 hours
ms?2 SAT-Race_TS_2 [61] MIXED 3 hours

85

Chapter 4

A Clause-Based Heuristic for

SAT

In this chapter, we propose a new decision heuristic for modern SAT solvers.
The heuristic’s core innovation is that both the initial and conflict clauses are
arranged in a list and the next decision variable is chosen from the topmost
unsatisfied clause. Various methods of initially organizing the list and moving
the clauses within it are studied. Our approach is an extension of one used in
Berkmin [27], and adopted by other modern solvers, according to which only
conflict clauses are organized in a list, and a literal-scoring-based secondary
heuristic is used when there are no more unsatisfied conflict clauses. Our
approach, implemented in Eureka [48], in the 2004 version of the Chaff solver
Zchaff2004 [40] and in the Chaff-like SAT solver SE, results in a significant

performance boost on hard industrial benchmarks.

4.1 Existing Decision Heuristics

We now describe the most widely used decision heuristics, known to be ef-
ficient on real-world industrial benchmarks. FEarly static heuristics (e.g.,
Jeroslaw-Wang [33], Literal Count [59]) picked the next variable based on the
number of appearances (scores) of different variables in unsatisfied clauses.

A major drawback of such an approach is that score calculation requires

86

visiting all the clauses at the decision point, which implies a very signifi-
cant overhead. Another disadvantage of static heuristics is that they do not
consider information that can be retrieved during conflict analysis. Heuris-
tics based upon such analysis were found to be several orders of magnitude
faster [27, 45].

The first dynamic heuristic was the Variable State Independent Decay-
ing Sum (VSIDS) [45]. According to VSIDS, each literal is associated with
a counter cl(p), whose value is increased once a new clause containing p is
added to the database. Counters are initialized to 0. Every once in a while, all
counters are halved. The next literal to be picked is the one with the largest
counter. Ties are broken randomly. Two major advantages of VSIDS over
previous heuristics are that: (1) VSIDS is characterized by a negligible com-
putational cost; and (2) VSIDS gives preference to literals that participate
in recent conflict analysis, i.e., it is dynamic. The Minisat SAT solver [19]
implements a variant of VSIDS. Instead of infrequent halving of the scores,
Minisat multiplies the scores after each conflict by 0.95. This makes the
heuristic more dynamic. The authors of the Berkmin SAT solver [27] pro-
posed a successful decision heuristic that has been partially or fully adopted
by SAT solvers such as the 2004 version of Chaff Zchaff2004 [40], Satzoo [19],
and Oepir [1]. We show, in the experimental section, that the Berkmin heuris-
tic is indeed faster than VSIDS on hard industrial benchmarks. The Berkmin
heuristic’s main difference, when compared to VSIDS, is as follows: Conflict
clauses are organized in a list, and every new conflict clause is appended
to the head of the list. The next decision variable is picked from the top-
most unsatisfied clause. If no such clause exists, the next decision variable
is chosen according to a VSIDS-like heuristic. We now describe the Berkmin
heuristic in detail and analyze why it is preferable to VSIDS.

Berkmin maintains a counter cl’(p) measuring the contribution of each
literal to the search. Unlike VSIDS, Berkmin augments ¢!’(p), not only for
literals that belong to the conflict clause itself, but also for literals that belong
to one of the clauses that were resolved upon to generate the 1UIP conflict
clause on backtracking. At intervals, Berkmin divides all the counters by 4

(compared to 2 for VSIDS). Let ¢v'(p) be a counter measuring the contri-

87

bution of each variable to the conflicts, defined as cl'(p) + cl’(—p). Berkmin
maintains all conflict clauses in a list. After each conflict, the new conflict
clause is appended to the top of the list. The next decision variable is the
one with the highest cv'(p) out of all the variables of the topmost unsat-
isfied clauses. If no conflict clauses have yet been generated, or if all the
conflict clauses are satisfied, then the variable with the highest cv’(p) of all
unassigned variables is chosen.

Next, we describe how Berkmin decides which literal, out of the two
possible literals of the already chosen variable, to pick. Berkmin maintains
a counter gel(p), which measures the global contribution of each literal to
the conflicts. The counter gcl(p) is initialized to 0 and is increased whenever
cl'(p) is increased, but is not divided by a constant. If a topmost unsatisfied
clause exists, Berkmin picks a literal with the highest global score gcl(p). Ties
are broken randomly. If there is no unsatisfied topmost clause, then Berkmin
picks the literal with the highest value of two(p), where two(p) approximates
the number of binary clauses in the neighborhood of literal p. The function
two(p) is computed as follows: First, the number of binary clauses containing
p is calculated. Then, for each binary clause B, containing p, the number
of binary clauses containing ¢ is computed, where ¢ is the other literal of B.
The sum of all computed numbers gives the value of two(p). To reduce the
amount of time spent computing two(p), a threshold value of 100 is used. As
soon as the value of two(p) exceeds the threshold, its computation is stopped.
Once again, ties are broken randomly.

The most important advantage of the Berkmin approach over VSIDS, as
stated by the authors of Berkmin, is its additional dynamicity. It quickly ad-
justs itself to reflect changes in the set of variables relevant to the currently
explored branch. Indeed, Berkmin picks variables from fresh conflict clauses
and thus uses very recent data. Our understanding is that the Berkmin
heuristic has another important advantage over VSIDS: newly assigned vari-
ables tend to embrace more interrelated variables. By interrelated, we mean
variables whose joint assignment increases the chances of both quickly reach-
ing a conflict in an unsatisfiable branch and satisfying problematic clauses in

satisfiable branches. According to the Berkmin heuristic, a series of new de-

88

cision variables appears in the newest conflict clauses. This means that these
variables were the ones recently traversed during conflict analysis and con-
sequently contributed to conflict derivation. Moreover, even if the topmost
conflict clauses were recorded a long time ago, the fact that their variables
appeared closely together during conflict analysis, hints that they are inter-
related. However, the impact of this advantage is diluted by the fact that
Berkmin does not put the initial clauses in the list, but instead uses VSIDS
as a secondary heuristic. The novel CBH heuristic, described in the next

section, takes advantage of this observation.

4.2 The Clause-Based Heuristic

In our clause-based heuristic (CBH), all clauses (both the initial and the
conflict clauses) are organized in a list. After each conflict, the conflict
clause is prepended to the top of the list. Conflict-responsible clauses are
clauses used in the resolution process during backtracking to generate the
new 1UIP conflict clause. Conflict-responsible clauses are placed just after
the new conflict clause. The next decision literal is picked from the topmost
unsatisfied clause in the list. One can see that CBH is highly dynamic, since
recently visited clauses are placed at the top of the list. Also, CBH organizes
the list in such way that clauses that were responsible for a recent conflict are
placed together. Hence, when one picks a series of decision variables after
backtracking, it will tend to embrace interrelated variables. Indeed, when
literals are picked from the same clause they must be related, even if the
clause is an initial clause. When literals are picked from adjacent clauses,
they also tend to be related, since by placing conflict clauses at the top and
moving conflict-responsible clauses towards the top, the list is organized such
that interrelated clauses are near each other.

As a variant, CBH can also move clauses found to have exactly two unas-
signed literals during BCP to the top of the list. We refer to this strategy
as 2LitFirst. The added value of this strategy is: (1) More implications are
learned during BCP; and (2) Short and potentially contradictory clauses tend
to be immediately satisfied. The first point guides the solver to find conflicts

89

in an unsatisfiable area, and the second one is useful in eliminating conflicts
in a satisfiable area. The disadvantages of 2LitFirst are: (1) It tends to
separate clauses that contain interrelated variables; and (2) it may promote
clauses that have never been responsible for conflicts.

Experimentally, we found that while usually 2LitFirst hurts performance,
it may be helpful for instances having high clause/variable ratios. This can
be explained by the fact that in instances having a high clause/variable ra-
tio, variables tend to appear in a greater number of clauses, since there are
fewer variables per clause overall. Hence, two chains of decisions made using
different decision strategies tend to contain more common variables. This
gives more weight to the order between variables and the local context of the
search. One should prefer variables whose assignment can have an immedi-
ate impact; this is exactly what 2LitFirst does. The default version of CBH
invokes 2LitFirst on instances where the clause/variable ratio exceeds 10.

One can see that the major differences of CBH compared with the Berk-

min heuristic are:

1. CBH organizes both the initial and conflict clauses, rather than only
conflict clauses, in a list; therefore, a second choice heuristic is not
required. Moreover, any set of decision variables picked by CBH tends

to contain more variables from the same clause.

2. After a conflict, in addition to the conflict clause, CBH moves a number
of clauses responsible for the conflict (including initial clauses) towards
the head of the list. Thus, clauses that are adjacent are likely inter-
related. (This idea was proposed independently in [25, 26] and imple-
mented in the HaifaSat solver. However, in contrast to our approach,
HaifaSat’s CMTF heuristic maintains only the conflict clauses in the
list.)

3. As a variant, CBH moves clauses that were discovered to have two

unassigned literals towards the top of the list.

CBH can easily be implemented using a doubly-linked list. A pointer to

the currently watched clause C, initialized to the topmost clause, is main-

90

tained. When a decision is required, we seek the topmost unsatisfied clause
D, starting from C moving towards the bottom of the list, and picking a
literal from D (as described in Section 4.2.1). Observe that if no topmost
unsatisfied clause exists, then we have a satisfying assignment, since all the
clauses, including the original ones are satisfied. After each conflict, the
solver updates the clause list and sets the currently watched clause to point
to the top of the list.

Section 4.2.1 explains how CBH chooses the decision literal from the
topmost unsatisfiable clause. Section 4.2.2 explains the initial organization

of the clause list.

4.2.1 Choosing the Decision Literal from the Top-Most

Clause

CBH maintains two counters, lcl(p) and gcl(p), which measure the local
and global contributions of each literal to the conflicts, respectively. The
counter [cl(p) is initialized to 0 for each p, while gel(p) is initialized with the
number of p’s appearances in initial clauses. Both counters are incremented
whenever a literal belongs to one of the clauses traversed in the implication
graph during 1UIP conflict clause identification. Occasionally, the value of
lel(p) is divided by 2.

CBH also maintains two counters for variables lcv(p) and gcv(p), which

measure the contribution of each variable to the conflicts. We define:

lev(p) = (Icl(p) + lel(—p)) + 3« min(lcl(p), lcl(—p)).

The first term gives preference to variables for which both literals are
important, and the second term eliminates variables where only one literal

is important. In a similar manner, we have:

gev(p) = (gel(p) + gel(=p)) + 3 * min(gcl(p), gel(—p)).

91

CBH chooses the decision variable from the topmost unsatisfied clause
using the following algorithm: A variable p with maximal lcv(p) is chosen,
so as to give preference to variables that participated in recent conflicts.
Ties are broken by preferring variables with the maximal global score gev(p).
According to the next criterion, variables that used to have the maximal
decision level when assigned the last time are preferred. (If there is still a
tie, it is broken by picking the lexicographically smallest variable.)

