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Conditional equations arise naturally in the algebraic specification of data types. They also pro-

vide an elegant computational paradigm that cleanly combines logic and functional programming. 

In this thesis, we study how to do proofs and computations in conditional equational theories, using 

rewriting techniques. 

We examine different formulations of conditional equations as rewrite systems and compare their 

expressive power. We identify a class of "decreasing" systems for which most of the basic notions 

(like rewriting and computing normal forms) are decidable. We then study how to determine if a 

conditional rewrite system is "confluent." We settle negatively the question whether "joinability of 

critical pairs" is, in general, sufficient for confluence of terminating conditional systems. We also 

prove two positive results for systems having critical pairs and arbitrarily big terms in conditions. 

We discuss "completion" methods to generate convergent conditional rewrite systems equivalent 

to a given set of conditional equations. Finally, we study equation solving methods and formulate 

a goal-directed approach that improves prior methods and detects more unsatisfiable equations. 
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1 I N T R O D U C T I O N 

1.1 Mot iva t ion 

Equational reasoning is very important in many areas of computer science, like symbolic alge-

braic computation, automated theorem proving, program specification and verification, and high-

level (logic and functional) programming languages. An equational theory is specified by a set of 

axioms of the form s = t (where s and t are terms, perhaps containing variables); the "theory" 

being the set of equations inferable by "replacing equals with equals." For example, the equations 

below specify the identity, inverse and associative properties of a group: 

0 + 3 

-(*) + « 

(x + y) + z 

= 

= 

= 

X 

0 

x + {y + z) 

The validity (or word) problem is that of determining if an identity follows logically from the 

given axioms. For example, we may ask if - 0 = 0 is a valid consequence of the group axioms above, 

i.e. if it is true in all models of the axioms. The satisfiability (or equation solving) problem is that 

of finding substitutions for the variables that make two terms equal in all models. For example, 

the equation — x = x is satisfied by the substitution {x t-» 0}. 

Efficient methods for handling the validity and satisfiability problems for equational theories 

have been studied for some time now, and are the focus of most of the. work in the area of rewrite 

systems. Rewrite systems are collections of directed equations (rules) of the form I —> r. Rules can 

be used to simplify a term by repeatedly replacing instances of left-hand sides I by the corresponding 
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instance of the right-hand side r (and not the other way) until a simplest possible (normal) form 

is obtained. 

Rewrite systems possessing nice properties like termination and confluence, and equivalent to 

a given equational theory, may be generated by completion methods. With such systems, the 

word problem can be decided by simply checking if the two terms have the same normal form. 

In addition to producing efficient decision procedures for some equational theories, completion-

like methods have also been suggested as a replacement for paramodulation in resolution-based 

theorem provers that handle equality [Lankford, 1975]. For (refutational) theorem proving in first-

order predicate calculus, Hsiang [Hsiang, 1982] showed how a variant of completion can be used in 

place of resolution. Rewriting methods have also been used to prove inductive theorems [Musser, 

1980] by showing that the hypothesis can cause no inconsistency. Thus, in many applications, 

rewriting methods have turned out to be a very successful approach to equational reasoning. For 

a comprehensive survey of the work in this field see [Dershowitz and Jouannaud, 1989]. 

Most of the work on rewrite systems has dealt only with pure or unconditional equations. A 

conditional equation is an equational implication of the form: 

Pi = 9i A ••• A pn = qn : s = t 

for n > 0 (that is, a universal Horn clause with equality literals only). Unlike an unconditional 

equation s = t, which says that for all substitutions for variables in s and t, the two terms are equal, 

here they are equal only for those substitutions for which the condition pi = q\ A • • • A pn = qn 

"holds." An example of a conditional equation with only one premise is: 

x > 0 = true : factorial(x) = x * factorial(x — 1) 
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Conditional equations are very useful in the algebraic specification of abstract data types (since 

initial algebras exist). They have been studied largely from this perspective in [Bergstra and Klop, 

1982], [Kaplan, 1984] and [Zhang and Remy, 1985]. The equations below, for example, define some 

operations on stacks. 

emptyl(x) = = false 

top(pusk(x,y)) = x 

pop(push(x,y)) = y 

: push(top(x),pop(x)) = x 

Checking whether such specifications are consistent or complete requires methods for handling the 

word problem for conditional equational theories. 

The application of conditional equations as a programming language has been proposed in 

[Dershowitz and Plaisted, 1985], [Fribourg, 1985] and [Goguen and Meseguer, 1986]. A program 

is a set of conditional equations, .and a computation attempts to find a substitution that makes 

two terms provably equal in the underlying theory. This paradigm integrates cleanly the logic 

programming ability of Prolog with built-in equality and the functional capability of Lisp. An 

interpreter for such a language can be viewed as an equation solver for conditional equations. 

The word problem and satisfiability problem for conditional equations can be shown semi-

decidable by brute-force enumeration methods. Analogous to unconditional equations, it is natural 

to ask if we can get more efficient methods using conditional rewriting. This is the main focus of 

this thesis. We study how to do proofs and computations in conditional equational theories using 

conditional rewriting. Many of the concepts and techniques of unconditional rewriting carry over 

to conditional systems. But, corresponding results about confluence of conditional rewrite systems 

and completion methods for conditional equations have been hard to obtain without very strong 

restrictions on the class of allowable rules. 
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We first examine different formulations of conditional rewriting. We show how to extend conflu-

ence results for conditional rewriting in a more general framework. We develop a formulation of a 

completion procedure for conditional equations, similar to that proposed in [Ganzinger, 1987], that 

can handle many common examples. We also address the satisfiability problem (solving equations) 

in conditional theories and formulate a "goal directed" equation solving method that improves prior 

techniques and can serve as the basis for interpreters of equational languages. 

1.2 S t ruc tu re of t h e Thesis 

The background material in Chapter 2 gives an overview of unconditional equational theories 

and rewrite systems. It introduces most of the terminology and concepts used in the rest of the 

thesis. Readers familiar with this area need only skim through this. 

In Chapter 3, conditional equational theories are described. We examine different formulations 

of conditional equations as rewrite systems and compare their expressive power. We then examine 

a restriction of these systems using a "decreasing" ordering. With this restriction, most of the basic 

notions (like rewriting and computing normal forms) are decidable. 

In Chapter 4, we study the confluence of conditional rewriting in detail. We settle negatively the 

question whether "joinability of critical pairs" is, in general, sufficient for confluence of terminating 

conditional systems. We review known sufficient conditions for confluence, and also prove two new 

positive results for systems having critical pairs and arbitrarily large terms in conditions. 

In Chapter 5, a completion method is proposed to generate convergent conditional rewrite 

systems equivalent to a given set of conditional equations. Techniques are given to handle non-

decreasing equations and critical pairs, by converting them to equivalent unconditional equations, 

using a conservative extension of the theory. We give several examples to show how this works. 
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We first briefly review, in Chapter 6, the use of conditional equations as a programming lan-

guage. We then study equation solving techniques and examine methods to improve them. We 

formulate a goal-directed equation solving technique, that captures the features of narrowing and 

top-down decomposition. 

We conclude with a summary and directions for further work in Chapter 7. In Appendix A, 

we briefly describe a preliininary implementation of conditional completion in RRL—a rewrite rule 

laboratory—and give an example. In Appendix B, we give a Prolog implementation of equation 

solving and a transcript of some examples. 
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2 U N C O N D I T I O N A L E Q U A T I O N S A N D R E W R I T E S Y S T E M S 

In this chapter, we briefly review the basic notions and results for unconditional equational 

theories. Most of the terminology used in the rest of the thesis is explained here. A comprehensive 

survey of this area is [Dershowitz and Jouannaud, 1989]. Other surveys are [Huet and Oppen, 

1980], [Klop, 1986]. 

2.1 Basic Syn tax 

We work with a set T(F, X) of terms constructed from a (countable) set F of function symbols 

and a (countable) set X of variables. We use just T for the set of terms when F and X are clear 

from the context. We normally use the letters a through h for function symbols; I, r, and p through 

w for arbitrary terms; x, y, and z for variables. 

Each function symbol f E F has an arity n>0 which is the number of arguments (immediate 

subterms) that it has in a well-formed term. Constants are function symbols of arity zero. Variable-

free terms are called ground. The set G(F) of ground terms is, therefore, T(F, 0). 

A term t in T(F,X) may be viewed as a finite ordered tree. Internal nodes are labeled with 

function symbols (from F) of arity greater than 0. The outdegree of an internal node is the same 

as the arity of the label. Leaves are labeled with either variables (from X) or constants. 

We use u[t] to denote a term that has t as a subterm. We use «[•] to denote the context in which 

t occurs in a term u[t]. The context is the tree obtained by deleting t from the tree. By t \v, we 

denote the subterm of t rooted at position x. A subterm of t is called proper if it is distinct from t. 

Positions can, for example, be represented in Dewey decimal notation (a sequence of positive 

integers, describing the path from the outermost, "root" symbol to the head of the subterm at that 
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position). Thus f(g(a), h(b)) |x.i is the subterm a and f(g(a), h(b)) |2.i is the subterm 6. By t[s]T 

we denote the term obtained from t by replacing the subterm at position v by the term s. For 

example, if t = f(x,y) and % = 1, then <[a]ff is the term f(a,y). Position Xi is said to be above 

position iT2> if f i is a proper prefix of Tg- k this case, 11,, is a proper subterm of t \Wl; we also say 

that T2 is below %%. Positions T\ and TT2 are independent positions if neither one is a prefix of the 

other; the subterms t \Vl and t \n2 are said to be disjoint. 

A substitution is a mapping from variables to terms. It is usually an identity function on all 

but finitely many variables. We use lower case Greek letters for substitutions, and write it out as 

{sci t-» s i , . . . , xm i-> sm}. A substitution cr can be extended to a function from the set of terms T 

to itself. A composition of two substitutions, denoted by juxtaposition, is just the composition of 

the two functions. We say that a substitution a is at least as general as a substitution p if there 

exists a substitution r such that OT = p. 

A term t matches a term s if t = so~ for some substitution cr. We also say that t is an instance 

of s in this case. A term s unifies with a term t if to- = sa for some substitution <r. 

We use —» (sometimes with subscripts) to denote a binary relation over a set of terms. A 

relation -» is called a rewrite relation (or "monotonic") if s -» t implies that u[s<7]„. —• u[tcr}„, for 

all contexts «[•], terms s and 2, positions 7r, and substitutions <r. If —» is a binary relation on T, 

then by <— we denote its inverse, by <-> its symmetric closure, by —»= its reflexive closure, by —>+ 

its transitive closure, and by -»* its reflexive-transitive closure. 

A binary relation —> on a set T is said to be terminating if there exists no endless chain ti —> t2 

_> i3 _> . . . of elements of T, i.e. if its transitive closure —»+ is well-founded. Terminating relations 

are useful for doing inductive proofs. 
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2.2 Equa t iona l Theor ies 

An equation is an unordered pair of terms, written in the form s = t. Either or both of s and * 

may contain variables; which are understood as being universally quantified. A (finite or infinite) 

set of equations E, for example, the group axioms below: 

0 + x 

-(z) + x 

(x + y) + z 

= 

= 

= 

X 

0 

x + (y + z) 

specifies an equational theory = , over the set of terms T, that is obtained by taking reflexivity, 

symmetry, transitivity, and context application as inference rules and all instances of equations in 

E as axioms. 

By the completeness of first order predicate calculus with equality, validity and provability 

coincide. So, we can also define the equational theory using a replacement relation <->, based on 

the idea of "replacement of equals for equals." We write s <-> t, for terms s and t in T, if I = r is 

an equation in E, s \„= la and t = s[ro-]ff. Intuitively, we can replace an instance of one side of 

an equation in E by the corresponding instance of the other side of the equation. For example, if 

0 + x = x is an equation in E, then / (0 + 0) <-> / (0) . The substitution {x t-+ 0} is used in this 

replacement. 

It can be shown that s = t iff s <-»* t, where «-** is the reflexive-transitive closure of <->. In other 

words, two terms are provably equal if one may be obtained from the other by a finite number of 

replacements of equal subterms. An equational proof of s = t, is, therefore, a sequence of such 

replacement steps-

s = So «-* si • • • *-* sn = t 
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of n > 0 applications of equational axioms. 

The word problem for a set of equations 23, is the question whether an equation s = t between 

two ground terms, s and t follows from E, i.e., is s <-»* tl For example, we may ask if — 0 = 0 

is a consequence of the group axioms. When s and t are not ground terms, checking if s <-»* t is 

referred to as the validity problem. 

The satisifiability problem is the question whether there exists a substitution a for variables 

in two terms s and t such that sa <-•* to-. For example, the equation — x = x is satisfied by the 

substitution {x i-+ 0}. 

2.3 Rewr i t e Sys tems 

A rewrite rule over a set of terms T is an ordered pair (I, r) of terms, and is written Z —» r. If 

no variable occurs more than once in I, then the rule is said to be left-linear. Similarly, a rule is 

right-linear if no variable is repeated in r, and is linear if it is both left-linear and right-linear. A 

rewrite system (or term rewriting system) R is a (finite or infinite) set of such rules. Rules can be 

used to replace instances of I by corresponding instances of r; but unlike equations, they cannot 

be used in the reverse direction (that is, to replace instances of the right-hand side r). This is, in 

fact, the main idea of rewriting- to impose directionality on the use of equations. 

We use -» to denote the rewrite relation. We say that a term s in T rewrites to a term t in 

T, denoted s —• t, if s | x = la and t = sfrcr^, for some rule I —> r in R, position IT in s, and 

substitution a. We say that t is derivable from s if s -+* t, where —»* is the reflexive-transitive 

closure (zero or more steps) of —*. 

A term s is reducible by R if there is a term t such that s —> t; otherwise we say that s is 

irreducible or in normal form. We write s A t if s —•* t and t is irreducible, in which case we say 
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that t is a normal form of s. Two terms s and t are said to be joinable written (a J, t) if there is a 

term u which is derivable from both s and t, i.e. such that a —>* u *<— i. 

A rewriting system JR is terminating for a set of terms T if the rewrite relation -» over T is 

terminating. That is, there is no infinite sequence of terms t{ in T such that t —»t\ —> £2 • • • • When 

a sysiem is terminating, every term has at least one normal form. Note that a terminating system 

cannot have any rule, like — x + x —• — y + y, with a variable on the right that is not also on the left 

(since y could, for example, be —x + x), nor can a left-hand side be just a variable, like x -» 0 + a;. 

A comprehensive survey of methods for establishing termination is [Dershowitz, 1987]. 

A rewrite relation is confluent if whenever two terms, s and t, are derivable from a term u, then 

a term v is derivable from both s and t. That is, if u -»* s and u -»* t, then there is a term % such 

that s —•* u and i ->* v. Confluence says that if two terms have a common ancestor, they also 

have a common descendent. Ground confluence is confluence restricted to ground terms. That is, 

a system is ground confluent whenever any two terms that are derivable from a ground term are 

joinable. 

A system R is convergent if it is both terminating and confluent. A convergent system has the 

unique normalization property. In other words, every term t in T possesses exactly one normal 

form. This means that terms s and t are joinable by a convergent system R iff they have the same 

normal form. A system that is convergent over ground terms is said to be ground convergent. 

Let I —• r and g —* d be two rules (or two versions of the same rule-i.e. with variables renamed) 

in R. The equation s = t is said to be a critical pair between these two rules, if g unifies with a 

non-variable subterm of I at position it using a substitution a and s = ra and t = /[cf^cr. We say 

that la is a critical overlap, and we have ra <— la —*• Z[cf],o-. That is, s and t are the two terms 

we obtain by rewriting the overlap between the two rules. 
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For example, 0 + (u + v) = u + v is a (joinable) critical pair between the rules 0 + J - > I and 

(y + w) + v -* y + (u + v). The overlap between these two rules is (0 + u) + v; it is obtained by 

unifying a left-hand side 0 + x with a non-variable subterm y + u of the other left-hand side. A 

critical pair s = t in R is joinable if s j t in R. 

Critical pairs are useful for checking if a terminating system is confluent, hence convergent. We 

have the following famous lemma: 

L e m m a 2.1 (Cr i t ica l Pa i r L e m m a [Knuth and Bendix, 1970]) A terminating rewrite system is 

convergent iff all its critical pairs are joinable. 

A rewrite system R is sound with respect to a of a set of equations E, if the derivability relation 

—>* of R is a subset of the replacement relation *-** of E. That is for any two terms, s and t, s -»* t 

using R only if s «-** i in 13. A system R is complete for 23, if any two terms that are provably 

equal in E are joinable in R. That is, a j 1 in R whenever a <-** t in E. 

If R is both sound and complete for E, then the validity problem for E—is a <-+* tl—is the same 

as checking if a and t are joinable in R. If J? is also finite and convergent, then this can be done 

quite efficiently by just checking if a and t have the same normal form. Thus, for those equational 

theories for which we can find finite, convergent rewrite systems that are sound and complete, we 

have an effective decision procedure for the validity problem. 

Completion methods can be used to generate such systems from given equational axioms. We 

discuss this in Chapter 5. In Chapter 6, we will see how convergent rewrite systems also provide 

more efficient methods for the satisfiability problem in equational theories. 
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3 C O N D I T I O N A L E Q U A T I O N S A N D R E W R I T E S Y S T E M S 

In this chapter, we first describe conditional equational theories. Then, we study different ways 

of formulating them as conditional rewrite rules and compare their expressive power. We identify 

a class of decreasing systems for which most of the interesting notions are decidable. Decreasing 

systems have somewhat weaker restrictions than the simplification systems or reductive systems 

studied previously in [Kaplan, 1984] and [Jouannaud and Waldmann, 1986]. For this class of 

systems, we also show that various formulations as rewrite systems are in some sense equivalent. 

In the next chapter, we will see how decreasing systems also satisfy the critical pair lemma for 

confluence and that straightforward attempts at further weakening these restrictions do not work. 

