
PROOFS AND COMPUTATIONS
IN CONDITIONAL EQUATIONAL THEORIES

BY

G. SIVAKUMAR

B.Tech., Indian Institute of Technology, 1982
M.S., Rensselaer Polytechnic Institute, 1984

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 1989

Urbana, Illinois

PROOFS AND COMPUTATIONS
IN CONDITIONAL EQUATIONAL THEORIES

G. Sivakumar, Ph.D.
Department of Computer Science

University of Illinois at Urbana-Champaign, 1989
Nachum Dershowitz, Advisor

Conditional equations arise naturally in the algebraic specification of data types. They also pro-

vide an elegant computational paradigm that cleanly combines logic and functional programming.

In this thesis, we study how to do proofs and computations in conditional equational theories, using

rewriting techniques.

We examine different formulations of conditional equations as rewrite systems and compare their

expressive power. We identify a class of "decreasing" systems for which most of the basic notions

(like rewriting and computing normal forms) are decidable. We then study how to determine if a

conditional rewrite system is "confluent." We settle negatively the question whether "joinability of

critical pairs" is, in general, sufficient for confluence of terminating conditional systems. We also

prove two positive results for systems having critical pairs and arbitrarily big terms in conditions.

We discuss "completion" methods to generate convergent conditional rewrite systems equivalent

to a given set of conditional equations. Finally, we study equation solving methods and formulate

a goal-directed approach that improves prior methods and detects more unsatisfiable equations.

iii

To my parents.

iv

A C K N O W L E D G E M E N T S

I sincerely thank Nachum Dershowitz, my thesis advisor, for his constant encouragement, guid-

ance and the confidence he has placed in me. I will always remember his gracious hospitality and

help, when I visited him at the Hebrew University in January 1988. Most of the results reported

here evolved in discussions and correspondence with him. His comments have also helped me

immensely in improving the presentation.

I also thank Mitsuhiro Okada for his collaboration, and the many fruitful discussions we had

while developing the results on confluence presented in Chapters 3 and 4. The counter-example

presented in Chapter 4 is a simplified version of his original system.

I would like to express my gratitude to Deepak Kapur, who first introduced me to this research

area, for his encouragement and advice. I am also grateful to Uday Reddy for his comments and

the many discussions we had.

Finally, I thank all my friends in Urbana for all the fun and dinners they provided, and my

parents for their patience and understanding.

v

T A B L E O F C O N T E N T S

1 INTRODUCTION 1
1.1 Motivation 1
1.2 Structure of the Thesis 4

2 UNCONDITIONAL EQUATIONS AND REWRITE SYSTEMS 6
2.1 Basic Syntax 6
2.2 Equational Theories 8
2.3 Rewrite Systems 9

3 CONDITIONAL EQUATIONS AND REWRITE SYSTEMS 12
3.1 Conditional Equations 12
3.2 Some Translations of Conditional Equations 15

3.2.1 Conservative Extensions 15
3.2.2 Translating to Unconditional Equations 16

3.3 Conditional Rewrite Systems 17
3.4 Termination of Conditional Rewriting 21
3.5 Strength of Rewrite Systems 21
3.6 Decreasing Systems 24

4 CONFLUENCE OF CONDITIONAL REWRITE SYSTEMS 28
4.1 Local Confluence and Critical Pairs 28

4.1.1 Disjoint Peaks 29
4.1.2 Variable Peaks 29
4.1.3 Critical Peaks and Conditional Critical Pairs 30

4.2 Counter-Examples 32
4.3 Confluence of Decreasing Systems 35
4.4 Confluence of Left-Linear, Normal Systems 39
4.5 Confluence of Overlay Systems 41
4.6 Conclusion 46

5 COMPLETION METHODS FOR CONDITIONAL EQUATIONS 47
5.1 Unconditional Completion 48 •
5.2 Conditional Completion Methods 51

5.2.1 Handling Non-Decreasing Equations 53
5.2.2 Contextual Simplification 56
5.2.3 Critical Pair Optimization 59
5.2.4 An Interesting Example ". 61

5.3 Conclusion 64

vi

6 EQUATION SOLVING METHODS 65
6.1 Equational Programming 65
6.2 Procedures for Equation Solving 67

6.2.1 The Narrowing Procedure , .' 69
6.2.2 Drawbacks of Narrowing 70
6.2.3 The Decomposition Procedure 72
6.2.4 Drawbacks of Decomposition 73

6.3 Goal Directed Equation Solving 75
6.3.1 Innermost Rewriting Sequences and Oriented Goals 75
6.3.2 Simulating Innermost Rewriting 76
6.3.3 Operator Rewriting 78

6.4 Completeness of Equation Solving Procedures 80

7 SUMMARY AND FUTURE WORK 82

APPENDIX A 84

APPENDIX B 90

REFERENCES 100

VITA 105

vii

1 I N T R O D U C T I O N

1.1 Mot iva t ion

Equational reasoning is very important in many areas of computer science, like symbolic alge-

braic computation, automated theorem proving, program specification and verification, and high-

level (logic and functional) programming languages. An equational theory is specified by a set of

axioms of the form s = t (where s and t are terms, perhaps containing variables); the "theory"

being the set of equations inferable by "replacing equals with equals." For example, the equations

below specify the identity, inverse and associative properties of a group:

0 + 3

-(*) + «

(x + y) + z

=

=

=

X

0

x + {y + z)

The validity (or word) problem is that of determining if an identity follows logically from the

given axioms. For example, we may ask if - 0 = 0 is a valid consequence of the group axioms above,

i.e. if it is true in all models of the axioms. The satisfiability (or equation solving) problem is that

of finding substitutions for the variables that make two terms equal in all models. For example,

the equation — x = x is satisfied by the substitution {x t-» 0}.

Efficient methods for handling the validity and satisfiability problems for equational theories

have been studied for some time now, and are the focus of most of the. work in the area of rewrite

systems. Rewrite systems are collections of directed equations (rules) of the form I —> r. Rules can

be used to simplify a term by repeatedly replacing instances of left-hand sides I by the corresponding

1

instance of the right-hand side r (and not the other way) until a simplest possible (normal) form

is obtained.

Rewrite systems possessing nice properties like termination and confluence, and equivalent to

a given equational theory, may be generated by completion methods. With such systems, the

word problem can be decided by simply checking if the two terms have the same normal form.

In addition to producing efficient decision procedures for some equational theories, completion-

like methods have also been suggested as a replacement for paramodulation in resolution-based

theorem provers that handle equality [Lankford, 1975]. For (refutational) theorem proving in first-

order predicate calculus, Hsiang [Hsiang, 1982] showed how a variant of completion can be used in

place of resolution. Rewriting methods have also been used to prove inductive theorems [Musser,

1980] by showing that the hypothesis can cause no inconsistency. Thus, in many applications,

rewriting methods have turned out to be a very successful approach to equational reasoning. For

a comprehensive survey of the work in this field see [Dershowitz and Jouannaud, 1989].

Most of the work on rewrite systems has dealt only with pure or unconditional equations. A

conditional equation is an equational implication of the form:

Pi = 9i A ••• A pn = qn : s = t

for n > 0 (that is, a universal Horn clause with equality literals only). Unlike an unconditional

equation s = t, which says that for all substitutions for variables in s and t, the two terms are equal,

here they are equal only for those substitutions for which the condition pi = q\ A • • • A pn = qn

"holds." An example of a conditional equation with only one premise is:

x > 0 = true : factorial(x) = x * factorial(x — 1)

2

Conditional equations are very useful in the algebraic specification of abstract data types (since

initial algebras exist). They have been studied largely from this perspective in [Bergstra and Klop,

1982], [Kaplan, 1984] and [Zhang and Remy, 1985]. The equations below, for example, define some

operations on stacks.

emptyl(x) = = false

top(pusk(x,y)) = x

pop(push(x,y)) = y

: push(top(x),pop(x)) = x

Checking whether such specifications are consistent or complete requires methods for handling the

word problem for conditional equational theories.

The application of conditional equations as a programming language has been proposed in

[Dershowitz and Plaisted, 1985], [Fribourg, 1985] and [Goguen and Meseguer, 1986]. A program

is a set of conditional equations, .and a computation attempts to find a substitution that makes

two terms provably equal in the underlying theory. This paradigm integrates cleanly the logic

programming ability of Prolog with built-in equality and the functional capability of Lisp. An

interpreter for such a language can be viewed as an equation solver for conditional equations.

The word problem and satisfiability problem for conditional equations can be shown semi-

decidable by brute-force enumeration methods. Analogous to unconditional equations, it is natural

to ask if we can get more efficient methods using conditional rewriting. This is the main focus of

this thesis. We study how to do proofs and computations in conditional equational theories using

conditional rewriting. Many of the concepts and techniques of unconditional rewriting carry over

to conditional systems. But, corresponding results about confluence of conditional rewrite systems

and completion methods for conditional equations have been hard to obtain without very strong

restrictions on the class of allowable rules.

3

We first examine different formulations of conditional rewriting. We show how to extend conflu-

ence results for conditional rewriting in a more general framework. We develop a formulation of a

completion procedure for conditional equations, similar to that proposed in [Ganzinger, 1987], that

can handle many common examples. We also address the satisfiability problem (solving equations)

in conditional theories and formulate a "goal directed" equation solving method that improves prior

techniques and can serve as the basis for interpreters of equational languages.

1.2 S t ruc tu re of t h e Thesis

The background material in Chapter 2 gives an overview of unconditional equational theories

and rewrite systems. It introduces most of the terminology and concepts used in the rest of the

thesis. Readers familiar with this area need only skim through this.

In Chapter 3, conditional equational theories are described. We examine different formulations

of conditional equations as rewrite systems and compare their expressive power. We then examine

a restriction of these systems using a "decreasing" ordering. With this restriction, most of the basic

notions (like rewriting and computing normal forms) are decidable.

In Chapter 4, we study the confluence of conditional rewriting in detail. We settle negatively the

question whether "joinability of critical pairs" is, in general, sufficient for confluence of terminating

conditional systems. We review known sufficient conditions for confluence, and also prove two new

positive results for systems having critical pairs and arbitrarily large terms in conditions.

In Chapter 5, a completion method is proposed to generate convergent conditional rewrite

systems equivalent to a given set of conditional equations. Techniques are given to handle non-

decreasing equations and critical pairs, by converting them to equivalent unconditional equations,

using a conservative extension of the theory. We give several examples to show how this works.

4

We first briefly review, in Chapter 6, the use of conditional equations as a programming lan-

guage. We then study equation solving techniques and examine methods to improve them. We

formulate a goal-directed equation solving technique, that captures the features of narrowing and

top-down decomposition.

We conclude with a summary and directions for further work in Chapter 7. In Appendix A,

we briefly describe a preliininary implementation of conditional completion in RRL—a rewrite rule

laboratory—and give an example. In Appendix B, we give a Prolog implementation of equation

solving and a transcript of some examples.

5

2 U N C O N D I T I O N A L E Q U A T I O N S A N D R E W R I T E S Y S T E M S

In this chapter, we briefly review the basic notions and results for unconditional equational

theories. Most of the terminology used in the rest of the thesis is explained here. A comprehensive

survey of this area is [Dershowitz and Jouannaud, 1989]. Other surveys are [Huet and Oppen,

1980], [Klop, 1986].

2.1 Basic Syn tax

We work with a set T(F, X) of terms constructed from a (countable) set F of function symbols

and a (countable) set X of variables. We use just T for the set of terms when F and X are clear

from the context. We normally use the letters a through h for function symbols; I, r, and p through

w for arbitrary terms; x, y, and z for variables.

Each function symbol f E F has an arity n>0 which is the number of arguments (immediate

subterms) that it has in a well-formed term. Constants are function symbols of arity zero. Variable-

free terms are called ground. The set G(F) of ground terms is, therefore, T(F, 0).

A term t in T(F,X) may be viewed as a finite ordered tree. Internal nodes are labeled with

function symbols (from F) of arity greater than 0. The outdegree of an internal node is the same

as the arity of the label. Leaves are labeled with either variables (from X) or constants.

We use u[t] to denote a term that has t as a subterm. We use «[•] to denote the context in which

t occurs in a term u[t]. The context is the tree obtained by deleting t from the tree. By t \v, we

denote the subterm of t rooted at position x. A subterm of t is called proper if it is distinct from t.

Positions can, for example, be represented in Dewey decimal notation (a sequence of positive

integers, describing the path from the outermost, "root" symbol to the head of the subterm at that

6

position). Thus f(g(a), h(b)) |x.i is the subterm a and f(g(a), h(b)) |2.i is the subterm 6. By t[s]T

we denote the term obtained from t by replacing the subterm at position v by the term s. For

example, if t = f(x,y) and % = 1, then <[a]ff is the term f(a,y). Position Xi is said to be above

position iT2> if f i is a proper prefix of Tg- k this case, 11,, is a proper subterm of t \Wl; we also say

that T2 is below %%. Positions T\ and TT2 are independent positions if neither one is a prefix of the

other; the subterms t \Vl and t \n2 are said to be disjoint.

A substitution is a mapping from variables to terms. It is usually an identity function on all

but finitely many variables. We use lower case Greek letters for substitutions, and write it out as

{sci t-» s i , . . . , xm i-> sm}. A substitution cr can be extended to a function from the set of terms T

to itself. A composition of two substitutions, denoted by juxtaposition, is just the composition of

the two functions. We say that a substitution a is at least as general as a substitution p if there

exists a substitution r such that OT = p.

A term t matches a term s if t = so~ for some substitution cr. We also say that t is an instance

of s in this case. A term s unifies with a term t if to- = sa for some substitution <r.

We use —» (sometimes with subscripts) to denote a binary relation over a set of terms. A

relation -» is called a rewrite relation (or "monotonic") if s -» t implies that u[s<7]„. —• u[tcr}„, for

all contexts «[•], terms s and 2, positions 7r, and substitutions <r. If —» is a binary relation on T,

then by <— we denote its inverse, by <-> its symmetric closure, by —»= its reflexive closure, by —>+

its transitive closure, and by -»* its reflexive-transitive closure.

A binary relation —> on a set T is said to be terminating if there exists no endless chain ti —> t2

_> i3 _> . . . of elements of T, i.e. if its transitive closure —»+ is well-founded. Terminating relations

are useful for doing inductive proofs.

7

2.2 Equa t iona l Theor ies

An equation is an unordered pair of terms, written in the form s = t. Either or both of s and *

may contain variables; which are understood as being universally quantified. A (finite or infinite)

set of equations E, for example, the group axioms below:

0 + x

-(z) + x

(x + y) + z

=

=

=

X

0

x + (y + z)

specifies an equational theory = , over the set of terms T, that is obtained by taking reflexivity,

symmetry, transitivity, and context application as inference rules and all instances of equations in

E as axioms.

By the completeness of first order predicate calculus with equality, validity and provability

coincide. So, we can also define the equational theory using a replacement relation <->, based on

the idea of "replacement of equals for equals." We write s <-> t, for terms s and t in T, if I = r is

an equation in E, s \„= la and t = s[ro-]ff. Intuitively, we can replace an instance of one side of

an equation in E by the corresponding instance of the other side of the equation. For example, if

0 + x = x is an equation in E, then / (0 + 0) <-> / (0) . The substitution {x t-+ 0} is used in this

replacement.

It can be shown that s = t iff s <-»* t, where «-** is the reflexive-transitive closure of <->. In other

words, two terms are provably equal if one may be obtained from the other by a finite number of

replacements of equal subterms. An equational proof of s = t, is, therefore, a sequence of such

replacement steps-

s = So «-* si • • • *-* sn = t

8

of n > 0 applications of equational axioms.

The word problem for a set of equations 23, is the question whether an equation s = t between

two ground terms, s and t follows from E, i.e., is s <-»* tl For example, we may ask if — 0 = 0

is a consequence of the group axioms. When s and t are not ground terms, checking if s <-»* t is

referred to as the validity problem.

The satisifiability problem is the question whether there exists a substitution a for variables

in two terms s and t such that sa <-•* to-. For example, the equation — x = x is satisfied by the

substitution {x i-+ 0}.

2.3 Rewr i t e Sys tems

A rewrite rule over a set of terms T is an ordered pair (I, r) of terms, and is written Z —» r. If

no variable occurs more than once in I, then the rule is said to be left-linear. Similarly, a rule is

right-linear if no variable is repeated in r, and is linear if it is both left-linear and right-linear. A

rewrite system (or term rewriting system) R is a (finite or infinite) set of such rules. Rules can be

used to replace instances of I by corresponding instances of r; but unlike equations, they cannot

be used in the reverse direction (that is, to replace instances of the right-hand side r). This is, in

fact, the main idea of rewriting- to impose directionality on the use of equations.

We use -» to denote the rewrite relation. We say that a term s in T rewrites to a term t in

T, denoted s —• t, if s | x = la and t = sfrcr^, for some rule I —> r in R, position IT in s, and

substitution a. We say that t is derivable from s if s -+* t, where —»* is the reflexive-transitive

closure (zero or more steps) of —*.

A term s is reducible by R if there is a term t such that s —> t; otherwise we say that s is

irreducible or in normal form. We write s A t if s —•* t and t is irreducible, in which case we say

9

that t is a normal form of s. Two terms s and t are said to be joinable written (a J, t) if there is a

term u which is derivable from both s and t, i.e. such that a —>* u *<— i.

A rewriting system JR is terminating for a set of terms T if the rewrite relation -» over T is

terminating. That is, there is no infinite sequence of terms t{ in T such that t —»t\ —> £2 • • • • When

a sysiem is terminating, every term has at least one normal form. Note that a terminating system

cannot have any rule, like — x + x —• — y + y, with a variable on the right that is not also on the left

(since y could, for example, be —x + x), nor can a left-hand side be just a variable, like x -» 0 + a;.

A comprehensive survey of methods for establishing termination is [Dershowitz, 1987].

A rewrite relation is confluent if whenever two terms, s and t, are derivable from a term u, then

a term v is derivable from both s and t. That is, if u -»* s and u -»* t, then there is a term % such

that s —•* u and i ->* v. Confluence says that if two terms have a common ancestor, they also

have a common descendent. Ground confluence is confluence restricted to ground terms. That is,

a system is ground confluent whenever any two terms that are derivable from a ground term are

joinable.