CBH chooses the decision literal out of the two possible, based on the

global contribution value gcl(p).

4.2.2 Initial Clause List Organization

In general, we aim to:

1. Place clauses containing frequently appearing literals near the top of
the list; and

2. Place clauses containing common literals nearby.

Point 1 guides the solver to start the search using frequent literals, and
point 2 increases the chances of picking interrelated literals.

First, the initial global score igs(p) is calculated for each literal p. The
function igs(p) is initialized to 0 and is augmented for each clause that con-
tains the literal p. The initial global score reflects the overall frequency of a
literal. In the process of clause list construction, we also maintain the initial
local score ils(p) for each literal p. It is calculated similarly to igs(p), except
that only clauses already placed on the clause list are considered. The local
score reflects the involvement of p in clauses already appended to the clause
list. Initially, no clauses are included in the clause list, hence ils(p)=0 for
each literal p. We also define the initial overall score i0s(p) = igs(p) + ils(p)
for each literal p. The initial overall score takes into consideration both the
local and global influences of each literal.

So far, we have defined three functions for each literal reflecting its global,
local and overall influence. Now, we can define the initial overall score for

each variable p:

92

iosv(p) = (10s(p) + ios(—p)) + 3 * min(ios(p), ios(—p)).

The clause list is constructed by repeating the following procedure until
all the clauses are placed in the clause list: Let p be the variable having the
maximal variable overall score amongst all variables that have not already
been picked. (Ties are broken by preferring the smaller variable according to
lexicographical order.) Clauses containing the variable p, which have not yet
been appended, are appended to the end of the clause list. Local and overall
scores are updated for each literal participating in clauses that have been
appended to the list. Such dynamic updating of scores does not require any
overhead, given that we use a priority queue, indexed by the scores. Literals

can be moved within the queues in constant time.

4.3 Experimental Results

First, we tested the impact of CBH inside the SAT solver Eureka [48] on 57
instances from MicroCode verification [2]. The result are shown in Figure 4.1.
As one can see, CBH leads to a substantial improvement in the run-time of
Eureka. In particular, Eureka with CBH was able to solve every instance
within the time limit of 65 minutes, whereas Eureka without CBH timed-out
on 17 instances.

Second, we implemented CBH in two other SAT solvers. The first is
Zchaff2004 or, more specifically, zChaff 2004.11.15 [40]. zChaff won first
place in the Industrial-Overall category of the SAT04 competition [5]. This
new version of zChaff2004 implements the Berkmin heuristic, in contrast
to the 2001 version of Chaff [45], which used VSIDS. The performance of
zChaff2004 was measured on a machine with 4Gb of memory and two Intel
XeonTM CPU 3.06GHz processors with hyper-threading. The second solver
we used in our experiments was SE — a Chaff-like SAT solver that was in
use at Intel. The performance of SE was measured on a stronger machine
with 4Gb of memory and two Intel XeonTM CPU 3.20GHz processors with

93

hyper-threading. In what follows, we first analyze the overall performance of
CBH versus the Berkmin heuristic, VSIDS and zChaff2004’s new Berkmin-
like heuristic. We show that CBH outperforms both the Berkmin heuristic
and VSIDS within the SE SAT solver, and also that CBH significantly out-
performs zChaff2004’s new Berkmin-like heuristic. Then, we analyze how
various strategies used by CBH contribute to its performance. We tested
CBH inside two solvers to ensure that its measured impact on performance
is independent of the implementation details of a particular solver. The
main measure for success in our experiments is the number of solved in-
stances within an hour on hard industrial families used during the SAT’04
competition [5]. We find this measure, which was used during the SAT 04
competition, more convincing than a comparison of the number of decisions
or conflicts, since reducing the running time is the final goal of any practical
heuristic. Our experiments required approximately 35 days of computation.

Table 4.2 compares the performance of CBH, VSIDS, VSIDSM - a
Minisat-like VSIDS with frequent score decay — and the Berkmin heuristic,
implemented in SE, on eight hard industrial families used during the SAT’04
competition [5]. The description of these families is provided in Table 4.1.
VSIDSM multiplies the score by 0.95 after every 10 conflicts, rather than
after each conflict. The latter rate is used within Minisat, but the former is
preferable within SE. Other heuristics decay the scores every 6000 conflicts.
CBH solved at least as many instances within each family, when compared
to either the Berkmin heuristic or either version of VSIDS. CBH solved more
instances than both versions of VSIDS in 7 out of 8 cases, and solved more
instances than the Berkmin heuristic in 5 out of 8 cases.

Table 4.3 shows the performance of CBH within the new version of
zChaff2004. The performance of a version of CBH that does not use 2LitFirst
is also provided. One can see that zChaff2004, CBH-enabled, outperformed
zChaff2004 in a very convincing manner for 6 out of 8 families and was infe-
rior in only one case. Moreover, when the 2LitFirst strategy was not used,
CBH was never inferior.

One can conclude that CBH definitely improves the performance of a

modern SAT solver, outperforming both VSIDS and the Berkmin heuristic.

94

Our experiments also confirm that the Berkmin heuristic is preferable to
VSIDS, though the gap narrows if VSIDS decays scores frequently. This is
to be expected, but — to the best of our knowledge — has never been reported,
despite the fact that the Berkmin heuristic has been partially or fully adopted
by most modern SAT solvers [1, 19, 27, 40].!

What remains is to analyze the performance of CBH when disabling some
of its specific strategies. Accordingly, we consider CBH_NM, a version that
does not move conflict-responsible clauses to the top of the list (but still ap-
pends the conflict clause itself to the top of the list), and CBH_NI, which does
not use the initial strategy, described in Section 4.2.2, but rather appends
all clauses to the list in their order of appearance in the input instance. We
also experimented with CBH_2L_A, which always uses 2LitFirst, and with
CBH_2L_N, which never does. Tables 4.4 and 4.5 compare the performance
of CBH within SE and zChaff2004, respectively.

Switching off the initial strategy resulted in a performance degradation
for three families within SE, and in a performance gain for one family. In
zChaff2004, switching off the initial strategy resulted in a performance degra-
dation for two families. In general, the initial strategy improved the perfor-
mance within both SE and zChaff2004, although it was not the most crucial
factor contributing to CBH performance. Even if the initial strategy was
switched off, CBH performed better than other decision heuristics. This can
be explained by the fact that during the search, CBH quickly reorganizes the
clause list to contain groups of interrelated clauses.

Switching off the moving of conflict-responsible clauses to the top of the
list resulted in a performance degradation for four families and a performance
gain for three families in zChaff2004. The overall number of solved instances
was higher when the strategy was switched on. Switching off the moving of
conflict-responsible clauses to the top of the list led to mixed results in the
case of SE. Performance seriously degraded for the SCH family, and also for

the ST2 family; however, there was a performance-boost for the GR, ST2B

'Now, in the year 2008, one can see that some of the academic solvers, including the
recent SAT competition winners RSAT and TiniSAT have gone back to VSIDSM. CBH
remains the default heuristic for Intel’s SAT solver Eureka [48], since it is faster than other
heuristics on Intel’s internal benchmarks.

95

and VUN families. The overall number of solved instances remained the
same. One can conclude that moving the conflict-responsible clauses to the
top of the list can be useful for some families, but detrimental to others. We
recommend invoking it by default, since it resulted in an overall performance
boost in the case of zChaff2004 and did not hurt the overall performance of
SE.

Regarding the impact of the 2LitFirst strategy, first observe that ac-
cording to Tables 4.4 and 4.5, invoking 2LitFirst at every instance is not
justifiable. Note that the default strategy used by CBH invokes 2LitFirst
if the clause/variable rate is greater than 10. The motivating experimental
observation for designing CBH in this manner is that SE without 2LitFirst
performed the same as the default version on all families, except VUN, where
performance seriously degraded. VUN is the only family, other than PST,
for which the clause/variable ratio was greater than 10 in all instances. To
confirm that SE performs better when 2LitFirst is invoked in instances with
a high clause/variable ratio, we launched SE on 26 handmade families that
were submitted to SAT’04. SE was able to solve at least one instance from
13 families. The default CBH strategy performed better than a strategy
with 2LitFirst disabled on two out of 13 families, and it performed the same
on other families. In the case of zChaff2004, we found that the 2LitFirst
invocation hurt performance in a dramatic manner on families with a low
clause/variable ratio, and left the performance the same or slightly degraded
on families having a high clause/variable ratio. The families HEQ, GR, SCH
and ST2 are those with a ratio for all their instances lower than 10. When
2LitFirst was always used, zChaff2004 was able to solve only four instances
of these four families, compared to 20 instances solved by the version that
never used 2LitFirst. The other four families had either a mixed or high
clause/variable ratio. For these families, when 2LitFirst was always used,
zChaff2004 was able to solve 12 instances, compared to 16 for a version that
never used 2LitFirst. One can conclude that within zChaff2004, 2LitFirst
usage is not justified. Overall, 2LitFirst performed much better on instances

having a high clause/variable ratio.

96

Abbr. Family Name Num. | C/V Av. | C/V Mx | C/V Mn
HEQ goldberg03-hard_eq_check 13 6.4 6.7 6.1
GR maris03-gripper 10 9.1 9.7 8.5
SCH schuppan03-12s 11 3.2 3.3 3.0
ST2 simon03-sat02 9 3.3 4.2 2.7
ST2B simon03-sat02bis 10 23.9 71.9 2.9
CLR vangelder-cnf-color 12 42.9 195.4 4.0
PST velev-pipe-sat-1-1 10 33.7 33.8 33.7
VUN velev-vliw_unsat_2.0 8 15.6 20.1 10.7

Table 4.1: Description of the hard industrial benchmark families used in our
experiments. Family name, number of instances in each family as well as the
average, and maximal and minimal clause/variable ratios are provided

Table 4.2: Performance of CBH vs.

Family | CBH | Berkmin | VSIDSM | VSIDS
HEQ 5 4 4 3
GR 1 1 0 1
SCH 5 2 2 0
ST2 5 4 4 2
ST2B 2 2 2 1
CLR 6 4 4 4
PST 10 10 4 5
VUN 4 2 1 0
ALL 38 29 21 16

two versions of VSIDS and the Berk-

min heuristic, implemented in the SE SAT solver, on eight hard industrial
families. The first column contains an abbreviated family name. Each pair
of subsequent columns is dedicated to a specific heuristic. The number of
instances, solved within one hour, is provided.

Family

zChaff2004+CBH

zChaff2004+CBH 2L _N

zChaff2004 default

HEQ
GR
SCH
ST?
ST2B
CLR
PST
VUN

N O W N =~ Ot W 0o

DN OO = DN =~ Ot W o

ALL

w
[\]

w
D

O OO0 = = = N O

—

Table 4.3: CBH wvs.

the default heuristic within zChaff2004_2004.11.15.

CBH_2L N is a version of CBH that does not use the 2LitFirst strategy.