3.1 Condi t ional Equa t ions 

A (positive) conditional equation takes the form: 

pi = q1 A ••• A pn = qn : s = t 

where n > 0. The pi = % are equations, possibly containing (universally quantified) variables. An 

example of a conditional equation with only one premise is: 

x > 0 = true : factorial(x) = x * factorial(x - 1) 

The ":" may be thought of as implication, with a = t as the conclusion and p; = qi as the premises. 

We will sometimes write c : a = t to denote a conditional equation where it is understood that c 

denotes equations pi = gi A • • • A pn = qn. 

12 



Let E be a set of conditional equations. We define the one-step replacement relation <-» and its 

reflexive-transitive closure <-»* as follows. If 

Pi = 9i A ••• A pn = qn : a = t 

is a conditional equation, cr is a substitution, u[sa] is a term with sa as a subterm at position it, 

and p;<7 <->* g,-o- for 2 = 1,..., n, then u[a<r] <-> u[ta]v where «[fcr]T is the term obtained by replacing 

sa by ta. 

Intuitively, only for substitutions that are feasible (for which the conditions can be proved 

recursively by a sequence of such replacements), can we replace that instance of one side of a 

conditional equation by the corresponding instance of the other side. An unconditional equation 

a = i, however, applies for all substitutions. We write E h a = t if a <-»* t for a set E of conditional 

equations. 

For example, using equations: 

Q + y = y 

x+y = z : s(x) + y = z 

we have a(0) + a(0) <-> a(a(0)) using the second equation, since for the substitution { J H O J J H 

a(0), z t-» a(0)} the condition x + y = z is feasible (as 0 + a(0) <-> a(0) using the first (unconditional) 

equation). 

Note that we do not restrict terms in the conditions to contain only variables present in the 

equation in the conclusion. Variables are universally quantified as, for example, below: 

Vx,y[c(x,y) : s(x) = t(x)} 
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where y are those ("extra") variables in the terms in the condition that do not also appear in either 

side of the conclusion. This is equivalent to 

V2[(3fc(Z,#): «(*) = <(*)] 

Operationally, this means that, when there variables in the condition not present in either side of 

the equation in the conclusion, we have to find a feasible substitution for the extra variables before 

we can replace sa by ta in any context. 

Though we sometimes use uninterpreted constants like true and false in conditions, we will 

consider only equational (algebraic) consequences and proofs in this thesis. Note that equational 

logic lacks a "law of excluded middle." That is, we cannot conclude that f(x) = 0 from the 

equations: 

p(x) = true : f(x) = 0 

p(x) = false : f(x) = 0 

by reasoning that p(x) must be either true or false. We have to prove (equationally) that 

the condition holds. The relation between equational proofs and first-order ones is studied in 

[Dershowitz and Plaisted, 1988] and a semantics based on term logic is studied in [Plaisted, 1987]. 

As for unconditional theories, we can now define the validity (is a <->* t?) and satisfiability 

(does there exist a such that sa «->* tal) problems, both of which are semi-decidable by brute-

force enumeration methods. The interesting question is: How useful is the concept of conditional 

rewriting for solving these problems? 
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3.2 Some Transla t ions of Condi t iona l Equa t ions 

3.2.1 Conservat ive Extens ions 

In general, we can have more than one equation in .the condition. But, we can always represent 

all the equations in the condition by a single equation using some new uninterpreted function 

symbols. We do this sometimes for notational convenience. 

Let E be a set of conditional equations over terms T(F,X). Let true be a new distinguished 

constant and eq and & be new binary operators (not in F). Let F' = F U {true,eq,h}. We can 

convert E to a set of conditional equations E' over T(F', X), where all conditions in E' are a single 

equation of the form p = true as follows. 

We replace a conditional equation 

Pl = qx A ••• A pn = qn : a = t 

by 

(eg(?i, qi) & • • • & eq(pn, ?„)) = true : s = t 

We also add the unconditional equations: 

eq(x,x) = true 

x & true = x 

to £ ' . 

With this translation, it is quite easy to show that for terms a and t in the original signature of 

E (that is, not having function symbols eq, & or true) E \- a = t iff E' h s = t. Such a translation 

is a conservative extension of the original theory. 
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3.2.2 Trans la t ing t o Uncond i t iona l Equa t ions 

It may seem possible to simulate conditional equations by unconditional equations using a new 

binary operator if with the axiom if (true, x) = x. A conditional equation c : s = t may then be 

translated to a = if(c, t). 

This translation is not sound, however, as illustrated in the following example. Consider E 

below: 

0 = 1 : 6 = a 

0 = 1 : c = a 

The straightforward translation would yield an unconditional set of equations E': 

eq(x, 

if(true, 

x) 

x) 

b 

c 

= 

= 

= 

= 

true 

X 

if(eq(0,l), 

if(eq(0,l), 

a) 

a) 

The following is a valid proof in E' 

b *-> if(eq(Q, l),a)<-> c 

whereas b <->* c is not a valid consequence of the original theory E. 

This translation mechanism can be modified slightly to make it sound and thus convert any 

set E of conditional equations to a set 23' of unconditional equations. The change is to replace 
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equations of the form c : a = t by if(c,s) = if(c,t). With this method E' becomes: 

eq(x,x) 

if (true, x) 

if(eq(0,l),b) 

if(eq(0,l),c) 

= true 

= X 

= i/(eg(0,l),a) 

= z/(eg(0,l),a) 

which is a (unconditional) conservative extension to E. 

If we can, as above, translate any set of conditional equations to an equivalent unconditional 

conservative extension, then why study conditional rewriting at all? As we will see later in Chapter 

5, this translation is not always good from the point of view of generating convergent rewrite sys-

tems equivalent to the equational theory. It often leads to generating infinite set of unconditional 

rules for theories that can be handled by finite conditional rewrite systems. But, this translation 

mechanism does come in very useful when some conditional equations cannot be handled by com-

pletion techniques. Selective translation of conditional equations to unconditional ones will be a 

very important part of completion methods that we will describe in Chapter 5. 

3.3 Condi t ional Rewr i t e Sys tems 

To make a conditional rule c : I —> r from a conditional equation c : a = t we have to do two 

things: 

1. the equation in the conclusion must be oriented into a rule with the "bigger" term on the 

left; 

2. a criterion must be chosen to determine whether a conditional rule applies (check if the 

equations in the condition "hold"). 
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A conditional rule is used to rewrite terms by replacing an instance of the left-hand side with 

the corresponding instance of the right-hand side (but not in the opposite direction) provided the 

conditions hold. A set of conditional rules is called a conditional rewrite system. Depending on 

what criterion is used to check conditions, different rewrite relations are obtained for any given 

system R (see below). Once a criterion is chosen, we can define the one-step rewrite relation —> 

and its reflexive-transitive closure —»* as follows: u[la]v -> u[ro-]w if c : I -* r is a rule, cr is a 

substitution, «[/cr]ff is a term with subterm la at position ir ca satisfies the criterion. 

There are a fair number of different ways of formulating conditional equations as rewrite rules: 

Semi-Equat iona l sys tems: Here we formulate rules as 

Pi = 9 i A ••• A pn = qn : I -» r 

where the conditions are still expressed as equations. To check if a condition holds we use 

the rules bidirectionally, as equations, and check if p.cr <->* qia. 

J o i n sys tems: Here we express rules as 

Pi i 51 A • • • A pn | qn • I ->• T 

The conditions are now checked in the rewrite system itself by checking if pia and <%cr are 

joinable in R itself by rewriting. Note the circularity in the definition of ->. The base case, 

of course, is when unconditional rules are used or the conditions unify syntactically. This 

definition is the one most often used; see [Kaplan, 1984; Jouannaud and Waldmann, 1986; 

Dershowitz et al., 1987]. 

Norma l - Jo in sys tems : Here rules are written 

Pi 1! 9i A - A p „ | ! g „ : / -» r 
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This is similar to join systems except that p{0 and g»cr are not only joinable, but also have a 

common reduct that is irreducible. A sufficient condition for this is that the common reduct 

not contain any instance of a left-hand side. This is not a necessary condition, however, as 

an irreducible term may contain instances of the left-hand side of a rule, and for this instance 

the condition may not be feasible. 

N o r m a l sys tems : A special form of normal-join systems has all conditions of the form p, -4 g,-

(meaning that pi -+* g; and g, is an irreducible ground term). 

Me ta -Cond i t iona l sy s t ems : Here we allow any (not necessarily recursively enumerable) predi-

cate p in the conditions. For example, we may have conditions like a G S (for some term a 

and set S), x -4 x (i.e. a; is already in normal form), or I > r (for some ordering >). We 

write p : I -» r. 

Most of the formulations above have been considered by different authors with slight variations. 

For example, Bergstra and Klop in [Bergstra and Klop, 1986] restrict their attention to systems 

which are left-linear (no left-hand side has more than one occurrence of any variable), have no 

"extra" variables in conditions and non-overlapping (no left-hand side unifies with a renamed non-

variable subterm of another left-hand side or with a renamed proper subterm of itself). With these 

restrictions on left-hand sides, they refer to semi-equational systems as of Type I, join systems 

as of Type II and normal systems as of Type IIIn. They also prove that , with these restrictions 

on left-hand sides, Type I and Type IIIn systems are confluent. Meta-conditional systems with 

membership conditions were proposed in [Toyama, 1987]. 

For a given join system, we define the rewrite (—») and join (J.) relations on terms, as follows: 

Let p I q: I —> r be a rule, a be a term, % be a position of a subterm in a, and cr be a substitution. 
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Then we say that the term a[Zcr]*., that is, the term a with an instance la of the left-hand side / at 

position 7r, rewrites to the term a[rcr]ff (a with ra in place of la) it pa and qa each rewrite in zero 

or more steps to the identical term; in that case, we say that a is a feasible substitution for the 

rule. 

As for unconditional systems, we write a —» f, if a rewrites to t in one step; a —>* t, if a rewrites 

to t in zero or more steps, i.e. if t is derivable from a; s j t, if a —>* w and t —•* w for some term 

w; and a A t, if a —»* i, but no rewrite applies to t, i.e. the normal form t is derivable from a. 

The following rules define < on natural numbers: 

x < y i tt 

0 < 0 

s(x) < 0 

s(x) < s(y) 

x < s(y) 

—» 

— • 

—* 

tt 

ff 
x<y 

tt 

For the above example, we have 0 < a(0) -4 tt using the last rule, since the condition 0 < 0 | tt is 

achieved by the first rule. 

The depth of a rewrite is the depth of recursive evaluations of conditions needed to determine 

that the matching substitution is feasible. Formally, the depth of an unconditional rewrite is 0; the 

depth of a rewrite using a conditional rule p J. q : I —• r and substitution a is depth(pa j qa) + 1; 

the depth of a n-step derivation a —»* t is the maximum of the depths of each of the n steps; the 

depth of a "valley" a [1, joining at a term v, is the maximum of the depths of a —•* v and t ->* v; 

and the depth of a zero-step derivation or valley is 0. We write a -» t if a —»• t and the depth of 
k 

the rewrite step is no more than k. Similarly a -41 will mean that the maximum depth in that 
fc 

derivation is at most fc. For example, 0 < 0 -> tt, 0 < a(0) -» t t , and 0 < an(0) -> tt, for all m > n. 
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3.4 Te rmina t ion of Cond i t iona l Rewr i t i n g 

The notion of termination of conditional rewriting is similar to that of unconditional systems. 

Termination is sometimes confused with the decidability of rewriting. A rewriting system R is 

terminating (or —»is noetherian) for a set of terms T if there are no infinite derivations ti —* t2 —* 

. . . of terms in T. For the decidability of rewriting, we have to show that the recursive evaluation 

of terms in the condition terminates. We distinguish these two concepts below. 

A sufficient condition for a rewrite system JR to be terminating (-> is noetherian) is that the 

unconditional version (dropping all conditions from rules) be so. We can use any reduction ordering 

to show this and do not need any restriction on the conditions. But, this is not strong enough to 

show termination of rules like (a; > 0) J. tt: factorial(x) —> x * fact(x - 1) where the unconditional 

version of the rule is not terminating. We really only need that la >• ra in a well-founded ordering 

>~ for those substitutions that are feasible (i.e. ccr J. tt). 

Rewriting is also decidable if for some well-founded ordering >- on terms and for each rule 

c : I -* r we have u[la] >• ca and 

ccr I tt implies u[la] >- u[ra] 

for all contexts u[-] and substitutions a. 

3.5 S t r e n g t h of R e w r i t e Sys tems 

Let 23 be a set of conditional equations. By E h a = t, we mean that a <->* t is provable in E. 

Similarly, if R is a rewrite system (in any of the formulations), we use R t- a J. t, to mean that a 

and t are joinable using the rules in R. 
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Equational system 

Y 
Semi-Equational system 

Y 
Join system 

Y 
Normal-Join system 

(equivalent if terminating) 

Y 
Normal system 

(equivalent if non—linear) 

Figure 3.1: Logical Strength of Formulations 

R and E have the same logical strength if E \- s = t iff R\- s 11. Similarly, two rewrite systems 

R and R' have the same logical strength i f 2 t h a J . 4 i f f J ? ' r - a | t . We say that R is stronger than 

R' if any two terms joinable using R' are joinable using R, but not the converse. 

Figure 3.1 depicts the relative strength of the various formulations. In the figure, A -* B, 

means that A is stronger than B in general. That is, if we take a system of type B and just change 

the connective in conditions to convert to a system of type A (for example, a J.! t to a j t to convert 

an normal-join to a join system), then we have that what is provable in B is also provable in A. 

In particular, if B is convergent then so is A. The converse is, of course, not true in general. The 

relationships shown follow easily from the criterions used for checking if the condition "holds." For 

example, any condition that holds in the join formulation must also hold in the semi-equational 

formulation. 

We now state and prove some of the equivalences and relationships between the various systems. 
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Propos i t ion 3.1 If a join system is terminating, then it is equivalent to the corresponding normal-

join system (obtained by changing conditions of the form a j . t to a [• t). 

Propos i t ion 3.2 A join system R can be converted to an equivalent normal join system R' by a 

conservative extension (using new function symbols) provided that we allow the normal system to 

be non-left-linear (have repeated variables in left-hand sides). 

Propos i t ion 3.3 Let R (with conditions of the form a it) be a convergent (confluent and termi-

nating) join system R' the corresponding semi-equational systems (change conditions to a = t) and 

E the underlying equational system (change conditions to s = t and I —> r to I = r). The following 

are equivalent: 

1. u — v is provable in E. That is, E h u = v 

2. u and v have a common reduct in R. That is, R h u j . v 

3. u and v have a common reduct in R'. That is, R' \- u { v 

Proof: Proposition 1 is easy to see, for the termination property implies that if two terms are 

joinable, then they have a common reduct that is irreducible. The translation mechanism for 

Proposition 2 uses two new function symbols eg and true. We add a new rule eq(x, x) —»true and 

change conditions to the form eq(pi, g,) [ true. With this translation, it is easy to prove that for any 

two terms a and t not having the new function symbols eg and true, we have R\- s It'iW R' \- s {t. 

The argument for Proposition 3 is by induction on the depth of a proof. The interesting case is 

when u = v is provable in E and we wish to show u j . v in R. By induction on the depth we first 

show that the subproofs in E can be replaced by rewrite proofs and then using the confluence of 
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R we can show that U | D . • 

Under the assumption of convergence, the weaker formulations of join systems are also equivalent 

to the corresponding join system and, hence, to the underlying equational system. 

3.6 Decreas ing Sys tems 

In this section, we will use the join system formulation of conditional rules. By the reduction 

ordering >-R of a rewrite system R, we mean the irreflexive-transitive closure -> + of the rewrite 

relation (—•). That is, t\ >~R t2 if t\ -»+ t2. The reduction ordering is monotonic. That is, if 

t >R s then u[t] )~R u[s] for any context u[-]. By the proper subterm ordering X, we mean the 

well-founded ordering u[t] X, f for any term t and non-empty context «[•]. 

A conditional rewrite system is decreasing if there exists a well-founded extension >- of the 

proper subterm ordering y„, such that y contains X# and la X p\a,...,gncr for each rule 

Pi 1 5i A • - • A pn 1 gn : I -* r 

(n > 0) and for any substitution a. 

Note that the second condition restricts all variables in the condition to also appear on the 

left-hand side. In general, a decreasing ordering need not be monotonic. 

P ropos i t i on 3.4 If a rewrite system is decreasing, it has the following properties: 

1. The system is terminating. 

2. The basic notions are decidable. That is, for any terms s, t 

(a) one-step reduction ("does a -» t?") 
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(b) finite reduction ("does a -»* t?") 

(c) joinability ("does sit?") 

(d) normal form or reducibility ("is a irreducible?") 

are all decidable. 

Proof: That the system is terminating is obvious from the well-foundedness of y. The decidability 

of basic notions is proved by transfinite induction on y, as follows. We first consider the following 

property: "Given a term t we can find the set of normal forms of t." If t has no instance of a left-

hand side of any rule as a subterm, then t is irreducible and it is its only normal form. Otherwise, 

let t = u[la] for some rule 

Pi I 9i A • • • A pn i qn : I -* r 

By our two conditions on decreasingness we have that t = u[la] y la and la y p{d,qia. By 

induction, since t y pia, q±a, we can compute the set of normal forms of pia, qia for each i and 

check if the rule applies. If it does, then t —* u[ra]. Similarly (using each matching rule) we can 

compute all the terms, say sx,..., sn, that t rewrites to in one-step. By induction hypothesis, one 

can enumerate the normal forms for each a*. The union of these is the set of normal forms for t. 