A system R is convergent if it is both terminating and confluent. A convergent system has the

unique normalization property. In other words, every term t in T possesses exactly one normal

form. This means that terms s and t are joinable by a convergent system R iff they have the same

normal form. A system that is convergent over ground terms is said to be ground convergent.

Let I —• r and g —* d be two rules (or two versions of the same rule-i.e. with variables renamed)

in R. The equation s = t is said to be a critical pair between these two rules, if g unifies with a

non-variable subterm of I at position it using a substitution a and s = ra and t = /[cf^cr. We say

that la is a critical overlap, and we have ra <— la —*• Z[cf],o-. That is, s and t are the two terms

we obtain by rewriting the overlap between the two rules.

10

For example, 0 + (u + v) = u + v is a (joinable) critical pair between the rules 0 + J - > I and

(y + w) + v -* y + (u + v). The overlap between these two rules is (0 + u) + v; it is obtained by

unifying a left-hand side 0 + x with a non-variable subterm y + u of the other left-hand side. A

critical pair s = t in R is joinable if s j t in R.

Critical pairs are useful for checking if a terminating system is confluent, hence convergent. We

have the following famous lemma:

L e m m a 2.1 (Cr i t ica l Pa i r L e m m a [Knuth and Bendix, 1970]) A terminating rewrite system is

convergent iff all its critical pairs are joinable.

A rewrite system R is sound with respect to a of a set of equations E, if the derivability relation

—>* of R is a subset of the replacement relation *-** of E. That is for any two terms, s and t, s -»* t

using R only if s «-** i in 13. A system R is complete for 23, if any two terms that are provably

equal in E are joinable in R. That is, a j 1 in R whenever a <-** t in E.

If R is both sound and complete for E, then the validity problem for E—is a <-+* tl—is the same

as checking if a and t are joinable in R. If J? is also finite and convergent, then this can be done

quite efficiently by just checking if a and t have the same normal form. Thus, for those equational

theories for which we can find finite, convergent rewrite systems that are sound and complete, we

have an effective decision procedure for the validity problem.

Completion methods can be used to generate such systems from given equational axioms. We

discuss this in Chapter 5. In Chapter 6, we will see how convergent rewrite systems also provide

more efficient methods for the satisfiability problem in equational theories.

11

3 C O N D I T I O N A L E Q U A T I O N S A N D R E W R I T E S Y S T E M S

In this chapter, we first describe conditional equational theories. Then, we study different ways

of formulating them as conditional rewrite rules and compare their expressive power. We identify

a class of decreasing systems for which most of the interesting notions are decidable. Decreasing

systems have somewhat weaker restrictions than the simplification systems or reductive systems

studied previously in [Kaplan, 1984] and [Jouannaud and Waldmann, 1986]. For this class of

systems, we also show that various formulations as rewrite systems are in some sense equivalent.

In the next chapter, we will see how decreasing systems also satisfy the critical pair lemma for

confluence and that straightforward attempts at further weakening these restrictions do not work.

3.1 Condi t ional Equa t ions

A (positive) conditional equation takes the form:

pi = q1 A ••• A pn = qn : s = t

where n > 0. The pi = % are equations, possibly containing (universally quantified) variables. An

example of a conditional equation with only one premise is:

x > 0 = true : factorial(x) = x * factorial(x - 1)

The ":" may be thought of as implication, with a = t as the conclusion and p; = qi as the premises.

We will sometimes write c : a = t to denote a conditional equation where it is understood that c

denotes equations pi = gi A • • • A pn = qn.

12

Let E be a set of conditional equations. We define the one-step replacement relation <-» and its

reflexive-transitive closure <-»* as follows. If

Pi = 9i A ••• A pn = qn : a = t

is a conditional equation, cr is a substitution, u[sa] is a term with sa as a subterm at position it,

and p;<7 <->* g,-o- for 2 = 1,..., n, then u[a<r] <-> u[ta]v where «[fcr]T is the term obtained by replacing

sa by ta.

Intuitively, only for substitutions that are feasible (for which the conditions can be proved

recursively by a sequence of such replacements), can we replace that instance of one side of a

conditional equation by the corresponding instance of the other side. An unconditional equation

a = i, however, applies for all substitutions. We write E h a = t if a <-»* t for a set E of conditional

equations.

For example, using equations:

Q + y = y

x+y = z : s(x) + y = z

we have a(0) + a(0) <-> a(a(0)) using the second equation, since for the substitution { J H O J J H

a(0), z t-» a(0)} the condition x + y = z is feasible (as 0 + a(0) <-> a(0) using the first (unconditional)

equation).

Note that we do not restrict terms in the conditions to contain only variables present in the

equation in the conclusion. Variables are universally quantified as, for example, below:

Vx,y[c(x,y) : s(x) = t(x)}

13

where y are those ("extra") variables in the terms in the condition that do not also appear in either

side of the conclusion. This is equivalent to

V2[(3fc(Z,#): «(*) = <(*)]

Operationally, this means that, when there variables in the condition not present in either side of

the equation in the conclusion, we have to find a feasible substitution for the extra variables before

we can replace sa by ta in any context.

Though we sometimes use uninterpreted constants like true and false in conditions, we will

consider only equational (algebraic) consequences and proofs in this thesis. Note that equational

logic lacks a "law of excluded middle." That is, we cannot conclude that f(x) = 0 from the

equations:

p(x) = true : f(x) = 0

p(x) = false : f(x) = 0

by reasoning that p(x) must be either true or false. We have to prove (equationally) that

the condition holds. The relation between equational proofs and first-order ones is studied in

[Dershowitz and Plaisted, 1988] and a semantics based on term logic is studied in [Plaisted, 1987].

As for unconditional theories, we can now define the validity (is a <->* t?) and satisfiability

(does there exist a such that sa «->* tal) problems, both of which are semi-decidable by brute-

force enumeration methods. The interesting question is: How useful is the concept of conditional

rewriting for solving these problems?

14

3.2 Some Transla t ions of Condi t iona l Equa t ions

3.2.1 Conservat ive Extens ions

In general, we can have more than one equation in .the condition. But, we can always represent

all the equations in the condition by a single equation using some new uninterpreted function

symbols. We do this sometimes for notational convenience.

Let E be a set of conditional equations over terms T(F,X). Let true be a new distinguished

constant and eq and & be new binary operators (not in F). Let F' = F U {true,eq,h}. We can

convert E to a set of conditional equations E' over T(F', X), where all conditions in E' are a single

equation of the form p = true as follows.

We replace a conditional equation

Pl = qx A ••• A pn = qn : a = t

by

(eg(?i, qi) & • • • & eq(pn, ?„)) = true : s = t

We also add the unconditional equations:

eq(x,x) = true

x & true = x

to £ ' .

With this translation, it is quite easy to show that for terms a and t in the original signature of

E (that is, not having function symbols eq, & or true) E \- a = t iff E' h s = t. Such a translation

is a conservative extension of the original theory.

15

3.2.2 Trans la t ing t o Uncond i t iona l Equa t ions

It may seem possible to simulate conditional equations by unconditional equations using a new

binary operator if with the axiom if (true, x) = x. A conditional equation c : s = t may then be

translated to a = if(c, t).

This translation is not sound, however, as illustrated in the following example. Consider E

below:

0 = 1 : 6 = a

0 = 1 : c = a

The straightforward translation would yield an unconditional set of equations E':

eq(x,

if(true,

x)

x)

b

c

=

=

=

=

true

X

if(eq(0,l),

if(eq(0,l),

a)

a)

The following is a valid proof in E'

b *-> if(eq(Q, l),a)<-> c

whereas b <->* c is not a valid consequence of the original theory E.

This translation mechanism can be modified slightly to make it sound and thus convert any

set E of conditional equations to a set 23' of unconditional equations. The change is to replace

16

equations of the form c : a = t by if(c,s) = if(c,t). With this method E' becomes:

eq(x,x)

if (true, x)

if(eq(0,l),b)

if(eq(0,l),c)

= true

= X

= i/(eg(0,l),a)

= z/(eg(0,l),a)

which is a (unconditional) conservative extension to E.

If we can, as above, translate any set of conditional equations to an equivalent unconditional

conservative extension, then why study conditional rewriting at all? As we will see later in Chapter

5, this translation is not always good from the point of view of generating convergent rewrite sys-

tems equivalent to the equational theory. It often leads to generating infinite set of unconditional

rules for theories that can be handled by finite conditional rewrite systems. But, this translation

mechanism does come in very useful when some conditional equations cannot be handled by com-

pletion techniques. Selective translation of conditional equations to unconditional ones will be a

very important part of completion methods that we will describe in Chapter 5.

3.3 Condi t ional Rewr i t e Sys tems

To make a conditional rule c : I —> r from a conditional equation c : a = t we have to do two

things:

1. the equation in the conclusion must be oriented into a rule with the "bigger" term on the

left;

2. a criterion must be chosen to determine whether a conditional rule applies (check if the

equations in the condition "hold").

17

A conditional rule is used to rewrite terms by replacing an instance of the left-hand side with

the corresponding instance of the right-hand side (but not in the opposite direction) provided the

conditions hold. A set of conditional rules is called a conditional rewrite system. Depending on

what criterion is used to check conditions, different rewrite relations are obtained for any given

system R (see below). Once a criterion is chosen, we can define the one-step rewrite relation —>

and its reflexive-transitive closure —»* as follows: u[la]v -> u[ro-]w if c : I -* r is a rule, cr is a

substitution, «[/cr]ff is a term with subterm la at position ir ca satisfies the criterion.

There are a fair number of different ways of formulating conditional equations as rewrite rules:

Semi-Equat iona l sys tems: Here we formulate rules as

Pi = 9 i A ••• A pn = qn : I -» r

where the conditions are still expressed as equations. To check if a condition holds we use

the rules bidirectionally, as equations, and check if p.cr <->* qia.

J o i n sys tems: Here we express rules as

Pi i 51 A • • • A pn | qn • I ->• T

The conditions are now checked in the rewrite system itself by checking if pia and <%cr are

joinable in R itself by rewriting. Note the circularity in the definition of ->. The base case,

of course, is when unconditional rules are used or the conditions unify syntactically. This

definition is the one most often used; see [Kaplan, 1984; Jouannaud and Waldmann, 1986;

Dershowitz et al., 1987].

Norma l - Jo in sys tems : Here rules are written

Pi 1! 9i A - A p „ | ! g „ : / -» r

18

This is similar to join systems except that p{0 and g»cr are not only joinable, but also have a

common reduct that is irreducible. A sufficient condition for this is that the common reduct

not contain any instance of a left-hand side. This is not a necessary condition, however, as

an irreducible term may contain instances of the left-hand side of a rule, and for this instance

the condition may not be feasible.

N o r m a l sys tems : A special form of normal-join systems has all conditions of the form p, -4 g,-

(meaning that pi -+* g; and g, is an irreducible ground term).

Me ta -Cond i t iona l sy s t ems : Here we allow any (not necessarily recursively enumerable) predi-

cate p in the conditions. For example, we may have conditions like a G S (for some term a

and set S), x -4 x (i.e. a; is already in normal form), or I > r (for some ordering >). We

write p : I -» r.

Most of the formulations above have been considered by different authors with slight variations.

For example, Bergstra and Klop in [Bergstra and Klop, 1986] restrict their attention to systems

which are left-linear (no left-hand side has more than one occurrence of any variable), have no

"extra" variables in conditions and non-overlapping (no left-hand side unifies with a renamed non-

variable subterm of another left-hand side or with a renamed proper subterm of itself). With these

restrictions on left-hand sides, they refer to semi-equational systems as of Type I, join systems

as of Type II and normal systems as of Type IIIn. They also prove that , with these restrictions

on left-hand sides, Type I and Type IIIn systems are confluent. Meta-conditional systems with

membership conditions were proposed in [Toyama, 1987].

For a given join system, we define the rewrite (—») and join (J.) relations on terms, as follows:

Let p I q: I —> r be a rule, a be a term, % be a position of a subterm in a, and cr be a substitution.

19

Then we say that the term a[Zcr]*., that is, the term a with an instance la of the left-hand side / at

position 7r, rewrites to the term a[rcr]ff (a with ra in place of la) it pa and qa each rewrite in zero

or more steps to the identical term; in that case, we say that a is a feasible substitution for the

rule.

As for unconditional systems, we write a —» f, if a rewrites to t in one step; a —>* t, if a rewrites

to t in zero or more steps, i.e. if t is derivable from a; s j t, if a —>* w and t —•* w for some term

w; and a A t, if a —»* i, but no rewrite applies to t, i.e. the normal form t is derivable from a.

The following rules define < on natural numbers:

x < y i tt

0 < 0

s(x) < 0

s(x) < s(y)

x < s(y)

—»

— •

—*

tt

ff
x<y

tt

For the above example, we have 0 < a(0) -4 tt using the last rule, since the condition 0 < 0 | tt is

achieved by the first rule.

The depth of a rewrite is the depth of recursive evaluations of conditions needed to determine

that the matching substitution is feasible. Formally, the depth of an unconditional rewrite is 0; the

depth of a rewrite using a conditional rule p J. q : I —• r and substitution a is depth(pa j qa) + 1;

the depth of a n-step derivation a —»* t is the maximum of the depths of each of the n steps; the

depth of a "valley" a [1, joining at a term v, is the maximum of the depths of a —•* v and t ->* v;

and the depth of a zero-step derivation or valley is 0. We write a -» t if a —»• t and the depth of
k

the rewrite step is no more than k. Similarly a -41 will mean that the maximum depth in that
fc

derivation is at most fc. For example, 0 < 0 -> tt, 0 < a(0) -» t t , and 0 < an(0) -> tt, for all m > n.

20

3.4 Te rmina t ion of Cond i t iona l Rewr i t i n g

The notion of termination of conditional rewriting is similar to that of unconditional systems.

Termination is sometimes confused with the decidability of rewriting. A rewriting system R is

terminating (or —»is noetherian) for a set of terms T if there are no infinite derivations ti —* t2 —*

. . . of terms in T. For the decidability of rewriting, we have to show that the recursive evaluation

of terms in the condition terminates. We distinguish these two concepts below.

A sufficient condition for a rewrite system JR to be terminating (-> is noetherian) is that the

unconditional version (dropping all conditions from rules) be so. We can use any reduction ordering

to show this and do not need any restriction on the conditions. But, this is not strong enough to

show termination of rules like (a; > 0) J. tt: factorial(x) —> x * fact(x - 1) where the unconditional

version of the rule is not terminating. We really only need that la >• ra in a well-founded ordering

>~ for those substitutions that are feasible (i.e. ccr J. tt).

Rewriting is also decidable if for some well-founded ordering >- on terms and for each rule

c : I -* r we have u[la] >• ca and

ccr I tt implies u[la] >- u[ra]

for all contexts u[-] and substitutions a.

3.5 S t r e n g t h of R e w r i t e Sys tems

Let 23 be a set of conditional equations. By E h a = t, we mean that a <->* t is provable in E.

Similarly, if R is a rewrite system (in any of the formulations), we use R t- a J. t, to mean that a

and t are joinable using the rules in R.

21

Equational system

Y
Semi-Equational system

Y
Join system

Y
Normal-Join system

(equivalent if terminating)

Y
Normal system

(equivalent if non—linear)

Figure 3.1: Logical Strength of Formulations

R and E have the same logical strength if E \- s = t iff R\- s 11. Similarly, two rewrite systems

R and R' have the same logical strength i f 2 t h a J . 4 i f f J ? ' r - a | t . We say that R is stronger than

R' if any two terms joinable using R' are joinable using R, but not the converse.

Figure 3.1 depicts the relative strength of the various formulations. In the figure, A -* B,

means that A is stronger than B in general. That is, if we take a system of type B and just change

the connective in conditions to convert to a system of type A (for example, a J.! t to a j t to convert

an normal-join to a join system), then we have that what is provable in B is also provable in A.

In particular, if B is convergent then so is A. The converse is, of course, not true in general. The

relationships shown follow easily from the criterions used for checking if the condition "holds." For

example, any condition that holds in the join formulation must also hold in the semi-equational

formulation.

We now state and prove some of the equivalences and relationships between the various systems.

22

Propos i t ion 3.1 If a join system is terminating, then it is equivalent to the corresponding normal-

join system (obtained by changing conditions of the form a j . t to a [• t).

Propos i t ion 3.2 A join system R can be converted to an equivalent normal join system R' by a

conservative extension (using new function symbols) provided that we allow the normal system to

be non-left-linear (have repeated variables in left-hand sides).

Propos i t ion 3.3 Let R (with conditions of the form a it) be a convergent (confluent and termi-

nating) join system R' the corresponding semi-equational systems (change conditions to a = t) and

E the underlying equational system (change conditions to s = t and I —> r to I = r). The following

are equivalent:

1. u — v is provable in E. That is, E h u = v

2. u and v have a common reduct in R. That is, R h u j . v

3. u and v have a common reduct in R'. That is, R' \- u { v

Proof: Proposition 1 is easy to see, for the termination property implies that if two terms are

joinable, then they have a common reduct that is irreducible. The translation mechanism for

Proposition 2 uses two new function symbols eg and true. We add a new rule eq(x, x) —»true and

change conditions to the form eq(pi, g,) [true. With this translation, it is easy to prove that for any

two terms a and t not having the new function symbols eg and true, we have R\- s It'iW R' \- s {t.

The argument for Proposition 3 is by induction on the depth of a proof. The interesting case is

when u = v is provable in E and we wish to show u j . v in R. By induction on the depth we first

show that the subproofs in E can be replaced by rewrite proofs and then using the confluence of

23

R we can show that U | D . •

Under the assumption of convergence, the weaker formulations of join systems are also equivalent

to the corresponding join system and, hence, to the underlying equational system.

3.6 Decreas ing Sys tems

In this section, we will use the join system formulation of conditional rules. By the reduction

ordering >-R of a rewrite system R, we mean the irreflexive-transitive closure -> + of the rewrite

relation (—•). That is, t\ >~R t2 if t\ -»+ t2. The reduction ordering is monotonic. That is, if

t >R s then u[t])~R u[s] for any context u[-]. By the proper subterm ordering X, we mean the

well-founded ordering u[t] X, f for any term t and non-empty context «[•].