97

Family

CBH

CBH_NM

CBH NI

CBH 2L _A

CBH 2L N

HEQ
GR
SCH
ST2
ST2B
CLR
PST
VUN

—
= O O N Ot Ot = Ot

—_
O O W NN

—_
= O Ot = O R N Ot

—_
O ot N Ot oW

—_
_— O Oy DN Ot Ot = Ot

ALL

w
0¢]

w
o

w
D

w
—

w
ot

Table 4.4: Performance of different configurations of CBH in terms of solved
instances within one hour in the SE solver.

Family

CBH

CBH_NM

CBH_NI

CBH 2L _A

CBH 2L N

HEQ
GR
SCH
ST?
ST2B
CLR
PST
VUN

DN O W N = O W 0o

—
WO WWN N

DN QLW WN = = W o

N TtWw N O OO

DO OO = DO W=~ U1 W ©0

ALL

w
[\

[\
co

[\V)
Ne

—
=]

w
(@)

Table 4.5: Performance of different configurations of CBH in terms of solved
instances within one hour in the zChaff2004 solver.

98

Time in minutes (65 min. is the time-out)

Eureka vs. Eureka without CBH on MicroCode Instances

—e— CBH —=—NO CBH

10 20 30 40 50 60

Instances

Figure 4.1: CBH effect on MicroCode instances.

99

Chapter 5

A Scalable Algorithm for
Minimal Unsatisfiable Core

Extraction

The only approach for unsatisfiable core extraction that scales well for formal
verification benchmarks was independently proposed in [70] and in [28]. We
refer to this method as the EC' (Empty-clause Cone) algorithm. EC exploits
the ability of modern SAT solvers to produce a resolution refutation, given
an unsatisfiable formula. EC traverses a reversed refutation, starting with [
and taking initial clauses, connected to [J, as the unsatisfiable core. Invoking
EC until a fixed point is reached [70] allows one to reduce the unsatisfiable
core even more. We refer to this algorithm as FC-fp. However, the resulting
cores can be reduced further.

In this chapter we propose a new algorithm for minimal unsatisfiable core

extraction, based on a deeper exploration of resolution refutation properties.

5.1 Related Work

Algorithms for unsatisfiable core extraction built on top of modern SAT
solvers [70, 28] are the most relevant for our purposes for two reasons. First,

this approach allows one to deal with real-world examples arising in formal

100

verification. Second, it serves as the basis of our algorithm. We have already
described the EC and EC-fp algorithms above. Here we briefly consider other
approaches.

Theoretical work (e.g., [64]) has concentrated on developing efficient algo-
rithms for formulas with a small deficiency (the number of clauses minus the
number of variables). However, real-world formulas have an arbitrary (and
usually large) deficiency. A number of works considered the harder problem
of finding the smallest minimal unsatisfiable core [39, 44], or even finding all
minimally unsatisfiable formulas [38]. As one can imagine, these algorithms
are not scalable for even moderately large real-world formulas.

In [8, 9], an “adaptive core search” was applied for finding a small unsat-
isfiable core. The algorithm starts with a very small satisfiable subformula,
consisting of hard clauses. The unsatisfiable core is built by an iterative
process that expands or contracts the current core by a fixed percentage of
clauses. The procedure succeeded in finding small, though not necessarily
minimal, unsatisfiable cores for the problem instances it was tested on, but
these are very small and artificially generated.

Another approach that allows one to find small, but not necessarily min-
imal, unsatisfiable cores is called AMUSE [51]. In this approach, selector
variables are added to each clause and the unsatisfiable core is found by a
branch-and-bound algorithm on the updated formula. Selector variables al-
low the program to implicitly search for unsatisfiable cores using an enhanced
version of DLL on the updated formula. The authors noted their method’s
ability to locate different unsatisfiable cores, as well as its inability to cope
with large formulas.

The above described algorithms do not guarantee the minimality of the
extracted cores. One folk algorithm for minimal unsatisfiable core extraction,
which we dub Naive, works as follows: For every clause C' in an unsatisfiable
formula F', Nalve checks if it belongs to the minimal unsatisfiable core, by
invoking a SAT solver on F'\ C. Clause C does not belong to MUC if and
only if the solver finds that F'\ C' is unsatisfiable, in which case C' is removed
from F'. In the end, F' contains a minimal unsatisfiable core.

The only non-trivial algorithm existing in the current literature that guar-

101

antees minimality is MUP [31]. MUP is mainly a prover of minimal unsatisfi-
ability, as opposed to an unsatisfiable core extractor. It decides the minimal
unsatisfiability of a CNF formula through BDD manipulation. When MUP
is used as a core extractor, it removes one clause at a time until the remain-
ing core is minimal. MUP is able to prove minimal unsatisfiability of some
particularly hard classical problems quickly, whereas even just proving un-
satisfiability is a challenge for modern SAT solvers. However, the formulas
described in [31] are small and arise in areas other than formal verification.
We will see in Section 5.5 that MUP is significantly outperformed by Naive

on formal verification benchmarks.

5.2 Multi-Resolution Refutation

A multi-resolution refutation is a resolution refutation, such that each resol-
vent clause C' may have more than two sources, but it is guaranteed that
a resolution derivation of C' from the sources exists. In this chapter, it will
be more convenient to view a SAT solver as on an engine, producing multi-
resolution refutations.

A formal definition of a multi-resolution refutation appears below.

Definition 44 (Multi-resolution refutation). Let F' be an unsatisfiable CNF
formula (set of clauses) and let TI(V, E) be a dag whose vertices are clauses.!
Suppose V. = ViU Ve, where V' are all the sources of 11, referred to as
initial clauses, and V¢ = CY,...,C¢ is an ordered set of non-source vertices,

referred to as conflict clauses. Then, the dag II(V, E) is a multi-resolution
refutation of I if:

1. Vi=F;

2. For every conflict clause Cf, there exists a resolution derivation
{D1,Ds,...,Dy,Cs}, such that:

'From this point on, we use the terms “vertex” and “clause” interchangeably in the
context of multi-resolution refutation.

102

(a) for every j = 1,...,k, D; is either an initial clause or a prior

conflict clause C%, f <, and

(b) there are edges Dy — Cf,..., Dy, — Cf € E (these are the only
edges in E);

3. The sink vertex Cf, is the only empty clause in V.

A modern SAT solver employing conflict clause recording can generate
a multi-resolution refutation as follows. Each conflict clause C, derived by
resolution on a set of exiting clauses L, corresponds to a node in the multi-
resolution derivation, whose sources are the clauses of L.

For the following discussion, it will be helpful to remember the notion of
vertices that are “reachable”, or “backward reachable”, from a given clause

in a given dag.

Definition 45 (Reachable vertices). Let I be a dag. A vertex D is reachable
from C' if there is a path (of 0 or more edges) from C to D. The set of all
vertices reachable from C in 11 is denoted Re(Il,C). The set of all vertices
unreachable from C in 11 is denoted by Re(I1, C)

Definition 46 (Backward reachable vertices). Let I be a dag. A vertex D
is backward reachable from C' if there is a path (of 0 or more edges) from
D to C. The set of all vertices backward reachable from C' in 11 is denoted
by BRe(I1,C). The set of all vertices not backward reachable from C in 11 is
denoted BRe(I1,C).

For example, consider the multi-resolution refutation in Figure 5.1. We
have Re(Il, Ct) = {CE, C5, C5, C§, CE} and BRe(I1, C§) = {C5, Ci, CE}.

Multi-resolution refutations trace all resolution derivations of conflict
clauses, including the empty clause. Generally, not all clauses of a multi-
resolution refutation are required to derive [, but only those that are back-
ward reachable from [J. It is not hard to see that even if all other clauses
and related edges are omitted, the remaining graph is still a multi-resolution

refutation. We refer to such multi-resolution refutations as non-redundant

103

(see Definition 47). The multi-resolution refutation in Figure 5.1 is non-
redundant.

To retrieve a non-redundant subgraph of a multi-resolution refutation,
it is sufficient to take BRe(II,[J) as the vertex set and to restrict the edge
set E to edges having both ends in BRe(1I,). We denote a non-redundant
subgraph of a multi-resolution refutation II by II [g Re(r.0): Observe that

Iz Re(m,0) is a valid non-redundant multi-resolution refutation.

Definition 47 (Non-redundant multi-resolution refutation). A multi-
resolution refutation Il is non-redundant if there is a path in Il from every

clause to .
Lastly, we define the relative hardness of a multi-resolution refutation.

Definition 48 (Relative hardness). The relative hardness of a multi-
resolution refutation is the ratio between the total number of clauses and

the number of initial clauses.

5.3 The Complete Resolution Refutation
(CRR) Algorithm

Our goal is to find the minimal unsatisfiable core of a given unsatisfiable
formula F'. The proposed CRR method is displayed as Algorithm 6.

First, CRR builds a non-redundant multi-resolution refutation. Invoking
a SAT solver for constructing a (possibly redundant) multi-resolution refu-
tation II(V, E) and restricting it to Il p Req0) 18 sufficient for this purpose.

Suppose II(V* U V¢ E) is a non-redundant multi-resolution refutation.
CRR checks, for every unmarked clause C' left in V¢, whether C belongs to
the minimal unsatisfiable core. Initially, all clauses are unmarked. At each
stage of the algorithm, CRR maintains a valid multi-resolution refutation of
F.

Recall from Definition 45 that Re(Il, C) is the set of all vertices in II
unreachable from C. By construction of II, the Re(II, C) clauses were derived

independently of C'. To check whether C' belongs to the minimal unsatisfiable

104

Algorithm 6 (CRR). Returns a MUC, given an unsatisfiable formula F'.

1: Build a non-redundant multi resolution-refutation II(ViU V¢, E)
2: while unmarked clauses exist in V* do
3. C « PickUnmarkedClause(V")
Invoke a SAT solver on Re(II, C)
if Re(I1,C) is satisfiable then
Mark C' as a MUC member
else
Let G = Re(Il, O)
Build multi-resolution refutation IT'(V{ UV, Eg)
10: Vi—Vi\{C}
11: Ve — (Ve\ Re(I,C)) U VS
12: E «+ (E\ Ref(I1,C)) U Eg
13: H(Vi UV E) « H(Vi UVe E) rBRe(H,D)
14: return V'

core, we provide the SAT solver with Re(II, C'), including the conflict clauses.
We are trying to complete the multi-resolution refutation, while not using C
as one of the sources. Observe that [J is always reachable from C since II
is a non-redundant multi-resolution refutation; thus [J is never input to the
SAT solver. We let the SAT solver try to derive [J, using Re(Il, C) as the
input formula, or else prove that Re(II, C) is satisfiable.

In the latter case, we conclude that C' must belong to the minimal un-
satisfiable core, since we found a model for an unsatisfiable subset of initial
clauses minus C'. Hence, if the SAT solver returns satisfiable, the algorithm
marks C' (line 6) and moves to the next initial clause. However, if the SAT
solver returns unsatisfiable, we cannot simply remove C' from F and move
to the next clause, since we need to keep a valid multi-resolution refutation
for our algorithm to work properly. We describe the construction of a valid
refutation (lines 8-13) next.