Other basic properties can be shown, likewise, decidable. • 

Not only is decreasingness a sufficient condition for making many basic notions of rewriting 

decidable, it also captures exactly the class of rules for which the recursive evaluation of conditions 

is finite [Dershowitz and Okada, 1988]. We use the following strategy to simplify a term a to normal 

form. If 

Pi 1 t/i A • • • A pn i qn : I -> r 
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is a rule such that la is a subterm of a, then we recursively compute the normal forms of the pia 

(and gjcr) to see if the rule applies. The class of rules, for which this strategy terminates, must be 

decreasing. 

More precisely, let t> be a relation on terms such that a > p if p is a term that we may have 

to recursively normalize when trying to find the normal form of a (that is, all the instances of 

conditions pias and g;<7s that we evaluate whenever a left-hand side matches a subterm of a). Let 

R be a conditional rewrite system and —> its rewrite relation. 

L e m m a 3.1 (-+ U t>)+ is well-founded if, and only if, R is decreasing. 

Proof: The "if" direction is a direct consequence of the definition of decreasingness. The decreasing 

ordering y is, by definition, (-» U > U >~,)+, where ya is the proper subterm ordering. If y is well-

founded, then so is (-»• U > ) + . 

To show the other direction, we first note that 

1. If u y, v —» w, then u —> v' ya w. That is, if a subterm of u rewrites to w, then u must 

rewrite to a superterm of w. 

2. If u y, v > w, then u > w. That is, if w is a term we evaluate when normalizing a subterm 

of u, then w may also be evaluated when normalizing u. 

3. If u yt v y, w , then u ya w. That is, the proper subterm relation is transitive. 

Thus, (-* U > U >-,)* C (-» U >)* y,*. So, if (-» U > ) + is well-founded, that is, the recursive 

evaluation of the conditions is finite (or R is in the class of terminating programs), then R must 

be decreasing. 

The following are sufficient conditions for decreasingness: 
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Simplifying s y s t e m s : [Kaplan, 1984; Kaplan, 1987] A conditional rewrite system R is simplifying 

if there exists a simplification ordering y (in the sense of [Dershowitz, 1987]) such that 

la y ra,pxa..., qna, for each rule 

Pi I «i A • • • A pn I g„ : / -> r 

(n > 0). 

Reduc t ive sy s t ems : [Jouannaud and Waldmann, 1986] A conditional rewrite system is reductive 

if there is a well-founded monotonic ordering >- such that y contains the reduction ordering 

yn and la y p\a,..., gncr for each rule 

px i qx A • • • A pn i g„ : Z -» r 

(n > 0). 

Both simplifying systems and reductive systems are special cases of decreasing ones. To see this for 

simplifying systems, note that simplification orderings contains the subterm ordering, by definition. 

For reductive systems, note that no monotonic well-founded ordering can have a y t for a proper 

subterm a of t. So we can extend the monotonic ordering with the subterm property and get a 

well-founded ordering as in [Jouannaud and Waldmann, 1986]. 

The following is an example of a system that is decreasing, but neither simplifying nor general 

reductive: 

bic 

b —+ c 

/ ( & ) - / ( G ) 

: a —» c 

This is not reductive, because there can be no monotonic extension of the reduction ordering 

(which has f(b) >-# f(a)) that can have ay b. 
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4 C O N F L U E N C E O F C O N D I T I O N A L R E W R I T E S Y S T E M S 

In this chapter, we study the confluence of conditional rewrite systems. We will mostly restrict 

our attention to noetherian rewrite systems and use the join formulation of rewriting. For the 

class of decreasing systems, we find that results on confluence correspond directly to those for 

unconditional rewriting. In particular, it is sufficient to check if all the critical pairs between rules 

are joinable. But, when we consider non-decreasing systems, we run into difficulties. We give a 

counter-example to show that the joinability of critical pairs is not sufficient to guarantee confluence 

even when the system is terminating. We then examine some restrictions like "shallow joinability" 

of critical pairs and "overlay" systems for which we give positive results on confluence. 

4.1 Local Confluence a n d Cr i t ica l Pa i r s 

A rewrite relation (conditional or unconditional) is confluent if whenever two terms, a and t, 

are derivable from a term u, then a term v is derivable from both a and t. A relation —> is locally 

confluent, if a —*•* v and t —»* v for some v whenever u —> a and u —> t (in one step). 

For terminating relations, we have the following well known lemma-

Diamond Lemma [Newman, 1942] A terminating relation is confluent iff it is locally confluent. 

How can we check the local confluence of a (terminating) conditional rewrite relation? We 

consider below the three cases that arise when we apply two different rewrites to a term t producing 

terms tx and (%. Such a situation tx <— t —• 12 is called a peak. 
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Figure 4.1: Disjoint Peak 

4.1.1 Disjoint P e a k s 

If a term u[s, t] contains subterms a and t at independent positions (neither term occurs as 

a subterm of the other), and s -* s' and t -» t', then the resultant terms, u[s',t] and u[s,t'], 

rewrite in one step to the same term, u[a',i'] using the same rules and substitutions. The situation 

u[a',t] <— u[s,t] —» w[a,i'] is called a disjoint peak. See Figure 4.1. 

4.1.2 Var iable P e a k s 

Let r be a feasible substitution for a rule p' i q' : g —*• d and let cr be a feasible substitution 

for a rule p J. q : I —> r under which some variable x in I is mapped to a term c[gr], containing 

a rewritable instance of g. Then, the term la can be rewritten in two different ways, to ra and 

/<7[dr], as depicted in Figure 4.2. We refer to this as a variable peak. 

If I is non-linear in x, then each of the remaining occurrences of c[gr] in la may be rewritten 

until a term la' is obtained, where a' is same as a except that x is mapped to c[dr]. Similarly, if r is 

non-linear in x then we need additional rewrites to get ra -»* ra'. When dealing with unconditional 

rewriting systems, variable peaks are always joinable, since la' -* ra'. But for conditional systems, 
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la 

pa i qa 

2ST^£ 

& ^ ^ ' ^ ^ ^ 

Figure 4.2: Variable Overlap 

Figure 4.3: (Shallow) Joinable Critical Peak 

a' must also be feasible, i.e. pa' i qa' must hold for the rule to apply. This is not always the case, 

even if critical pairs are joinable, as the counter-examples of the next section will demonstrate. 

4.1.3 Cr i t ica l P e a k s a n d Condi t iona l Cri t ical Pa i r s 

If the left-hand side g of a rule p' J. q' : g -» d unifies, via most general substitution a, with a 

non-variable subterm a at position TT in a left-hand side I of a rule p | q : I —> r, then the conditional 

equation 

pa = qa A p'a = q'a : la[da]v = ra 
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is called a (conditional) critical pair of the two rules, where /cr[der]„. is obtained by replacing a in / 

by d and applying a. 

The situation 

la[da]v <— la —> ra 

is called a critical overlap, and, for any context u and substitution r less general than a, 

u[lT[dr]v} <— U[IT] —y u[rr] 

is called a critical peak. See Figure 4.3. 

For example, the following rules: 

member(x, y) i ff : delete(x,y) -» y 

different(x, z) | tt : delete(x, z-y) -» y • delete(x, y) 

have the critical pair-

different(x,z) = tt A member(x,z-y) = ff : z• delete(x,y) = z-y 

A critical pair c = d : a = t is feasible, and the corresponding overlap is feasible, if there is 

a substitution a for which ccr i da. A trivial critical pair is one for which a is identical to t. A 

system is non-overlapping (unambiguous) if it has no feasible, non-trivial critical pairs. 

With the usual definition of even and odd the critical pair-

odd(x) = UA even(x) = tt: a(0) = 0 

between the rules: 

odd(x)itt : f(x) -> 0 

even(x) | tt : f(x) -» a(0) 

is infeasible. 
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b -> f(b) 
xjf(x) : f(x) -» a 

Table 4.1: Example A (Left-linear and non-overlapping, but not normal or terminating) 

A critical pair c = d : a = t is joinable if sa i ta for any substitution <r such that ccr j dV. 

Defeasible critical pairs are vacuously joinable and trivial ones are trivially joinable. 

A critical pair c = d : a = t, obtained from a critical overlap a <— u —> £ is shallow-joinable, 

if, for each substitution cr such that ccr | dV, there exists a term v such that ac A v and to- A v, 

where m is the depth of u —> a and n is the depth of tt —• t. A conditional rewrite system is 

shallow-joinable if each of its critical pairs is. 

In other words, every critical pair of a shallow-joinable system joins with the corresponding 

depths less or equal to those of the critical overlap. (See Figure 4.3). In particular, critical pairs 

between unconditional rules must be unconditionally joinable. 

4.2 Counte r -Examples 

In this section, we present non-confluent systems that are counter-examples to attempts at 

extending theorems for unconditional systems to the analogous conditional case. 

Unconditional systems are locally confluent, if all their critical pairs are joinable. On the other 

hand, Example A [Bergstra and Klop, 1986] shows that non-normal, non-terminating conditional 

systems need not be locally confluent, even if they are left-linear and non-overlapping. In that 

example, the term b has many normal forms, including a and f(a), despite the lack of critical pairs. 
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h(f(x))ik(g(b)) 

a 
c 
c 

h(x) 
h(f(a)) 

/(*) 

—> 
—¥ 

— ¥ 

— ¥ 

—> 
— • 

b 
*(/(«)) 
%(*)) 
t(«) 
c 
g(z) 

Table 4.2: Example B (Terminating, left-linear and normal, but not shallow-joinable) 

b[b 
x ia 
bib 
bib 

A(/(«)) !%(&)) 

P(b) 
9(b) 

a 
p(x) 
h(x) 

h(f(a)) 
/(4 

—¥ 

—+ 
— ¥ 

—¥ 

-> 

*(/(«)) 
Ks(b)) 
b 
q(x) 
&(z) 
p(a) 
9(4 

Table 4.3: Example C (Terminating, left-linear and shallow-joinable, but not normal) 

bib 
bib 
bib 

eq(x,a) J. true 
&(/(=)) 1 k(g(6)) 

eq(x,x) 
p(b) 
9(6) 

a 
A(z) 

%/(*)) 
p(x) 
/(*) 

— • 

—> 
—» 
— ¥ 

—¥ 

— ¥ 

true 
*(/(«)) 
H9(b)) 
b 
k(x) 
p(a) 
q(x) 
g(«) 

Table 4.4: Example D (Terminating, normal and shallow-joinable, but not left-linear) 
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Figure 4.4: Critical pairs of Example B 

As will be shown later (in Section 4.4), terminating conditional systems with no critical pairs 

are locally confluent. Unfortunately: 

P ropos i t ion 4.1 There exists a terminating, non-locally-confluent, conditional rewrite system all 

of whose critical pairs are joinable. 

This is demonstrated by Example B. All four critical pairs: 

1. *(/(«)) = k(g(b)) 

2. h(f(b)) = c 

3. k(f(a)) = c 

4. h(f(a)) = k(g(b)): h(g(a)) = c 

are joinable. But, the term f(a) has two normal forms, f(b) and g(b). This is shown in Figure 4.4, 

where critical overlaps are boxed. Note that the unconditional critical pair, obtained by rewriting 

c in two ways, is joinable only using the conditional rule, i.e. it is not shallow-joinable. 

With slight modifications, one obtains counter-examples C and D, showing that no combination 

of two of the following three factors suffices for confluence: left-linear, normal, and shallow-joinable. 

34 



From these examples, it is clear that we need relatively strong restrictions on rewrite systems to 

guarantee confluence. In Section 4.4, we will show that combining all three factors does, in fact, 

yield confluence for terminating systems. 

4.3 Confluence of Decreas ing S y s t e m s 

In this section, we will show that for decreasing systems the "critical pair lemma" holds just 

like for unconditional systems. This generalizes results in [Kaplan, 1987] for simplifying systems 

and [Jouannaud and Waldmann, 1986] for reductive systems. We also use a general proof normal-

ization technique to show this result by showing the equivalence of the semi-equational and join 

formulations. 

Let us recall that a system is decreasing if there exists a well-founded ordering y, containing 

the proper subterm ordering ys, such that a y t whenever a —> t and, for each rule p J. g : / —> r and 

substitution a, la y pa and la y qa. This is stronger than the terminating requirement. Examples 

B-D above are all terminating, but are not decreasing, since the left-hand side f(x) is a proper 

subterm of the term h(f(x)) in the condition. 

Also, the examples all use the join formulation of the conditions. All critical pairs are joinable, 

yet the term f(a) has two normal forms g(b) and f(b) in Example B. We can use the last rule 

to rewrite f(a) to g(a) because the condition for this substitution {x i-» a} has a rewrite proof 

h(f(a)) -¥ c —¥ k(g(b)). But to show f(b) -¥ g(b) using this same rule we have to check the condition 

h(f(b)) i k(g(b)) which leads to a cycle. Note that if we converted this to a semi-equational system, 

we would have that h(f(b)) «-•* k(g(b)); the last rule can be applied and the system is confluent. 

First, we observe that for the semi-equational formulation of conditional rewriting the critical 

pair lemma holds. 
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L e m m a 4.1 For any semi-equational conditional rewrite system, if every critical pair is joinable, 

then the system is confluent. 

Proof: The variable peaks (Figure 4.2) present no problem in the semi-equational formulation of 

conditional rewriting. This is because if pa <->* qa and pa <->* pa' and qa <->* qa' then we do have a 

proof per' <-•* ger' in the underlying theory and the variable peak can be made joinable by rewriting. 

• 

We saw in the previous chapter that, while the confluence of a join system implies the confluence 

of the corresponding semi-equational system (without any other restriction), the converse is not 

true. We now show that, if we restrict our attention to decreasing systems, the converse does hold. 

That is, under the assumption of decreasingness, the two formulations—semi-equational systems 

and join systems—are equivalent with respect to confluence. 

T h e o r e m 4.1 If a decreasing semi-equational system (conditions of the form a =t) is confluent, 

then the corresponding join system (with conditions changed to a it) is also confluent. 

It is convenient to introduce the following notations. By a direct proof of a = t, we mean a 

rewrite proof of the form sit. That is, a and t are joinable. By a completely direct proof of a = t, 

we mean a direct proof of a = t (i.e, of a | t) in which every subproof of the conditions (during 

application of conditional rules) is also completely direct. For instance, if a substitution instance 

of the form-

sxa = txa A . " A an<7 = tna : la —¥ ra 
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of a conditional rule is used in the proof with subproofs of a;cr = t{a, then each of these subproofs 

is also completely direct. If for a given proof P of a = t there is a completely direct proof P' (of 

s it), then we say that the proof P is completely normalizable. 

L e m m a 4.2 (Complete Normalizability Lemma) For any confluent and decreasing semi-equational 

system, every proof is completely normalizable. 

Proof: This is proved using transfinite induction on the well-founded decreasing ordering. It is 

easily seen that every proof in a decreasing system can be made direct if the system is confluent. 

By using the properties of decreasingness, we can show that every top-level subproof is smaller in 

the decreasing ordering and, hence, can be made completely direct by the induction hypothesis. 

This lemma follows. • 

Decreasing systems also satisfy the critical pair lemma. 

Theo rem 4.2 For any decreasing system, if every critical pair is joinable, then the system is 

confluent, hence canonical. 

This theorem is a direct consequence of the Complete Normalizability Lemma and is essentially 

the same as the result in [Kaplan, 1987]. Thus, if a decreasing system is confluent in the semi-

equational formulation, then it is confluent as a join system. 

Also, attempts to weaken the definition of decreasing systems do not work. The counter-

examples B-D satisfy the conditions for decreasing systems except the subterm property. The 

reduction ordering of those systems is embeddable into the well-founded ordering <«, (which, 

however, does not have the subterm property) of Takeuti's system 0(2,1) of ordinal diagrams. 

Also, <oo satisfies the additional condition for decreasingness (each term in the condition— d and 
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h(f(x))—is smaller than the left-hand side—f(x)—of that rule). So it is clear that well-foundedness 

alone is insufficient. For details see [Okada 1987; Dershowitz and Okada 1988]. In the next chapter 

on completion methods, we will see that decreasing rules are easy to handle, while special techniques 

are necessary for non-decreasing equations and rules. 

Decreasing systems cannot handle rules containing variables in the condition that do not also 

appear on the left-hand side. But in the programming context, at least, one would certainly like 

to allow rules such as: 

(x < y,y < z) i (tt,tt): x<z-¥tt 

where y is an "extra" variable, or: 

fib(x)i<y,z>: fib(s(x)) -¥<y + z,y> 

where the right-hand side also has an occurrence of the new variables, y and z. 

As we saw in the previous chapter, operationally, rewriting is more difficult now, since new 

variables in the conditions must be solved for. Thus, to rewrite an instance la of a left-hand side, 

an interpreter must first find a satisfying substitution r for the new variables in the condition 

p i q such that par joins gcrr, and then replace la by rar. One way to enumerate solutions (for 

decreasing and confluent systems) is via (conditional) narrowing (see Chapter 5). Unfortunately, 

it is undecidable, in general, whether such a substitution exists. 

Note, also, that with new variables on the right, a rule may non-trivially overlay itself. For 

example, a rewrites to f(b) and f(c) with the system 

p(x) i tt 

p(b) -> tt 

p(c) -¥ tt 

: a -¥ f(x) 
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In general, a rule with new right-hand side variables can rewrite (in one step) to an infinite number 

of different terms. The next two sections give positive results for confluence for systems that include 

some of the cases above. 

4.4 Confluence of Left-Linear, N o r m a l Sys tems 

In this section, we consider restrictions that ensure that a normal, left-linear system is confluent. 

Such systems arise naturally in pattern-directed functional languages, when the different cases are 

constructor-based and mutually exclusive. 

Bergstra and Klop have shown the following for conditional systems that are not necessarily 

terminating: 

T h e o r e m 4.3 ( B e r g s t r a a n d Klop , 1986) A left-linear, normal conditional rewrite system is 

confluent, if it is non-overlapping. 

(Though we have weakened their definition of non-overlapping to allow infeasible overlaps, the 

result still holds.) This is analogous to the standard result that left-linear unconditional systems 

with no critical pairs are confluent [Huet, 1980]. 