A conditional rewrite system is decreasing if there exists a well-founded extension >- of the

proper subterm ordering y„, such that y contains X# and la X p\a,...,gncr for each rule

Pi 1 5i A • - • A pn 1 gn : I -* r

(n > 0) and for any substitution a.

Note that the second condition restricts all variables in the condition to also appear on the

left-hand side. In general, a decreasing ordering need not be monotonic.

P ropos i t i on 3.4 If a rewrite system is decreasing, it has the following properties:

1. The system is terminating.

2. The basic notions are decidable. That is, for any terms s, t

(a) one-step reduction ("does a -» t?")

24

(b) finite reduction ("does a -»* t?")

(c) joinability ("does sit?")

(d) normal form or reducibility ("is a irreducible?")

are all decidable.

Proof: That the system is terminating is obvious from the well-foundedness of y. The decidability

of basic notions is proved by transfinite induction on y, as follows. We first consider the following

property: "Given a term t we can find the set of normal forms of t." If t has no instance of a left-

hand side of any rule as a subterm, then t is irreducible and it is its only normal form. Otherwise,

let t = u[la] for some rule

Pi I 9i A • • • A pn i qn : I -* r

By our two conditions on decreasingness we have that t = u[la] y la and la y p{d,qia. By

induction, since t y pia, q±a, we can compute the set of normal forms of pia, qia for each i and

check if the rule applies. If it does, then t —* u[ra]. Similarly (using each matching rule) we can

compute all the terms, say sx,..., sn, that t rewrites to in one-step. By induction hypothesis, one

can enumerate the normal forms for each a*. The union of these is the set of normal forms for t.

Other basic properties can be shown, likewise, decidable. •

Not only is decreasingness a sufficient condition for making many basic notions of rewriting

decidable, it also captures exactly the class of rules for which the recursive evaluation of conditions

is finite [Dershowitz and Okada, 1988]. We use the following strategy to simplify a term a to normal

form. If

Pi 1 t/i A • • • A pn i qn : I -> r

25

is a rule such that la is a subterm of a, then we recursively compute the normal forms of the pia

(and gjcr) to see if the rule applies. The class of rules, for which this strategy terminates, must be

decreasing.

More precisely, let t> be a relation on terms such that a > p if p is a term that we may have

to recursively normalize when trying to find the normal form of a (that is, all the instances of

conditions pias and g;<7s that we evaluate whenever a left-hand side matches a subterm of a). Let

R be a conditional rewrite system and —> its rewrite relation.

L e m m a 3.1 (-+ U t>)+ is well-founded if, and only if, R is decreasing.

Proof: The "if" direction is a direct consequence of the definition of decreasingness. The decreasing

ordering y is, by definition, (-» U > U >~,)+, where ya is the proper subterm ordering. If y is well-

founded, then so is (-»• U >) + .

To show the other direction, we first note that

1. If u y, v —» w, then u —> v' ya w. That is, if a subterm of u rewrites to w, then u must

rewrite to a superterm of w.

2. If u y, v > w, then u > w. That is, if w is a term we evaluate when normalizing a subterm

of u, then w may also be evaluated when normalizing u.

3. If u yt v y, w , then u ya w. That is, the proper subterm relation is transitive.

Thus, (-* U > U >-,)* C (-» U >)* y,*. So, if (-» U >) + is well-founded, that is, the recursive

evaluation of the conditions is finite (or R is in the class of terminating programs), then R must

be decreasing.

The following are sufficient conditions for decreasingness:

26

Simplifying s y s t e m s : [Kaplan, 1984; Kaplan, 1987] A conditional rewrite system R is simplifying

if there exists a simplification ordering y (in the sense of [Dershowitz, 1987]) such that

la y ra,pxa..., qna, for each rule

Pi I «i A • • • A pn I g„ : / -> r

(n > 0).

Reduc t ive sy s t ems : [Jouannaud and Waldmann, 1986] A conditional rewrite system is reductive

if there is a well-founded monotonic ordering >- such that y contains the reduction ordering

yn and la y p\a,..., gncr for each rule

px i qx A • • • A pn i g„ : Z -» r

(n > 0).

Both simplifying systems and reductive systems are special cases of decreasing ones. To see this for

simplifying systems, note that simplification orderings contains the subterm ordering, by definition.

For reductive systems, note that no monotonic well-founded ordering can have a y t for a proper

subterm a of t. So we can extend the monotonic ordering with the subterm property and get a

well-founded ordering as in [Jouannaud and Waldmann, 1986].

The following is an example of a system that is decreasing, but neither simplifying nor general

reductive:

bic

b —+ c

/ (&) - / (G)

: a —» c

This is not reductive, because there can be no monotonic extension of the reduction ordering

(which has f(b) >-# f(a)) that can have ay b.

27

4 C O N F L U E N C E O F C O N D I T I O N A L R E W R I T E S Y S T E M S

In this chapter, we study the confluence of conditional rewrite systems. We will mostly restrict

our attention to noetherian rewrite systems and use the join formulation of rewriting. For the

class of decreasing systems, we find that results on confluence correspond directly to those for

unconditional rewriting. In particular, it is sufficient to check if all the critical pairs between rules

are joinable. But, when we consider non-decreasing systems, we run into difficulties. We give a

counter-example to show that the joinability of critical pairs is not sufficient to guarantee confluence

even when the system is terminating. We then examine some restrictions like "shallow joinability"

of critical pairs and "overlay" systems for which we give positive results on confluence.

4.1 Local Confluence a n d Cr i t ica l Pa i r s

A rewrite relation (conditional or unconditional) is confluent if whenever two terms, a and t,

are derivable from a term u, then a term v is derivable from both a and t. A relation —> is locally

confluent, if a —*•* v and t —»* v for some v whenever u —> a and u —> t (in one step).

For terminating relations, we have the following well known lemma-

Diamond Lemma [Newman, 1942] A terminating relation is confluent iff it is locally confluent.

How can we check the local confluence of a (terminating) conditional rewrite relation? We

consider below the three cases that arise when we apply two different rewrites to a term t producing

terms tx and (%. Such a situation tx <— t —• 12 is called a peak.

28

Figure 4.1: Disjoint Peak

4.1.1 Disjoint P e a k s

If a term u[s, t] contains subterms a and t at independent positions (neither term occurs as

a subterm of the other), and s -* s' and t -» t', then the resultant terms, u[s',t] and u[s,t'],

rewrite in one step to the same term, u[a',i'] using the same rules and substitutions. The situation

u[a',t] <— u[s,t] —» w[a,i'] is called a disjoint peak. See Figure 4.1.

4.1.2 Var iable P e a k s

Let r be a feasible substitution for a rule p' i q' : g —*• d and let cr be a feasible substitution

for a rule p J. q : I —> r under which some variable x in I is mapped to a term c[gr], containing

a rewritable instance of g. Then, the term la can be rewritten in two different ways, to ra and

/<7[dr], as depicted in Figure 4.2. We refer to this as a variable peak.

If I is non-linear in x, then each of the remaining occurrences of c[gr] in la may be rewritten

until a term la' is obtained, where a' is same as a except that x is mapped to c[dr]. Similarly, if r is

non-linear in x then we need additional rewrites to get ra -»* ra'. When dealing with unconditional

rewriting systems, variable peaks are always joinable, since la' -* ra'. But for conditional systems,

29

la

pa i qa

2ST^£

& ^ ^ ' ^ ^ ^

Figure 4.2: Variable Overlap

Figure 4.3: (Shallow) Joinable Critical Peak

a' must also be feasible, i.e. pa' i qa' must hold for the rule to apply. This is not always the case,

even if critical pairs are joinable, as the counter-examples of the next section will demonstrate.

4.1.3 Cr i t ica l P e a k s a n d Condi t iona l Cri t ical Pa i r s

If the left-hand side g of a rule p' J. q' : g -» d unifies, via most general substitution a, with a

non-variable subterm a at position TT in a left-hand side I of a rule p | q : I —> r, then the conditional

equation

pa = qa A p'a = q'a : la[da]v = ra

30

is called a (conditional) critical pair of the two rules, where /cr[der]„. is obtained by replacing a in /

by d and applying a.

The situation

la[da]v <— la —> ra

is called a critical overlap, and, for any context u and substitution r less general than a,

u[lT[dr]v} <— U[IT] —y u[rr]

is called a critical peak. See Figure 4.3.

For example, the following rules:

member(x, y) i ff : delete(x,y) -» y

different(x, z) | tt : delete(x, z-y) -» y • delete(x, y)

have the critical pair-

different(x,z) = tt A member(x,z-y) = ff : z• delete(x,y) = z-y

A critical pair c = d : a = t is feasible, and the corresponding overlap is feasible, if there is

a substitution a for which ccr i da. A trivial critical pair is one for which a is identical to t. A

system is non-overlapping (unambiguous) if it has no feasible, non-trivial critical pairs.

With the usual definition of even and odd the critical pair-

odd(x) = UA even(x) = tt: a(0) = 0

between the rules:

odd(x)itt : f(x) -> 0

even(x) | tt : f(x) -» a(0)

is infeasible.

31

b -> f(b)
xjf(x) : f(x) -» a

Table 4.1: Example A (Left-linear and non-overlapping, but not normal or terminating)

A critical pair c = d : a = t is joinable if sa i ta for any substitution <r such that ccr j dV.

Defeasible critical pairs are vacuously joinable and trivial ones are trivially joinable.

A critical pair c = d : a = t, obtained from a critical overlap a <— u —> £ is shallow-joinable,

if, for each substitution cr such that ccr | dV, there exists a term v such that ac A v and to- A v,

where m is the depth of u —> a and n is the depth of tt —• t. A conditional rewrite system is

shallow-joinable if each of its critical pairs is.

In other words, every critical pair of a shallow-joinable system joins with the corresponding

depths less or equal to those of the critical overlap. (See Figure 4.3). In particular, critical pairs

between unconditional rules must be unconditionally joinable.

4.2 Counte r -Examples

In this section, we present non-confluent systems that are counter-examples to attempts at

extending theorems for unconditional systems to the analogous conditional case.

Unconditional systems are locally confluent, if all their critical pairs are joinable. On the other

hand, Example A [Bergstra and Klop, 1986] shows that non-normal, non-terminating conditional

systems need not be locally confluent, even if they are left-linear and non-overlapping. In that

example, the term b has many normal forms, including a and f(a), despite the lack of critical pairs.

32

h(f(x))ik(g(b))

a
c
c

h(x)
h(f(a))

/(*)

—>
—¥

— ¥

— ¥

—>
— •

b
*(/(«))
%(*))
t(«)
c
g(z)

Table 4.2: Example B (Terminating, left-linear and normal, but not shallow-joinable)

b[b
x ia
bib
bib

A(/(«)) !%(&))

P(b)
9(b)

a
p(x)
h(x)

h(f(a))
/(4

—¥

—+
— ¥

—¥

->

*(/(«))
Ks(b))
b
q(x)
&(z)
p(a)
9(4

Table 4.3: Example C (Terminating, left-linear and shallow-joinable, but not normal)

bib
bib
bib

eq(x,a) J. true
&(/(=)) 1 k(g(6))

eq(x,x)
p(b)
9(6)

a
A(z)

%/(*))
p(x)
/(*)

— •

—>
—»
— ¥

—¥

— ¥

true
*(/(«))
H9(b))
b
k(x)
p(a)
q(x)
g(«)

Table 4.4: Example D (Terminating, normal and shallow-joinable, but not left-linear)

33

Figure 4.4: Critical pairs of Example B

As will be shown later (in Section 4.4), terminating conditional systems with no critical pairs

are locally confluent. Unfortunately:

P ropos i t ion 4.1 There exists a terminating, non-locally-confluent, conditional rewrite system all

of whose critical pairs are joinable.

This is demonstrated by Example B. All four critical pairs:

1. *(/(«)) = k(g(b))

2. h(f(b)) = c

3. k(f(a)) = c

4. h(f(a)) = k(g(b)): h(g(a)) = c

are joinable. But, the term f(a) has two normal forms, f(b) and g(b). This is shown in Figure 4.4,

where critical overlaps are boxed. Note that the unconditional critical pair, obtained by rewriting

c in two ways, is joinable only using the conditional rule, i.e. it is not shallow-joinable.

With slight modifications, one obtains counter-examples C and D, showing that no combination

of two of the following three factors suffices for confluence: left-linear, normal, and shallow-joinable.

34

From these examples, it is clear that we need relatively strong restrictions on rewrite systems to

guarantee confluence. In Section 4.4, we will show that combining all three factors does, in fact,

yield confluence for terminating systems.

4.3 Confluence of Decreas ing S y s t e m s

In this section, we will show that for decreasing systems the "critical pair lemma" holds just

like for unconditional systems. This generalizes results in [Kaplan, 1987] for simplifying systems

and [Jouannaud and Waldmann, 1986] for reductive systems. We also use a general proof normal-

ization technique to show this result by showing the equivalence of the semi-equational and join

formulations.

Let us recall that a system is decreasing if there exists a well-founded ordering y, containing

the proper subterm ordering ys, such that a y t whenever a —> t and, for each rule p J. g : / —> r and

substitution a, la y pa and la y qa. This is stronger than the terminating requirement. Examples

B-D above are all terminating, but are not decreasing, since the left-hand side f(x) is a proper

subterm of the term h(f(x)) in the condition.

Also, the examples all use the join formulation of the conditions. All critical pairs are joinable,

yet the term f(a) has two normal forms g(b) and f(b) in Example B. We can use the last rule

to rewrite f(a) to g(a) because the condition for this substitution {x i-» a} has a rewrite proof

h(f(a)) -¥ c —¥ k(g(b)). But to show f(b) -¥ g(b) using this same rule we have to check the condition

h(f(b)) i k(g(b)) which leads to a cycle. Note that if we converted this to a semi-equational system,

we would have that h(f(b)) «-•* k(g(b)); the last rule can be applied and the system is confluent.

First, we observe that for the semi-equational formulation of conditional rewriting the critical

pair lemma holds.

35

L e m m a 4.1 For any semi-equational conditional rewrite system, if every critical pair is joinable,

then the system is confluent.

Proof: The variable peaks (Figure 4.2) present no problem in the semi-equational formulation of

conditional rewriting. This is because if pa <->* qa and pa <->* pa' and qa <->* qa' then we do have a

proof per' <-•* ger' in the underlying theory and the variable peak can be made joinable by rewriting.

•

We saw in the previous chapter that, while the confluence of a join system implies the confluence

of the corresponding semi-equational system (without any other restriction), the converse is not

true. We now show that, if we restrict our attention to decreasing systems, the converse does hold.

That is, under the assumption of decreasingness, the two formulations—semi-equational systems

and join systems—are equivalent with respect to confluence.

T h e o r e m 4.1 If a decreasing semi-equational system (conditions of the form a =t) is confluent,

then the corresponding join system (with conditions changed to a it) is also confluent.

It is convenient to introduce the following notations. By a direct proof of a = t, we mean a

rewrite proof of the form sit. That is, a and t are joinable. By a completely direct proof of a = t,

we mean a direct proof of a = t (i.e, of a | t) in which every subproof of the conditions (during

application of conditional rules) is also completely direct. For instance, if a substitution instance

of the form-

sxa = txa A . " A an<7 = tna : la —¥ ra

36

of a conditional rule is used in the proof with subproofs of a;cr = t{a, then each of these subproofs

is also completely direct. If for a given proof P of a = t there is a completely direct proof P' (of

s it), then we say that the proof P is completely normalizable.

L e m m a 4.2 (Complete Normalizability Lemma) For any confluent and decreasing semi-equational

system, every proof is completely normalizable.

Proof: This is proved using transfinite induction on the well-founded decreasing ordering. It is

easily seen that every proof in a decreasing system can be made direct if the system is confluent.

By using the properties of decreasingness, we can show that every top-level subproof is smaller in

the decreasing ordering and, hence, can be made completely direct by the induction hypothesis.

This lemma follows. •

Decreasing systems also satisfy the critical pair lemma.

Theo rem 4.2 For any decreasing system, if every critical pair is joinable, then the system is

confluent, hence canonical.

This theorem is a direct consequence of the Complete Normalizability Lemma and is essentially

the same as the result in [Kaplan, 1987]. Thus, if a decreasing system is confluent in the semi-

equational formulation, then it is confluent as a join system.

Also, attempts to weaken the definition of decreasing systems do not work. The counter-

examples B-D satisfy the conditions for decreasing systems except the subterm property. The

reduction ordering of those systems is embeddable into the well-founded ordering <«, (which,

however, does not have the subterm property) of Takeuti's system 0(2,1) of ordinal diagrams.

Also, <oo satisfies the additional condition for decreasingness (each term in the condition— d and

37

h(f(x))—is smaller than the left-hand side—f(x)—of that rule). So it is clear that well-foundedness

alone is insufficient. For details see [Okada 1987; Dershowitz and Okada 1988]. In the next chapter

on completion methods, we will see that decreasing rules are easy to handle, while special techniques

are necessary for non-decreasing equations and rules.

Decreasing systems cannot handle rules containing variables in the condition that do not also

appear on the left-hand side. But in the programming context, at least, one would certainly like

to allow rules such as:

(x < y,y < z) i (tt,tt): x<z-¥tt

where y is an "extra" variable, or:

fib(x)i<y,z>: fib(s(x)) -¥<y + z,y>

where the right-hand side also has an occurrence of the new variables, y and z.

As we saw in the previous chapter, operationally, rewriting is more difficult now, since new

variables in the conditions must be solved for. Thus, to rewrite an instance la of a left-hand side,

an interpreter must first find a satisfying substitution r for the new variables in the condition

p i q such that par joins gcrr, and then replace la by rar. One way to enumerate solutions (for

decreasing and confluent systems) is via (conditional) narrowing (see Chapter 5). Unfortunately,

it is undecidable, in general, whether such a substitution exists.

Note, also, that with new variables on the right, a rule may non-trivially overlay itself. For

example, a rewrites to f(b) and f(c) with the system

p(x) i tt

p(b) -> tt

p(c) -¥ tt

: a -¥ f(x)

38

In general, a rule with new right-hand side variables can rewrite (in one step) to an infinite number

of different terms. The next two sections give positive results for confluence for systems that include

some of the cases above.