Let G = Re(II, C). The SAT solver produces a new multi-resolution refu-
tation I1'(VE U V§, Eg) for G, whose sources are the clauses Re(Il, C). We
cannot use II" as the multi-resolution refutation for the subsequent iterations,
since the sources of the refutation may only be initial clauses of F. However,

the “superfluous” sources of I1' are conflict clauses of II, unreachable from C,

105

and thus are derivable from V*\ C using resolution relations, corresponding to
edges of I1. Hence, it is sufficient to augment IT" with such edges of IT that con-
nect V¢ \ C and Re(I1, C') to obtain a valid multi-resolution refutation whose
initial clauses belong to F'. Algorithm CRR constructs a new multi-resolution
refutation, whose sources are V*\ C; the conflict clauses are Re(Il,C') U V§
and the edges are (E\ (V4, V3)[(Vi € Re(Il,C) or V5 € Re(11,C))) U Eg. This
new refutation might be redundant, since Il'(VA UV, Eg) is not guaranteed
to be non-redundant. Therefore, prior to checking the next clause, we reduce
the new refutation to a non-redundant one. Observe that in the process of
reduction to a non-redundant subgraph, some initial clauses of F' may be
omitted; hence, each time a clause C' is found not to belong to the minimal
unsatisfiable core, we potentially drop not only C, but also other clauses.

We demonstrate the process of completing a multi-resolution refutation
on the example in Figure 5.1. Suppose we are checking whether C} be-
longs to the minimal unsatisfiable core. In this case, G = Re(Il,Ci) =
{Ci, 0L Ch, CELCEL CLL OS5, C5 . The SAT solver receives G as the input for-
mula. It is not hard to check that G is unsatisfiable. One multi-resolution
refutation of G is II'(VA UV, Eg), where Vi = {C4,CS, CL CSY, VS = (Dy =
O, Dy = aVb), and Eg = {(C%, Da),(CS, Dy), (D2, Dy), (C%, Dy),(C§, D1)}.
Therefore, Cf, Cf, C5, C¢ and related edges are excluded from the refutation
of F', whereas Do, Dy and related edges are added to the refutation of F. In
this case, the resulting multi-resolution refutation is non-redundant.

We did not define how the function PickUnmarkedClause should pick
clauses (line 3). Our current implementation picks clauses in the order in
which clauses appear in the given formula. Development of sophisticated
heuristics is left for future research.

Another direction that may lead to a speed-up of CRR is adjusting the
SAT solver for the purposes of the CRR algorithm, considering that the SAT
solver is invoked thousands of times on rather easy instances. Integrating
the data structures of CRR and the SAT solver, fine-tuning the SAT solver’s
heuristics for CRR, and holding the refutation in-memory rather than on
disk (as suggested in [70] for EC), could be helpful.

106

Figure 5.1: Multi-resolution refutation example.

107

D is neither satisfied nor falsified / Ret%n an unassigned literal

Figure 5.2: Function RRP _Decide represented as a transition relation. This
function is invoked by the decision engine of a SAT solver, implementing the
RRP pruning technique.

108

5.4 Resolution-Refutation-Based Pruning

In this section, we propose an enhancement of Algorithm CRR by developing
multi-resolution refutation-based pruning techniques for when a SAT solver is
invoked on Re(Il, C') to check whether it is possible to complete a refutation
without C. We refer to the pruning technique, proposed in this section, as
Resolution Refutation-Based Pruning (RRP).

In this section, we suppose that the SAT solver uses BCP and non-
chronological backtracking.

Recall from Definition 4 that an assignment o falsifies a clause C/ if every
literal of C' is false under o. An assignment o falsifies a set of clauses P if
every clause C' € P is falsified by 0. We claim that a model for Re(II, C)
can only be found under such a partial assignment, which falsifies every
clause in some path from C' to the empty clause in Re(Il, C'). The intuitive
reason is that every other partial assignment satisfies C' and must falsify
Re(I1,C), since F is unsatisfiable. A formal statement and proof is provided
in Proposition 10 below.

Consider the example in Figure 5.1. Suppose the currently visited clause
is C¢. Two paths from C¢ to the empty clause C¢ exist — namely {C}, C$, C¢}
and {C%, C5, CS, C¢}. A model for Re(Il, Ci) can only be found in a subspace
under the partial assignment {a = 1, ¢ = 0}, falsifying all the clauses of the
first path. The clauses of the second path cannot be falsified, since a must
be 1 to falsify clause C% and 0 to falsify clause Cf.

Denote a subtree connecting C' and [J by II [¢. The proposed pruning
technique, RRP, is integrated into the decision engine of the SAT solver. The
solver receives II [, together with the input formula Re(II,C'). The decision
engine of the SAT solver explores Il [¢ in a depth-first manner, picking
unassigned variables in the currently explored path as decision variables and
assigning them 0. As usual, BCP follows each assignment. Backtracking
in II [¢ is tightly related to backtracking in the assignment space. Both
events happen when a satisfied clause in II [¢ is found or when a conflict is
encountered by the SAT solver. After a particular path in II [has been

falsified, a general purpose decision heuristic is used until the SAT solver

109

either finds a satisfying assignment or proves that no such assignment can be
found under the currently explored path. This process continues until either
a model is found or the decision engine has completed exploring II[¢. In the
latter case, one can be sure that no model for Re(II, C) exists. However, the
SAT solver should continue its work to produce a multi-resolution refutation.

We need to describe in greater detail the changes in the decision and
conflict analysis engines of the SAT solver required to implement RRP. The
decision engine first invokes function RRP_Decide, depicted in Figure 5.2, as
a state transition relation. Each transition edge has a label consisting of a
condition under which the state transition occurs and an operation, executed

upon transition. The state can be one of the following:
Norm) normal;
Sat) the currently explored clause is satisfied;

(
(
(False) the currently explored clause is falsified;
(EoT) subgraph II [¢ has been explored;

(

EoF) all clauses in the currently explored path are falsified.

The states are managed globally, that is, if RRP_Decide moves to state S,
it will start in state S when next invoked. A pointer D to the currently
visited clause of II [¢ is also managed globally. The state transition relation
is initialized prior to the first invocation of the decision engine. Pointer D is
initialized to C' and the initial state is Norm.

State Norm corresponds to a situation when the algorithm does not know
what the status of D is. If D is neither satisfied nor falsified, RRP_Decide
returns a negation of some literal of D, which will serve as the next decision
variable. If D is satisfied, the algorithm moves to Sat. Observe that a
clause may become satisfied only as a result of BCP. Encountering a satisfied
clause means that the currently explored path cannot be falsified, and we
can backtrack. Suppose we are in Sat, meaning that D is satisfied. If D has
a parent, the algorithm backtracks by moving D to point to its parent, and
goes back to Norm; otherwise, the tree is explored and the algorithm moves
to EoT. In this case, RRP_Decide returns an unknown value and a general

purpose heuristic must be used. Consider now the case when the state is

110

Norm and D is falsified. The algorithm moves to False. Here, one of the

three following conditions holds:

(a) D has an unvisited child S. In this case D is updated to point to S
and RRP_Decide moves back to Norm.

(b) All children of D are visited. In this case, we backtrack by moving D
back to its parent and go back to Norm.

(¢) D has no children. In this case, all the clauses in the currently explored
path are falsified. The algorithm moves to EoF; RRP_Decide returns

an unknown value; and a general purpose heuristic must be used.

To complete the picture, we describe the changes to the conflict analysis
engine required to implement RRP. One of the main tasks of conflict analysis
in modern SAT solvers is to decide on the backtrack level (recall Definition 30
of a backtrack level on page 34). Let the backtrack level be bl. When
invoked in RRP mode, the conflict analysis engine must also find whether it
is required to backtrack in Il [, and to which clause. The goal is to backtrack
to the highest clause B in the currently explored path in II [¢, such that B
has unassigned literals. Recall that D is a pointer to the currently visited
clause of II[¢. Denote by mdl(D) the maximal decision level of D’s literals.
If bl > mdl(D), the algorithm does nothing; otherwise, it finds the first
predecessor of D in Il [, such that bl < mdl(B) and sets D «— B.

We found experimentally that the optimal performance for RRP is
achieved when it explores II [¢ starting from [0 and moving toward C' (and
not vice-versa). In other words, prior to the search, the SAT solver reverses
all the edges of II [¢ and sets the pointer D to O, rather than to C. (By de-
fault, the current version of RRP explores the graph only until a predefined
depth of 50.) The next literal from the currently visited clause is chosen
by preferring an unassigned literal with the maximal number of appearances
in recent conflict clause derivations (similar to Berkmin’s [27] heuristic for
SAT). The next visited child is chosen arbitrarily. Further fine-tuning of the

algorithm is left to future research.

111

Proposition 10. Let TI(V*, V) be a non-redundant multi-resolution refu-
tation. Let C € V' be an initial clause and o be an assignment. Then, if
o | Re(I1, 0), there is a path P = {C,...,C¢} in Re(Il,C), connecting C

to the empty clause®, such that o falsifies every clause in P.

Proof. Suppose, on the contrary, that no such path exists. Then, there exists
a satisfiable vertex cut U in II. However, the empty clause is derivable from

U, since it is a vertex cut; thus U is unsatisfiable, a contradiction. O

2The empty clause always belongs to Re(Il, C), since II(V¢, V¢) is non-redundant.

112

Table 5.1: Comparing algorithms for unsatisfiable core extraction. Columns
Instance, Var and Cls contain instance name (where, p/bl/lm stand for
pipe/barrel /longmult), number of variables, and clauses, respectively. The
next seven columns contain execution times (in seconds) and core sizes (in
number of clauses) for each algorithm (AM is AMUSE). The cut-off time
was 24 hours. Column R. Hd. contains the relative hardness of the final
multi-resolution refutation, produced by CRR+RRP. Bold times are the best
among algorithms guaranteeing minimality. Values “to” and “mo” stand for
time-out and memory-out.