We give a similar result, for overlapping systems, in which critical pairs are shallow-joinable. 

For this, we require that the system be terminating. From the counter-examples of the previous 

section, one can see that this is optimal. 

T h e o r e m 4.4 A terminating, left-linear, normal conditional rewrite system is confluent, if all its 

critical pairs are shallow joinable. 

This theorem is a corollary of the following: 
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L e m m a 4.3 Let R be a terminating conditional rewrite system that is left-linear, normal and 

shallow-joinable. Then, ifu —>* a and u —>* t, there exists a term v such that s ->* v and t —•* v. 
m n n m 

Proof: The proof is by transfinite induction on the pair {m+n, u) with respect to the (lexicographic 

combination of the) natural ordering of natural numbers and the terminating relation -+ on terms. 

Let u -¥ s' -¥* s and u -* t' —»* t. That is, u is first rewritten at position % to a' using rule 
m m n n 

p -^ N : I -¥ r with depth no greater than TO, and at position ir' to t' using q A M : g -¥ d 

with maximum depth n (M and N are normal forms). We show that a' and t' are joinable with 

appropriate depths at some term w. As in the Diamond Lemma (Section 4.1), two inductions (at 

the peaks, a' and t') show that a and t are also joinable with suitable depths. 

If the peak at u is disjoint, then a' and t' join at a term w (which is u after both rewrites). 

That is, f' -» to (by rewriting at TT') and a' —> w (by rewriting at TT). 

If the peak is critical, then, by the shallow-joinable assumption, there is a term w such that 

t' —>* w and a' -+* w. 
m n 

This leaves only the variable peak case. Without loss of generality, let TT be above %-'. Thus, 

some variable x in f matches a subterm c[gr] which rewrites to c[dr\. Let cr' be the same as the 

substitution a used in rewriting u —> a', except that z is mapped to c[dr}. As seen in Figure 4.5, 

because R is left-linear, the subterm of t' at ir is actually la'. Furthermore, a' ->* u[r<T']„. = w, 

by rewriting all (zero or more) occurrences of gr in a' to dr. It remains to show that la' —* ra' 

is feasible. Since the system is normal, we have pa' -> N, as is required, by induction from the 

shallower peak pa' *«—n pa -^ N. • 
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Figure 4.5: Normal, left-linear, variable overlap case 

4.5 Confluence of Over lay Systems 

In this section, we make no restrictions on the depth of the joinability of the critical pairs. 

We also do not insist on left-linearity and allow terms in the condition that are "bigger" than the 

left-hand side. Under certain circumstances, we are able to prove that such systems are confluent 

as long as all their critical pairs are joinable. This is close in spirit to the result for unconditional 

systems. 

The only restriction we have is that we insist that overlaps between left-hand sides do not 

occur at proper subterms of the overlapped left-hand side. In particular, non-deterministic pattern-

directed languages, with no nested defined function symbols in the patterns, meet this requirement. 
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A critical pair is an overlay if it is obtained from two left-hand sides that unify at their roots. 

La our original example, the critical pair s(x) <y = tt:x<y = tt between the rules s(x) < s(y) -> 

x < y and x < y j tt: x < s(y) - • 11 is an overlay. 

T h e o r e m 4.5 A terminating conditional rewrite system is confluent, if all its critical pairs are 

joinable overlays. 

A particular consequence of this theorem is that any conditional system that is terminating and 

non-overlapping is confluent (as is the case for unconditional systems). 

This theorem is a consequence of the following: 

L e m m a 4.4 Let u[s]\j, where H is a set of positions, denote the term u with each subterm at a 

position in H replaced by a. Let R be a terminating system in which all critical pairs are joinable 

overlays. If a term v is derivable from u[s]u and t from s, then v and u[t]u are joinable. (That is, 

if u[a]n -»* v and a -** t then, v J, u[t]n.) 

Proof: We show that if u[s]n -** v and a -»* t, then u[t]ji J. v, by induction on the triple (a, n, u[s]), 

where the first component is compared using the union of the terminating rewrite relation —> and 

the proper subterm relation ya, the second as a natural number, and the third by the rewrite 

relation. 

If u = v or a = t, then we are done. Otherwise, let s -* s' —•* t. If we can show that u[a']n I v, 

then by induction it will follow that u[t]ji j v, since a' is less (vis-a-vis —>) than a. 

If the first rewrite s -* s' occurs at a proper subterm gr of a, then by induction on the first 

component, we have u[a']n i v. See Figure 4.6. 

Otherwise, we may suppose that a is ga and a' is da, for some rule p' J. q' : g —> d. Let 

u -¥ u' —¥* v, with the first step via rule p J, q : I —> r at position x. If this is a disjoint peak (i.e. 
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by induction (aygr) 

Figure 4.6: Proper subterm case 

T^TK 
u ans A . /TO\ /w\ _ /w\ 

by induction («—»«') I by induction (a-fro) I 

V* 
V > 

Figure 4.7: Overlay case 

if TT is not above or below any position in H), then u[a']n rewrites (at position 7r) to u'[a']n. Since 

u' is smaller than it, we have that u'[s']u i v. Thus, u[s']n -¥ u'[a']n 1 v. 

If u' <— u[s]n -¥* u[a']n is a critical peak, then it must be an overlay and a = gr = la. 

Critical pairs are joinable, so let a' = dr ->* w and ra -»* w, for some w. Then we have that 

u' = u[ra].x —>* u[ra]u- By induction on the last component, we have that %[rcr]n i v; by induction 

on the first, we have u[w]a i v. Thus, u[s']\j -»* u[w]u i v. This case is depicted in Figure 4.7. 

The remaining case is that of a variable overlap, either above or in some a. Let ir be above a; 

that is, some variable z in Z matches a term c[a]n< containing any number of occurrences of s. Let 

a' be the same as the substitution a used to rewrite u —¥ u' except that x is mapped instead to 
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V •* . . . 

Figure 4.8: Variable overlap above 
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Figure 4.9: Variable overlap below 

c[a']n». Now, u[s']n —>* u[/cr']n", by rewriting any additional occurrences of x in I that were not 

included in H. Moreover, la' rewrites to ra', since, by induction, pa' i qa' as we show below. 

Let eg be a new binary operator not appearing in any rule. Consider the derivation 

eq(pa,qa) —*•* eq(w,w) (known to exist for some w since pa i qa in. depth n — 1). We also know 

that pa —>* pa' and qa -»* qa', by application of a —> a' in the substitution parts. By induction 

on the second component, we have that eg(pcr', go-') j eq(w, w) from which it follows that pa' j g<r' 

since there are no rules for eg. Thus, u[s')u -** u[ra}ji„ J, v. This is illustrated in Figure 4.8. 

Similarly, if TT is inside some a, we have u[a']n ->* u[dr'] j v, as shown in Figure 4.9 Here r ' is 

like the substitution tau used to rewrite a -» a', but maps the variable in g to c[ra] instead of to 

c[la]. The condition p'r' J. q'r', needed to show that u' ->* u[gT']n -» u[dTf]jj, holds by induction 

on the first component, since la is a proper subterm of a. • 
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4.6 Conclusion 

We have explored two different restrictions on critical pairs of conditional rewrite systems, 

namely shallow joinability and overlays only, and proved confluence results for systems meeting 

those restrictions. Our proofs show that, for conditional systems, the notions of confluence, local-

confluence, and joinable critical pairs can not be neatly disentangled. In particular, termination 

was needed to show that a system is locally confluent even if all critical pairs are shallow joinable. 

We have also presented counter-examples which show that all our restrictions are necessary. 
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5 C O M P L E T I O N M E T H O D S F O R C O N D I T I O N A L E Q U A T I O N S 

In this chapter, we study completion methods for generating a convergent rewrite system equiv-

alent to a set of conditional equations. First, we describe completion methods for unconditional 

theories. This works by orienting equations into terminating rules, using a well-founded ordering, 

and generating new equations (rules) by superposing left-hand sides until all critical pairs are join-

able. This method only fails when an equation is unorientable (as a rule) in either direction under 

the well-founded ordering. 

For conditional systems, the basic idea is the same—orient equations into rules and generate 

new rules by superposition between left-hand sides. But we run into some additional problems. 

The joinability of critical pairs ensures confluence only for decreasing systems. So, whenever we en-

counter an equation that is not decreasing—this can happen even when the original set of equations 

is decreasing—the straightforward completion approach fails. We have shown sufficient conditions 

for confluence of non-decreasing systems (for example, when all critical pairs are overlays or shallow-

joinable). But, in the context of completion, it is not desirable to work with non-decreasing rules, 

because even checking if a rule applies to a term is, in general, undecidable with such rules. 

Methods to handle non-decreasing equations, within the completion framework, have been pro-

posed. In [Kaplan 1987] and [Jouannaud and Waldmann, 1986] a technique for detecting some cases 

when (non-decreasing) critical pairs are infeasible is suggested. This is done by using "narrowing" 

(equation solving) along with completion. Ganzinger [Ganzinger, 1987] proposed an improvement 

to handle even feasible, non-decreasing critical pairs by using narrowing to enumerate the solutions 

for which such critical pairs are feasible. This enables one to replace, in some cases, a non-decreasing 
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equation by a set of decreasing ones, without losing any consequences of the non-decreasing equa-

tion. 

We show here how to judiciously use the translation scheme introduced in Chapter 3 to convert 

non-decreasing conditional equations to decreasing equations in the context of completion using an 

if operator. Operationally, this has an effect similar to Ganzinger's idea of enumerating solution" 

of critical pairs, because we now have the ability to superpose in terms that were originally in 

the condition. By using an optimization (critical-pair criterion) while superposing in the rules 

corresponding to the non-decreasing equations, we show how to capture Ganzinger's method exactly. 

In this framework, it is also easy to express "contextual simplification" of critical pairs. We illustrate 

these techniques with an interesting example. In the Appendix, we describe an experimental 

implementation of completion within the rewrite rule laboratory RRL. 

5.1 Uncondi t iona l Comple t i on 

In this section, we describe completion methods for unconditional equations using inference rules 

(formulated here as conditional rule schemas) following the abstract approach used in [Bachmair, 

1987 ; Dershowitz, 1989]. 

At any stage of completion we have a set of equations 23j and a set of rules R,. Initially we 

start with the input set of equations EQ and no rules. We are also given a well-founded ordering 

>- that can be used to compare terms. A single step of completion may be viewed as applying an 

inference rule to transform the current pair (E{ , Ri) to an "equivalent" (Ei+x , Ri+x)-

At a given stage, we can choose any applicable inference rule (non-deterministically) leading 

to different completion sequences for the same set of input equations and orderings. A successful 

sequence is one that generates (0 , Rf), where the final set of rules Rj is convergent (terminating 
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and confluent). A failing sequence is one where none of the inference rules can be applied (for 

example, when we have an equation that is not orientable in either direction) even though we do 

not have a convergent rewrite system. 

The following four basic inference rules capture the essential operations that we use during 

completion. 

De le te : When an equation is trivial (of form a = a) it can be deleted. 

Simplify: If a = t is an equation in Ei, and a can be rewritten to a term u, using some rule in 2?,-, 

then we can replace a = t by u = t. 

Orien t : If a = t is an equation and s y tin. the given ordering, then this equation can be oriented 

into the rule a —¥ t. 

Deduce : If a = t is a critical pair in 22; (obtained by superposing left-hand sides of rules—see 

definition in Chapter 2), then we can add a = t as an equation. We only need to generate 

a critical pair in 22; that has not been generated in some earlier Rj. That is, each overlap 

between rules needs to be considered only once. 

In practice, it is best to apply the rules in the order given (orienting equations only after 

simplifying them and deleting trivial ones, and deducing critical pairs last). In addition, two more 

inference rules are used to keep the rule set simplified as much as possible. These are: 

Compose : If the right hand side t of a rule a —¥ t can be rewritten to u, then the rule can be 

replaced by a —> u. 
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Delete 

Simplify 

Orient 

Deduce 

Compose 

Collapse 
s>l & a -> 

(23 U {a = a} , R) 

a-»% : (23U {s = *} , R) 

syt: (E U {s = t} , R) 

a = t 6 cHfpoira(jR) : (23 , 22) 

t -• u : (23 , 22 U {a -> i}) 

« using l^reR:{E, R U {a -» i}) 

=*> 

=*> 

=> 

=> 

=> 

= $ • 

( iS .H) 

(23 U {u = t} , R) 

(E , R U {a -»t}) 

(23 U {a = t} , A) 

(23 , 2? U {a -¥ u}) 

(E U {tt = t} , R) 

Table 5.1: Inference Rules for Unconditional Completion 

Collapse: If the left hand side a of a rule a —¥ t can be rewritten to it by a rule I —y r and I is 

"simpler" (in some sense) than a (for example, if a -+ t cannot reduce I), then we can delete 

the rule s —> t and add the equation u = t. We use a > / to denote the "simpler" relation. 

These rules are shown in Table 5.1. 

A completion procedure based on these rules can be proved correct using proof orderings [Bach-

mair, 1987]. A proof of an equation a = t (with the pair (E{ , R{)) is a sequence of steps: 

a — sx an — t 

Each step is either an application of an an equation (<->) in 23; or a rule (in either direction, -> or 

<-) in Ri. 

The inference rules are "sound," in the sense that, if (Ei , R{) =$• (23,-+i , Ri+x) using some 

inference rule, then a = t is provable in (E; , 22,) (written (E{ , Ri) h a = t) iff s = t is provable 
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in {Ei+x > Ri+i)- Moreover, we can choose an appropriate ordering on proofs to show that there 

is a proof of a = t in (23,+i , Ri+x) that is the same or "smaller" than the one in (23; , Ri). That 

is, the inference rules can make proofs simpler in a well founded ordering. A proof of a = t is in 

normal form (a rewrite or valley proof) in some (Ej , Rj) if it is of the form a -»* u V- t. That is, 

s and t can be rewritten to a common term u using the rules in Rj. 

These inference rules are also "complete" in that, a "fair" application of the inference rules (no 

critical pair that can be obtained by deduce is indefinitely neglected), will eventually transform any 

equational proof of a = t in the initial theory 23o, into a rewrite (valley) proof in some (Ej , Rj), 

provided we can always orient all equations into rules. In this sense, completion is refutationally 

complete. Unfailing completion (e.g. [Bachmair et al., 1987], [Hsiang and Rusinowitch, 1987]) is an 

extension to also handle cases when there are unorientable equations. 

5.2 Condi t iona l Comple t i on M e t h o d s 

How can we adapt the completion techniques for unconditional completion to conditional equa-

tions? An initial attempt would be to modify the basic inference rules from the unconditional 

case. 

The "delete" rule can be extended to also remove conditional equations of the form 

• •• A s = t A •••: s = t 

where the equation in the conclusion also appears in the condition (for if this equation is to be 

applicable at all, then s — t must already be provable without using this equation). 

The "orient" rule must not only ensure that the left-hand side of the rule is "bigger" than the 

right-hand side in the ordering, but also that the equation is decreasing. Otherwise, critical pair 
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Delete 
(23 U {c : a = a} , R) 

(23 U {a = i A c:s = t} , R) 

Simplify 
a -» u : (Eu{c:s = t},R) 

p - m : (23 U {p = g A c: s = t} , R) 

Orient 
syt,c: (E U {c : a = *} , R) 

Deduce 
c:s = t£ critpairs(R) : (E , R) 

=> 

=S> 

=> 

=> 

=5> 

=^ 

( ^ , A) 

( ^ , A ) 

(E U {c : u = t} , R) 

(EU{u = q A c:u = t} , R) 

(E , R U {c : a ->t}) 

(23 U {c : a = i} , R) 

Table 5.2: Basic Inference Rules for Conditional Completion 

joinability does not guarantee confluence. Moreover, if we allow non-decreasing rules, even basic 

notions like rewriting become undecidable [Kaplan, 1987]. 

The "simplify" rule can be extended to allow us to rewrite terms in the condition, too. The 

"deduce" rule is only changed to use the definition of critical pair in Chapter 3. 

This gives the inference rules shown in Table 5.2. 

As long as all equations (and rules) are decreasing, completion can proceed just like in the 

unconditional case. But, this does not seem to get us very far. As has been observed in [Kaplan, 

1987] and [Jouannaud and Waldmann, 1986], even if we start with a set of equations all of which are 

decreasing, we often encounter critical pairs that are non-decreasing equations, leading to failure 

of completion. 
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Consider the following simple example. We start with the equations, which define f(x) to be 0 

when x is odd and a(0) when x is even. 

1. 

2. 

3. 

4. 

5. 

6. 

odd(x) = tt : 

even(x) = tt : 

even(0) 

odd(s(0)) 

even(s(s(x)) 

odd(s(s(x)) 

/ (=) 

/(%) 

= 

= 

= 

= 

= 

= 

tt 

tt 

even(x) 

odd(x) 

0 

6(0) 

With an appropriate choice of ordering, we can show all these equations are decreasing and we 

can orient them as rules from left to right. 

Rule 5 and rule 6 yield the following non-decreasing critical pair: 

odd(x) = tt A even(x) = tt: s(0) = 0 

This is the only critical pair in the system and it is actually infeasible, for no value of x can be both 

odd and even in our system. But completion fails at this stage. The enhancement suggested in 

[Kaplan, 1984] and [Jouannaud and Waldmann, 1986] is to use "narrowing" (explained in Chapter 

6) to detect this infeasibility. 