4.4 Confluence of Left-Linear, N o r m a l Sys tems

In this section, we consider restrictions that ensure that a normal, left-linear system is confluent.

Such systems arise naturally in pattern-directed functional languages, when the different cases are

constructor-based and mutually exclusive.

Bergstra and Klop have shown the following for conditional systems that are not necessarily

terminating:

T h e o r e m 4.3 (B e r g s t r a a n d Klop , 1986) A left-linear, normal conditional rewrite system is

confluent, if it is non-overlapping.

(Though we have weakened their definition of non-overlapping to allow infeasible overlaps, the

result still holds.) This is analogous to the standard result that left-linear unconditional systems

with no critical pairs are confluent [Huet, 1980].

We give a similar result, for overlapping systems, in which critical pairs are shallow-joinable.

For this, we require that the system be terminating. From the counter-examples of the previous

section, one can see that this is optimal.

T h e o r e m 4.4 A terminating, left-linear, normal conditional rewrite system is confluent, if all its

critical pairs are shallow joinable.

This theorem is a corollary of the following:

39

L e m m a 4.3 Let R be a terminating conditional rewrite system that is left-linear, normal and

shallow-joinable. Then, ifu —>* a and u —>* t, there exists a term v such that s ->* v and t —•* v.
m n n m

Proof: The proof is by transfinite induction on the pair {m+n, u) with respect to the (lexicographic

combination of the) natural ordering of natural numbers and the terminating relation -+ on terms.

Let u -¥ s' -¥* s and u -* t' —»* t. That is, u is first rewritten at position % to a' using rule
m m n n

p -^ N : I -¥ r with depth no greater than TO, and at position ir' to t' using q A M : g -¥ d

with maximum depth n (M and N are normal forms). We show that a' and t' are joinable with

appropriate depths at some term w. As in the Diamond Lemma (Section 4.1), two inductions (at

the peaks, a' and t') show that a and t are also joinable with suitable depths.

If the peak at u is disjoint, then a' and t' join at a term w (which is u after both rewrites).

That is, f' -» to (by rewriting at TT') and a' —> w (by rewriting at TT).

If the peak is critical, then, by the shallow-joinable assumption, there is a term w such that

t' —>* w and a' -+* w.
m n

This leaves only the variable peak case. Without loss of generality, let TT be above %-'. Thus,

some variable x in f matches a subterm c[gr] which rewrites to c[dr\. Let cr' be the same as the

substitution a used in rewriting u —> a', except that z is mapped to c[dr}. As seen in Figure 4.5,

because R is left-linear, the subterm of t' at ir is actually la'. Furthermore, a' ->* u[r<T']„. = w,

by rewriting all (zero or more) occurrences of gr in a' to dr. It remains to show that la' —* ra'

is feasible. Since the system is normal, we have pa' -> N, as is required, by induction from the

shallower peak pa' *«—n pa -^ N. •

40

\

' / <
13 / > ? V N.

AA

/m

pa' -L N
m - l

\ (6y induction)

Figure 4.5: Normal, left-linear, variable overlap case

4.5 Confluence of Over lay Systems

In this section, we make no restrictions on the depth of the joinability of the critical pairs.

We also do not insist on left-linearity and allow terms in the condition that are "bigger" than the

left-hand side. Under certain circumstances, we are able to prove that such systems are confluent

as long as all their critical pairs are joinable. This is close in spirit to the result for unconditional

systems.

The only restriction we have is that we insist that overlaps between left-hand sides do not

occur at proper subterms of the overlapped left-hand side. In particular, non-deterministic pattern-

directed languages, with no nested defined function symbols in the patterns, meet this requirement.

41

A critical pair is an overlay if it is obtained from two left-hand sides that unify at their roots.

La our original example, the critical pair s(x) <y = tt:x<y = tt between the rules s(x) < s(y) ->

x < y and x < y j tt: x < s(y) - • 11 is an overlay.

T h e o r e m 4.5 A terminating conditional rewrite system is confluent, if all its critical pairs are

joinable overlays.

A particular consequence of this theorem is that any conditional system that is terminating and

non-overlapping is confluent (as is the case for unconditional systems).

This theorem is a consequence of the following:

L e m m a 4.4 Let u[s]\j, where H is a set of positions, denote the term u with each subterm at a

position in H replaced by a. Let R be a terminating system in which all critical pairs are joinable

overlays. If a term v is derivable from u[s]u and t from s, then v and u[t]u are joinable. (That is,

if u[a]n -»* v and a -** t then, v J, u[t]n.)

Proof: We show that if u[s]n -** v and a -»* t, then u[t]ji J. v, by induction on the triple (a, n, u[s]),

where the first component is compared using the union of the terminating rewrite relation —> and

the proper subterm relation ya, the second as a natural number, and the third by the rewrite

relation.

If u = v or a = t, then we are done. Otherwise, let s -* s' —•* t. If we can show that u[a']n I v,

then by induction it will follow that u[t]ji j v, since a' is less (vis-a-vis —>) than a.

If the first rewrite s -* s' occurs at a proper subterm gr of a, then by induction on the first

component, we have u[a']n i v. See Figure 4.6.

Otherwise, we may suppose that a is ga and a' is da, for some rule p' J. q' : g —> d. Let

u -¥ u' —¥* v, with the first step via rule p J, q : I —> r at position x. If this is a disjoint peak (i.e.

42

-^ U J~-^

by induction (aygr)

Figure 4.6: Proper subterm case

T^TK
u ans A . /TO\ /w\ _ /w\

by induction («—»«') I by induction (a-fro) I

V*
V >

Figure 4.7: Overlay case

if TT is not above or below any position in H), then u[a']n rewrites (at position 7r) to u'[a']n. Since

u' is smaller than it, we have that u'[s']u i v. Thus, u[s']n -¥ u'[a']n 1 v.

If u' <— u[s]n -¥* u[a']n is a critical peak, then it must be an overlay and a = gr = la.

Critical pairs are joinable, so let a' = dr ->* w and ra -»* w, for some w. Then we have that

u' = u[ra].x —>* u[ra]u- By induction on the last component, we have that %[rcr]n i v; by induction

on the first, we have u[w]a i v. Thus, u[s']\j -»* u[w]u i v. This case is depicted in Figure 4.7.

The remaining case is that of a variable overlap, either above or in some a. Let ir be above a;

that is, some variable z in Z matches a term c[a]n< containing any number of occurrences of s. Let

a' be the same as the substitution a used to rewrite u —¥ u' except that x is mapped instead to

43

/ 5 \

/yfa\

\ * y\

/a\ ^ \ /2 \
i
i

*
pa—** *«-q<r

1 pcr'lqo-' (by induction)
y

/ . \ %\ / ^ z&̂
by induction (u—>u')

1 * I *
V •* . . .

Figure 4.8: Variable overlap above

44

Figure 4.9: Variable overlap below

c[a']n». Now, u[s']n —>* u[/cr']n", by rewriting any additional occurrences of x in I that were not

included in H. Moreover, la' rewrites to ra', since, by induction, pa' i qa' as we show below.

Let eg be a new binary operator not appearing in any rule. Consider the derivation

eq(pa,qa) —*•* eq(w,w) (known to exist for some w since pa i qa in. depth n — 1). We also know

that pa —>* pa' and qa -»* qa', by application of a —> a' in the substitution parts. By induction

on the second component, we have that eg(pcr', go-') j eq(w, w) from which it follows that pa' j g<r'

since there are no rules for eg. Thus, u[s')u -** u[ra}ji„ J, v. This is illustrated in Figure 4.8.

Similarly, if TT is inside some a, we have u[a']n ->* u[dr'] j v, as shown in Figure 4.9 Here r ' is

like the substitution tau used to rewrite a -» a', but maps the variable in g to c[ra] instead of to

c[la]. The condition p'r' J. q'r', needed to show that u' ->* u[gT']n -» u[dTf]jj, holds by induction

on the first component, since la is a proper subterm of a. •

45

4.6 Conclusion

We have explored two different restrictions on critical pairs of conditional rewrite systems,

namely shallow joinability and overlays only, and proved confluence results for systems meeting

those restrictions. Our proofs show that, for conditional systems, the notions of confluence, local-

confluence, and joinable critical pairs can not be neatly disentangled. In particular, termination

was needed to show that a system is locally confluent even if all critical pairs are shallow joinable.

We have also presented counter-examples which show that all our restrictions are necessary.

46

5 C O M P L E T I O N M E T H O D S F O R C O N D I T I O N A L E Q U A T I O N S

In this chapter, we study completion methods for generating a convergent rewrite system equiv-

alent to a set of conditional equations. First, we describe completion methods for unconditional

theories. This works by orienting equations into terminating rules, using a well-founded ordering,

and generating new equations (rules) by superposing left-hand sides until all critical pairs are join-

able. This method only fails when an equation is unorientable (as a rule) in either direction under

the well-founded ordering.

For conditional systems, the basic idea is the same—orient equations into rules and generate

new rules by superposition between left-hand sides. But we run into some additional problems.

The joinability of critical pairs ensures confluence only for decreasing systems. So, whenever we en-

counter an equation that is not decreasing—this can happen even when the original set of equations

is decreasing—the straightforward completion approach fails. We have shown sufficient conditions

for confluence of non-decreasing systems (for example, when all critical pairs are overlays or shallow-

joinable). But, in the context of completion, it is not desirable to work with non-decreasing rules,

because even checking if a rule applies to a term is, in general, undecidable with such rules.

Methods to handle non-decreasing equations, within the completion framework, have been pro-

posed. In [Kaplan 1987] and [Jouannaud and Waldmann, 1986] a technique for detecting some cases

when (non-decreasing) critical pairs are infeasible is suggested. This is done by using "narrowing"

(equation solving) along with completion. Ganzinger [Ganzinger, 1987] proposed an improvement

to handle even feasible, non-decreasing critical pairs by using narrowing to enumerate the solutions

for which such critical pairs are feasible. This enables one to replace, in some cases, a non-decreasing

47

equation by a set of decreasing ones, without losing any consequences of the non-decreasing equa-

tion.

We show here how to judiciously use the translation scheme introduced in Chapter 3 to convert

non-decreasing conditional equations to decreasing equations in the context of completion using an

if operator. Operationally, this has an effect similar to Ganzinger's idea of enumerating solution"

of critical pairs, because we now have the ability to superpose in terms that were originally in

the condition. By using an optimization (critical-pair criterion) while superposing in the rules

corresponding to the non-decreasing equations, we show how to capture Ganzinger's method exactly.

In this framework, it is also easy to express "contextual simplification" of critical pairs. We illustrate

these techniques with an interesting example. In the Appendix, we describe an experimental

implementation of completion within the rewrite rule laboratory RRL.

5.1 Uncondi t iona l Comple t i on

In this section, we describe completion methods for unconditional equations using inference rules

(formulated here as conditional rule schemas) following the abstract approach used in [Bachmair,

1987 ; Dershowitz, 1989].

At any stage of completion we have a set of equations 23j and a set of rules R,. Initially we

start with the input set of equations EQ and no rules. We are also given a well-founded ordering

>- that can be used to compare terms. A single step of completion may be viewed as applying an

inference rule to transform the current pair (E{ , Ri) to an "equivalent" (Ei+x , Ri+x)-

At a given stage, we can choose any applicable inference rule (non-deterministically) leading

to different completion sequences for the same set of input equations and orderings. A successful

sequence is one that generates (0 , Rf), where the final set of rules Rj is convergent (terminating

48

and confluent). A failing sequence is one where none of the inference rules can be applied (for

example, when we have an equation that is not orientable in either direction) even though we do

not have a convergent rewrite system.

The following four basic inference rules capture the essential operations that we use during

completion.

De le te : When an equation is trivial (of form a = a) it can be deleted.

Simplify: If a = t is an equation in Ei, and a can be rewritten to a term u, using some rule in 2?,-,

then we can replace a = t by u = t.

Orien t : If a = t is an equation and s y tin. the given ordering, then this equation can be oriented

into the rule a —¥ t.

Deduce : If a = t is a critical pair in 22; (obtained by superposing left-hand sides of rules—see

definition in Chapter 2), then we can add a = t as an equation. We only need to generate

a critical pair in 22; that has not been generated in some earlier Rj. That is, each overlap

between rules needs to be considered only once.

In practice, it is best to apply the rules in the order given (orienting equations only after

simplifying them and deleting trivial ones, and deducing critical pairs last). In addition, two more

inference rules are used to keep the rule set simplified as much as possible. These are:

Compose : If the right hand side t of a rule a —¥ t can be rewritten to u, then the rule can be

replaced by a —> u.

49

Delete

Simplify

Orient

Deduce

Compose

Collapse
s>l & a ->

(23 U {a = a} , R)

a-»% : (23U {s = *} , R)

syt: (E U {s = t} , R)

a = t 6 cHfpoira(jR) : (23 , 22)

t -• u : (23 , 22 U {a -> i})

« using l^reR:{E, R U {a -» i})

=*>

=*>

=>

=>

=>

= $ •

(iS .H)

(23 U {u = t} , R)

(E , R U {a -»t})

(23 U {a = t} , A)

(23 , 2? U {a -¥ u})

(E U {tt = t} , R)

Table 5.1: Inference Rules for Unconditional Completion

Collapse: If the left hand side a of a rule a —¥ t can be rewritten to it by a rule I —y r and I is

"simpler" (in some sense) than a (for example, if a -+ t cannot reduce I), then we can delete

the rule s —> t and add the equation u = t. We use a > / to denote the "simpler" relation.

These rules are shown in Table 5.1.

A completion procedure based on these rules can be proved correct using proof orderings [Bach-

mair, 1987]. A proof of an equation a = t (with the pair (E{ , R{)) is a sequence of steps:

a — sx an — t

Each step is either an application of an an equation (<->) in 23; or a rule (in either direction, -> or

<-) in Ri.

The inference rules are "sound," in the sense that, if (Ei , R{) =$• (23,-+i , Ri+x) using some

inference rule, then a = t is provable in (E; , 22,) (written (E{ , Ri) h a = t) iff s = t is provable

50

in {Ei+x > Ri+i)- Moreover, we can choose an appropriate ordering on proofs to show that there

is a proof of a = t in (23,+i , Ri+x) that is the same or "smaller" than the one in (23; , Ri). That

is, the inference rules can make proofs simpler in a well founded ordering. A proof of a = t is in

normal form (a rewrite or valley proof) in some (Ej , Rj) if it is of the form a -»* u V- t. That is,

s and t can be rewritten to a common term u using the rules in Rj.

These inference rules are also "complete" in that, a "fair" application of the inference rules (no

critical pair that can be obtained by deduce is indefinitely neglected), will eventually transform any

equational proof of a = t in the initial theory 23o, into a rewrite (valley) proof in some (Ej , Rj),

provided we can always orient all equations into rules. In this sense, completion is refutationally

complete. Unfailing completion (e.g. [Bachmair et al., 1987], [Hsiang and Rusinowitch, 1987]) is an

extension to also handle cases when there are unorientable equations.

5.2 Condi t iona l Comple t i on M e t h o d s

How can we adapt the completion techniques for unconditional completion to conditional equa-

tions? An initial attempt would be to modify the basic inference rules from the unconditional

case.

The "delete" rule can be extended to also remove conditional equations of the form

• •• A s = t A •••: s = t

where the equation in the conclusion also appears in the condition (for if this equation is to be

applicable at all, then s — t must already be provable without using this equation).

The "orient" rule must not only ensure that the left-hand side of the rule is "bigger" than the

right-hand side in the ordering, but also that the equation is decreasing. Otherwise, critical pair

51

Delete
(23 U {c : a = a} , R)

(23 U {a = i A c:s = t} , R)

Simplify
a -» u : (Eu{c:s = t},R)

p - m : (23 U {p = g A c: s = t} , R)

Orient
syt,c: (E U {c : a = *} , R)

Deduce
c:s = t£ critpairs(R) : (E , R)

=>

=S>

=>

=>

=5>

=^

(^ , A)

(^ , A)

(E U {c : u = t} , R)

(EU{u = q A c:u = t} , R)

(E , R U {c : a ->t})

(23 U {c : a = i} , R)

Table 5.2: Basic Inference Rules for Conditional Completion

joinability does not guarantee confluence. Moreover, if we allow non-decreasing rules, even basic

notions like rewriting become undecidable [Kaplan, 1987].

The "simplify" rule can be extended to allow us to rewrite terms in the condition, too. The

"deduce" rule is only changed to use the definition of critical pair in Chapter 3.

This gives the inference rules shown in Table 5.2.

As long as all equations (and rules) are decreasing, completion can proceed just like in the

unconditional case. But, this does not seem to get us very far. As has been observed in [Kaplan,

1987] and [Jouannaud and Waldmann, 1986], even if we start with a set of equations all of which are

decreasing, we often encounter critical pairs that are non-decreasing equations, leading to failure

of completion.

52

Consider the following simple example. We start with the equations, which define f(x) to be 0

when x is odd and a(0) when x is even.

1.

2.

3.

4.

5.

6.

odd(x) = tt :

even(x) = tt :

even(0)

odd(s(0))

even(s(s(x))

odd(s(s(x))

/ (=)

/(%)

=

=

=

=

=

=

tt

tt

even(x)

odd(x)

0

6(0)

With an appropriate choice of ordering, we can show all these equations are decreasing and we

can orient them as rules from left to right.

Rule 5 and rule 6 yield the following non-decreasing critical pair:

odd(x) = tt A even(x) = tt: s(0) = 0

This is the only critical pair in the system and it is actually infeasible, for no value of x can be both

odd and even in our system. But completion fails at this stage. The enhancement suggested in

[Kaplan, 1984] and [Jouannaud and Waldmann, 1986] is to use "narrowing" (explained in Chapter

6) to detect this infeasibility.

5.2.1 Handl ing Non-Decreas ing Equa t i on s

We describe, in this section, how we can incorporate the "narrowing" idea into completion itself,

by using a translation mechanism. This also extends to handling some feasible non-decreasing

equations a la Ganzinger [1987]. We view completion as working over a (conservative) extension of

the original theory. Equations that are non-decreasing may be convertible to decreasing ones in the

53

T r a n s l a t e :
(23u{p =

(23u{c: i / (eg(p ,g) ,a) =

• q A c:s = t},

••if(eq(p,q),t)},

R)

R)

=>

=>

(23 L

(23 L

>{c:

1{P:

if(eq(p,q),

= q A c:s

a) =

= *}

/(eg(p,g),)},

,R)

R)

Table 5.3: Translation Rules

extension. If completion succeeds over the new vocabulary, then the rewrite system so generated

must also be convergent for the original theory.