Subopt. CRR Naive MUP R.
Inst Var Cls EC ‘ EC-fp RRP ‘ plain | EC-fp ‘ AM EC-fp Hd.
4p 4237 9 171 3527 4933 24111 to to 1.4
80213 || 23305 17724 17184 | 17180 17182
4dp_1_ooo || 4647 10 332 4414 | 10944 25074 to mo 1.7
74554 || 24703 14932 12553 | 12515 12374
4p_2_000 || 4941 13 347 5190 | 12284 49609 to mo 1.7
82207 || 25741 17976 14259 | 14192 14017
4p_3_0o0 || 5233 14 336 6159 | 15867 41199 to mo 1.6
89473 || 30375 20034 16494 | 16432 16419
4p_4_ooo || 5525 16 341 6369 | 16317 47394 to mo 1.6
96480 || 31321 21263 17712 | 17468 17830
3p_k 2391 2 20 411 493 2147 | 12544 mo 1.5
27405 10037 6953 6788 6786 6784 6790
4p_k 5095 8 121 3112 3651 15112 to to 1.5
79489 || 24501 17149 17052 | 17078 17077
5p-k 9330 16 169 || 13836 | 17910 83402 to mo 1.4
189109 || 47066 36571 36270 | 36296 36370
bl5 1407 2 19 93 86 406 326 mo 1.8
5383 3389 3014 2653 2653 2653 2653
bl6 2306 35 322 351 423 4099 4173 mo 1.8
8931 6151 5033 4437 4437 4437 4437
bl7 3523 124 1154 970 1155 6213 | 24875 mo 1.9
13765 9252 7135 6879 6877 6877 6877
bI8 5106 384 9660 2509 2859 to to mo 1.8
20083 || 14416 11249 10076 | 10075
Im4 1966 0 0 8 7 109 152 13 2.6
6069 1247 1246 972 972 972 976 972
Im5 2397 0 1 74 31 196 463 35 3.6
7431 1847 1713 1518 1518 1518 1528 1518
Im6 2848 2 13 288 311 749 2911 5084 5.6
8853 2639 2579 2187 2187 2187 2191 2187
Im7 3319 17 91 6217 | 3076 6154 | 32791 68016 14.2
10335 3723 3429 2979 2979 2979 2993 2979

5.5 Experimental Results

We implemented CRR and RRP in the Eureka SAT solver [48]. We used
benchmarks from four well-known unsatisfiable families, taken from bounded
model checking (barrel, longmult) [7] and microprocessor verification (fvp-
unsat.2.0, pipe_unsat_1.0) [67]. All the instances we used appear in the
first column of Table 5.1. The experiments on the barrel and fvp-unsat.2.0
families were carried out on a machine with 4Gb of memory and two Intel
Xeon CPU 3.06 processors. A machine with the same amount of memory
and two Intel Xeon CPU 3.20 processors was used for experiments with the
longmult and pipe_unsat_1.0 families.

Table 5.1 summarizes the results of a comparison of the performance of
two algorithms for suboptimal unsatisfiable core extraction and five algo-
rithms for minimal unsatisfiable core extraction in terms of execution time
and core sizes.

First, we compared algorithms for minimal unsatisfiable core extraction,
namely, Naive, MUP, plain CRR, and CRR enhanced by RRP. In prelimi-
nary experiments, we found that Naive demonstrated its best performance on
formulas that were first trimmed down by a suboptimal algorithm for unsat-
isfiable core extraction. We tried Naive in combination with EC, EC-fp and
AMUSE and found that EC-fp is the best front-end for Naive. In our main
experiments, we used Naive, combined with EC-fp, and Naive combined with
AMUSE. We also found that MUP demonstrated its best performance when
combined with EC-fp, while CRR performed the best when the first refu-
tation is constructed by EC, rather than EC-fp. Consequently, we provide
results for MUP combined with EC-fp and CRR combined with EC. MUP
required a so-called “decomposition tree”, in addition to the CNF formula.
We used the c2d package [14] for decomposition tree construction.

The sizes of the cores did not vary greatly between MUC algorithms, so
we concentrate on a performance comparison. One can see that the combi-
nation of EC-fp and Naive outperformed the combination of AMUSE and
Naive, as well as MUP. Plain CRR outperformed Naive on every benchmark,
whereas CRR+RRP outperformed Naive on 15 out of 16 benchmarks (the

114

exception being the hardest instance of longmult). This demonstrates that
our algorithms are justified in practice. Usually, the speed-up of these algo-
rithms over Naive varied between 4 and 10x, but it was as large as 34x (for
the hardest instance of the barrel family) and as small as 2x (for the hard-
est instance of longmult). RRP improved performance in most instances.
The most significant speed-up of RRP was about 2.5x, achieved on hard
instances of the fvp-unsat.2.0 family. The only family for which RRP was
usually unhelpful was longmult.

A natural question is why the complex instances of the longmult family
are hard for CRR, and even harder for RRP. The key difference between
longmult and other families was the hardness of the resolution proof. The
relative hardness of a multi-resolution refutation produced by CRR+RRP
varied between 1.4 to 2 for every instance of every family, except longmult,
where it reached 14.2 for the longmult7 instance. When the refutation was
too complex, the exploration of Re(Il,C) executed by RRP was too com-
plicated; thus, plain CRR is advantageous over CRR+RRP. Also, when the
refutation is too complex, it is costly to perform traversal operations, as re-
quired by CRR. This explains why the advantage of CRR over Naive was as
small as 2x.

Comparing CRR+RRP on one side and EC and EC-fp on the other, we
find that CRR+RRP always produced smaller cores than both EC and EC-
fp. The average gain on all instances of cores produced by CRR+RRP over
cores produced by EC and EC-fp was 53% and 11%, respectively. The biggest
average gain of CRR+RRP over EC-fp was achieved on the fvp-unsat.2.0
and longmult families (18% and 17%, respectively). Unsurprisingly, both
EC and EC-fp were usually much faster than CRR+RRP. However, for the
three hardest instances of the barrel family, CRR+RRP outperformed EC-fp

in terms of execution time.

115

Chapter 6
Conclusion

Chapter 2 of this work proposed a new framework for presenting and under-
standing the functionality of modern SAT solvers. The framework exploits
the inherent relationships between search and resolution. A formulation of
the basic backtracking algorithm, including an exact description of the on-
the-fly resolution refutation creation, has been provided. We called this for-
mulation the SAT Solver Skeleton (SSS). We introduced a notion of a parent
resolution derivation: a resolution proof for the validity of each flip opera-
tion. Chapter 3 demonstrated that the notion of parent resolution derivation
is useful for analyzing and improving modern SAT solvers.

Another important feature of our framework in Chapter 2 is that it defined
all the modern algorithms for conflict-driven learning, including 1UIP-based
conflict-directed backjumping, non-chronological backtracking and conflict
clause recording, without using the notion of an implication graph. Instead,
our approach is based on resolution.

We also showed in Chapter 2 how to augment SSS with each one of the
following six enhancements, used already in the Chaff-2001 SAT solver [45]

and widely used in modern SAT solvers. These techniques include!:
e Boolean Constraint Propagation (BCP) [15]

e Non-Chronological Backtracking (NCB) [60, 3]

IThe references are to first applications or important milestones of applying these
technique in the context of SAT.

116

e 1UIP-based Conflict-Direct Backjumping (CDB) [60, 3, 45]
e Conflict Clause Recording (CCR) [60, 45]
e Restarts [29]

e Conflict Clause Deletion (CCD) [3]

Chapter 3 formalized the notion of search pruning, relating it to the
size of the constructed resolution derivation. We introduced the concepts of
backward pruning — the number of resolution derivation nodes skipped during
backtracking; and forward pruning — the potential impact on reusing conflict
clauses in the subsequent search. We showed that the 1UIP scheme [60, 3, 45]
with conflict clause minimization [4, 62] for conflict-driven learning is better
than other known schemes in terms of both backward and forward pruning,
and explained its empirical advantage over other schemes.

We introduced an enhancement to the 1UIP scheme with minimization,
called local conflict clause recording. This algorithm records additional con-
flict clauses to improve forward pruning by making it less dependent on the
polarity selection heuristic. We demonstrated that local conflict clause con-
tributes to the performance of a modern SAT solver.

In addition, we reaffirmed the empirical usefulness of assignment stack
shrinking [47, 40], a technique for reducing the size of conflict clauses and re-
moving irrelevant literals from the assignment stack. We showed that assign-
ment stack shrinking contributes to the performance of modern SAT solvers.
We also illustrated that the effect of assignment stack shrinking cannot be
achieved by using conflict clause minimization and/or rapid restarts.

Chapter 4 presented a novel clause-based heuristic (CBH). This heuristic
maintains a clause list organized in a manner that allows the algorithm to
choose sequences of interrelated variables that were responsible for recent
conflict derivation. CBH maintains both the initial and the conflict clauses
in a single list. The next decision literal is picked from the topmost unsatisfied
clause in the list. After each conflict, the conflict clause is prepended to the
top of the list. Clauses visited during conflict-clause identification are placed

just after the new conflict clause. As a variant, if the clause/variable ratio

117

of the input instance is greater than a predefined value (10 is a reasonable
choice), newly identified binary clauses are moved to the top of the list.
We demonstrated that using CBH results in a significant performance boost
for hard industrial families, when compared with the Berkmin heuristic or
VSIDS.

Chapter 5 proposed an algorithm for minimal unsatisfiable core extrac-
tion, called CRR. This algorithm builds a resolution refutation using a SAT
solver and finds a first approximation of the minimal unsatisfiable core. Then
it checks every remaining initial clause C' to see whether it belongs to the
minimal unsatisfiable core. The algorithm reuses conflict clauses and resolu-
tion relations throughout its execution. We demonstrated that our algorithm
is faster than currently existing algorithms by a factor of six or more on large
problems with non-overly hard resolution proofs, and that it can find minimal

unsatisfiable cores for real-world formal verification benchmarks.

118

Index of Important Terms

1UIP scheme for conflict-driven learning 43
1UIP-based conflict-directed backjumping 35
2LitFirst strategy for clause-based heuristic 89
AIUIP scheme for conflict-driven learning 48
AllUIP-based conflict-directed backjumping 47
Asserting clause 29
Asserting literal 30
Asserting resolution derivation 29
Assigned literal 13
Assigned variable 13
Assignment 9

Assignment invariant 24
Assignment level 13
Assignment stack shrinking 75
Backtrack level 34
Backtracking clause 17
Backtracking invariant 17
Backtracking loop of SSS 14
Backtracking resolution derivation 17
Backward pruning 59

Backward reachable vertices in multi-resolution refutation 103

Berkmin decision heuristic 87

119

Blocking clause

Boolean constraint propagation (BCP)

Clause

Clause-based heuristic (CBH)
Complete assignment

Complete resolution refutation (CRR)
Composition of resolution derivations
Conflict

Conflict analysis loop of SSS

Conflict clause

Conflict clause deletion (CCD)
Conflict clause minimization

Conflict clause recording

Conflict clause-based assignment stack shrinking
Conflict-driven flipped variable
Conflict-driven learning (CDL)
Conjunctive normal form (CNF)

Current decision level

Decision
Decision level
Decision literal
Decision variable

Dynamic decision heuristic
Empty clause
Failure-driven assertion
Falsified clause

Falsified CNF formula

Flipped assignment level

120

16
30

86

104
10
16
14
38
40
49
38
75
71
43

29
28
29
29

29
87

30

13

Flipped literal
Flipped variable

Forward pruning

Highest assignment level

Implication graph

Implication level

Implication-based approach to conflict-driven learning

Implied literal

Literal

Local conflict clause recording

Main loop of SSS
Minimized scheme for conflict-driven learning
Model

Multi-resolution refutation

NCB backward pruning
Non-chronological backtracking (NCB)
Non-flipped assignment level
Non-flipped literal