5.2.1 Handl ing Non-Decreas ing Equa t i on s 

We describe, in this section, how we can incorporate the "narrowing" idea into completion itself, 

by using a translation mechanism. This also extends to handling some feasible non-decreasing 

equations a la Ganzinger [1987]. We view completion as working over a (conservative) extension of 

the original theory. Equations that are non-decreasing may be convertible to decreasing ones in the 
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T r a n s l a t e : 
(23u{p = 

(23u{c: i / (eg(p ,g) ,a ) = 

• q A c:s = t}, 

••if(eq(p,q),t)}, 

R) 

R) 

=> 

=> 

(23 L 

(23 L 

>{c: 

1{P: 

if(eq(p,q), 

= q A c:s 

a) = 

= *} 

*/(eg(p,g),*)}, 

,R) 

R) 

Table 5.3: Translation Rules 

extension. If completion succeeds over the new vocabulary, then the rewrite system so generated 

must also be convergent for the original theory. 

Recall the translation to unconditional equations suggested in Chapter 3. Let 23 be a set of 

conditional equations using terms from T(F, X). Let if, eq and true be function symbols not in 

F and F ' = J F U {if,eq,true}. We can convert E to E' over T(F',X) as follows. We add the 

equations eq(x, x) = true and if (true, x) = x to E'. A conditional equation p= q : s = t in E may 

be represented by if(eq(p, q), a) = if(eq(p, q), t) in E'. 

In general, a conditional equation may have more than one equation in the condition. We 

generalize this notion of translation to move any equation (or subset of equations) from the condition 

to the conclusion. That is, we may replace p = g A c : a = t b y c : if(eq(p,q),s) = if(eq(p,q),t), 

where c stands for the rest of the equations in the condition. This translation is also reversible, in 

that we can replace (whenever needed) an equation c : if(eq(p, q), a) = if(eq(p, q), t) by p = q A c : 

a = t. 

As inference rules for completion, these rules are shown in Table 5.3. We assume that 

if (true, x) = x and eq(x, x) = true are already in E. 

The soundness of these translation rules follows from the fact that it is a conservative extension. 

P ropos i t i on 5.1 Let u, v be terms in T(F,X) and (231 , R) => (232 , R) using translation. Then 

u +->* v is provable in (231 , R) iff it is provable in (232 , R). 
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In the example, the non-decreasing critical pair 

odd(x) = ii A even(x) = tt: a(0) = 0 

may be replaced by a decreasing equivalent (by moving the even(x) = tt to the consequent), and 

oriented into a decreasing rule (from left to right, if we assume even is "bigger" than odd in our 

ordering): 

7. odd(x) = tt: i/(eg(euen(aj),tt),a(0)) -» if(eq(even(x),tt),0) 

Proceeding with completion, we find that this new rule generates two critical pairs. One is: 

odd(s(s(x))) = tt: if(eq(even(x), tt), a(0)) = if(eq(even(s(s(x))), tt), 0) 

with the rule even(s(s(x))) -* tt. This easily simplifies to an instance of rule 7 and can be deleted. 

The other critical pair, with euen(0) -> tt, is: 

odef(0) = tt : if(eq(tt,tt),s(0)) = i/(eg(ei;en(0),«),0) 

which after simplification, translation and orientation gives the decreasing rule: 

if(eq(odd(0),tt),s(0)) -» if(eq(odd(0),tt),0) 
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Completion stops successfully as there are no further critical pairs and we get the convergent system 

Rf. 

i. 

a. 
1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

odd(x) i tt : 

even(x) j tt : 

odd(x) i tt : 

eq(x,x) 

if (true, x) 

even(0) 

odd(s(0)) 

even(s(s(x)) 

odd(s(s(x)) 

/ (» ) 

/ ( : ) 

if(eq(even(x),tt),s(0)) 

if(eq(odd(0),tt),s(0)) 

—> 

— ¥ 

—¥ 

— ¥ 

— • 

—¥ 

—¥ 

true 

X 

tt 

tt 

even(x) 

odd(x) 

0 

a(0) 

if(eq(even(x),tt),0) 

if(eq(odd(0),tt),0) 

Rf is convergent and is a conservative extension of the original equational theory EQ. So, for all 

terms it, v in the original signature (T(F,X)), such that u <->* v in 23o, there is a rewrite proof 

u —>* a* <— v in Rf. In any such rewrite proof, rules i , ii, 7 and 8 (which have if— a function 

symbol not in F—as the outermost operator of the left-hand side) cannot be used. So these rules 

can now be dropped and rules 1-6 form a convergent rewrite system to decide the validity problem 

for EQ. 

5.2.2 Con tex tua l Simplification 

In this section, we describe contextual rewriting (or rewriting with assumptions) for simplifying 

critical pairs that arise during conditional completion. A similar idea, for hierarchical systems, is 
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considered in [Zhang and Remy, 1985]. This not only make the procedure more efficient, but is also 

crucial to help it terminate successfully in many cases. 

We illustrate, first, with an example. Consider the rules: 

1. member(x,z) i ff : delete(x,z) -> z 

2. different(x,y) itt : delete(x,y - z) -> y - delete(x, z) 

3. different(x,y) itt : member(x,y- z) -> member(x, z) 

The critical pair 

different(x, y) = tt A member(x, y-z) = ff: y • delete(x, z) — y-z 

between the rules 1 and 2, is not simplifiable directly, as no subterm (in the condition or conclusion) 

is rewritable directly, using the rules 1 to 3. 

But we do not need to rewrite the subterm member(x,y• z) in the condition in isolation. When 

rewriting this, we can assume that the other condition different(x, y) = tt holds. If we do this, then 

rule 3 does apply and the condition can be rewritten to different(x, y) = tt A member(x, z) = / / . 

Once this is done, the subterm delete(x, z) can be rewritten in the new context, which has 

member(x, z) = / / , using rule 1 to z. The critical pair after these two simplifications is now 

different(x,y) = tt A member(x, z) = ff : y • z = y- z 

which is trivial. Thus, using contextual rewriting, we have shown that this critical pair is actually 

joinable in the system. 

We denote contextual rewriting by —>, where C denotes the context. A context is a conjunction 

of equations, of the form Pi = gi A • • • A pn = qn, which are assumed to "hold" when doing a 
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Simplif icat ion: 
a -y u : {E U {c : a = t} , 22) => (E U {c : it = t} , R) 

p - > « : (23u{p = g A c : a = *} , 22) => (E U {it = g Ac : a = t} , R) 

Table 5.4: Contextual Simplification Rules 

rewriting. That is, whenever we have to check if a condition holds to apply a rule, we can use these 

assumptions to prove it. 

We define this formally as follows. Let R be a conditional rewrite system. We say that a term 

a rewrites in the context C to a term a% (denoted a —> sx, if one of the following holds: 

1. a ->• sx (with no context), or 

2. a = sx is an instance of an equation p; = g; in the context, and s y Sx OT 

3. u i v : I —* r is a. conditional rule in 22, cr is a substitution such that la is a subterm of a at 

position 7r (i.e., a | x = la), ua and va are joinable in R under the same context C (i.e., iter —> t 

and va -> t, for some f), and a% is a[rcr],r. 

When simplifying a conditional equation, contextual rewriting adds more power. When rewrit-

ing a subterm in the consequent, the context is all the equations in the condition. When rewriting 

a subterm in the condition, the other equations in the condition form the context. Table 5.4 gives 

the inference rules for contextual simplification. 

That these simplifications are sound is expressed in the following Proposition. 

P ropos i t ion 5.2 Let (Ei , 22;) be transformable to (23,+i , 22,+i) using contextual simplification. 

Then (E{ , 22;) h a <-+* t iff (E{+1 , Ri+1) r- a <->* t 
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The example in Section 5.2.4 illustrates the power of contextual rewriting for simplification of 

non-decreasing equations. 

5.2.3 Cri t ical P a i r Op t imiza t ion 

In this section, we present an important optimization of completion that is sound and helps 

the procedure to terminate more often. This optimization is a restriction of critical pairs involving 

rules of the form c : if(cx, I) —» if(cx, r) which are obtained by using the Translate inference rule. 

We motivate the presentation with an example. Consider the equations E over terms T(F,X) 

(where F = {odd, even, a, 0, / , g, h}) below. 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

odd(x) = tt 

even(x) = tt 

even(0) 

odd(s(0)) 

even(s(s(x)) 

odd(s(s(x)) 

g(Hy)) 

/ ( : , ? ) 

f(*,y) 

= 

= 

= 

= 

= 

= 

= 

tt 

tt 

even(x) 

odd(x) 

g(y) 

g(y) 

y 

They can all be oriented as decreasing rules from left to right (assuming an appropriate ordering). 

Rules 6 and 7 yield a non-decreasing critical pair: 

odd(x) = tt A even(x) = tt: g(y) = y 

As in the earlier example, this critical pair is actually infeasible, as the condition does not hold for 

any substitution. The Translate rule allows us to replace this by: 

8. odd(x) i tt: if(eq(even(x), tt), g(y)) -> if(eq(even(x), tt), y) 
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We now are working over the vocabulary T(Fli{if, eq, &, true}, X) and assume that rules eq(x, x) -> 

trite and if(true,x) -» x also exist. 

The superposition in the subterm even(x) of the left-hand side, yields two critical pairs (as in 

the earlier example). One gives the rule: 

9. if(eq(odd(0), tt), g(y)) -> if(eq(odd(0), tt), y) 

and the other can be simplified to a trivial equation. 

If we could stop now, then rules 1-7 form a convergent rewrite system for E. But the fifth 

rule g(h(x)) -> g(y) also overlaps with the g(y) subterm in rule 9 (and rule 8), yielding new (and 

useless) rules of the form: 

if(eq(odd(0), tt), g(y)) -+ if(eq(odd(0), tt), h(y)) 

and 

if(eq(odd(0),tt),g(y)) -+ if(eq(odd(0),tt),h(h(y))) 

And this process goes on, yielding infinitely many rules of this pattern, none of which are useful 

in proving any equality between terms in T(F, X), because the condition is never feasible. This 

suggests that in rules of the form c : if(cx,l) —• if(cx,r) it is sufficient to consider superpositions 

only in ex-

The main idea in proving that this restriction on critical pairs is complete, is that if the rule 

c : if(ci,l) -¥ if(cx,r) is ever used in any proof of equality between terms a and t in T(F,X), 

then it must be used with a substitution a for which cx<r ->* true. Otherwise, the if operator will 

persist in the proof. Hence, it must be the case that if(cxa, la) —>* if (true, la) —>• la. 

In any such proof, therefore, there must be peak of the form: 

la* «- if(cxa, la) -> if(cxa, ra) 
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where the rewriting in ci cr is a critical peak. If all critical peaks inside ci are joinable in 22, then this 

proof can be made "smaller" using some extension of the decreasing ordering of 22 to an ordering 

on proofs. See [Ganzinger, 1987] for a detailed proof of this claim (although in a slightly different 

formulation). 

5.2.4 A n In te res t ing E x a m p l e 

In this section, we work out in detail an interesting example that illustrates the optimizations 

we described. 

We start with the following definition of < on natural numbers. 

1. 

2. 

3. x < y = tt A y < z = tt 

0 < a(0) 

s(x) < s(y) 

X < z 

= 

= 

= 

tt 

x <y 

tt 

The first two equations are orientable as decreasing rules from left-to-right. The third equation 

(transitivity) is not decreasing. It has an "extra" variable y in the condition that is not in either 

side of the conclusion. Translating yields the following rule: 

3. y < z i tt: if(eq(x < y,tt),x < z) -> if(eq(x < y,tt),tt) 

In this rule, we will only superpose in the eq(x < y, tt) subterm of the left-hand side following the 

optimization of the previous section. The non-decreasing critical pair with rule 1 (0 < a(0) -* tt) 

is: 

a(0) <z = tt: if(eq(tt, tt), 0 < z) = i/(eg(0 < a(0), tt), tt) 

After simplification and translation this yields the rule: 

4. i/(eg(a(0) < z,tt),0 < z) -> if(eq(s(0) < z,tt),tt) 
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The critical pair between rules 2 and 3 is: 

s(y) < z : if(eq(x < y,tt),s(x) < z ) - » i/(eg(a(z) < s(y),tt),tt) 

After simplification and two translations (first to move the eq(x < y, tt) term to the condition, and 

then to move s(y) < z to the conclusion—we do this for pragmatic reasons) we get the rule: 

5. x < y i tt: if(eq(s(y) < z,tt),s(x) < z) -> if(eq(s(y) < z,tt),tt) 

Rule 4 has only one critical pair (with rule 2): 

i/(eg(0 < z,tt),0 < s(z)) = i/(eg(a(0) < s(z),tt),tt) 

Simplifying and translating (move eg(0 < z, tt) back to the condition) we get the following decreas-

ing conditional rule: 

6. 0 < z i tt: 0 < s(z) -¥ tt 

This translation back to a conditional rule is essential to the termination of the completion proce-

dure, for we prevent further superposition in the 0 < z term, which now appears in the condition. 

Rules 5 and 2 yield the following critical pair: 

x < y = tt: if(eq(y < z, tt), s(x) < s(z)) = if(eq(s(y) < s(z), tt), tt) 

Simplifying and translating this to y < z = tt: if(eq(x < y, tt), x < z) = if(eq(x < y, tt), tt) makes 

the if(eq(x < y,tt),x < z) rewritable in the context y < z = tt by rule 3. This yields a trivial 

equation and this critical pair is, therefore, joinable. 

Rule 6 (the new decreasing rule) has the following critical pair with rule 1 

0 < 0 = tt : tt = tt 
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which is trivial, and with rule 3 we have: 

0 < y = tt A s(y) <z = tt: if(eq(tt,tt),0 < z) = if(eq(0 < s(y),tt),tt) 

This critical pair is also joinable. First, we rewrite 0 < s(y) to tt in the context {0 <y = tt A s(y) < 

z = tt } using rule 6. Further simplification by eg(a;, x) -*• trite and if (true, x) —¥ x yields: 

0 < y = tt A s(y) < z = tt:0< z = tt 

which can be translated to: 

0 < y = tt: if(eq(s(y) < z,tt),0 < z) = if(eq(s(y) < z,tt),tt) 

This is an instance of rule 5 and hence, can be simplified contextually to a trivial equation. 

The completion procedure now halts, with the following rules: 

1. 

2. 

3. 

4. 

5. 

6. 

y<zitt 

x<yitt 

0 < a(0) 

s(x) < s(y) 

if(eq(x < y,tt),x < z) 

if(eq(s(0)<z,tt),0<z) 

if(eq(s(y)<z,tt),x<z) 

0 < z i tt 

—¥ 

—¥ 

—¥ 

tt 

x<y 

if(eq(x<y,tt),tt) 

if(eq(s(0)<z,tt),tt) 

if(eq(s(y)<z,tt),tt) 

0 < s(z)tt 

Dropping the if-rules we get the following 3 rule system which is convergent and equivalent to 

the original equations over T({<, a, 0, tt}, X). 

1. 

2. 

3. 0 < z i tt 

0 < a(0) 

s(x) < s(y) 

0 < s(z) 

—¥ tt 

x < y 

tt 
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5.3 Conclusion 

We have formulated a completion method for conditional equations using sound inference rules 

and examined contextual rewriting and an optimization (critical pair criteria) to help a procedure 

based on these rules to terminate in more cases. If completion terminates, we get a convergent 

rewrite system equivalent to the original equations. 

It remains to show that the inference rules for completion can also be used as a semi-decision 

procedure for validity. For this, we have to extend the proof ordering techniques used for un-

conditional equations and show that a "fair" application of the inference rules can transform any 

equational proof to a rewrite proof. In [Ganzinger, 1987] this is addressed, in a slightly different 

framework that does not use the translation mechanism, but works directly with non-decreasing 

equations. See also [Kounalis and Rusinowitch, 1988] for a different technique for solving the word 

problem in Horn theories. 
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6 E Q U A T I O N SOLVING M E T H O D S 

In this chapter, we address the problem of solving equations in (conditional) theories. We first 

introduce the paradigm of equational programming. We then examine two methods that have been 

proposed for solving equations—narrowing and decomposition—and point out their drawbacks. 

Finally, we describe a goal-directed equation solving algorithm, formulated using conditional rules, 

which combines nice features of top-down decomposition and narrowing and also has pruning rules 

that enable it to search for solutions more efficiently and halt more often when equations are 

infeasible. 

6.1 Equa t iona l P r o g r a m m i n g 

Equational prograrnrning using unconditional equations to capture Lisp-like applicative pro-

gramming is studied in detail in [O'Donnell, 1985]. Later, several proposed programming lan-

guages use (conditional) equations as a means of extending equational programming by capturing 

the simple syntax and semantics of Prolog-like logic programming languages; such languages in-

clude RITE [Dershowitz and Plaisted, 1985], SLOG [Fribourg, 1985], and EQLOG [Goguen and 

Meseguer, 1986]. 

A program, in this paradigm, is a set of directed (conditional) equations (rules). Computing 

consists of finding values (substitutions) for the variables in a goal s = t for which the terms are 

provably equal. Consider the following example of a system for reversing a list, where rev is reverse 
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and icons adds an element to the end of a list. 

rev(nil) 

rev(A - X) 

tcons(nil, A) 

tcons(B - X, A) 

—¥ nil 

-> tcons(rev(X),A) 

-r A-nil 

-¥ B - tcons(X, A) 

A goal of the form X = rei;(l • 2 • nil) can be solved by rewriting the right-hand side of the goal 

to yield X = 2 • 1 • nil; rewriting corresponds to the functional part of equational programming. On 

the other hand, a query like rev(X) = 1 • 2 • nil, requires equation solving to produce the value(s) 

for X that satisfies the equation. This query has the answer, {X •-• 2 • 1 • nil}. Finding solutions 

corresponds to the logic programming capability. 

As an example using conditional equations, consider the following program which defines an 

insertion sort: 

X<Y = tt 

X<Y = ff 

isort(nil) 

isort(X - Y) 

insert(X, nil) 

insert(X,Y - Z) 

insert(X,Y - Z) 

—¥ 

—¥ 

—¥ 

nil 

insert(X,isort(Y)) 

X • nil 

X-(Y-Z) 

Y - insert(X, Z) 

where < can also be defined using conditional equations, as in the previous chapter. 