Recall the translation to unconditional equations suggested in Chapter 3. Let 23 be a set of

conditional equations using terms from T(F, X). Let if, eq and true be function symbols not in

F and F ' = J F U {if,eq,true}. We can convert E to E' over T(F',X) as follows. We add the

equations eq(x, x) = true and if (true, x) = x to E'. A conditional equation p= q : s = t in E may

be represented by if(eq(p, q), a) = if(eq(p, q), t) in E'.

In general, a conditional equation may have more than one equation in the condition. We

generalize this notion of translation to move any equation (or subset of equations) from the condition

to the conclusion. That is, we may replace p = g A c : a = t b y c : if(eq(p,q),s) = if(eq(p,q),t),

where c stands for the rest of the equations in the condition. This translation is also reversible, in

that we can replace (whenever needed) an equation c : if(eq(p, q), a) = if(eq(p, q), t) by p = q A c :

a = t.

As inference rules for completion, these rules are shown in Table 5.3. We assume that

if (true, x) = x and eq(x, x) = true are already in E.

The soundness of these translation rules follows from the fact that it is a conservative extension.

P ropos i t i on 5.1 Let u, v be terms in T(F,X) and (231 , R) => (232 , R) using translation. Then

u +->* v is provable in (231 , R) iff it is provable in (232 , R).

54

In the example, the non-decreasing critical pair

odd(x) = ii A even(x) = tt: a(0) = 0

may be replaced by a decreasing equivalent (by moving the even(x) = tt to the consequent), and

oriented into a decreasing rule (from left to right, if we assume even is "bigger" than odd in our

ordering):

7. odd(x) = tt: i/(eg(euen(aj),tt),a(0)) -» if(eq(even(x),tt),0)

Proceeding with completion, we find that this new rule generates two critical pairs. One is:

odd(s(s(x))) = tt: if(eq(even(x), tt), a(0)) = if(eq(even(s(s(x))), tt), 0)

with the rule even(s(s(x))) -* tt. This easily simplifies to an instance of rule 7 and can be deleted.

The other critical pair, with euen(0) -> tt, is:

odef(0) = tt : if(eq(tt,tt),s(0)) = i/(eg(ei;en(0),«),0)

which after simplification, translation and orientation gives the decreasing rule:

if(eq(odd(0),tt),s(0)) -» if(eq(odd(0),tt),0)

55

Completion stops successfully as there are no further critical pairs and we get the convergent system

Rf.

i.

a.
1.

2.

3.

4.

5.

6.

7.

8.

odd(x) i tt :

even(x) j tt :

odd(x) i tt :

eq(x,x)

if (true, x)

even(0)

odd(s(0))

even(s(s(x))

odd(s(s(x))

/ (»)

/ (:)

if(eq(even(x),tt),s(0))

if(eq(odd(0),tt),s(0))

—>

— ¥

—¥

— ¥

— •

—¥

—¥

true

X

tt

tt

even(x)

odd(x)

0

a(0)

if(eq(even(x),tt),0)

if(eq(odd(0),tt),0)

Rf is convergent and is a conservative extension of the original equational theory EQ. So, for all

terms it, v in the original signature (T(F,X)), such that u <->* v in 23o, there is a rewrite proof

u —>* a* <— v in Rf. In any such rewrite proof, rules i , ii, 7 and 8 (which have if— a function

symbol not in F—as the outermost operator of the left-hand side) cannot be used. So these rules

can now be dropped and rules 1-6 form a convergent rewrite system to decide the validity problem

for EQ.

5.2.2 Con tex tua l Simplification

In this section, we describe contextual rewriting (or rewriting with assumptions) for simplifying

critical pairs that arise during conditional completion. A similar idea, for hierarchical systems, is

56

considered in [Zhang and Remy, 1985]. This not only make the procedure more efficient, but is also

crucial to help it terminate successfully in many cases.

We illustrate, first, with an example. Consider the rules:

1. member(x,z) i ff : delete(x,z) -> z

2. different(x,y) itt : delete(x,y - z) -> y - delete(x, z)

3. different(x,y) itt : member(x,y- z) -> member(x, z)

The critical pair

different(x, y) = tt A member(x, y-z) = ff: y • delete(x, z) — y-z

between the rules 1 and 2, is not simplifiable directly, as no subterm (in the condition or conclusion)

is rewritable directly, using the rules 1 to 3.

But we do not need to rewrite the subterm member(x,y• z) in the condition in isolation. When

rewriting this, we can assume that the other condition different(x, y) = tt holds. If we do this, then

rule 3 does apply and the condition can be rewritten to different(x, y) = tt A member(x, z) = / / .

Once this is done, the subterm delete(x, z) can be rewritten in the new context, which has

member(x, z) = / / , using rule 1 to z. The critical pair after these two simplifications is now

different(x,y) = tt A member(x, z) = ff : y • z = y- z

which is trivial. Thus, using contextual rewriting, we have shown that this critical pair is actually

joinable in the system.

We denote contextual rewriting by —>, where C denotes the context. A context is a conjunction

of equations, of the form Pi = gi A • • • A pn = qn, which are assumed to "hold" when doing a

57

Simplif icat ion:
a -y u : {E U {c : a = t} , 22) => (E U {c : it = t} , R)

p - > « : (23u{p = g A c : a = *} , 22) => (E U {it = g Ac : a = t} , R)

Table 5.4: Contextual Simplification Rules

rewriting. That is, whenever we have to check if a condition holds to apply a rule, we can use these

assumptions to prove it.

We define this formally as follows. Let R be a conditional rewrite system. We say that a term

a rewrites in the context C to a term a% (denoted a —> sx, if one of the following holds:

1. a ->• sx (with no context), or

2. a = sx is an instance of an equation p; = g; in the context, and s y Sx OT

3. u i v : I —* r is a. conditional rule in 22, cr is a substitution such that la is a subterm of a at

position 7r (i.e., a | x = la), ua and va are joinable in R under the same context C (i.e., iter —> t

and va -> t, for some f), and a% is a[rcr],r.

When simplifying a conditional equation, contextual rewriting adds more power. When rewrit-

ing a subterm in the consequent, the context is all the equations in the condition. When rewriting

a subterm in the condition, the other equations in the condition form the context. Table 5.4 gives

the inference rules for contextual simplification.

That these simplifications are sound is expressed in the following Proposition.

P ropos i t ion 5.2 Let (Ei , 22;) be transformable to (23,+i , 22,+i) using contextual simplification.

Then (E{ , 22;) h a <-+* t iff (E{+1 , Ri+1) r- a <->* t

58

The example in Section 5.2.4 illustrates the power of contextual rewriting for simplification of

non-decreasing equations.

5.2.3 Cri t ical P a i r Op t imiza t ion

In this section, we present an important optimization of completion that is sound and helps

the procedure to terminate more often. This optimization is a restriction of critical pairs involving

rules of the form c : if(cx, I) —» if(cx, r) which are obtained by using the Translate inference rule.

We motivate the presentation with an example. Consider the equations E over terms T(F,X)

(where F = {odd, even, a, 0, / , g, h}) below.

1.

2.

3.

4.

5.

6.

7.

odd(x) = tt

even(x) = tt

even(0)

odd(s(0))

even(s(s(x))

odd(s(s(x))

g(Hy))

/ (: , ?)

f(*,y)

=

=

=

=

=

=

=

tt

tt

even(x)

odd(x)

g(y)

g(y)

y

They can all be oriented as decreasing rules from left to right (assuming an appropriate ordering).

Rules 6 and 7 yield a non-decreasing critical pair:

odd(x) = tt A even(x) = tt: g(y) = y

As in the earlier example, this critical pair is actually infeasible, as the condition does not hold for

any substitution. The Translate rule allows us to replace this by:

8. odd(x) i tt: if(eq(even(x), tt), g(y)) -> if(eq(even(x), tt), y)

59

We now are working over the vocabulary T(Fli{if, eq, &, true}, X) and assume that rules eq(x, x) ->

trite and if(true,x) -» x also exist.

The superposition in the subterm even(x) of the left-hand side, yields two critical pairs (as in

the earlier example). One gives the rule:

9. if(eq(odd(0), tt), g(y)) -> if(eq(odd(0), tt), y)

and the other can be simplified to a trivial equation.

If we could stop now, then rules 1-7 form a convergent rewrite system for E. But the fifth

rule g(h(x)) -> g(y) also overlaps with the g(y) subterm in rule 9 (and rule 8), yielding new (and

useless) rules of the form:

if(eq(odd(0), tt), g(y)) -+ if(eq(odd(0), tt), h(y))

and

if(eq(odd(0),tt),g(y)) -+ if(eq(odd(0),tt),h(h(y)))

And this process goes on, yielding infinitely many rules of this pattern, none of which are useful

in proving any equality between terms in T(F, X), because the condition is never feasible. This

suggests that in rules of the form c : if(cx,l) —• if(cx,r) it is sufficient to consider superpositions

only in ex-

The main idea in proving that this restriction on critical pairs is complete, is that if the rule

c : if(ci,l) -¥ if(cx,r) is ever used in any proof of equality between terms a and t in T(F,X),

then it must be used with a substitution a for which cx<r ->* true. Otherwise, the if operator will

persist in the proof. Hence, it must be the case that if(cxa, la) —>* if (true, la) —>• la.

In any such proof, therefore, there must be peak of the form:

la* «- if(cxa, la) -> if(cxa, ra)

60

where the rewriting in ci cr is a critical peak. If all critical peaks inside ci are joinable in 22, then this

proof can be made "smaller" using some extension of the decreasing ordering of 22 to an ordering

on proofs. See [Ganzinger, 1987] for a detailed proof of this claim (although in a slightly different

formulation).

5.2.4 A n In te res t ing E x a m p l e

In this section, we work out in detail an interesting example that illustrates the optimizations

we described.

We start with the following definition of < on natural numbers.

1.

2.

3. x < y = tt A y < z = tt

0 < a(0)

s(x) < s(y)

X < z

=

=

=

tt

x <y

tt

The first two equations are orientable as decreasing rules from left-to-right. The third equation

(transitivity) is not decreasing. It has an "extra" variable y in the condition that is not in either

side of the conclusion. Translating yields the following rule:

3. y < z i tt: if(eq(x < y,tt),x < z) -> if(eq(x < y,tt),tt)

In this rule, we will only superpose in the eq(x < y, tt) subterm of the left-hand side following the

optimization of the previous section. The non-decreasing critical pair with rule 1 (0 < a(0) -* tt)

is:

a(0) <z = tt: if(eq(tt, tt), 0 < z) = i/(eg(0 < a(0), tt), tt)

After simplification and translation this yields the rule:

4. i/(eg(a(0) < z,tt),0 < z) -> if(eq(s(0) < z,tt),tt)

61

The critical pair between rules 2 and 3 is:

s(y) < z : if(eq(x < y,tt),s(x) < z) - » i/(eg(a(z) < s(y),tt),tt)

After simplification and two translations (first to move the eq(x < y, tt) term to the condition, and

then to move s(y) < z to the conclusion—we do this for pragmatic reasons) we get the rule:

5. x < y i tt: if(eq(s(y) < z,tt),s(x) < z) -> if(eq(s(y) < z,tt),tt)

Rule 4 has only one critical pair (with rule 2):

i/(eg(0 < z,tt),0 < s(z)) = i/(eg(a(0) < s(z),tt),tt)

Simplifying and translating (move eg(0 < z, tt) back to the condition) we get the following decreas-

ing conditional rule:

6. 0 < z i tt: 0 < s(z) -¥ tt

This translation back to a conditional rule is essential to the termination of the completion proce-

dure, for we prevent further superposition in the 0 < z term, which now appears in the condition.

Rules 5 and 2 yield the following critical pair:

x < y = tt: if(eq(y < z, tt), s(x) < s(z)) = if(eq(s(y) < s(z), tt), tt)

Simplifying and translating this to y < z = tt: if(eq(x < y, tt), x < z) = if(eq(x < y, tt), tt) makes

the if(eq(x < y,tt),x < z) rewritable in the context y < z = tt by rule 3. This yields a trivial

equation and this critical pair is, therefore, joinable.

Rule 6 (the new decreasing rule) has the following critical pair with rule 1

0 < 0 = tt : tt = tt

62

which is trivial, and with rule 3 we have:

0 < y = tt A s(y) <z = tt: if(eq(tt,tt),0 < z) = if(eq(0 < s(y),tt),tt)

This critical pair is also joinable. First, we rewrite 0 < s(y) to tt in the context {0 <y = tt A s(y) <

z = tt } using rule 6. Further simplification by eg(a;, x) -*• trite and if (true, x) —¥ x yields:

0 < y = tt A s(y) < z = tt:0< z = tt

which can be translated to:

0 < y = tt: if(eq(s(y) < z,tt),0 < z) = if(eq(s(y) < z,tt),tt)

This is an instance of rule 5 and hence, can be simplified contextually to a trivial equation.

The completion procedure now halts, with the following rules:

1.

2.

3.

4.

5.

6.

y<zitt

x<yitt

0 < a(0)

s(x) < s(y)

if(eq(x < y,tt),x < z)

if(eq(s(0)<z,tt),0<z)

if(eq(s(y)<z,tt),x<z)

0 < z i tt

—¥

—¥

—¥

tt

x<y

if(eq(x<y,tt),tt)

if(eq(s(0)<z,tt),tt)

if(eq(s(y)<z,tt),tt)

0 < s(z)tt

Dropping the if-rules we get the following 3 rule system which is convergent and equivalent to

the original equations over T({<, a, 0, tt}, X).

1.

2.

3. 0 < z i tt

0 < a(0)

s(x) < s(y)

0 < s(z)

—¥ tt

x < y

tt

63

5.3 Conclusion

We have formulated a completion method for conditional equations using sound inference rules

and examined contextual rewriting and an optimization (critical pair criteria) to help a procedure

based on these rules to terminate in more cases. If completion terminates, we get a convergent

rewrite system equivalent to the original equations.

It remains to show that the inference rules for completion can also be used as a semi-decision

procedure for validity. For this, we have to extend the proof ordering techniques used for un-

conditional equations and show that a "fair" application of the inference rules can transform any

equational proof to a rewrite proof. In [Ganzinger, 1987] this is addressed, in a slightly different

framework that does not use the translation mechanism, but works directly with non-decreasing

equations. See also [Kounalis and Rusinowitch, 1988] for a different technique for solving the word

problem in Horn theories.

64

6 E Q U A T I O N SOLVING M E T H O D S

In this chapter, we address the problem of solving equations in (conditional) theories. We first

introduce the paradigm of equational programming. We then examine two methods that have been

proposed for solving equations—narrowing and decomposition—and point out their drawbacks.

Finally, we describe a goal-directed equation solving algorithm, formulated using conditional rules,

which combines nice features of top-down decomposition and narrowing and also has pruning rules

that enable it to search for solutions more efficiently and halt more often when equations are

infeasible.

6.1 Equa t iona l P r o g r a m m i n g

Equational prograrnrning using unconditional equations to capture Lisp-like applicative pro-

gramming is studied in detail in [O'Donnell, 1985]. Later, several proposed programming lan-

guages use (conditional) equations as a means of extending equational programming by capturing

the simple syntax and semantics of Prolog-like logic programming languages; such languages in-

clude RITE [Dershowitz and Plaisted, 1985], SLOG [Fribourg, 1985], and EQLOG [Goguen and

Meseguer, 1986].

A program, in this paradigm, is a set of directed (conditional) equations (rules). Computing

consists of finding values (substitutions) for the variables in a goal s = t for which the terms are

provably equal. Consider the following example of a system for reversing a list, where rev is reverse

65

and icons adds an element to the end of a list.

rev(nil)

rev(A - X)

tcons(nil, A)

tcons(B - X, A)

—¥ nil

-> tcons(rev(X),A)

-r A-nil

-¥ B - tcons(X, A)

A goal of the form X = rei;(l • 2 • nil) can be solved by rewriting the right-hand side of the goal

to yield X = 2 • 1 • nil; rewriting corresponds to the functional part of equational programming. On

the other hand, a query like rev(X) = 1 • 2 • nil, requires equation solving to produce the value(s)

for X that satisfies the equation. This query has the answer, {X •-• 2 • 1 • nil}. Finding solutions

corresponds to the logic programming capability.

As an example using conditional equations, consider the following program which defines an

insertion sort:

X<Y = tt

X<Y = ff

isort(nil)

isort(X - Y)

insert(X, nil)

insert(X,Y - Z)

insert(X,Y - Z)

—¥

—¥

—¥

nil

insert(X,isort(Y))

X • nil

X-(Y-Z)

Y - insert(X, Z)

where < can also be defined using conditional equations, as in the previous chapter.

Equational languages have more expressive power than Prolog because they have both func-

tionality and built-in equality. One can also incorporate streams and destructive assignments.

Illustrative examples can be found in [Dershowitz and Plaisted, 1988].

66

Any pure Prolog program can be translated into a set of conditional equations (or rewrite rules)

by using a distinguished constant true. A unit clause p is replaced by the rule

p —• tr i te

A clause of the form / : —px,... ,pn can be replaced by

Px = true A ... Ap„ = trite : Z -» trite

Solving a goal g in Prolog can be viewed as the satisfiability problem for the equation g = true.

Narrowing to solve this goal is similar to Prolog's computation strategy to solve the goal.

This simple translation raises several issues. While the set of rules is terminating, it is not

decreasing, as terms in the condition often have variables that are not in the left-hand side. But

for such programs (obtained from pure Prolog clauses) we do have confluence since predicates can

only be rewritten to trite and also do not occur as subterms in any goal. For general equational

programs, however, it is more difficult to show confluence.

Solving equations is the basic operation in interpreters for such equational languages and efficient

methods are of critical importance. In general, paramodulation can be used (as in resolution-based

theorem provers) to solve equations, but is highly inefficient. For equational theories that can

be presented as a (ground) confluent rewrite system, better equation-solving methods have been

devised, narrowing [Slagle, 1974; Fay, 1979; Hullot, 1980] being the most popular.