Non-flipped variable

Non-redundant multi-resolution refutation

Parent clause

Parent invariant

Parent resolution derivation
Parent-based conflict clause recording
Partial assignment

Pivot variable

121

13
13
60

30

57
o7
56
56

69

14
52

102

60
33
13
13
13
104

16
16
16
39

10

Pre-flip conflict clause
Pre-flip learning uselessness

Pruning

Reachable vertices in multi-resolution refutation
Refutation

Relative hardness of a multi-resolution refutation
Resolution backward pruning

Resolution derivation

Resolution refutation

Resolution rule

Resolution-refutation-based pruning (RRP)
Resolvent

Restarts

SAT solver skeleton (SSS)
Satisfiable CNF formula
Satisfied clause

Satisfied CNF formula

Size of resolution derivation
Skipped clause

Skipped literal

Skipped node

Skipped resolution derivation
Skipped variable

Static decision heuristic

Target clause

Termination function for SSS

UIP backward pruning

UIP-n scheme for conflict-driven learning

122

62
63
59

103
11
104
60
10
11
10
109
10
40

15

10
59
59
59
59
59
86

10
24

60
46

UIP-n-based conflict-directed backjumping
Unique implication point

Unit clause

Unit clause rule

Unsatisfiable CNF formula

Useful pre-flip conflict clause

Useless pre-flip conflict clause

Variable
Variable state independent decaying sum (VSIDS)

123

45
35
31
31

63
63

Bibliography

[1]

2]

J. Alfredsson. The SAT solver Oepir. http://www.lri.fr/~simon/
contest/results/ONLINEBOOKLET/OepirA.ps.

Tamarah Arons, Elad Elster, Limor Fix, Sela Mador-Haim, Michael
Mishaeli, Jonathan Shalev, Eli Singerman, Andreas Tiemeyer, Moshe Y.
Vardi, and Lenore D. Zuck. Formal verification of backward compatibil-
ity of microcode. In Kousha Etessami and Sriram K. Rajamani, editors,
CAV, volume 3576 of Lecture Notes in Computer Science, pages 185—
198. Springer, 2005.

Roberto J. Bayardo and Robert C. Schrag. Using CSP look-back tech-
niques to solve real-world SAT instances. In Proceedings of the National
Conference on Artificial Intelligence, pages 203-208, 1997.

Paul Beame, Henry A. Kautz, and Ashish Sabharwal. Towards under-
standing and harnessing the potential of clause learning. J. Artif. Intell.
Res. (JAIR), 22:319-351, 2004.

Daniel Le Berre and Laurent Simon. Fifty-five solvers in Vancouver:
The SAT 2004 competition. In Hoos and Mitchell [30], pages 321-344.

Armin Biere. PicoSAT essentials. JSAT, 4(2-4):75-97, 2008.

Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Y. Zhu. Sym-
bolic model checking without BDDs. In Proceedings of the Fifth Inter-

national Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS’99), pages 193-207, 1999.

124

8]

[10]

[11]

[12]

R. Bruni and A. Sassano. Restoring satisfiability or maintaining unsatis-
fiability by finding small unsatisfiable subformulae. In Proceedings of the
Workshop on Theory and Application of Satisfiability Testing (SAT’01),
2001.

Renato Bruni. Approximating minimal unsatisfiable subformulae by
means of adaptive core search. Discrete Applied Mathematics, 130(2):85—
100, 2003.

Roberto Bruttomesso, Alessandro Cimatti, Anders Franzén, Alberto
Griggio, Ziyad Hanna, Alexander Nadel, Amit Palti, and Roberto Se-
bastiani. A lazy and layered SMT(BV) solver for hard industrial ver-
ification problems. In Werner Damm and Holger Hermanns, editors,
CAV, volume 4590 of Lecture Notes in Computer Science, pages H47—
560. Springer, 2007.

Geoffrey Chu, Aaron Harwood, and Peter J. Stuckey. Cache conscious
data structures for Boolean satisfiability solvers. Journal on Satisfiabil-
ity, Boolean Modeling and Computation, 6:99-120, 20009.

Stephen A. Cook. The complexity of theorem-proving procedures. In
STOC ’71: Proceedings of the Third Annual ACM Symposium on the
Theory of Computing, pages 151-158, New York, NY, USA, 1971. ACM

Press.

Stephen A. Cook and Robert A. Reckhow. The relative efficiency of
propositional proof systems. J. Symb. Log., 44(1):36-50, 1979.

Adnan Darwiche. New advances in compiling CNF into decomposable
negation normal form. In Proceedings of the 16th European Conference
on Artificial Intelligence, (ECAI’04), pages 328-332, 2004.

Martin Davis, George Logemann, and Donald Loveland. A machine
program for theorem-proving. Commun. ACM, 5(7):394-397, 1962.

Nachum Dershowitz, Ziyad Hanna, and Alexander Nadel. A clause-
based heuristic for SAT solvers. In Fahiem Bacchus and Toby Walsh,

125

[17]

[18]

[19]

[20]

[21]

[22]

23]

[24]

editors, SAT, volume 3569 of Lecture Notes in Computer Science, pages
46-60. Springer, 2005.

Nachum Dershowitz, Ziyad Hanna, and Alexander Nadel. A scalable
algorithm for minimal unsatisfiable core extraction. In Armin Biere
and Carla P. Gomes, editors, SAT, volume 4121 of Lecture Notes in
Computer Science, pages 36—41. Springer, 2006.

Nachum Dershowitz, Ziyad Hanna, and Alexander Nadel. Towards a
better understanding of the functionality of a conflict-driven SAT solver.
In Joao Marques Silva and Karem A. Sakallah, editors, SAT, volume
4501 of Lecture Notes in Computer Science, pages 287-293. Springer,
2007.

Niklas Eén and Niklas Soérensson. An extensible SAT-solver. In En-
rico Giunchiglia and Armando Tacchella, editors, SAT, volume 2919 of
Lecture Notes in Computer Science, pages 502-518. Springer, 2003.

Niklas Eén and Niklas Sorensson. MiniSat v1.13 a SAT solver with

conflict-clause minimization, 2005.

Michael R. Garey and David S. Johnson. Computers and Intractability:
A Guide to the Theory of NP-Completeness (Series of Books in the
Mathematical Sciences). W. H. Freeman, January 1979.

Allen Van Gelder. Extracting (easily) checkable proofs from a satisfi-
ability solver that employs both preorder and postorder resolution. In
AMATI 2002.

Allen Van Gelder. Pool resolution and its relation to regular resolution
and dpll with clause learning. In Geoff Sutcliffe and Andrei Voronkov,
editors, LPAR, volume 3835 of Lecture Notes in Computer Science,
pages 5b80-594. Springer, 2005.

Allen Van Gelder. Improved conflict-clause minimization leads to im-

proved propositional proof traces. In Kullmann [36], pages 141-146.

126

[25]

[26]

[27]

[29]

[30]

[31]

[32]

Roman Gershman and Ofer Strichman. HaifaSat: A new robust SAT
solver. In Ur et al. [65], pages 76-89.

Roman Gershman and Ofer Strichman. HaifaSat: a SAT solver based
on an abstraction/refinement model. Journal on Satisfiability, Boolean
Modeling and Computation, 6:31-51, 2008.

Evgueni Goldberg and Yakov Novikov. BerkMin: A fast and robust
SAT-solver. In Design, Automation, and Test in Europe (DATE ’02),
pages 142-149, March 2002.

Evgueni Goldberg and Yakov Novikov. Verification of proofs of unsat-
isfiability for CNF formulas. In Proceedings of Design, Automation and
Test in Furope Conference and Ezhibition (DATE’03), pages 886-891,
2003.

Carla P. Gomes, Bart Selman, and Henry Kautz. Boosting combina-
torial search through randomization. In AAAI "98/IAAI '98: Proceed-
ings of the Fifteenth National/Tenth Conference on Artificial Intelli-
gence/Innovative Applications of Artificial Intelligence, pages 431-437,
Menlo Park, CA, USA, 1998. American Association for Artificial Intel-

ligence.

Holger H. Hoos and David G. Mitchell, editors. Theory and Applications
of Satisfiability Testing, 7th International Conference, SAT 2004, Van-
couver, BC, Canada, May 10-13, 2004, Revised Selected Papers, volume
3542 of Lecture Notes in Computer Science. Springer, 2005.

Jinbo Huang. MUP: A minimal unsatisfiability prover. In Proceedings of
the Tenth Asia and South Pacific Design Automation Conference (ASP-
DAC’05), pages 432-437, 2005.

Jinbo Huang. The effect of restarts on the efficiency of clause learning.
In Proceedings of the 20th International Joint Conference on Artificial
Intelligence, pages 2318-2323, 2007.

127

[33]

[34]

[35]

[39]

[40]

[41]

R. J. Jeroslow and J. Wang. Solving propositional satisfiability prob-
lems. Annals of Mathematics and Artificial Intelligence, 1:167-188,
1990.

Henry A. Kautz and Bart Selman. Planning as satisfiability. In Pro-
ceedings of the Tenth FEuropean Conference on Artificial Intelligence
(ECAI’92), pages 359-363, 1992.

Zurab Khasidashvili, Alexander Nadel, Amit Palti, and Ziyad Hanna.
Simultaneous SAT-based model checking of safety properties. In Ur
et al. [65], pages 56-75.

Oliver Kullmann, editor. Theory and Applications of Satisfiability Test-
ing - SAT 2009, 12th International Conference, SAT 2009, Swansea,
UK, June 30 - July 3, 2009. Proceedings, volume 5584 of Lecture Notes
in Computer Science. Springer, 2009.

Shie-Jue Lee and David A. Plaisted. Eliminating duplication with the
hyper-linking strategy. J. Autom. Reasoning, 9(1):25-42, 1992.

Mark H. Liffton and Karem A. Sakallah. On finding all minimally un-
satisfiable subformulas. In Proceedings of the Eighth International Con-
ference on Theory and Applications of Satisfiability Testing (SAT05),
pages 173-186, 2005.

Inés Lynce and Joao P. Marques Silva. On computing minimum unsat-
isfiable cores. In SAT, 2004.

Yogesh S. Mahajan, Zhaohui Fu, and Sharad Malik. Zchaff2004: An
efficient SAT solver. In Hoos and Mitchell [30], pages 360-375.

Vasco M. Manquinho and Joao P. Marques Silva. Search pruning tech-
niques in SAT-based branch-and-bound algorithms for the binate cover-
ing problem. IEEFE Trans. on CAD of Integrated Circuits and Systems,
21(5):505-516, 2002.

128

[42]

[45]

[49]

Kenneth L. McMillan and Nina Amla. Automatic abstraction without
counterexamples. In Proceedings of the Ninth International Conference

on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS’03), pages 2—-17, 2003.

Kenneth Lauchlin McMillan. Symbolic model checking: an approach to
the state explosion problem. PhD thesis, Carnegie Mellon University,
Pittsburgh, PA, USA, 1992.