Equational languages have more expressive power than Prolog because they have both func-

tionality and built-in equality. One can also incorporate streams and destructive assignments. 

Illustrative examples can be found in [Dershowitz and Plaisted, 1988]. 
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Any pure Prolog program can be translated into a set of conditional equations (or rewrite rules) 

by using a distinguished constant true. A unit clause p is replaced by the rule 

p —• tr i te 

A clause of the form / : —px,... ,pn can be replaced by 

Px = true A ... Ap„ = trite : Z -» trite 

Solving a goal g in Prolog can be viewed as the satisfiability problem for the equation g = true. 

Narrowing to solve this goal is similar to Prolog's computation strategy to solve the goal. 

This simple translation raises several issues. While the set of rules is terminating, it is not 

decreasing, as terms in the condition often have variables that are not in the left-hand side. But 

for such programs (obtained from pure Prolog clauses) we do have confluence since predicates can 

only be rewritten to trite and also do not occur as subterms in any goal. For general equational 

programs, however, it is more difficult to show confluence. 

Solving equations is the basic operation in interpreters for such equational languages and efficient 

methods are of critical importance. In general, paramodulation can be used (as in resolution-based 

theorem provers) to solve equations, but is highly inefficient. For equational theories that can 

be presented as a (ground) confluent rewrite system, better equation-solving methods have been 

devised, narrowing [Slagle, 1974; Fay, 1979; Hullot, 1980] being the most popular. 

6.2 P r o c e d u r e s for E q u a t i o n Solving 

An equational goal is written in the form a j? t, where a and t are, in general, terms containing 

variables. A solution to such a goal is a substitution <r such that sa j . ta. This means that sa is 

equal to ta, in the underlying theory, for all substitutions of terms for variables in acr and ta. A 
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solution is irreducible if each of the terms substituted for the variables in the goal are irreducible. 

Note that the terms a and t are interchangeable, since a j? t iff t |? a; in this sense, equational 

goals are unoriented. 

An equation solving procedure is complete if it can produce all solutions to any goal, up to 

equality in the underlying theory. That is, if a is a solution to a j? t, then a complete procedure 

will produce a solution p. for the goal that is at least as general as a. The more general a solution, 

the smaller it is under the following (quasi-) ordering •< on substitutions: \i •< a iff there exists a 

substitution r such that (Xfijr <->* Xa, for all variables X (where <-** is the reflexive, symmetric, 

and transitive closure of -»). For example, if 22 is just the rule {0 + U -* U}, the solution 

{X h-¥ 0,Y h+ 0} to the goal X + Y j? 0 is more general than the (reducible) solution {X i-» 

0 + 0,Yr->0 + 0}. 

For clarity and uniformity of presentation, we will formulate all the equation solving procedures 

using inference rules. We will assume that we have a set of goals to solve simultaneously (initially the 

singleton set of the input goal—{a j? t}). Inference rules can be used to transform the current set of 

equational goals into a new set of goals in a sound manner, i.e. a solution to the new set of goals will 

also be a solution to the original set. A successful solution is reached when the initial set of goals 

can be transformed to the empty set. The inference rules themselves are represented as conditional 

rules (schemas). Each transformation step may introduce substitutions and the composition of all 

these is the solution to the original goal. In our presentation, we will not clutter the rules with 

information, on how to keep track of the solution (composing intermediate substitutions). 
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6.2.1 T h e Narrowing P r o c e d u r e 

Narrowing uses unification (instead of matching) to "apply" rules to terms that may contain 

variables. Since rule variables are universally quantified, one can always rename them so that the 

rule and term have no variable in common. For example, iff7 + 0 - » ( f i s a rule, then (X + Y) + Z 

narrows to X + Z via substitution {Y t-» 0}. For conditional rules, the unifying substitution, 

between the left hand side and the non-variable subterm to be narrowed, must first be extended 

to be feasible for the equations in the condition. This leads to a recursive definition of conditional 

narrowing. 

Formally, a term a is said to narrow to a term t (via a substitution a), symbolized a ~> t, if a 

contains a nonvariable subterm a |p that unifies, via most general unifier fi, with the left-hand side 

Z of a rule ex i c2 : 1 -> r (whose variables have been renamed so that they are distinct from those 

in a), T is a substitution such that Ci/tr j . C2/tr, a = / t o r and t = sa[ra]p. In effect, we apply the 

substitution a to t and then rewrite the subterm of sa using ex i c2 :1 -* r. 

To illustrate the above definition, let 22 be the rules: 

f(a, b) -¥ a 

f(x,y)ia : g(a,y) -> y 
I _ . , , • •• - • — I — . , ! . • - , •• I I • • • • .1 • 

The term h(g(V, V), V) ^ ^ T " ^ h(b, b) since g(U, V) unifies with the left hand side g(a, y) with 

the substitution fi = {U i-> O , F H y}, which can be extended to be feasible for the condition 

f(x,y)ia. 

To solve goals using the narrowing method, given a confluent system 22, two operations are 

applied to a goal: 

Reflect: If a is the most general unifier of a and t, then a is a solution of a j? t. 
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cr = mgu(s, t) : {a I? f} U 23 => 23<r 

c i l c 2 : Z - » r €2 2 & / i = mgit(Z, a |p) : 
{a 1? t} U 23 ^ {a[r]PM | ? t/t} U {ci/x | ? c2/t} U 23/t 

Table 6.1: Inference Rules for the Narrowing Procedure 

Nar row: If a ~> a', then a j? t has a solution if a' j? to- does. 

A goal for which neither narrowing nor reflection applies is unsatisfiable. 

The two operations on goals can be formulated as inference rules as shown in Table 6.1 (we use 

mgu(s, t) to denote a most general unifier of terms a and t). The second rule makes use of the fact 

that the narrowing operation can be broken down into two parts— unifying the left-hand side Z of 

a rule with a non-variable sunterm s/p and extending the substitution by (recursively) solving the 

condition. 

For example, if 22 is {f(x,x) -* c(x),a-¥ b}, then an input goal set {f(a,y) j? f(y,b)} "nar-

rows" (using the second rule) to {c(a) | ? f(a, b)} which narrows (reduces, actually) in three steps 

to {c(b) J.7 c(b)}. Now, "reflecting" yields the solution {y i-» a}. 

6.2.2 Drawbacks of Na r rowing 

Narrowing can simulate any rewriting strategy (top-down, bottom-up, etc.); hence, it often pro-

duces duplicate solutions. For completeness, it is sufficient to simulate any one rewriting strategy. 

Our goal-directed method—presented in the next section—simulates innermost rewriting. 

Quite often, narrowing cannot detect that a goal is unsatisfiable. If we solve the goal rev(Y) = 

1 • nil using narrowing, we get the solution {Y t-» 1 • nil}. But the narrowing procedure does not 
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halt after producing this unique solution. It generates infinitely many failing subgoals of the form 

rev(tcons(tcons(... (rei;(yn), A)...))) = 1 • nil. 

Let us now examine a simple unsatisfiable example, where narrowing does not halt, to motivate 

our use of reachability later. Consider the following system: 

a(f(X)) -> a(X) 

b(f(X)) -» b(X) 

It is clear that the goal a(Y) J,? b(Y) is unsatisfiable, because for any substitution for Y any term 

derived from a(Y) will have a as its outermost operator, while any term derived from b(Y) will have 

b as its outermost operator. But using narrowing we will never stop as a(Y) ~» ct(Yi) ~» a(Y2)... 

and we keep trying to solve new instances of the same equation. 

This particular example can be handled by the use of subsumption checking as described in 

[Rety et. al-85]. In general though, the subsumption check cannot solve all the problems caused 

by these infinitely narrowable terms as shown in the following example. Let 22 be: 

a(d(x)) 

4/W) 
b(f(x),y) 

-¥ b(x,x) 

- / («) 

-^ &(z,/(y)) 

and the goal to solve, a(/(it)) J.? b(v, e). Narrowing will produce infinitely many non-subsuming 

equations by narrowing the b(v,e) term. 

Simple restrictions on narrowing, like narrowing only at the innermost narrowable positions, 

are incomplete (innermost narrowing does not simulate every possible innermost rewriting). For 

example, if 22 is: 

f(x,a) -> 0 

g(b) -> 0 
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To solve f(g(u), u) j? 0, if we narrow only the innermost narrowable subterm g(u) we stop without 

solution. 

Variations on narrowing include: normal narrowing (in which terms are normalized via -4 before 

narrowing) [Fay, 1979], basic narrowing A basic position is a nonvariable position of the original 

goal or one that was introduced into the goal by the nonvariable part of a right-hand side of the 

rule applied in a preceding narrowing step. [Hullot, 1980], and their combination [Rety, 1987], 

all of which are semi-complete for convergent 22. In [Bosco, et al., 1987], a strategy derived from 

simulating SLD-resolution on flattened equations is considered. For a comprehensive treatment of 

narrowing and 23-unification, see [Kirchner, 1985]. 

6.2.3 T h e Decompos i t ion P r o c e d u r e 

Using narrowing, one has no control over which (nonvariable) narrowable subterm is used pro-

duce new subgoals; all possibilities are explored. Martelli, et al. [1986] give a top-down equation-

solving procedure, which ignores some narrowings, reducing the search space thereby. There are 

four basic operations: 

Decompose : A goal of the form f(ux,...,Un) j? f(vx,...,vn) (with both terms having the same 

outermost operators), has a solution, if the n subgoals, Ux | ? V\,.. .,un j? vn, can be solved 

simultaneously. 

R e s t r u c t u r e : A goal / (u i , . . . , i t n ) J,» t has a solution, if ex i c2 : /(Zi,...,Zn) -» r is a rule in 22 

(the left-hand side of which has the same outermost operator as one side of the goal), and 

the n + 2 subgoals, Zx j? ux,..., Zn j? un,cx 1? c2, and r !? t, can be solved simultaneously. 
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Table 6.2: Inference Rules for the Decomposition Procedure 

Bind : If the goal is of the form X j? t, where X is a variable, and X unifies with t, then {X t-» t} 

is a solution. 

E x p a n d : If the goal is of the form X J.? t, where X is a variable, but X does not unify with 

t (because X occurs in t ) , then it has a solution if the n + 2 subgoals, lx |? t i , . . . , Z n J.? 

tn,ci j.? c2, and % |? t[r], can be solved simultaneously, where / ( t i , . . . , t n ) is any subterm 

of t, f(lx,...,ln) -» r is a rule in 22 (with the same outermost operator), and t[r] is t with 

f(tx,---,tn) replaced by r. 

As inference rules these are shown in Table 6.2. 

A successful application of expansion amounts to narrowing t. The rule g(f(a)) —y a and goal 

{X | ? f(g(X))} [Martelli, et al, 1986] demonstrates the need for expansion (what they call "full 

rewriting") in the "occur check" case. Here, we can neither bind nor restructure, but by expanding 

at the subterm g(X), a solution {X t-» f(a)} is obtained. 

6.2.4 Drawbacks of Decompos i t ion 

Though the decomposition method limits the search for solutions, where there are conflicting 

"constructor" symbols in the goal (a constructor is a symbol which is not outermost in any left-hand 
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side), it introduces some new problems. Consider, for example: 

f(a(X),b(X)) 

f(X,X) 

a(e) 

6(e) 

-¥ X 

-y X 

—>• e 

-r e 

To solve {f(e,Y) j? e}, narrowing would only use the second rule f(X,X) —• X, giving the 

irreducible solution {Y i-» e} . But the decomposition procedure also restructures using the first 

rule f(a(X),b(X)) -+ X, to get the new goals: {a(X) | ? e, b(X) J.? Y, X | ? e}; this gives another 

correct, but reducible, solution {Y t-» b(e)}. Thus, decomposition does not take full advantage of 

the fact that there is no way for e to rewrite to an instance of a(X) that enables the first rule to 

apply. 

Moreover, there are unsatisfiable cases for which narrowing terminates with failure, but decom-

position does not halt, as illustrated by the following example: 

/(o(JT),6(Z)) 

o(d(Z)) 

6(d(Z)) 

— ¥ 

— • 

o(Z) 

a(X) 

&m 
Consider solving the goal f(Y,Y) j? Y. Were one to try and narrow this, the search would 

stop immediately, as neither term is narrowable. The decomposition procedure, on the other 

hand, restructures the goal into {Y j? a(X), Y j? b(X)}, which in turn leads to attempts to solve 

{a(X) | ? b(X)}, with neither success nor failure. By using oriented goals, we show how to combine 

the advantages of this top-down approach with the elimination of narrowing subterms of left-hand 

sides. 
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6.3 Goal Di rec ted E q u a t i o n Solving 

In this section, we introduce two concepts— "oriented goals" and "operator derivability"— 

both of which are useful for pruning the search for solutions. We use these to formulate a goal-

directed equation solving procedure, also using conditional rules/schemas as for narrowing and 

decomposition. The rules we give form a complete equational program to simulate innermost 

rewriting sequences. 

There is one important difference, however, between the inference rules in this section and those 

for narrowing and decomposition. Whereas the inference rules were only used to "rewrite" goals to 

new ones before, here the inference rules are themselves used as an equational program for solving 

equations and used to "narrow" goals (examples will illustrate this later). This also allows us to 

eliminate the "bind" and "expand" rules in the decomposition procedure. In a sense, the rules we 

give act as a meta-circular interpreter for equation solving. 

6.3.1 I n n e r m o s t R e w r i t i n g Sequences a n d Or ien ted Goals 

For convergent rewrite systems, every term has a unique normal form and any rewriting strategy 

can be used to find it. This leads equation solving procedures like narrowing to duplicate solutions 

to a goal a j? t, by faithfully following all rewriting paths that prove that sa j tcr. As we stated 

earlier, simple restrictions on narrowing strategies prove to be incomplete. We choose one complete 

rewriting strategy (innermost) below and show how we can simulate it by using inference rules 

similar to those in the decomposition procedure. 

A derivation sequence: 

t = / ( t i , . . . , t „ ) -¥tl-¥ t2 y a 
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is said to be a bottom-up (innermost) rewriting sequence if whenever a rule is applied at some 

position, no lower position is rewritable. This is similar to the innermost evaluation strategy used 

in functional languages like Lisp (evaluate the arguments and then apply the function). 

An oriented goal t -+1 s has a solution a if there is an innermost derivation sequence f a —y - - - -* 

sa. Unlike equational goals t ii s (which are symmetric in a and t), here we allowing rewritings 

only in ta. 

6.3.2 Simula t ing I n n e r m o s t Rewr i t ing 

Innermost derivations can be classified into two cases, depending on whether or not they contain 

a rewrite step at the outermost, root position: 

Di rec ted Decompose : ff no rewrite step ever occurs at the top-level (root) operator ( / ) oft, then 

a also must have / as its top operator. That is, a = / ( a l 5 . . . , an) and there is a bottom-up 

derivation sequence of the a; from the t;. 

Di rec ted R e s t r u c t u r e : Suppose one rewrite step does take place at the top. Then, the instance 

of the rule of 22 first applied at the top must be of the form 

c i -l c2 : f(h, - - -, ln) —* r (with the same outermost operator / as the starting term t) and 

the subterms t; of t must have been rewritten to make this rule applicable. 

The two inference rules (shown in Table 6.3) constitute a complete equational program that 

solves goals of the form a -» ' t, (where a and t are (first-order) terms that may contain free, "logic" 

variables). Such goals are solved by finding substitutions a (for those variables) such that there 

is an innermost derivation acr -+ ta. For convergent systems, equational goals can be easily re-
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{/(iti,...,itn)->-- f(vx,-.-,vn)}UE => {it! -> ' Vx,-..,Un -¥!Vn}UE 

ct i eg :f(li,...,ln)-¥ r e 22 : 
{ / (m, . . . , i t n ) -* ? t}U23 => { u 1 - f ? Z i , . . . , u n ^ ? Z n , c 1 - > ? Z , c 2 ^ ? Z , r - > ? t } u 2 3 

Table 6.3: Inference Rules for Simulating Innermost Derivations 

expressed using oriented goals: replace {a j? t} by {a ->? Z, t ->? Z}, where Z is a new variable. 

Thus, this can be used as a complete equation solving procedure for convergent rewrite systems. 

We now illustrate some advantages of this formulation. Consider again the example: 

f(a(X),b(X)) 

f(X,X) 

a(e) 

6(e) 

-+ X 

-¥ X 

—y e 

—y e 

To solve f(e, Y) J.? e, we first replace it by the oriented goals {f(e, Y) ->? Z, e^r Z}. The directed 

decompose rule succeeds with the second goal and binds Z to e, leaving the subgoal {f(e, Y) -»- c}. 

The directed restructuring rule for / matches the new subgoal, and either of the two rules in the 

above system with / as the root operator of the left-hand side match the condition. 

If we pick f(X, X) -y X we get subgoals {e ->? X, Y - r X } , which have a solution {Y t-> 

e,X \-y e}, obtained by decomposition. For the other / rule, f(a(X),b(X)) -¥ X, the remainder 

of the condition fails, there being no way to solve e —>? a(X). The one successful solution, viz. 

{Y >-¥ e}, corresponds to the innermost derivation f(e,e) -»* e. 

Note that no special rules (like expand) for the "occur-check" case are necessary. Consider 

solving the goal {g(f(X)) —>? X} with rule f(g(a)) —» a. The decompose rule instantiates X to 
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g(Z) and produces the subgoal {f(g(Z)) -»- Z}, which can be solved by restructuring, yielding 

{X y-y g(a)} as a solution. 

6.3.3 Ope ra to r Rewr i t ing 

Our two rule schema serves as the basis of the goal-directed equation-solving procedure. Other 

than its simplicity, the main advantage of this formulation is that it allows one to easily incorporate 

additional rules that simplify and prune goals with no loss of completeness. We consider one such 

technique here which uses operator rewriting. 