6.2 P r o c e d u r e s for E q u a t i o n Solving

An equational goal is written in the form a j? t, where a and t are, in general, terms containing

variables. A solution to such a goal is a substitution <r such that sa j . ta. This means that sa is

equal to ta, in the underlying theory, for all substitutions of terms for variables in acr and ta. A

67

solution is irreducible if each of the terms substituted for the variables in the goal are irreducible.

Note that the terms a and t are interchangeable, since a j? t iff t |? a; in this sense, equational

goals are unoriented.

An equation solving procedure is complete if it can produce all solutions to any goal, up to

equality in the underlying theory. That is, if a is a solution to a j? t, then a complete procedure

will produce a solution p. for the goal that is at least as general as a. The more general a solution,

the smaller it is under the following (quasi-) ordering •< on substitutions: \i •< a iff there exists a

substitution r such that (Xfijr <->* Xa, for all variables X (where <-** is the reflexive, symmetric,

and transitive closure of -»). For example, if 22 is just the rule {0 + U -* U}, the solution

{X h-¥ 0,Y h+ 0} to the goal X + Y j? 0 is more general than the (reducible) solution {X i-»

0 + 0,Yr->0 + 0}.

For clarity and uniformity of presentation, we will formulate all the equation solving procedures

using inference rules. We will assume that we have a set of goals to solve simultaneously (initially the

singleton set of the input goal—{a j? t}). Inference rules can be used to transform the current set of

equational goals into a new set of goals in a sound manner, i.e. a solution to the new set of goals will

also be a solution to the original set. A successful solution is reached when the initial set of goals

can be transformed to the empty set. The inference rules themselves are represented as conditional

rules (schemas). Each transformation step may introduce substitutions and the composition of all

these is the solution to the original goal. In our presentation, we will not clutter the rules with

information, on how to keep track of the solution (composing intermediate substitutions).

68

6.2.1 T h e Narrowing P r o c e d u r e

Narrowing uses unification (instead of matching) to "apply" rules to terms that may contain

variables. Since rule variables are universally quantified, one can always rename them so that the

rule and term have no variable in common. For example, iff7 + 0 - » (f i s a rule, then (X + Y) + Z

narrows to X + Z via substitution {Y t-» 0}. For conditional rules, the unifying substitution,

between the left hand side and the non-variable subterm to be narrowed, must first be extended

to be feasible for the equations in the condition. This leads to a recursive definition of conditional

narrowing.

Formally, a term a is said to narrow to a term t (via a substitution a), symbolized a ~> t, if a

contains a nonvariable subterm a |p that unifies, via most general unifier fi, with the left-hand side

Z of a rule ex i c2 : 1 -> r (whose variables have been renamed so that they are distinct from those

in a), T is a substitution such that Ci/tr j . C2/tr, a = / t o r and t = sa[ra]p. In effect, we apply the

substitution a to t and then rewrite the subterm of sa using ex i c2 :1 -* r.

To illustrate the above definition, let 22 be the rules:

f(a, b) -¥ a

f(x,y)ia : g(a,y) -> y
I _ . , , • •• - • — I — . , ! . • - , •• I I • • • • .1 •

The term h(g(V, V), V) ^ ^ T " ^ h(b, b) since g(U, V) unifies with the left hand side g(a, y) with

the substitution fi = {U i-> O , F H y}, which can be extended to be feasible for the condition

f(x,y)ia.

To solve goals using the narrowing method, given a confluent system 22, two operations are

applied to a goal:

Reflect: If a is the most general unifier of a and t, then a is a solution of a j? t.

69

cr = mgu(s, t) : {a I? f} U 23 => 23<r

c i l c 2 : Z - » r €2 2 & / i = mgit(Z, a |p) :
{a 1? t} U 23 ^ {a[r]PM | ? t/t} U {ci/x | ? c2/t} U 23/t

Table 6.1: Inference Rules for the Narrowing Procedure

Nar row: If a ~> a', then a j? t has a solution if a' j? to- does.

A goal for which neither narrowing nor reflection applies is unsatisfiable.

The two operations on goals can be formulated as inference rules as shown in Table 6.1 (we use

mgu(s, t) to denote a most general unifier of terms a and t). The second rule makes use of the fact

that the narrowing operation can be broken down into two parts— unifying the left-hand side Z of

a rule with a non-variable sunterm s/p and extending the substitution by (recursively) solving the

condition.

For example, if 22 is {f(x,x) -* c(x),a-¥ b}, then an input goal set {f(a,y) j? f(y,b)} "nar-

rows" (using the second rule) to {c(a) | ? f(a, b)} which narrows (reduces, actually) in three steps

to {c(b) J.7 c(b)}. Now, "reflecting" yields the solution {y i-» a}.

6.2.2 Drawbacks of Na r rowing

Narrowing can simulate any rewriting strategy (top-down, bottom-up, etc.); hence, it often pro-

duces duplicate solutions. For completeness, it is sufficient to simulate any one rewriting strategy.

Our goal-directed method—presented in the next section—simulates innermost rewriting.

Quite often, narrowing cannot detect that a goal is unsatisfiable. If we solve the goal rev(Y) =

1 • nil using narrowing, we get the solution {Y t-» 1 • nil}. But the narrowing procedure does not

70

halt after producing this unique solution. It generates infinitely many failing subgoals of the form

rev(tcons(tcons(... (rei;(yn), A)...))) = 1 • nil.

Let us now examine a simple unsatisfiable example, where narrowing does not halt, to motivate

our use of reachability later. Consider the following system:

a(f(X)) -> a(X)

b(f(X)) -» b(X)

It is clear that the goal a(Y) J,? b(Y) is unsatisfiable, because for any substitution for Y any term

derived from a(Y) will have a as its outermost operator, while any term derived from b(Y) will have

b as its outermost operator. But using narrowing we will never stop as a(Y) ~» ct(Yi) ~» a(Y2)...

and we keep trying to solve new instances of the same equation.

This particular example can be handled by the use of subsumption checking as described in

[Rety et. al-85]. In general though, the subsumption check cannot solve all the problems caused

by these infinitely narrowable terms as shown in the following example. Let 22 be:

a(d(x))

4/W)
b(f(x),y)

-¥ b(x,x)

- / («)

-^ &(z,/(y))

and the goal to solve, a(/(it)) J.? b(v, e). Narrowing will produce infinitely many non-subsuming

equations by narrowing the b(v,e) term.

Simple restrictions on narrowing, like narrowing only at the innermost narrowable positions,

are incomplete (innermost narrowing does not simulate every possible innermost rewriting). For

example, if 22 is:

f(x,a) -> 0

g(b) -> 0

71

To solve f(g(u), u) j? 0, if we narrow only the innermost narrowable subterm g(u) we stop without

solution.

Variations on narrowing include: normal narrowing (in which terms are normalized via -4 before

narrowing) [Fay, 1979], basic narrowing A basic position is a nonvariable position of the original

goal or one that was introduced into the goal by the nonvariable part of a right-hand side of the

rule applied in a preceding narrowing step. [Hullot, 1980], and their combination [Rety, 1987],

all of which are semi-complete for convergent 22. In [Bosco, et al., 1987], a strategy derived from

simulating SLD-resolution on flattened equations is considered. For a comprehensive treatment of

narrowing and 23-unification, see [Kirchner, 1985].

6.2.3 T h e Decompos i t ion P r o c e d u r e

Using narrowing, one has no control over which (nonvariable) narrowable subterm is used pro-

duce new subgoals; all possibilities are explored. Martelli, et al. [1986] give a top-down equation-

solving procedure, which ignores some narrowings, reducing the search space thereby. There are

four basic operations:

Decompose : A goal of the form f(ux,...,Un) j? f(vx,...,vn) (with both terms having the same

outermost operators), has a solution, if the n subgoals, Ux | ? V\,.. .,un j? vn, can be solved

simultaneously.

R e s t r u c t u r e : A goal / (u i , . . . , i t n) J,» t has a solution, if ex i c2 : /(Zi,...,Zn) -» r is a rule in 22

(the left-hand side of which has the same outermost operator as one side of the goal), and

the n + 2 subgoals, Zx j? ux,..., Zn j? un,cx 1? c2, and r !? t, can be solved simultaneously.

72

{/(«!,

ci 4

a =

occurs

-,Un) i? f(vx,.~,Vn)}UE

Ci '.f{li,..

mgu(X, t)

(X,t)kt\

.,ln)~*reR :
..,Un)i-,t}UE

: {X I, t} U 23

p = fV'li- • ••> *n)
{X i ? t} U 23

=*-

=^

=>

& Cj

{«i i ? « i , .

{Zi | ?wi , . .

23<7

I c2 : / (Z j ,
{% 1? t[r]P

• •) « n i ? l

, i n l ?«n

..., ln) -¥

k 1? Ul)

»n}U23

, C l | ? c 2 , r | ? t }

r G22 :
•••,Z„|? lt„,C! j?

U23

c2}L •B}

Table 6.2: Inference Rules for the Decomposition Procedure

Bind : If the goal is of the form X j? t, where X is a variable, and X unifies with t, then {X t-» t}

is a solution.

E x p a n d : If the goal is of the form X J.? t, where X is a variable, but X does not unify with

t (because X occurs in t) , then it has a solution if the n + 2 subgoals, lx |? t i , . . . , Z n J.?

tn,ci j.? c2, and % |? t[r], can be solved simultaneously, where / (t i , . . . , t n) is any subterm

of t, f(lx,...,ln) -» r is a rule in 22 (with the same outermost operator), and t[r] is t with

f(tx,---,tn) replaced by r.

As inference rules these are shown in Table 6.2.

A successful application of expansion amounts to narrowing t. The rule g(f(a)) —y a and goal

{X | ? f(g(X))} [Martelli, et al, 1986] demonstrates the need for expansion (what they call "full

rewriting") in the "occur check" case. Here, we can neither bind nor restructure, but by expanding

at the subterm g(X), a solution {X t-» f(a)} is obtained.

6.2.4 Drawbacks of Decompos i t ion

Though the decomposition method limits the search for solutions, where there are conflicting

"constructor" symbols in the goal (a constructor is a symbol which is not outermost in any left-hand

73

side), it introduces some new problems. Consider, for example:

f(a(X),b(X))

f(X,X)

a(e)

6(e)

-¥ X

-y X

—>• e

-r e

To solve {f(e,Y) j? e}, narrowing would only use the second rule f(X,X) —• X, giving the

irreducible solution {Y i-» e} . But the decomposition procedure also restructures using the first

rule f(a(X),b(X)) -+ X, to get the new goals: {a(X) | ? e, b(X) J.? Y, X | ? e}; this gives another

correct, but reducible, solution {Y t-» b(e)}. Thus, decomposition does not take full advantage of

the fact that there is no way for e to rewrite to an instance of a(X) that enables the first rule to

apply.

Moreover, there are unsatisfiable cases for which narrowing terminates with failure, but decom-

position does not halt, as illustrated by the following example:

/(o(JT),6(Z))

o(d(Z))

6(d(Z))

— ¥

— •

o(Z)

a(X)

&m
Consider solving the goal f(Y,Y) j? Y. Were one to try and narrow this, the search would

stop immediately, as neither term is narrowable. The decomposition procedure, on the other

hand, restructures the goal into {Y j? a(X), Y j? b(X)}, which in turn leads to attempts to solve

{a(X) | ? b(X)}, with neither success nor failure. By using oriented goals, we show how to combine

the advantages of this top-down approach with the elimination of narrowing subterms of left-hand

sides.

74

6.3 Goal Di rec ted E q u a t i o n Solving

In this section, we introduce two concepts— "oriented goals" and "operator derivability"—

both of which are useful for pruning the search for solutions. We use these to formulate a goal-

directed equation solving procedure, also using conditional rules/schemas as for narrowing and

decomposition. The rules we give form a complete equational program to simulate innermost

rewriting sequences.

There is one important difference, however, between the inference rules in this section and those

for narrowing and decomposition. Whereas the inference rules were only used to "rewrite" goals to

new ones before, here the inference rules are themselves used as an equational program for solving

equations and used to "narrow" goals (examples will illustrate this later). This also allows us to

eliminate the "bind" and "expand" rules in the decomposition procedure. In a sense, the rules we

give act as a meta-circular interpreter for equation solving.

6.3.1 I n n e r m o s t R e w r i t i n g Sequences a n d Or ien ted Goals

For convergent rewrite systems, every term has a unique normal form and any rewriting strategy

can be used to find it. This leads equation solving procedures like narrowing to duplicate solutions

to a goal a j? t, by faithfully following all rewriting paths that prove that sa j tcr. As we stated

earlier, simple restrictions on narrowing strategies prove to be incomplete. We choose one complete

rewriting strategy (innermost) below and show how we can simulate it by using inference rules

similar to those in the decomposition procedure.

A derivation sequence:

t = / (t i , . . . , t „) -¥tl-¥ t2 y a

75

is said to be a bottom-up (innermost) rewriting sequence if whenever a rule is applied at some

position, no lower position is rewritable. This is similar to the innermost evaluation strategy used

in functional languages like Lisp (evaluate the arguments and then apply the function).

An oriented goal t -+1 s has a solution a if there is an innermost derivation sequence f a —y - - - -*

sa. Unlike equational goals t ii s (which are symmetric in a and t), here we allowing rewritings

only in ta.

6.3.2 Simula t ing I n n e r m o s t Rewr i t ing

Innermost derivations can be classified into two cases, depending on whether or not they contain

a rewrite step at the outermost, root position:

Di rec ted Decompose : ff no rewrite step ever occurs at the top-level (root) operator (/) oft, then

a also must have / as its top operator. That is, a = / (a l 5 . . . , an) and there is a bottom-up

derivation sequence of the a; from the t;.

Di rec ted R e s t r u c t u r e : Suppose one rewrite step does take place at the top. Then, the instance

of the rule of 22 first applied at the top must be of the form

c i -l c2 : f(h, - - -, ln) —* r (with the same outermost operator / as the starting term t) and

the subterms t; of t must have been rewritten to make this rule applicable.

The two inference rules (shown in Table 6.3) constitute a complete equational program that

solves goals of the form a -» ' t, (where a and t are (first-order) terms that may contain free, "logic"

variables). Such goals are solved by finding substitutions a (for those variables) such that there

is an innermost derivation acr -+ ta. For convergent systems, equational goals can be easily re-

76

{/(iti,...,itn)->-- f(vx,-.-,vn)}UE => {it! -> ' Vx,-..,Un -¥!Vn}UE

ct i eg :f(li,...,ln)-¥ r e 22 :
{ / (m, . . . , i t n) -* ? t}U23 => { u 1 - f ? Z i , . . . , u n ^ ? Z n , c 1 - > ? Z , c 2 ^ ? Z , r - > ? t } u 2 3

Table 6.3: Inference Rules for Simulating Innermost Derivations

expressed using oriented goals: replace {a j? t} by {a ->? Z, t ->? Z}, where Z is a new variable.

Thus, this can be used as a complete equation solving procedure for convergent rewrite systems.

We now illustrate some advantages of this formulation. Consider again the example:

f(a(X),b(X))

f(X,X)

a(e)

6(e)

-+ X

-¥ X

—y e

—y e

To solve f(e, Y) J.? e, we first replace it by the oriented goals {f(e, Y) ->? Z, e^r Z}. The directed

decompose rule succeeds with the second goal and binds Z to e, leaving the subgoal {f(e, Y) -»- c}.

The directed restructuring rule for / matches the new subgoal, and either of the two rules in the

above system with / as the root operator of the left-hand side match the condition.

If we pick f(X, X) -y X we get subgoals {e ->? X, Y - r X } , which have a solution {Y t->

e,X \-y e}, obtained by decomposition. For the other / rule, f(a(X),b(X)) -¥ X, the remainder

of the condition fails, there being no way to solve e —>? a(X). The one successful solution, viz.

{Y >-¥ e}, corresponds to the innermost derivation f(e,e) -»* e.

Note that no special rules (like expand) for the "occur-check" case are necessary. Consider

solving the goal {g(f(X)) —>? X} with rule f(g(a)) —» a. The decompose rule instantiates X to

77

g(Z) and produces the subgoal {f(g(Z)) -»- Z}, which can be solved by restructuring, yielding

{X y-y g(a)} as a solution.

6.3.3 Ope ra to r Rewr i t ing

Our two rule schema serves as the basis of the goal-directed equation-solving procedure. Other

than its simplicity, the main advantage of this formulation is that it allows one to easily incorporate

additional rules that simplify and prune goals with no loss of completeness. We consider one such

technique here which uses operator rewriting.

Let 22 be a rewrite system over terms constructed from a set T of function symbols. We

consider a derived rewrite system F over T, as follows: For each rule f(tx, ...,tn) -y g(sx,..., am)

in 22 (ignoring the terms in the condition), with / ^ 5, we add a rule / —• g to F. For each rule

/ (* i , . . . , t„) —»• X in 22, where X is a variable (sometimes referred to as a "collapsing" rule), we

add rules / —> g; to F for all function symbols g; other than / in T.

Let / and g be two operators in T. Operator g is derivable from / if / -y* g in F. This

(decidable) notion allows us to prune subgoals during equation solving, since a goal

f(tx,...,tn) ->? g(sx,...,am) is satisfiable in 22 only if g is derivable from / .

For the reverse example of Section 1 we have:

22

rev(nil)

rev(A- X)

tcons(nil, A)

tcons(B - X, A)

—¥

—¥

nil

tcons(rev(X),A)

A- nil

B - tcons(X, A)

F

rev —y nil

rev —y tcons

tcons —• •

tcons —y •

78

rite(X.Y) :- var(X), !, unify(I, T) .
rite(X.Y) :- not(derivable(X,Y)), ! , fail.
rite(X.Y) :- functor(X,F,N), fuactor(Y,F,N), rites(N,X,Y).

/* directed decompose */
rite(X.Y) :- functor(X,F,N), functor(L,F,N), rule(L,R),

rites(B.X.L), rite(R.Y).
/ * d i r e c t e d r e s t r u c t u r e */

r i t e s (I . X . Y) : - a r g (I , X , X i) , a r g (I , Y , Y i) , r i t e (X i , Y i) ,
I I i s 1 -1 , r i t e s (I i , X , Y) .

r i t e s (0 , X , Y) .