Maher N. Mneimneh, Inés Lynce, Zaher S. Andraus, Joao P. Marques
Silva, and Karem A. Sakallah. A branch and bound algorithm for ex-
tracting smallest minimal unsatisfiable formulas. In Proceedings of the
FEighth International Conference on Theory and Applications of Satisfi-
ability Testing (SAT’05), pages 467674, 2005.

Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang,
and Sharad Malik. Chaff: Engineering an efficient SAT solver. In DAC,
pages 530-535. ACM, 2001.

Alexander Nadel. Jerusat SAT solver. http://www.cs.tau.ac.il/
~alel/Jerusatl.3.tgz.

Alexander Nadel. Backtrack search algorithms for propositional logic
satisfiability: Review and innovations. Master’s thesis, Hebrew Uni-

veristy of Jerusalem, Jerusalem, Israel, November 2002.

Alexander Nadel, Moran Gordon, Amit Palti, and Ziyad Hanna.
Eureka-2006 SAT solver. http://fmv. jku.at/sat-race-2006/
descriptions/4-Eureka.pdf.

Gi-Joon Nam, Fadi Aloul, Karem Sakallah, and Rob Rutenbar. A com-
parative study of two Boolean formulations of FPGA detailed routing

constraints. In Proceedings of the 2001 International Symposium on
Physical Design (ISPD’01), pages 688-696, 2001.

Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Solving
SAT and SAT Modulo Theories: From an abstract Davis—Putnam-—

129

[58]

[59]

Logemann—Loveland procedure to DPLL(T). J. ACM, 53(6):937-977,
2006.

Yoonna Oh, Maher N. Mneimneh, Zaher S. Andraus, Karem A. Sakallah,
and Igor L. Markov. AMUSE: a minimally-unsatisfiable subformula

extractor. In Proceedings of the 41th Design Automation Conference
(DAC"04), pages 518-523, 2004.

C. H. Papadimitriou and M. Yannakakis. The complexity of facets (and
some facets of complexity). In Proceedings of the Fourteenth Annual
ACM Symposium on the Theory of Computing (STOC’82), pages 255—
260, 1982.

Knot Pipatsrisawat and Adnan Darwiche. RSat SAT solver. http:

//reasoning.cs.ucla.edu/rsat/.

Mukul R. Prasad, Armin Biere, and Aarti Gupta. A survey of recent
advances in SAT-based formal verification. STTT, 7(2):156-173, 2005.

Patrick Prosser. Hybrid algorithms for the constraint satisfaction. Com-
putational Intelligence, 9(3):268-299, 1993.

Lawrence O. Ryan. Efficient algorithms for clause learning SAT solvers.

Master’s thesis, Simon Fraser University, Burnaby, Canada, 2004.

Vadim Ryvchin and Ofer Strichman. Local restarts. In Hans Kleine
Biining and Xishun Zhao, editors, SAT, volume 4996 of Lecture Notes
in Computer Science, pages 271-276. Springer, 2008.

Ofer Shtrichman. Pruning techniques for the SAT-based bounded model
checking problem. In CHARME ’01: Proceedings of the 11th IFIP
WG 10.5 Advanced Research Working Conference on Correct Hard-
ware Design and Verification Methods, pages 58-70, London, UK, 2001.
Springer-Verlag.

Joao P. Marques Silva. The impact of branching heuristics in proposi-
tional satisfiability algorithms. In Portuguese Conference on Artificial

Intelligence, pages 62-74. Springer, September 1999.

130

[60]

[61]

[62]

[63]

[65]

[66]

Joao P. Marques Silva and Karem A. Sakallah. GRASP: A search algo-
rithm for propositional satisfiability. IEEE Transactions on Computers,
48:506-521, 1999.

Carsten Sinz. SAT-Race 2006. http://fmv. jku.at/sat-race-2006/.

Niklas Sorensson and Armin Biere. Minimizing learned clauses. In
Kullmann [36], pages 237-243.

Richard M. Stallman and Gerald J. Sussman. Forward reasoning and
dependency-directed backtracking in a system for computer-aided circuit
analysis. Artif. Intell., 9(2):135-196, 1977.

Stefan Szeider. Minimal unsatisfiable formulas with bounded clause-
variable difference are fixed-parameter tractable. Journal of Computer
and System Sciences, 69(4):656-674, 2004.

Shmuel Ur, Eyal Bin, and Yaron Wolfsthal, editors. Hardware and
Software Verification and Testing, First International Haifa Verifica-
tion Conference, Haifa, Israel, November 13-16, 2005, Revised Selected
Papers, volume 3875 of Lecture Notes in Computer Science. Springer,
2006.

Miroslav N. Velev. Using rewriting rules and positive equality to formally
verify wide-issue out-of-order microprocessors with a reorder buffer. In
Proc. Design, Automation and Test in Europe Conference and FExhibi-
tion, pages 28-35, 2002.

M.N. Velev and R.E. Bryant. Effective use of Boolean satisfiability
procedures in the formal verification of superscalar and VLIW micro-

processors. In Proceedings of the 38th Design Automation Conference
(DAC"01), pages 226-231, 2001.

Hantao Zhang. SATO: an efficient propositional prover. In Proceedings
of the International Conference on Automated Deduction, pages 272—
275. Springer-Verlag, 1997.

131

[69] Lintao Zhang, Conor F. Madigan, Matthew H. Moskewicz, and Sharad
Malik. Efficient conflict driven learning in a Boolean satisfiability solver.
In Proceedings of the 2001 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD’01), pages 279-285. IEEE Press, 2001.

[70] Lintao Zhang and Sharad Malik. Extracting small unsatisfiable cores
from unsatisfiable Boolean formula. In Preliminary Proceedings of Sizth
International Conference on Theory and Applications of Satisfiability
Testing (SAT’03), 2003.

132

719797 272 T1 NX 9200 ,K9K .0"an%Y 7w 1R C IR ,Mp 0 JPK NP5 X .2

.C DR n9912 AR WK 79PN XITI2
.0"2n% N1 RO NOPID? MAWPRT LBPRT NP0 90 wRD o0 4

-12 NIPPO0 HY MMV ANNW K17 ,19 13 .[16,17,18] 2o mRnn Hw SwWRIT 12man 1397 7 810 Nann
AT TN MR 1R WX L[10] n1°2°0 "27vn Mmoo o [35] °%7I NP>T122 NoaaT

70 RITW 702 RIT 7"2N2°0 DY PRpIa ¥10R SW A0 PN L INIR? IR ,7"an2°07 TARIT N 1R
D°P°90-°R D01V 77°N0Y YA M13°07 DX 77¥1 NOMWAT ONT AW DOINWH — DR 2°Inwn TInab
YPORW 77 9932 DN TV DRI UPR AT NON° ,002 .0°P°O0 0991A N2 NPPI0D PHDY oM
YMON DOYOXN AR L1"AN2O0 T CIWR YO0N WANWAY BPRT NPPI0D NR ARWI2 P01 UPR PHpia
77°N0 NPPI0D T VYR NPPIOD 1T N9 AW pUIma WK L(2"An) NPIDD 0D1an VDN MY
7RO K27 NPI0DI T2 N2 XA AULNaT TINWR .ONWR 2°INWR D125 MT°207 DR 702 v
NP0 NITAYR 191 AW YW ONWRD PAIRD MW MLOW DOO%A AR OIWH Y00 TNR PR L0V

PP ¥0171 17"'AN2°07 RN PMYAwH DOYIC MYV DR DY .aRdwaT TIna

N2 7X12P-NN — [P0 NP7 72997 IRCYN 7197 MO0 NYa NMIRADI M2V NINIYNAT AW Y3
001, [43] 7RI SW OHRIVEPIID NIRRT Y7 27D MIRANT LL9PA NPPI0D Hw oD
N72 NI 1209 A0 AP0 Cnba 12°% [42] quwsnn Ny L[49] A7wa PIon 12 oww TIvna
NP2 727 RIAY XD AN LTRO0% NIDIT KT L,TIND NOPI0D DKM TWRD OX L(D"2n?) npoD
anbw-DY ArA) 2R awp TR MPAY ST 0"k NRUYA MY TR NI O3 KT P00
IR NIOR DITNA TAPR2 MATA NPWYH NPYAY 0"anD RIXnD H30m0 anNOR 28n 5 P L([52]
NROYND NPwYn a9V I AWOAT DR PN N2 %2 wenn [28]-1 [70] mmava Lamn hw
MR LM PW OIS NIRRT QIR D917 77T 21900 MY (MY 771972 XY IR) 7750 °na 7207
Mp° oD Mo 5w N1 ww aww "en .(2"OM) 1R NPPI0D VIR awa T auwh 20Ny
ST 17219737 797977 DY MARY Y1 7" AR H0 PNP2 RA0I NN XINIA 79797 YNt avnwoy
P90 927 72090 N2 AP0 NPI0ER MDA WP NPPI0D DR IR P00 NPPI0DN IR
DX Q¥AXY 1071 IR LAV 7RI 7Y 0"'000 IR 9von ,p"1000 owa YR 2°0MNR R AN AN
NMYIA 7279 IRPEAY 1ANPNOR DW °0°027 221NT P3990 NYYD IARY 23 N T NYINnn 02000

:7AP272 17 pPH0 A

.MP°90 M5 NP5 NMYEARA 731N 7290 *nN22 Anon Hw IT 92 w21 %n .1

XoW 9P nrpwod 93,0y JT1-n P70 DOPI0D? MAwIpn X9 NpoDa 9o X vnwn 2

P90 NP2 172°% NN WA

C DR 7737 X277 1982 0215 no»w Ko7 R 172 ,I1-2 7aRws qws C vop nopwo 7o May .3
NR 23 5912) NPPI0DT NIRY DR Mok .C DR N9210 NPT 77°N0 NRID 95 oy T T1-n

P50 IMBY (77°N0A NPPIDD

R27T V9P NPI0Y M2AYY 1001 0"an%% a»w C TR ,NIPPID 1T OR LK

QW avownaa mna "y BT ,3-1 2 0°pI92 NIRRT MIRXINT N2 LTI0°0 20% — DT NOpIosn

PO ORI Dw 700130 Y 0" SnntIaoR

NR 9w 1272 0702 ,2 P92 NOARIND WK ,MIPPO0T NOYAY AWIAT AW W v 3 poo
DIPX YW SWIWE AT DR 217X AR LNWIOY NIPYOD MO YW MDD DRI 379170 aNdOR
727972 D°NMXT 90N DR O¥AXD nnon 0'hAY nww S N1 T "y [41,58] wonn
0"n% MYW W AVOWIN NTTAY A7 NARD WA WD DI .ONAIRT MY nYImna 10192
DIPN ;DTOYN AT A0IT TN WR PRIDNIT CNAY 00N — CNAR DI P2 2O UR MW
T2 2997722 KR L1903 WD WA 7°N0 DIPPI0DR NN WY DY NIWORTI YOWAn — NP
1R L(2"RI) NONMNII-R 71012 0MRID LRI NNR DI — NAR DI OV 2N DON0 W
I NNRT DIWONT NN 37 MAR MW 5 D020 23R MY nowna 19K N0w 00 0o1%on