Let 22 be a rewrite system over terms constructed from a set T of function symbols. We 

consider a derived rewrite system F over T, as follows: For each rule f(tx, ...,tn) -y g(sx,..., am) 

in 22 (ignoring the terms in the condition), with / ^ 5, we add a rule / —• g to F. For each rule 

/ ( * i , . . . , t„) —»• X in 22, where X is a variable (sometimes referred to as a "collapsing" rule), we 

add rules / —> g; to F for all function symbols g; other than / in T. 

Let / and g be two operators in T. Operator g is derivable from / if / -y* g in F. This 

(decidable) notion allows us to prune subgoals during equation solving, since a goal 

f(tx,...,tn) ->? g(sx,...,am) is satisfiable in 22 only if g is derivable from / . 

For the reverse example of Section 1 we have: 

22 

rev(nil) 

rev(A- X) 

tcons(nil, A) 

tcons(B - X, A) 

—¥ 

—¥ 

nil 

tcons(rev(X),A) 

A- nil 

B - tcons(X, A) 

F 

rev —y nil 

rev —y tcons 

tcons —• • 

tcons —y • 
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rite(X.Y) :- var(X), !, unify(I, T) . 
rite(X.Y) :- not(derivable(X,Y)), ! , fail. 
rite(X.Y) :- functor(X,F,N), fuactor(Y,F,N), rites(N,X,Y). 

/* directed decompose */ 
rite(X.Y) :- functor(X,F,N), functor(L,F,N), rule(L,R), 

rites(B.X.L), rite(R.Y). 
/ * d i r e c t e d r e s t r u c t u r e */ 

r i t e s ( I . X . Y ) : - a r g ( I , X , X i ) , a r g ( I , Y , Y i ) , r i t e ( X i , Y i ) , 
I I i s 1 -1 , r i t e s ( I i , X , Y ) . 

r i t e s ( 0 , X , Y ) . 

Table 6.4: Prolog program for Goal-Directed Equation Solving 

Operator nil is derivable from rev but not from tcons. Directed goals of the form f(tx,..., tn) —>? 

g(sx, - ..,sm), whose outermost operators do not satisfy the derivability criterion, can be pruned. 

That is, if g is not derivable from / in the corresponding rewrite system F, then such goals will 

never be satisfiable. This is expressed by the rule: 

not - derivable(f, g): { / ( t i , . . . , t n ) -» ? g(sx, •-., sm)} U23 => FAIL 

Thus the goal rev(Y) j.? 1-nil (for which narrowing did not halt) can be pruned here after producing 

the one correct solution. 

Putting all the above rules together, with some optimizations, we get the simple Prolog program 

for goal directed equation solving shown in Table 6.4 where rite is used for —>?, and unify and 

derivable predicates are denned in the natural way. The first rule, which checks if the query term 

is a variable, is used to not allow restructuring in variables. By extending this idea, one could also 

capture basic narrowing by keeping track of the non-variable positions where restructurings are 

necessary. 
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There is still room for enhancements to the notion of operator rewriting, as can be seen from 

the following example: 

a(d(X)) -

«(/(«)) " 

b(f(X),Y) -

•¥ b(X,X) 

^ / («) 

-> 6(x,/(y)) 

Given the goal a(f(U)) J? b(V, e), narrowing and decomposition produce infinitely many (non-

subsuming) equations when considering b(V, e). Our notion of operator derivability can be used 

to detect that the only way for a term headed by a to join a term headed by 6 is for the first to 

reach the form a(d(X)), whereas there is no way for the subterm f(U) of the left part of the goal 

to attain the form d(X); hence, the goal is unsatisfiable. 

6.4 Comple teness of E q u a t i o n Solving P r o c e d u r e s 

Narrowing works by simulating each rewrite step in the solution sa j ta by an application of a 

narrowing step. For irreducible solutions, no rewrite step takes place inside the a and this procedure 

is complete for such solutions provided 22 is (ground) confluent and decreasing [Kaplan, 1987]. 

Without (ground) confluence, reducible solutions are lost. For example, if 22 is {f(a, 6) -» c, a -» 6} 

or {f(x,g(x)) -> c,a-y g(a)}, then the goal {f(y,y) | ? c} (which has a solution a = {y h+ a}) 

cannot be transformed by either inference rule. For confluent and decreasing 22, any most general 

unifier can be generated by keeping track of the substitutions introduced by narrowing. 

This result easily extends to the decomposition and goal-directed procedures. Our simulation 

of innermost rewriting is complete for irreducible solutions. If 22 is a confluent and terminating 

conditional rewrite system, with no rule having a variable in the condition terms that is not present 
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in the left-hand side (a sufficient condition for this is decreasingness), then if sa —y ta for some 

irreducible substitution a, in this derivation all substitutions used for variables in conditions are 

also irreducible. Hence our procedure can simulate every rewrite step by a restructuring step. 

For non-decreasing systems—even those that are terminating and confluent—new difficulties 

are introduced by the presence of "extra variables" in conditions as pointed out by Giovanetti and 

Moiso. Consider the following example which has an extra variable in a condition term. 

/ (X ,6 ) = / ( c ,X ) 

a —> 6 

a —¥ c 

b —> c 

The third rule is feasible for an reducible substitution {X t-» a} and so this system is indeed 

convergent as 6 —y c. Using any of the equation solving methods above we will not be able to solve 

a goal of the form f(X,b) j.? f(c,c), (which does have an irreducible solution {X t-> c}) as we 

cannot prove that 6 —* c. 
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7 S U M M A R Y A N D F U T U R E W O R K 

We have studied conditional equational theories and how to use conditional rewriting to solve the 

validity problem and satisfiability problem. The main difficulty in directly lifting the results from 

unconditional systems to this setting is that it is no longer possible to distinguish easily between 

one-step of rewriting and a many-step derivation. This is because checking if a rule applies involves 

doing a proof that terms in the condition are equal. 

By restricting our attention to decreasing systems, we can surmount this problem to some extent. 

For such systems, useful notions like rewriting are decidable, and confluence can be checked by just 

considering critical pairs as for unconditional systems. For non-decreasing systems, even without 

new variables in the condition terms, we showed that it is insufficient to just check the critical pairs. 

We need further restrictions on the rules, and we examined two such extensions-shallow-joinable 

and overlay systems. 

The difficulties with checking confluence are also reflected in designing completion procedures 

to convert conditional equations to equivalent convergent rewrite systems. Even if we start with 

all the equations being decreasing, we often encounter non-decreasing critical pairs. We proposed 

a technique to handle such equations, by translating them to decreasing ones, using a conservative 

extension of the original theory. 

For using conditional equations as a programming language it is very important to have efficient 

equation solving methods. We have identified some drawbacks with existing methods and suggested 

a goal-directed method that retains the top-down approach of the decomposition procedure (looking 

at subterms only when necessary), and incorporates oriented goals (to prevent narrowing non-query 

sub terms) and pruning of some unsatisfiable goals—both in a uniform manner. 
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Several interesting problems still remain. Our confluence results seem close to optimal in the 

general setting. Practical methods for checking the confluence property need to be designed. Meth-

ods for testing and proving ground confluence will also be very useful. In equation solving, we would 

like to integrate eager rewriting and basic narrowing cleanly in our framework. The presence of 

extra variables in the conditions is crucial for capturing "logic" programming. But, in such systems, 

the equation solving methods that we have examined are not complete and need to be extended. 

83 



A P P E N D I X A 

In this appendix, we describe a preliminary implementation of conditional completion and 

give a transcript of the example discussed in Chapter 5. For my Master's thesis, I designed and 

implemented RRL (a Rewrite Rule Laboratory) [Kapur and Sivakumar, 1984]. RRL is a system 

written in Franz/Zeta Lisp (compatible with both) and runs on VAX/SUN/Symbolics. Among its 

capabilities [Kapur and Zhang, 1989] a re -

1. Completion Procedure to convert unconditional equations to equivalent rewrite systems. 

2. Special completion techniques for theories with associative and commutative functions. 

3. Verifying consitency and completeness of inductively defined structures and abstract data 

types. 

4. Equational theorem proving methods for first order predicate calculus with equality. 

I have now added to RRL the conditional completion procedure outlined in Chapter 5. Condi-

tional equations are input in the form— I = = r if sx — t i & • • • &an = tn and unconditional 

ones as Z = = r. When RRL encounters a non-decreasing equation that it has to make into a 

rule, it uses the translation mechanism to pull equations from the condition to the left-hand side. 

It prompts the user to choose which equation from the condition to transfer to the left-hand side. 

Below is a transcript of a session on RRL running the < example. There is some slight notational 

difference. Also, the contextual simplification we have implemented is not as powerful as described 

in Chapter 5. 
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aisune-11 '/, rrl 

******************************************** 
****** WELCOME TO REWRITE RULE LAB ******* 
******************************************** 

Type Add, Akb, Auto, Clean, Complete, Delete, Dump, Franz, Init, Kb, Kb-option, 
List, Log, Norm, Operator, Order, Prove, quit, Read, Reset, Rules, Stats, 
Synthesis, Heta, Undo, Unlog, Write or Help. 

RRL-> ini 

RRL is initialized. 

Type Add, Akb, Auto, Clean, Complete, Delete, Dump, Franz, Init, Kb, Kb-option, 
List, Log, Norm, Operator, Order, Prove, Quit, Read, Reset, Rules, Stats, 
Synthesis, Heta, Undo, Unlog, Write or Help. 

RRL-> ad 
Type your equations in the format: LHS == RHS (eq. e * x == x) 

or the format: LHS == RHS if COND 
Enter a ' ] ' when done. 
true ft x == x 
x ft true == x 
(x = x) == true 
0 < s(0) == tt 
s(x) < s(y) == x < y 
x < z == tt if C((x < y) = tt) ft ((y < z) = tt)) 
] 

Equations succesfully read in were: 
1. (true ft x) == x 
2. (x ft true) == x 
3. (x = x) == true 
4. (0 < s(0)) == tt 
5. (s(x) < s(y)) == (x < y) 
6. (x < z) == tt if (((x < y) = tt) ft ((y < z) = tt)) 

New constant set is: { true, tt, 0 } 

Type Add, Akb, Auto, Clean, Complete, Delete, Dump, Franz, Init, Kb, Kb-option, 
List, Log, Norm, Operator, Order, Prove, Quit, Read, Reset, Rules, Stats, 
Synthesis , Heta, Undo, Unlog, Write or Help. 

RRL-> oper pre < s 0 ft = tt true 

Precedence relation, < > s, is added. 
Precedence relation, s > 0, is added. 
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Precedence relation, 0 > ft, is added. 
Precedence relation, ft > =, is added. 
Precedence relation, = > tt, is added. 
Precedence relation, tt > true, is added. 

Type Add, Akb, Auto, Clean, Complete, Delete, Dump, Franz, Init, Kb, Kb-option, 
List, Log, Norm, Operator, Order, Prove, Quit, Read, Reset, Rules, Stats, 
Synthesis, Heta, Undo, Unlog, Write or Help. 

RRL-> 

Trace mode now is — Extended. 

Type Add, Akb, Auto, Clean, Complete, Delete, Dump, Franz, Init, Kb, Kb-option, 
List, Log, Norm, Operator, Order, Prove, Quit, Read, Reset, Rules, Stats, 
Synthesis, Heta, Undo, Unlog, Write or Help. 

RRL-> 
Step 1 

Processing (true ft x) == x 

Adding Rule: 

[1] (true ft x) --> x 

Processing (x ft true) == x 

Adding Rule: 

[2] (x ft true) > x 

Processing (x = x) == true 

Adding Rule: 

[3] (x = x) > true 

Processing (0 < s(0)) == tt 

Adding Rule: 

[4] (0 < s(0)) — > tt 

Processing (s(x) < s(y)) == (x < y) 

Adding Rule: 
[5] (s(x) < s(y)) — > (x < y) 

Processing (x < z) == tt if (((x < y) = tt) ft ((y < z) = tt)) 
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In condition ((x < y) = tt) ft ((y < z) = tt) 

which subterm do you wish to pick? 
—> 1 

Adding Rule: 
[6] if((((x < y) = tt) ft ((y < z) = tt)), (x < z)) 

> if((((x < y) = tt) ft ((y < z) = tt)), tt) 

Computing critical pairs with Rule: 
[6] (x < z) — > tt if (((x < y) = tt) ft ((y < z) = tt)) 

Computing c r i t i c a l pairs with Rule: 
[3] (x = x) > t rue 

Computing c r i t i c a l pairs with Rule: 
[2] (x ft t rue) --> x 

Computing c r i t i c a l pairs with Rule: 
[1] (true ft x) --> x 

Rules [2] and [1] yield following c r i t i c a l pair : 
true == true if (true ft t rue) 

Processing true == true if (true ft true) 

Computing c r i t i c a l pairs with Rule: 
[4] (0 < s(0)) — > t t 

Rules [4] and [6] yield following c r i t i c a l pa i r : 

(0 < z) == t t if (true ft ( ( t t = t t ) ft ((s(0) < z) = t t ) ) ) 

Processing (0 < z) == t t if (true ft ( ( t t = t t ) ft ((s(0) < z) = t t ) ) ) 

Adding Rule: 
[7] i f ( ( ( s (0 ) < z) = t t ) , (0 < z)) > i f ( ( ( s (0) < z) = t t ) , t t ) 

Computing c r i t i c a l pairs with Rule: 
[7] (0 < z) — > t t if ((s(0) < z) = t t ) 

Computing c r i t i c a l pairs with Rule: 
[5] (s(x) < s(y)) — > (x < y) 

Rules [5] and [6] yield following c r i t i c a l pair : 
(s(x) < z) == t t if (true ft (((x < y) = t t ) ft ((s(y) < z) = t t ) ) ) 
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Rules [5] and [7] yield following critical pair: 
(0 < s(y)) == tt if (true ft ((0 < y) = tt)) 

Processing (0 < s(y)) == tt if (true ft ((0 < y) = tt)) 

Adding Rule: 

[8] (0 < s(y)) — > tt if ((0 < y) = tt) 

Processing (s(x) < z) == tt if (true ft (((x < y) = tt) ft ((s(y) < z) = tt))) 

In condition ((x < y) = tt) ft ((s(y) < z) = tt) 

which subterm do you wish to pick? 
—> 2 

Adding Rule: 
[9] if((((x < y) = tt) ft ((s(y) < z) = tt)), (s(x) < z)) 

> if((((x < y) = tt) ft ((s(y) < z) = tt)), tt) 

Computing critical pairs with Rule: 
[9] (s(x) < z) > tt if (((x < y) = tt) ft ((s(y) < z) = tt)) 

Rules [5] and [9] yield following c r i t i c a l pa i r : 

(s(x) < s(y)) == t t if (true ft (((x < yl) = t t ) ft ( (yl < y) = t t ) ) ) 

Processing (s(x) < s(y)) == tt if (true ft (((x < yl) = tt) ft ((yl < y) = tt))) 

Computing critical pairs with Rule: 
[8] (0 < s(y)) > tt if ((0 < y) = tt) 

Rules [8] and [6] yield following c r i t i c a l pa i r : 
(0 < z) == t t if (((0 < y) = t t ) ft ( ( t t = t t ) ft ((s(y) < z) = t t ) ) ) 

Rules [4] and [8] yield following critical pair: 
tt == tt if (true ft ((0 < 0) = tt)) 

Processing tt == tt if (true ft ((0 < 0) = tt)) 

Processing (0 < z) == tt if (((0 < y) = tt) ft ((tt = tt) ft ((s(y) < z) = tt))) 

In condition ((0 < y) = tt) ft ((s(y) < z) = tt) 

which subterm do you wish to pick? 
—> 2 
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Adding Rule: 
[10] if((((0 < y) = tt) ft ((s(y) < z) = tt)), (0 < z)) 

> if((((0 < y) = tt) ft ((s(y) < z) = tt)), tt) 

Computing critical pairs with Rule: 
[10] (0 < z) > tt if (((0 < y) = tt) ft ((s(y) < z) = tt)) 

Rules [5] and [10] yield following c r i t i c a l pa i r : 

(0 < s(y)) == t t if (true ft (((0 < yl) = t t ) ft ((yl < y) = t t ) ) ) 

Processing (0 < s(y)) == tt if (true ft (((0 < yl) = tt) ft ((yl < y) = tt))) 

Your system is canonical. 

[1] (true ft x) — > x 
[2] (x ft t rue) > x 
[3] (x = x) > true 
[4] (0 < s(0)) — > t t 
[5] (s(x) < s(y)> > (x < y) 
[6] i f ( ( ( ( x < y) = t t ) ft ((y < z) = t t ) ) , (x < z)) 

--> i f ( ( ( ( x < y) = t t ) ft ((y < z) = t t ) ) , t t ) 
[7] i f ( ( ( s (0 ) < z) = t t ) , (0 < z)) — > i f ( ( ( s (0) < z) = t t ) , t t ) 
[8] (0 < s(y)) — > t t if ((0 < y) = t t ) 
[9] i f ( ( ( ( x < y) = t t ) ft ((s(y) < z) = t t ) ) , (s(x) < z)) 

> i f ( ( ( ( x < y) = t t ) ft ((s(y) < z) = t t ) ) , t t ) 
[10] i f ( ( ( ( 0 < y) = t t ) ft ((s(y) < z) = t t ) ) , (0 < z)) 

— > i f ( ( ( (0 < y) = t t ) ft ((s(y) < z) = t t ) ) , t t ) 

Processor time used = 1.25 sec 
Number of rules generated = 10 
Number of critical pairs = 7 
Time spent in normalization =0.23 sec (18.67 percent of time) 
Time spent while adding rules =0.20 sec (16.00 percent of time) 

(keeping rule set reduced) 

Total processor time used (include 'undo' action) = 1.30 sec 

Type Add, Akb, Auto, Clean, Complete, Delete, Dump, Franz, Init, Kb, Kb-option, 
List, Log, Norm, Operator, Order, Prove, Quit, Read, Reset, Rules, Stats, 
Synthesis, Heta, Undo, Unlog, Write or Help. 