Table 6.4: Prolog program for Goal-Directed Equation Solving

Operator nil is derivable from rev but not from tcons. Directed goals of the form f(tx,..., tn) —>?

g(sx, - ..,sm), whose outermost operators do not satisfy the derivability criterion, can be pruned.

That is, if g is not derivable from / in the corresponding rewrite system F, then such goals will

never be satisfiable. This is expressed by the rule:

not - derivable(f, g): { / (t i , . . . , t n) -» ? g(sx, •-., sm)} U23 => FAIL

Thus the goal rev(Y) j.? 1-nil (for which narrowing did not halt) can be pruned here after producing

the one correct solution.

Putting all the above rules together, with some optimizations, we get the simple Prolog program

for goal directed equation solving shown in Table 6.4 where rite is used for —>?, and unify and

derivable predicates are denned in the natural way. The first rule, which checks if the query term

is a variable, is used to not allow restructuring in variables. By extending this idea, one could also

capture basic narrowing by keeping track of the non-variable positions where restructurings are

necessary.

79

There is still room for enhancements to the notion of operator rewriting, as can be seen from

the following example:

a(d(X)) -

«(/(«)) "

b(f(X),Y) -

•¥ b(X,X)

^ / («)

-> 6(x,/(y))

Given the goal a(f(U)) J? b(V, e), narrowing and decomposition produce infinitely many (non-

subsuming) equations when considering b(V, e). Our notion of operator derivability can be used

to detect that the only way for a term headed by a to join a term headed by 6 is for the first to

reach the form a(d(X)), whereas there is no way for the subterm f(U) of the left part of the goal

to attain the form d(X); hence, the goal is unsatisfiable.

6.4 Comple teness of E q u a t i o n Solving P r o c e d u r e s

Narrowing works by simulating each rewrite step in the solution sa j ta by an application of a

narrowing step. For irreducible solutions, no rewrite step takes place inside the a and this procedure

is complete for such solutions provided 22 is (ground) confluent and decreasing [Kaplan, 1987].

Without (ground) confluence, reducible solutions are lost. For example, if 22 is {f(a, 6) -» c, a -» 6}

or {f(x,g(x)) -> c,a-y g(a)}, then the goal {f(y,y) | ? c} (which has a solution a = {y h+ a})

cannot be transformed by either inference rule. For confluent and decreasing 22, any most general

unifier can be generated by keeping track of the substitutions introduced by narrowing.

This result easily extends to the decomposition and goal-directed procedures. Our simulation

of innermost rewriting is complete for irreducible solutions. If 22 is a confluent and terminating

conditional rewrite system, with no rule having a variable in the condition terms that is not present

80

in the left-hand side (a sufficient condition for this is decreasingness), then if sa —y ta for some

irreducible substitution a, in this derivation all substitutions used for variables in conditions are

also irreducible. Hence our procedure can simulate every rewrite step by a restructuring step.

For non-decreasing systems—even those that are terminating and confluent—new difficulties

are introduced by the presence of "extra variables" in conditions as pointed out by Giovanetti and

Moiso. Consider the following example which has an extra variable in a condition term.

/ (X ,6) = / (c ,X)

a —> 6

a —¥ c

b —> c

The third rule is feasible for an reducible substitution {X t-» a} and so this system is indeed

convergent as 6 —y c. Using any of the equation solving methods above we will not be able to solve

a goal of the form f(X,b) j.? f(c,c), (which does have an irreducible solution {X t-> c}) as we

cannot prove that 6 —* c.

81

7 S U M M A R Y A N D F U T U R E W O R K

We have studied conditional equational theories and how to use conditional rewriting to solve the

validity problem and satisfiability problem. The main difficulty in directly lifting the results from

unconditional systems to this setting is that it is no longer possible to distinguish easily between

one-step of rewriting and a many-step derivation. This is because checking if a rule applies involves

doing a proof that terms in the condition are equal.

By restricting our attention to decreasing systems, we can surmount this problem to some extent.

For such systems, useful notions like rewriting are decidable, and confluence can be checked by just

considering critical pairs as for unconditional systems. For non-decreasing systems, even without

new variables in the condition terms, we showed that it is insufficient to just check the critical pairs.

We need further restrictions on the rules, and we examined two such extensions-shallow-joinable

and overlay systems.

The difficulties with checking confluence are also reflected in designing completion procedures

to convert conditional equations to equivalent convergent rewrite systems. Even if we start with

all the equations being decreasing, we often encounter non-decreasing critical pairs. We proposed

a technique to handle such equations, by translating them to decreasing ones, using a conservative

extension of the original theory.

For using conditional equations as a programming language it is very important to have efficient

equation solving methods. We have identified some drawbacks with existing methods and suggested

a goal-directed method that retains the top-down approach of the decomposition procedure (looking

at subterms only when necessary), and incorporates oriented goals (to prevent narrowing non-query

sub terms) and pruning of some unsatisfiable goals—both in a uniform manner.

82

Several interesting problems still remain. Our confluence results seem close to optimal in the

general setting. Practical methods for checking the confluence property need to be designed. Meth-

ods for testing and proving ground confluence will also be very useful. In equation solving, we would

like to integrate eager rewriting and basic narrowing cleanly in our framework. The presence of

extra variables in the conditions is crucial for capturing "logic" programming. But, in such systems,

the equation solving methods that we have examined are not complete and need to be extended.

83

A P P E N D I X A

In this appendix, we describe a preliminary implementation of conditional completion and

give a transcript of the example discussed in Chapter 5. For my Master's thesis, I designed and

implemented RRL (a Rewrite Rule Laboratory) [Kapur and Sivakumar, 1984]. RRL is a system

written in Franz/Zeta Lisp (compatible with both) and runs on VAX/SUN/Symbolics. Among its

capabilities [Kapur and Zhang, 1989] a re -

1. Completion Procedure to convert unconditional equations to equivalent rewrite systems.

2. Special completion techniques for theories with associative and commutative functions.

3. Verifying consitency and completeness of inductively defined structures and abstract data

types.

4. Equational theorem proving methods for first order predicate calculus with equality.

I have now added to RRL the conditional completion procedure outlined in Chapter 5. Condi-

tional equations are input in the form— I = = r if sx — t i & • • • &an = tn and unconditional

ones as Z = = r. When RRL encounters a non-decreasing equation that it has to make into a

rule, it uses the translation mechanism to pull equations from the condition to the left-hand side.

It prompts the user to choose which equation from the condition to transfer to the left-hand side.

Below is a transcript of a session on RRL running the < example. There is some slight notational

difference. Also, the contextual simplification we have implemented is not as powerful as described

in Chapter 5.

84

aisune-11 '/, rrl

**
****** WELCOME TO REWRITE RULE LAB *******
**

Type Add, Akb, Auto, Clean, Complete, Delete, Dump, Franz, Init, Kb, Kb-option,
List, Log, Norm, Operator, Order, Prove, quit, Read, Reset, Rules, Stats,
Synthesis, Heta, Undo, Unlog, Write or Help.

RRL-> ini

RRL is initialized.

Type Add, Akb, Auto, Clean, Complete, Delete, Dump, Franz, Init, Kb, Kb-option,
List, Log, Norm, Operator, Order, Prove, Quit, Read, Reset, Rules, Stats,
Synthesis, Heta, Undo, Unlog, Write or Help.

RRL-> ad
Type your equations in the format: LHS == RHS (eq. e * x == x)

or the format: LHS == RHS if COND
Enter a '] ' when done.
true ft x == x
x ft true == x
(x = x) == true
0 < s(0) == tt
s(x) < s(y) == x < y
x < z == tt if C((x < y) = tt) ft ((y < z) = tt))
]

Equations succesfully read in were:
1. (true ft x) == x
2. (x ft true) == x
3. (x = x) == true
4. (0 < s(0)) == tt
5. (s(x) < s(y)) == (x < y)
6. (x < z) == tt if (((x < y) = tt) ft ((y < z) = tt))

New constant set is: { true, tt, 0 }

Type Add, Akb, Auto, Clean, Complete, Delete, Dump, Franz, Init, Kb, Kb-option,
List, Log, Norm, Operator, Order, Prove, Quit, Read, Reset, Rules, Stats,
Synthesis , Heta, Undo, Unlog, Write or Help.

RRL-> oper pre < s 0 ft = tt true

Precedence relation, < > s, is added.
Precedence relation, s > 0, is added.

85

Precedence relation, 0 > ft, is added.
Precedence relation, ft > =, is added.
Precedence relation, = > tt, is added.
Precedence relation, tt > true, is added.

Type Add, Akb, Auto, Clean, Complete, Delete, Dump, Franz, Init, Kb, Kb-option,
List, Log, Norm, Operator, Order, Prove, Quit, Read, Reset, Rules, Stats,
Synthesis, Heta, Undo, Unlog, Write or Help.

RRL->

Trace mode now is — Extended.

Type Add, Akb, Auto, Clean, Complete, Delete, Dump, Franz, Init, Kb, Kb-option,
List, Log, Norm, Operator, Order, Prove, Quit, Read, Reset, Rules, Stats,
Synthesis, Heta, Undo, Unlog, Write or Help.

RRL->
Step 1

Processing (true ft x) == x

Adding Rule:

[1] (true ft x) --> x

Processing (x ft true) == x

Adding Rule:

[2] (x ft true) > x

Processing (x = x) == true

Adding Rule:

[3] (x = x) > true

Processing (0 < s(0)) == tt

Adding Rule:

[4] (0 < s(0)) — > tt

Processing (s(x) < s(y)) == (x < y)

Adding Rule:
[5] (s(x) < s(y)) — > (x < y)

Processing (x < z) == tt if (((x < y) = tt) ft ((y < z) = tt))

86

In condition ((x < y) = tt) ft ((y < z) = tt)

which subterm do you wish to pick?
—> 1

Adding Rule:
[6] if((((x < y) = tt) ft ((y < z) = tt)), (x < z))

> if((((x < y) = tt) ft ((y < z) = tt)), tt)

Computing critical pairs with Rule:
[6] (x < z) — > tt if (((x < y) = tt) ft ((y < z) = tt))

Computing c r i t i c a l pairs with Rule:
[3] (x = x) > t rue

Computing c r i t i c a l pairs with Rule:
[2] (x ft t rue) --> x

Computing c r i t i c a l pairs with Rule:
[1] (true ft x) --> x

Rules [2] and [1] yield following c r i t i c a l pair :
true == true if (true ft t rue)

Processing true == true if (true ft true)

Computing c r i t i c a l pairs with Rule:
[4] (0 < s(0)) — > t t

Rules [4] and [6] yield following c r i t i c a l pa i r :

(0 < z) == t t if (true ft ((t t = t t) ft ((s(0) < z) = t t)))

Processing (0 < z) == t t if (true ft ((t t = t t) ft ((s(0) < z) = t t)))

Adding Rule:
[7] i f (((s (0) < z) = t t) , (0 < z)) > i f (((s (0) < z) = t t) , t t)

Computing c r i t i c a l pairs with Rule:
[7] (0 < z) — > t t if ((s(0) < z) = t t)

Computing c r i t i c a l pairs with Rule:
[5] (s(x) < s(y)) — > (x < y)

Rules [5] and [6] yield following c r i t i c a l pair :
(s(x) < z) == t t if (true ft (((x < y) = t t) ft ((s(y) < z) = t t)))

87

Rules [5] and [7] yield following critical pair:
(0 < s(y)) == tt if (true ft ((0 < y) = tt))

Processing (0 < s(y)) == tt if (true ft ((0 < y) = tt))

Adding Rule:

[8] (0 < s(y)) — > tt if ((0 < y) = tt)

Processing (s(x) < z) == tt if (true ft (((x < y) = tt) ft ((s(y) < z) = tt)))

In condition ((x < y) = tt) ft ((s(y) < z) = tt)

which subterm do you wish to pick?
—> 2

Adding Rule:
[9] if((((x < y) = tt) ft ((s(y) < z) = tt)), (s(x) < z))

> if((((x < y) = tt) ft ((s(y) < z) = tt)), tt)

Computing critical pairs with Rule:
[9] (s(x) < z) > tt if (((x < y) = tt) ft ((s(y) < z) = tt))

Rules [5] and [9] yield following c r i t i c a l pa i r :

(s(x) < s(y)) == t t if (true ft (((x < yl) = t t) ft ((yl < y) = t t)))

Processing (s(x) < s(y)) == tt if (true ft (((x < yl) = tt) ft ((yl < y) = tt)))

Computing critical pairs with Rule:
[8] (0 < s(y)) > tt if ((0 < y) = tt)

Rules [8] and [6] yield following c r i t i c a l pa i r :
(0 < z) == t t if (((0 < y) = t t) ft ((t t = t t) ft ((s(y) < z) = t t)))

Rules [4] and [8] yield following critical pair:
tt == tt if (true ft ((0 < 0) = tt))

Processing tt == tt if (true ft ((0 < 0) = tt))

Processing (0 < z) == tt if (((0 < y) = tt) ft ((tt = tt) ft ((s(y) < z) = tt)))

In condition ((0 < y) = tt) ft ((s(y) < z) = tt)

which subterm do you wish to pick?
—> 2

88

Adding Rule:
[10] if((((0 < y) = tt) ft ((s(y) < z) = tt)), (0 < z))

> if((((0 < y) = tt) ft ((s(y) < z) = tt)), tt)

Computing critical pairs with Rule:
[10] (0 < z) > tt if (((0 < y) = tt) ft ((s(y) < z) = tt))

Rules [5] and [10] yield following c r i t i c a l pa i r :

(0 < s(y)) == t t if (true ft (((0 < yl) = t t) ft ((yl < y) = t t)))

Processing (0 < s(y)) == tt if (true ft (((0 < yl) = tt) ft ((yl < y) = tt)))

Your system is canonical.

[1] (true ft x) — > x
[2] (x ft t rue) > x
[3] (x = x) > true
[4] (0 < s(0)) — > t t
[5] (s(x) < s(y)> > (x < y)
[6] i f ((((x < y) = t t) ft ((y < z) = t t)) , (x < z))

--> i f ((((x < y) = t t) ft ((y < z) = t t)) , t t)
[7] i f (((s (0) < z) = t t) , (0 < z)) — > i f (((s (0) < z) = t t) , t t)
[8] (0 < s(y)) — > t t if ((0 < y) = t t)
[9] i f ((((x < y) = t t) ft ((s(y) < z) = t t)) , (s(x) < z))

> i f ((((x < y) = t t) ft ((s(y) < z) = t t)) , t t)
[10] i f ((((0 < y) = t t) ft ((s(y) < z) = t t)) , (0 < z))

— > i f ((((0 < y) = t t) ft ((s(y) < z) = t t)) , t t)

Processor time used = 1.25 sec
Number of rules generated = 10
Number of critical pairs = 7
Time spent in normalization =0.23 sec (18.67 percent of time)
Time spent while adding rules =0.20 sec (16.00 percent of time)

(keeping rule set reduced)

Total processor time used (include 'undo' action) = 1.30 sec

Type Add, Akb, Auto, Clean, Complete, Delete, Dump, Franz, Init, Kb, Kb-option,
List, Log, Norm, Operator, Order, Prove, Quit, Read, Reset, Rules, Stats,
Synthesis, Heta, Undo, Unlog, Write or Help.

RRL-> q

Good bye siva.

89

A P P E N D I X B

In this appendix, we give a Prolog program that does goal-directed equation solving and show

how it works on some examples. This is an interpreter for a conditional equational language like

RITE [Dershowitz and Plaisted, 1988]. In addition to the features described in Chapter 6—oriented

goals and pruning— this implementation also has eager rewriting and ignores non-normalised so-

lutions that arise from restructuring subterms introduced from left-hand sides of rules by keeping

track of basic positions. Also, we have implemented iterative depth first search to search the

solution space fairly and enumerate all solutions.

/ * This program does g o a l - d i r e c t e d equtaion so lv ing .
I t a l so uses eager r e w r i t i n g and keeps t r ack of ba s i c p o s i t i o n s .
Top- level c a l l i s r i t e (T . S) or r i t e (T ,S ,depth-bound)
t o f ind a sigma such t h a t T sigma ->* S sigma (i n depth-bound)
If depth-bound i s given we search only up to the bound, and w i l l
f ind a l l so lu t i ons wi th in t h a t depth .
Otherwise, we do i t e r a t i v e deepening of DFS t i l l we f ind a l l s o l u t i o n s .

*/

r i t e (X.Y) : -
cput ime(Xl) ,
bas ic(X.P) , i s o l v e ([[X , Y , P , 0]] , 3) ,
cputime(X2), X3 i s X2 - XI, n l , wr i te ('Cpu: ') , w r i t e (X 3) .

r i te(X,Y,Bound) : -
cput ime(Xl) ,bas ic(X,P) ,
so lve ([[X,Y,P ,0]] .Bound) ,
cputime(X2), X3 i s X2 - XI, n l , wr i te ('Cpu: ') , w r i t e (X 3) , n l .

/ * does i t e r a t i v e DFS. keeps i n c r e a s i n g bound t i l l a l l so lus found */
i so lve(G, Bound) : -

solve(G,Bound);
(r e t r ac t (bound)

-> (Bl i s Bound + 3 , n l ,
w r i t e (' A l l s o l u t i o n s not e x h a u s t e d . ') , n l ,
w r i t e (' I n c r e a s i n g depth to ') , w r i t e (B l) ,
w r i t e (' . . ') , n l , i s o l v e (G , B l))

; (n l , w r i t e (' N o more so lu t i ons p o s s i b l e . ') , n l , f a i l)) .

90

/* simplify all goals as much as possible wihtout backtracking, then do
one step of either decomposition or restructuring of one of the goals*/

solve([],Bound) :- !.
solve(L,Bound) :-

simp(L.Ll), ! , onestep(Ll,L2,Bound), solve(L2,Bound).

onestep([],[],Bound) :- !.
onestep(GL,L,Bound) :-
/* pick a sub-goal that was introduced at depth <= Bound */

(pick(GL,G,Gr,Bound) ->
addsubgoals(G,Gr,L);
((bound -> true; assert(bound)),fail)).

addsubgoals(G,Gr,Gl) :- decomp(G,Gr,Gl,l) ; restruct(G,Gr,Gl) .