MR MW 9 1"RIT NOOW DW C10°37 1007 0207 0T I T2 0RTR DI0AT NINAn

7700 NPPIDD NUYPT DRI WK LNRXMIEnn 1°"RIT DYW DR NNOWNRT W 0w 0°YO8n O3 AR
T7ON0 NIPIDD NUYRPT CMARN VYT .DPNPWYN ST 10 DY NN DR DO1030M) NPy

D0INWR 0P NP2 M2V ¥°°0n1a 32190 NIND 7°IN 77°N0 NP0 NLRaw 797 217 RO NnIpn

92 MY AR WK LNNAWAT NPI0NN DIXNE N 07007, [40] YW NMIRXINT DR 2 NHRRD IR L1 M
n°I0MM DIXAY NYOW 02 ORI WX LIWTA MNP0 MO YW 2°3I%°27 IR Nown L[47]-2 7 a7y

DPEIPR NWTANT 777007 NPPI0D DIXAY NYOWA N 2173 MW

Y2 AULNAT YU0A 117N MO0 M9 SW PYIRAY S0 P 2907 117 IWORT 200 Y nubng von
RXNI WK W7 A0PR0 ¥o0n %R 4 27D 0900 NTIPI 922 CIRO9127 197V DR 77°120 TInwn DX
172 DOMWP DINWAY MT°A07 DR MPYTY 737022 13010 R .0 N1WYN 77771 012°0 5y Y Nt
NPAPWYN MIRANT DY 2O 0DNS VU0 NIDN2 N7 N¥IDY 27V NMR LANINR? .MDMa02
VDM DR TPRDY NI 2HY 170,00 nR1T N1AR 0N 2von DYW KO INOnT NYOXN .N1NAR
— [45] (7"an2°0) 2>nwni 2P 9N °N22 771 010 L7291 K T 1A WK 7700 NYPoD Y
YOI R AWRI LIARD AW 970007 TIP3 L9000 DD M2y TPt PO — NWRIT ONRIT VU0nd
9M2 MDY AP0 T TPAVIVOR .0MIW 297000 TP DR 2Phn L,NYY Nva L77N0 nopiooa
AN Y R¥NAI WR A0 MIT MULLAT Y0) .MINIAR 77°N0 NPPI0D NPT 1DNNYRY 20770002
7"2N2°0 52,10 1R [27] 102 mp oo ANID YW T 11T, NWYN 37771 2100 YV 7"'an2on
WO 07 .27 NN PAIT WD 20INDT KD 2°INWHA TIN2Y D10V RITW 122,17 OARDIT NN
TIPYYIT NPDI0A R NOPI0DT 1A R AU JINWR DR 72D 72702 779005 NP0 DR AIRD

XI7 PAPI2 Y01 .a"2AN2°0 MNT CIWn YO0N Wanwa? We R KXY DRI NPI00Y PR Lnowia

YN

71N RMDM PINWAY NPOON ARWS NAYR ORI AV DOV 797 DOPI0D ap°A7 12y Mpoon n1va
500 R ,NoW-NP nrya YW 72173 A05wn1a 1O 21 NOSIN MPUD0S DY NP0 IR ARl
9°20 772 7°Y2T DR INOY 23027 aNOIAPK 2P XY 9D 7RI ,107 20 23WOnY MIntl K ,IRNIT
IDIN2 NPNPWYN NPYAA MYAIT NIRADNI MNDY 273017 DOANMAIR 291 ,NRT 9321 .07 902
DR 0°27 2N NPMIORYA 792 01X MAOR2 MPYD0T N1YAY 2020 DOAW DIwY LYY van

.0°2Wn) NOTIN WK YT

W nIown noTa Y 00001an L[48] apRy [19] vocrn L[45] 77¥ a0 00w Mpso Mo
IR LDV Twna DWWl BT L[16] (2"7) 719211 1anh 077 DWW 012 WD anTIARK
XY MY WY1 1NN NIRRT DN 2°NMWYN T7°7A 100 2¥ NP0 N9 MYINaa 17 NYID
X WK L0 DNTNAYRI DWW 901 1990 10 5073 .[3] voP [60] 5073 MPOD N®
NMP°00 *IMD .N12°1 77X 798 22WITN 17V [45] 778 Mip0n Mo L "37°no minta" namaa nnn T

.0°INWNY NPRI0D °11991 NMIYRIDN NPNPWYN NIRADNI 2V T7INAY 29307 2oNWwoY

DR NIRI? 101 .R9A2 1232 U1K L,DOWITAT 2IMDT N2 WK WR LY M9 YW andIaoRa
70957 12 WK QNOIIRD I WIDT PV N°°12 MYXARI NMAWAT 207) DPRY anTNORD 30 7'
IM°I T MM 2O9722 IR MWAT NV 12 0207 1003 7800 ,7172 707 XY AN R0 YW X2
70757377 D121 MW 2072 NPR ODO0N MR 2PYY 00 10w 70 778 YW an AR DX 101
SV 71297 7% DY anOIRT DW 7325 70T 0000 MR 2TYa° INR PR LI O X192
DW ARNW YW WPIA 7RI MWK LAY ONXY D mIwnn DR ,5wnY ,aRY .(0"9) MTPNo nonam a7ns
YR MYEARD P IR MW WIDT MUY S0 M2 IR Yaph " aphTo ,mnw 0'"hh mow

[69] " 11071

TWOAT T2 DWART LI MIPPO0 M YW MNP TAXAY W NM0R YRR T ATy w2 P
WYNT PRI MY A IO PO0Y X7 INI0A LSPRIVNT NODIANT AWOAT 1A% WD NODIAN
SW 0"n%7 aNMAYK 22237 DR TVE-IAR-TYX APOIY N1 70D 2ORIN AR .MPYD0T NV YW RWIA
nOPI0D TOWn 77X .9°% YW 019 anTIERR 1107 ¥INT LAMPN-"0921 DTN 77182 0% P'Th 77
N1 QNOOR W TR0, AWYNRY INWHN 71937 NPD0A 72°0 N0 WK L,T19°7 1YW 905 N

W PRI NN — DN PRIVNT TOWH 20NN AR LN NPPI0DT NPOT R A’ YW 17N0n

K187 07300 WK ,ARO0 N92 N 7205 DRI NV M2V WIN 2IWON DD 230N 1K ,71027
T OW CIME MARA MDA N1PYAT MINOWR MR N1PNMWYN MRA0N MAY N 1207
P50 NP2 N0 W PRIPINMA 179757 DXMY HA0n WUIN NP0 MO 1MaY TR IV MW
VPP NPPI0D NR NIM2A UNYW .P°77 NPPI0OT RYT TI1I VYR NPPI0D 3T PR WK L,a0N]
UNLAW PRI 7OIDAT A 77072 NINCIT NOPIDD DI 77°0M T MR T AR NPPI0DY MR
92 ,7°%707 2w 19102 .0°R PRI WP MINKR N1PI0D OY anaow 'Y 17279977 M0 PY NOmw

P90 °NRa NI 1207 NNAR TR0 PPI0D? NMNWIPRI R N1RIoD

nxRAn

JIRT) 2WNNT YT TN DIPR NODIN WR Inw-NP Y2 8107 OPI0D A7 May NIpoon nNvya
oM [34] nonoRon a2 ,[54] C18 NRRA 2°20 DWW W Mpeoon n»vad L([21,12] ,hwnb
-T7A37-0717 7A°032 WIDMT NMINOR YW NIDWRA 70732 DUWANWAT ,0%NWOY MNP0 IND 000N
RO T TV .NYPIDDY DOINWR O MPYA MIRN0N Y anvxna ov7mnnn L[15] (9T) 739210
DOOWYN DMNDW DM DOIORA IR LTI M IWTT MNP0 IMD YW N1TIPONT DY W IR TIOBW? 1100
SI7ET MR DING TN DORRNA

T DY L3001 °0DI2N DOWITN NIPPOD MO HW M FAXAY IWIN NYA0N 2OYURH 1K L,NWKRD
NP0 INID MY NP1 T TVX IR TYX DORID AR PRI 001 12 OVINIIRT WP vInw
W MdpNY 7PXIRM2 1T — DT PRI DW AWNAT 9Y 100N NWweA 59T andnoRn Wi
Nibiive

DN a7°7R% MY DINY MW W DPWYnT avOwaa NIIYaY MWIN M7 DR 07T K NN
TYDWIN — TP DN ;0THYA 2257 AN0IT TOAN WK PRIVIIT NHY D0 — MNNR 21X :MPND
TXPHOMR NIV DLW D ORI AKX WD TWAND T7°N0 NPI0D NN WY SV NOIWONRS
72 Mo N a7Rh May [4,62] 77°noa npod oikn "'y nhanna [45] (1°"R3) 1 nin
N HW 119017 PINPY D207 AN T 7AW NI DINONT NN 1 NI DA N1NAA 17 N
0K MY 5y npxnIeng 10831

T 70w .DPHIPR T7°N0 NP0 NP RIPIT 1K= DUWh DOwYn Y DWW 2OYO¥n 1R DWW
NI NPRIPR T7°N0 N1PPIDD NUYRT .MWTA N1PPI0D NOOIT MY naxmixna 1°RIT N DR NNown

.D°INWR 0P NPMA 12V Y°U0N1A 72190 NN Na 7097

MpP°50 M1 HW DOYIX°2T DR NIDWNT W 707 MAWAT N°I0MmA 18n°E NYW % 2°KI1 1R 07820
T7°ND NYPI0D WA W VOWRR MAWAT NI0ND QWX YW avOwnn DR DOMWH UK LIWTN

Drmpn DYWTnnm

11930 7T Y707 .N1PRI0D DDIAN V10N RIAPIT L,MPYD0N N1YAY WIN MULAN Y00 2OYOXN 1R ,NWIAN
NH91377 NPPIDD NAWA IR RITLDOMWP 2°ANWR DW NAMPR 77°m2a% MT207 DR MOYaS 0702
N227 NOPI0DT T2 A KT VO DIV7 LIRD 7700 NP0 (V2R NIPIDD) NINPRNT N1PI0D
TIN2 NPPIDOT NI NPPI0OT NI D ONWRI PR DINAN MW 2OYORA AR L0V P00
DOY0NY ARNWA2 NPNMR DPNPWYN NPY2 OV D201 0PI MDY1NIY 77921 NNwh e

ommp

TEL AVIV UNIVERSITY 2°aX 9N DY 02N
q9PRD 297221 TN WY 2PN TR DOVTND 0RO
P02 W'Y awnn SyTnk D907 N2

"IWT NIPPOD M1 W MW 7327

"7199101979% MWPIT" RN NP awh 2N
jakva)

97I009R 9N

W N27T72 INWYI T ATV

2T 0171 M05I17D

29X YN DYV W BRIDD WA
2009 vo1R