RRL-> q 

Good bye siva. 
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A P P E N D I X B 

In this appendix, we give a Prolog program that does goal-directed equation solving and show 

how it works on some examples. This is an interpreter for a conditional equational language like 

RITE [Dershowitz and Plaisted, 1988]. In addition to the features described in Chapter 6—oriented 

goals and pruning— this implementation also has eager rewriting and ignores non-normalised so-

lutions that arise from restructuring subterms introduced from left-hand sides of rules by keeping 

track of basic positions. Also, we have implemented iterative depth first search to search the 

solution space fairly and enumerate all solutions. 

/ * This program does g o a l - d i r e c t e d equtaion so lv ing . 
I t a l so uses eager r e w r i t i n g and keeps t r ack of ba s i c p o s i t i o n s . 
Top- level c a l l i s r i t e ( T . S ) or r i t e (T ,S ,depth-bound) 
t o f ind a sigma such t h a t T sigma ->* S sigma ( i n depth-bound) 
If depth-bound i s given we search only up to the bound, and w i l l 
f ind a l l so lu t i ons wi th in t h a t depth . 
Otherwise, we do i t e r a t i v e deepening of DFS t i l l we f ind a l l s o l u t i o n s . 

*/ 

r i t e (X.Y) : -
cput ime(Xl) , 
bas ic(X.P) , i s o l v e ( [ [ X , Y , P , 0 ] ] , 3 ) , 
cputime(X2), X3 i s X2 - XI, n l , wr i te ( 'Cpu: ' ) , w r i t e ( X 3 ) . 

r i te(X,Y,Bound) : -
cput ime(Xl) ,bas ic(X,P) , 
so lve ( [ [X,Y,P ,0 ] ] .Bound) , 
cputime(X2), X3 i s X2 - XI, n l , wr i te ( 'Cpu: ' ) , w r i t e ( X 3 ) , n l . 

/ * does i t e r a t i v e DFS. keeps i n c r e a s i n g bound t i l l a l l so lus found */ 
i so lve(G, Bound) : -

solve(G,Bound); 
( r e t r ac t (bound) 

-> (Bl i s Bound + 3 , n l , 
w r i t e ( ' A l l s o l u t i o n s not e x h a u s t e d . ' ) , n l , 
w r i t e ( ' I n c r e a s i n g depth to ' ) , w r i t e ( B l ) , 
w r i t e ( ' . . ' ) , n l , i s o l v e ( G , B l ) ) 

; ( n l , w r i t e ( ' N o more so lu t i ons p o s s i b l e . ' ) , n l , f a i l ) ) . 
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/* simplify all goals as much as possible wihtout backtracking, then do 
one step of either decomposition or restructuring of one of the goals*/ 

solve([],Bound) :- !. 
solve(L,Bound) :-

simp(L.Ll), ! , onestep(Ll,L2,Bound), solve(L2,Bound). 

onestep([],[],Bound) :- !. 
onestep(GL,L,Bound) :-
/* pick a sub-goal that was introduced at depth <= Bound */ 

(pick(GL,G,Gr,Bound) -> 
addsubgoals(G,Gr,L); 
((bound -> true; assert(bound)),fail)). 

addsubgoals(G,Gr,Gl) :- decomp(G,Gr,Gl,l) ; restruct(G,Gr,Gl) . 

/* decompose goal— same top operators */ 
decomp(G,Gr,Gl,Flag) :-

G = [X, Y, Xb.D], (var(Flag) -> Dl is D ; Dl is D + 1), 
functor(X,F,N), functor(Y,F,N), 
X =.. [F I Ax], Xb =.. [F I Axb], 
Y =.. [F I Ay], addgoals(Dl,Ax,Ay,Axb,Gr,Gl). 

/* r e s t r u c t u r e — apply a r u l e a t t h e t op -ope ra to r */ 
r e s t ruc t (G ,Gr ,Gl ) : -

G = [X, Y, Xb,D], Dl i s D + 1, 
functor(X,F,N) , func to r (L ,F ,N) , ge t ru l e (L ,R ,C) , 
X = . . [F | Ax], Xb = . . [F | Axb], L = . . [F I A l ] , 
bas ic(R.Rp) , bas ic (C .Cp) , 
addgoals (Dl , [C |Ax] , [ t rue lAl] , [CplAxb] , [ [R.Y.Rp.Dl] |Gr] ,G1). 

/ * s i m p ( G l i s t l , G l i s t 2 ) - G l i s t 2 i s t he s impl i f i ed form of G l i s t l */ 
s i m p ( [ ] , [ ] ) : - ! . 
simp([G | Gr] , L) : -

(forced(G.X.Y) -> (dunify(X.Y),simp(Gr,L)) ; 
(possible(G) -> 
(decomposable(G.Gr.Gl) -> simp(Gl.L) ; 

(simp(Gr.Gl), L = [G | Gl])))). 

/* have omitted eager rewriting to check speed */ 
/* simplify(Goal.GList) 

— we do pruning, forced decompositions, eager rewriting */ 
simplify(G, []) :- forced(G,X,Y), !, dunify(X.Y). 
simplify(G.Glist) :- (decomposable(G.G1) -> loop2(simplify,Gl,Gll), 
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mergeall(Gll.Glist), ! ; 
bnorm(G,Gl),!, 
(G == Gl -> Glist = [Gl] ; simplify(Gl.Glist))). 

/* top-level operators are ok */ 
possible(G) :- G = [X, Y, Xb, N], possible(X.Y). 

forced(G,X,Y) :- G = [X, Y, e, N]. /* have reached basic position */ 

/* reachable(Fl,Nl,F2) — A term with top operator Fl (of arity Nl) can be 
converted to a term with top operator F2. Used for pruning goals */ 

reachable(F,N,F) :- ! . 
reachable(Fl,Nl,F2) :-

functor(L,Fl,Nl), getrule(L,R,C), 
(var(R) -> ! ; (functor(R,F,N), reachable(F,N,F2))). 

/* possible(X,Y) - Y's top-operator is reachable from 
X's top-operator */ 

possible(X,Y) :- (var(X); var(Y)) -> true ; 
(functor(X,Fl,Nl),functor(Y,F2,N2),reachable(Fl,Ni,F2)). 

decomposable(G,Gr,Gl) :-
G = [X, Y, Xb, D], functor(X,F,N), 
functor(L,F,N),not(getrule(L,R,C)),decomp(G,Gr,Gl,Fl). 

addgoals(N, [],[],[] ,G,G) :- !. 
addgoals(N, [X|Xr] , [Y | Y r ] , [Z | Z r ] , G, Go) : -

(X == Y -> addgoals(N,Xr,Yr,Zr,G,Go); 
(Z == e -> (dunify(X.Y), addgoals(N,Xr,Yr,Zr,G,Go)); 

addgoals(N,Xr,Yr,Zr,[[X,Y,Z,N] | G] ,Go))) . 

/* pick a subgoal introduced at depth <= Bound */ 
pick([G | Gr], Gl, Gl,Bound) :-

G = [X.Y.Z.N], 
(N =< Bound 
-> (Gl = G , Gl = Gr) ; 
(pick(Gr,Gl,Gil,Bound), Gl = [G | Gil])). 

bnorm([X,Y,Xb,N],[Z,Y,Zb,N]) :- bnorm(X,Xb,Z,Zb). 

/* some utilities like unification, matching and eager rewriting 
are defined below */ 
copy(Term.Copy) :- assert($(Term)), retract($(Copy)). 
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loop2(P, [ ] , [ ] ) : - ! . 
loop2(P,[T | T r ] , [ S | S r ] ) : - X = . . [P I [ T , S ] ] , c a l l ( X ) , l o o p 2 ( P , T r , S r ) . 

loopS (P, [],[],[]) :- !. 
loop3(P,[T|Tr],[BIBr],[S|Sr]) :- X =.. [P|[T,B,S]], call(X),loop3(P,Tr,Br,Sr). 

loop4(P, [ ] , [ ] , [ ] , [ ] ) : - ! . 
l o o p 4 ( P , [ T l T r ] , [ B | B r ] , [ S | S r ] , [ C l C r ] ) : -

X = . . [P | [T ,B ,S ,C] ] , c a l l ( X ) , l o o p 4 ( P , T r , B r , S r , C r ) . 

/ * basic(X,Y) - Y i s t h e b a s i c (non-var) p o s i t i o n s i n X. e i s f o r vars */ 
basic(X.Y) : -

(var(X) -> Y = e ; 
(atomic(X) -> Y = X ; 

(X = . . [F | AX], loop2(basic,AX,AY), Y = . . [F I AY]))) . 

occurs(Var,Term) : -
(Var == Term -> t r u e ; 

(var(Term) -> f a i l ; 
(Term = . . [F | AS] , occurs -any(Var ,AS)) ) ) . 

occurs -any(Var , [ ] ) : - f a i l . 
occurs -any(Var , [TITres t ] ) : -

(occurs(Var.T) -> t r u e ; occurs -any(Var ,Tres t ) ) . 

/* assumes vars in p a t t e r n do not appear in t a r g e t */ 
dmatch(X.Y) : - match(X,Y,[] ,Binds) , dobind(Binds) , ! . 

match(X,Y,InB,0B) : - (X == Y -> OB = InB ; 
(var(X) -> addbind(X,Y,InB,OB) ; 

(var(Y) -> f a i l ; 
(X = . . [F | AX] , Y = . . [F | AY], 
allmatch(AX,AY,InB,OB))))). 

a l lmatch( [] , [] ,InB,InB) . 
a l lmatch([XI | X r ] , [Y l lYr ] , 1 , 0 ) : - m a t c h ( X l , Y i , I , 0 1 ) , ! , 

a l lma tch (Xr ,Yr ,01 ,0 ) . 

dobind( [ ] ) . 
dobind([[X | Y] | Z]) : - X = Y, dobind(Z). 

addbind(X,Y,[] , [ [X | Y ] ] ) . 
addbind(X,Y,[[U | V] | Z] , [ [U I V] | Z l ] ) : -
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(X == U -> Y == V, Z = Zl ; 
addbind(X,Y,Z,ZD). 

dunify(X.Y) : - (X == Y -> t r u e ; 
(var(X) -> no t (occurs (X,Y)) , X = Y ; 

(var(Y) -> not(occurs(Y,X)) , Y = X ; 
X = . . [F | AX] , Y = . . [F I AY], loop2(dunify,AX,AY)))). 

norm(X.Y) : - bas ic(X.Xb) , inorm(X,Xb,Y). 

inorm(X,e,X) : - ! . 
inorm(X.Xb.Y) : - X = . . [F I AX], Xb = . . [F I Ab], 

loop3(inorm,AX,Ab,AY), Yl = . . [F I AY], 
( rewri tes- top(Yi ,Y2,Yb) -> inorm(Y2,Yb,Y) ; Y = Y l ) . 

rewri tes- top(Yl ,Y2,Yb) : - func to r (Yl ,F ,N) , func tor (L ,F ,N) , 
ge t ru l e (L ,Y2 ,C) , bas ic (C.Cb) , bas ic(Y2,Yb), 
dmatch(L.Yl) , i no rm(C ,Cb , t rue ) , ! . 

bnorm(X,e,X,e) : - ! . 
bnorm(X,Xb,Y,Yb) : - X = . . [F I Ax], Xb = . . [F I Axb], 

loop4(bnorm,Ax,Axb,Ay,Ayb), 
Yl = . . [F I Ay], Ylb = . . [F I Ayb], 
( rewri tes- top(Yl ,Ylb,Y2,Y2b) -> 

bnorm(Y2,Y2b,Y,Yb) ; 
Y = Yl , Yb = Ylb) . 

rewri tes- top(Y,Yb,Yl ,Ylb) : -
functor(Y,F,N) , func to r (L ,F ,N) , ge t ru l e (L ,R ,C) , 
match(L,Y,[] ,B inds ) , ! , copy(L ,R,Lc ,Rc) , bas ic (C .Cb) , 
dobind(Binds) , inorm(C,Cb , t rue ) , ! , Yl = R, 
bmatch(Lc.Yb), Ylb = Re . 

copy(L,R,Lc,Rc) : - T = . . [a | [L, R ] ] , copy(T.Ti) , 
Tl = . . [a I [Lc, R e ] ] . 

bmatch(X.e) : - ! . 
bmatch(X.Y) : - va r (X) , ! , X = Y . 
bmatch(X.Y) : - X = . . [F I AX], Y = . . [F I AY], loop2(bmatch,AX,AY). 

m e r g e a l l ( [ ] , [ ] ) : - ! . 
mergeal l ( [L I Lr] , L r l ) : - me rgea l l ( L r , L r 2 ) , append(L,Lr2 ,Lr l ) . 

append([] ,X,X). 
append([A | X],Y,[A I Z]) : - append(X.Y.Z). 
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/* rules */ 
/* Rules are written of the form rule(L.R) if unconditional or 

rule(L,R,C) if conditional */ 

getrule(L,R,true) :- rule(L,R). 
getrule(L,R,C) :- rule(L,R,C). 

/* conditional rules that define quotient and mod for natural numbers */ 
rule(quot(X,Y),s(quot(diff(X,Y),Y)),ge(X,Y)). 
rule(quot(X,Y),0,gt(Y,X)). 

rule(mod(X,Y),X, not(ge(X,Y))). 
rule(mod(X,X),0). 
rule(mod(X,Y),mod(diff(X,Y),Y),and(gt(Y,0),not(ge(Y,X)))). 

rule(diff(X,0), X). 
rule(diff(s(X),s(Y)), diff(X.Y)). 

rule(add(X,0),X). 
rule(add(X,s(Y)),s(add(X,Y))). 

rule(ge(X,0),true). 
rule(ge(0,s(Y)),false). 
rule(ge(s(X),s(Y)),ge(X,Y)). 

rule(lt(X,Y),not(ge(X,Y))). 
rule(le(X,Y),ge(Y,X)). 
rule(gt(X,Y),not(ge(Y,X))). 

rule(ap(nil,X), X). 
rule(ap(+(X,Y),Z), +(X,ap(Y,Z))). 

rule(f(f(X)), f(X)). 
rule(g(f(X),Y), g(d,Y)). 
rule(gl(f1(a)), a). 

rule(not(true).false). 
rule(not(falso),true). 
rule(eq(X,X).true). 
rule(and(true,X),X). 

Below is a transcript of a session that uses this equation solver for some simple examples. 

a i sune-19 '/, sbprolog 
SB-Prolog Version 2 . 3 . 1 
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I ?- ['gdir.pr']. 
yes 
I ?- rite(ap(X,Y),+(l,nil)). 

Cpu: 300 
X = nil 
Y = 1 + nil; 

Cpu: 660 
X = 1 + nil 
Y = nil; 

No more solutions possible. 
no 
I ?- rite(ap(X,ap(Y,Z)),+(l,+(2,+(3,nil)))). 

Cpu: 280 
X = nil 
Y = nil 
Z = 1 + (2 + (3 + nil)); 

Cpu: 560 
X = nil 
Y = 1 + nil 
Z = 2 + (3 + nil); 

Cpu: 820 
X = nil 
Y = 1 + (2 + nil) 
Z = 3 + nil; 

Cpu: 2220 
X = 1 + nil 
Y = nil 
Z = 2 + (3 + nil); 

Cpu: 2520 
X = 1 + (2 + nil) 
Y = nil 
Z = 3 + nil; 

Cpu: 2760 
X = 1 + (2 + (3 + nil)) 
Y = nil 
Z = nil; 

96 



Cpu: 4060 
X = 1 + nil 
Y = 2 + nil 
Z = 3 + nil; 

Cpu: 4360 
X = 1 + (2 + nil) 
Y = 3 + nil 
Z = nil; 

Cpu: 6040 
X = 1 + nil 
Y = 2 + (3 + nil) 
Z = nil; 

All solutions not exhausted. 
Increasing depth to 6 .. 

Cpu: 8000 
X = nil 
Y = nil 
Z = 1 + (2 + (3 + nil)); 

Cpu: 8320 
X = nil 
Y = 1 + nil 
Z = 2 + (3 + nil); 

Cpu: 8600 
X = nil 
Y = 1 + (2 + nil) 
Z = 3 + nil; 

Cpu: 8860 
X = nil 
Y = 1 + (2 + (3 + nil)) 
Z = nil; 

Cpu: 10040 
X = 1 + nil 
Y = nil 
Z = 2 + (3 + nil); 

Cpu: 10340 
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X = 1 + (2 + nil) 
Y = nil 
Z = 3 + nil; 

Cpu: 10580 
X = 1 + (2 + (3 + nil)) 
Y = nil 
Z = nil; 

Cpu: 11860 
X = 1 + nil 
Y = 2 + nil 
Z = 3 + nil; 

Cpu: 12120 
X = 1 + (2 + nil) 
Y = 3 + nil 
Z = nil; 

Cpu: 13780 
X = 1 + nil 
Y = 2 + (3 + nil) 
Z = nil; 

No more solutions possible. 
no 

/* Below is an example that uses conditional rules. 
We begin to enumerate all positive odd numbers 
by asking for X such that X mod 2 is 1 */ 

I ?- rite(mod(X,s(s(0))), s(0)). 

Cpu: 860 
X = s(0); 

All solutions not exhausted. 
Increasing depth to 6 .. 

Cpu: 15360 
X = s(0); 

Cpu: 18360 
X = s(s(s(0))); 
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Cpu: 23680 
X = s(s(s(s(s(0))))); 

All solutions not exhausted. 
Increasing depth to 9 .. 

Cpu: 47700 
X = s(0); 

Cpu: 50660 
X = s(s(s(0))); 

Cpu: 55960 
X = s(s(s(s(s(0))))); 

Cpu: 61260 
X = s(s(s(s(s(s(s(O))))))> 
yes 
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