/* decompose goal— same top operators */
decomp(G,Gr,Gl,Flag) :-

G = [X, Y, Xb.D], (var(Flag) -> Dl is D ; Dl is D + 1),
functor(X,F,N), functor(Y,F,N),
X =.. [F I Ax], Xb =.. [F I Axb],
Y =.. [F I Ay], addgoals(Dl,Ax,Ay,Axb,Gr,Gl).

/* r e s t r u c t u r e — apply a r u l e a t t h e t op -ope ra to r */
r e s t ruc t (G ,Gr ,Gl) : -

G = [X, Y, Xb,D], Dl i s D + 1,
functor(X,F,N) , func to r (L ,F ,N) , ge t ru l e (L ,R ,C) ,
X = . . [F | Ax], Xb = . . [F | Axb], L = . . [F I A l] ,
bas ic(R.Rp) , bas ic (C .Cp) ,
addgoals (Dl , [C |Ax] , [t rue lAl] , [CplAxb] , [[R.Y.Rp.Dl] |Gr] ,G1).

/ * s i m p (G l i s t l , G l i s t 2) - G l i s t 2 i s t he s impl i f i ed form of G l i s t l */
s i m p ([] , []) : - ! .
simp([G | Gr] , L) : -

(forced(G.X.Y) -> (dunify(X.Y),simp(Gr,L)) ;
(possible(G) ->
(decomposable(G.Gr.Gl) -> simp(Gl.L) ;

(simp(Gr.Gl), L = [G | Gl])))).

/* have omitted eager rewriting to check speed */
/* simplify(Goal.GList)

— we do pruning, forced decompositions, eager rewriting */
simplify(G, []) :- forced(G,X,Y), !, dunify(X.Y).
simplify(G.Glist) :- (decomposable(G.G1) -> loop2(simplify,Gl,Gll),

91

mergeall(Gll.Glist), ! ;
bnorm(G,Gl),!,
(G == Gl -> Glist = [Gl] ; simplify(Gl.Glist))).

/* top-level operators are ok */
possible(G) :- G = [X, Y, Xb, N], possible(X.Y).

forced(G,X,Y) :- G = [X, Y, e, N]. /* have reached basic position */

/* reachable(Fl,Nl,F2) — A term with top operator Fl (of arity Nl) can be
converted to a term with top operator F2. Used for pruning goals */

reachable(F,N,F) :- ! .
reachable(Fl,Nl,F2) :-

functor(L,Fl,Nl), getrule(L,R,C),
(var(R) -> ! ; (functor(R,F,N), reachable(F,N,F2))).

/* possible(X,Y) - Y's top-operator is reachable from
X's top-operator */

possible(X,Y) :- (var(X); var(Y)) -> true ;
(functor(X,Fl,Nl),functor(Y,F2,N2),reachable(Fl,Ni,F2)).

decomposable(G,Gr,Gl) :-
G = [X, Y, Xb, D], functor(X,F,N),
functor(L,F,N),not(getrule(L,R,C)),decomp(G,Gr,Gl,Fl).

addgoals(N, [],[],[] ,G,G) :- !.
addgoals(N, [X|Xr] , [Y | Y r] , [Z | Z r] , G, Go) : -

(X == Y -> addgoals(N,Xr,Yr,Zr,G,Go);
(Z == e -> (dunify(X.Y), addgoals(N,Xr,Yr,Zr,G,Go));

addgoals(N,Xr,Yr,Zr,[[X,Y,Z,N] | G] ,Go))) .

/* pick a subgoal introduced at depth <= Bound */
pick([G | Gr], Gl, Gl,Bound) :-

G = [X.Y.Z.N],
(N =< Bound
-> (Gl = G , Gl = Gr) ;
(pick(Gr,Gl,Gil,Bound), Gl = [G | Gil])).

bnorm([X,Y,Xb,N],[Z,Y,Zb,N]) :- bnorm(X,Xb,Z,Zb).

/* some utilities like unification, matching and eager rewriting
are defined below */
copy(Term.Copy) :- assert($(Term)), retract($(Copy)).

92

loop2(P, [] , []) : - ! .
loop2(P,[T | T r] , [S | S r]) : - X = . . [P I [T , S]] , c a l l (X) , l o o p 2 (P , T r , S r) .

loopS (P, [],[],[]) :- !.
loop3(P,[T|Tr],[BIBr],[S|Sr]) :- X =.. [P|[T,B,S]], call(X),loop3(P,Tr,Br,Sr).

loop4(P, [] , [] , [] , []) : - ! .
l o o p 4 (P , [T l T r] , [B | B r] , [S | S r] , [C l C r]) : -

X = . . [P | [T ,B ,S ,C]] , c a l l (X) , l o o p 4 (P , T r , B r , S r , C r) .

/ * basic(X,Y) - Y i s t h e b a s i c (non-var) p o s i t i o n s i n X. e i s f o r vars */
basic(X.Y) : -

(var(X) -> Y = e ;
(atomic(X) -> Y = X ;

(X = . . [F | AX], loop2(basic,AX,AY), Y = . . [F I AY]))) .

occurs(Var,Term) : -
(Var == Term -> t r u e ;

(var(Term) -> f a i l ;
(Term = . . [F | AS] , occurs -any(Var ,AS)))) .

occurs -any(Var , []) : - f a i l .
occurs -any(Var , [TITres t]) : -

(occurs(Var.T) -> t r u e ; occurs -any(Var ,Tres t)) .

/* assumes vars in p a t t e r n do not appear in t a r g e t */
dmatch(X.Y) : - match(X,Y,[] ,Binds) , dobind(Binds) , ! .

match(X,Y,InB,0B) : - (X == Y -> OB = InB ;
(var(X) -> addbind(X,Y,InB,OB) ;

(var(Y) -> f a i l ;
(X = . . [F | AX] , Y = . . [F | AY],
allmatch(AX,AY,InB,OB))))).

a l lmatch([] , [] ,InB,InB) .
a l lmatch([XI | X r] , [Y l lYr] , 1 , 0) : - m a t c h (X l , Y i , I , 0 1) , ! ,

a l lma tch (Xr ,Yr ,01 ,0) .

dobind([]) .
dobind([[X | Y] | Z]) : - X = Y, dobind(Z).

addbind(X,Y,[] , [[X | Y]]) .
addbind(X,Y,[[U | V] | Z] , [[U I V] | Z l]) : -

93

(X == U -> Y == V, Z = Zl ;
addbind(X,Y,Z,ZD).

dunify(X.Y) : - (X == Y -> t r u e ;
(var(X) -> no t (occurs (X,Y)) , X = Y ;

(var(Y) -> not(occurs(Y,X)) , Y = X ;
X = . . [F | AX] , Y = . . [F I AY], loop2(dunify,AX,AY)))).

norm(X.Y) : - bas ic(X.Xb) , inorm(X,Xb,Y).

inorm(X,e,X) : - ! .
inorm(X.Xb.Y) : - X = . . [F I AX], Xb = . . [F I Ab],

loop3(inorm,AX,Ab,AY), Yl = . . [F I AY],
(rewri tes- top(Yi ,Y2,Yb) -> inorm(Y2,Yb,Y) ; Y = Y l) .

rewri tes- top(Yl ,Y2,Yb) : - func to r (Yl ,F ,N) , func tor (L ,F ,N) ,
ge t ru l e (L ,Y2 ,C) , bas ic (C.Cb) , bas ic(Y2,Yb),
dmatch(L.Yl) , i no rm(C ,Cb , t rue) , ! .

bnorm(X,e,X,e) : - ! .
bnorm(X,Xb,Y,Yb) : - X = . . [F I Ax], Xb = . . [F I Axb],

loop4(bnorm,Ax,Axb,Ay,Ayb),
Yl = . . [F I Ay], Ylb = . . [F I Ayb],
(rewri tes- top(Yl ,Ylb,Y2,Y2b) ->

bnorm(Y2,Y2b,Y,Yb) ;
Y = Yl , Yb = Ylb) .

rewri tes- top(Y,Yb,Yl ,Ylb) : -
functor(Y,F,N) , func to r (L ,F ,N) , ge t ru l e (L ,R ,C) ,
match(L,Y,[] ,B inds) , ! , copy(L ,R,Lc ,Rc) , bas ic (C .Cb) ,
dobind(Binds) , inorm(C,Cb , t rue) , ! , Yl = R,
bmatch(Lc.Yb), Ylb = Re .

copy(L,R,Lc,Rc) : - T = . . [a | [L, R]] , copy(T.Ti) ,
Tl = . . [a I [Lc, R e]] .

bmatch(X.e) : - ! .
bmatch(X.Y) : - va r (X) , ! , X = Y .
bmatch(X.Y) : - X = . . [F I AX], Y = . . [F I AY], loop2(bmatch,AX,AY).

m e r g e a l l ([] , []) : - ! .
mergeal l ([L I Lr] , L r l) : - me rgea l l (L r , L r 2) , append(L,Lr2 ,Lr l) .

append([] ,X,X).
append([A | X],Y,[A I Z]) : - append(X.Y.Z).

94

/* rules */
/* Rules are written of the form rule(L.R) if unconditional or

rule(L,R,C) if conditional */

getrule(L,R,true) :- rule(L,R).
getrule(L,R,C) :- rule(L,R,C).

/* conditional rules that define quotient and mod for natural numbers */
rule(quot(X,Y),s(quot(diff(X,Y),Y)),ge(X,Y)).
rule(quot(X,Y),0,gt(Y,X)).

rule(mod(X,Y),X, not(ge(X,Y))).
rule(mod(X,X),0).
rule(mod(X,Y),mod(diff(X,Y),Y),and(gt(Y,0),not(ge(Y,X)))).

rule(diff(X,0), X).
rule(diff(s(X),s(Y)), diff(X.Y)).

rule(add(X,0),X).
rule(add(X,s(Y)),s(add(X,Y))).

rule(ge(X,0),true).
rule(ge(0,s(Y)),false).
rule(ge(s(X),s(Y)),ge(X,Y)).

rule(lt(X,Y),not(ge(X,Y))).
rule(le(X,Y),ge(Y,X)).
rule(gt(X,Y),not(ge(Y,X))).

rule(ap(nil,X), X).
rule(ap(+(X,Y),Z), +(X,ap(Y,Z))).

rule(f(f(X)), f(X)).
rule(g(f(X),Y), g(d,Y)).
rule(gl(f1(a)), a).

rule(not(true).false).
rule(not(falso),true).
rule(eq(X,X).true).
rule(and(true,X),X).

Below is a transcript of a session that uses this equation solver for some simple examples.

a i sune-19 '/, sbprolog
SB-Prolog Version 2 . 3 . 1

95

I ?- ['gdir.pr'].
yes
I ?- rite(ap(X,Y),+(l,nil)).

Cpu: 300
X = nil
Y = 1 + nil;

Cpu: 660
X = 1 + nil
Y = nil;

No more solutions possible.
no
I ?- rite(ap(X,ap(Y,Z)),+(l,+(2,+(3,nil)))).

Cpu: 280
X = nil
Y = nil
Z = 1 + (2 + (3 + nil));

Cpu: 560
X = nil
Y = 1 + nil
Z = 2 + (3 + nil);

Cpu: 820
X = nil
Y = 1 + (2 + nil)
Z = 3 + nil;

Cpu: 2220
X = 1 + nil
Y = nil
Z = 2 + (3 + nil);

Cpu: 2520
X = 1 + (2 + nil)
Y = nil
Z = 3 + nil;

Cpu: 2760
X = 1 + (2 + (3 + nil))
Y = nil
Z = nil;

96

Cpu: 4060
X = 1 + nil
Y = 2 + nil
Z = 3 + nil;

Cpu: 4360
X = 1 + (2 + nil)
Y = 3 + nil
Z = nil;

Cpu: 6040
X = 1 + nil
Y = 2 + (3 + nil)
Z = nil;

All solutions not exhausted.
Increasing depth to 6 ..

Cpu: 8000
X = nil
Y = nil
Z = 1 + (2 + (3 + nil));

Cpu: 8320
X = nil
Y = 1 + nil
Z = 2 + (3 + nil);

Cpu: 8600
X = nil
Y = 1 + (2 + nil)
Z = 3 + nil;

Cpu: 8860
X = nil
Y = 1 + (2 + (3 + nil))
Z = nil;

Cpu: 10040
X = 1 + nil
Y = nil
Z = 2 + (3 + nil);

Cpu: 10340

97

X = 1 + (2 + nil)
Y = nil
Z = 3 + nil;

Cpu: 10580
X = 1 + (2 + (3 + nil))
Y = nil
Z = nil;

Cpu: 11860
X = 1 + nil
Y = 2 + nil
Z = 3 + nil;

Cpu: 12120
X = 1 + (2 + nil)
Y = 3 + nil
Z = nil;

Cpu: 13780
X = 1 + nil
Y = 2 + (3 + nil)
Z = nil;

No more solutions possible.
no

/* Below is an example that uses conditional rules.
We begin to enumerate all positive odd numbers
by asking for X such that X mod 2 is 1 */

I ?- rite(mod(X,s(s(0))), s(0)).

Cpu: 860
X = s(0);

All solutions not exhausted.
Increasing depth to 6 ..

Cpu: 15360
X = s(0);

Cpu: 18360
X = s(s(s(0)));

98

Cpu: 23680
X = s(s(s(s(s(0)))));

All solutions not exhausted.
Increasing depth to 9 ..

Cpu: 47700
X = s(0);

Cpu: 50660
X = s(s(s(0)));

Cpu: 55960
X = s(s(s(s(s(0)))));

Cpu: 61260
X = s(s(s(s(s(s(s(O))))))>
yes

99

R E F E R E N C E S

[Bachmair, 1987] Bachmair, L. "Proof methods for equational theories," Ph.D. thesis, Department
of Computer Science, University of Illinois Urbana, IL, 1987.

[Bachmair, et al., 1986] Bachmair, L., Dershowitz, N. and Hsiang J., "Orderings for equational
proofs," Proceedings of the Symposium on Logic in Computer Science, Cambridge, MA, pp.
346-357, June 1986.

[Bachmair, et al., 1989] Bachmair, L., Dershowitz, N. and Plaisted, D. A. "Completion without
failure," Resolution of Equations in Algebraic Structures, H. Ait-Kaci and M. Nivat, editors,
Academic Press, New York, pp. 1-30,1989.

[Bergstra and Klop, 1982] Bergstra, J. A., and Klop, J. W. "Conditional rewrite rules: Confluence
and termination," Report DV 198/82 MEI, Mathematische Centrum, Amsterdam, 1982.

[Bergstra and Klop, 1986] Bergstra, J. A., and Klop, J. W. "Conditional rewrite rules: confluency
and termination," J. of Computer and System SciencesS2 , pp. 323-362 ,1986.

[Bosco et al., 1987] Bosco, P. G., Giovanetti, E., and Moiso, C. "Refined strategies for semantic
unification," Proceedings of International Joint Conference on Theory and Practice of Soft-
ware Development, Pisa, Italy (March 1987), pp. 276-290. (Available as Vol. 250, Lecture
Notes in Computer Science, Springer, Berlin.)

[Brand, et al., 1978] Brand, D., Darringer, J. A., and Joyner, W. J. "Completeness of conditional
reductions," Report RC 7404, IBM Thomas J. Watson Research Center, December 1978.

[Dershowitz, 1984] Dershowitz, N. "Equations as programming language," Proceedings of the Fourth
Jerusalem Conference on Information Technology Computer Society, pp. 114-123, May 1984.

[Dershowitz, 1985] Dershowitz, N. "Computing with rewrite systems," Information and Control,
64 (2/3), pp. 122-157, May/June 1985.

[Dershowitz, 1987] Dershowitz, N., "Termination of rewriting," J. of Symbolic Computation, 3 (1
/ 2), pp. 69-115, February/April 1987. (Corrigendum [December 1987], Vol. 4, No. 3, pp.
409-410.)

[Dershowitz, 1989] Dershowitz, N. "Completion and its applications," Resolution of Equations in
Algebraic Structures, Academic Press, New York, pp. 31-86, 1989.

[Dershowitz and Jouannaud, 1989] Dershowitz, N., and Jouannaud, J .-P. "Rewrite Systems,"
Handbook of Theoretical Computer Science, North-Holland, 1989. (To appear.)

[Dershowitz and Okada, 1988] Dershowitz, N., and Okada, M. "Proof-theoretic techniques and the
theory of rewriting," Proc. of the Third Symposium on Logic in Computer Science, Edinburgh,
Scotland, pp. 104-111, July 1988.

[Dershowitz and Okada, 1988b] Dershowitz, N., and Okada, M. "Conditional equational program-
ming and the theory of conditional term rewriting," Proc. of the International Conference
on Fifth Generation Computer Systems, Tokyo, Japan, November 1988.

100

[Dershowitz and Plaisted, 1985] Dershowitz, N., and Plaisted, D. A. "Logic programming cum Ap-
plicative Programming," Proceedings of the 1985 Symposium on Logic Programming, Boston,
MA. pp. 54-66, July 1985.

[Dershowitz and Plaisted, 1988] Dershowitz, N., and Plaisted, D. A. "Equational programming,"
In: Machine Intelligence 11 (J. E. Hayes, D. Michie, and J. Richards, eds.), Oxford Press,
Oxford, pp. 21-56,1988.

[Dershowitz and Sivakumar, 1987] Dershowitz, N., and Sivakumar, G. "Solving goals in equational
languages," First International Workshop on Conditional Rewriting Systems, Orsay, France,
pp. 45-55, July 1987. (Available as Vol. 308, Lecture Notes in Computer Science, Springer,
Berlin.)

[Dershowitz and Sivakumar, 1987] Dershowitz, N., and Sivakumar, G. "Goal-directed Equation
Solving," Proceedings of the Seventh National Conference on Artificial Intelligence, St. Paul,
MN, pp. 166-170, August 1988.

[Dershowitz, et al., 1987] Dershowitz, N., Okada, M., and Sivakumar, G. "Confluence of Condi-
tional Rewrite Systems," First International Workshop on Conditional Rewriting Systems,
Orsay, France, pp. 31-44, July 1987. (Available as Vol. 308, Lecture Notes in Computer
Science, Springer, Berlin.)

[Dershowitz, et al., 1988] Dershowitz, N., Okada, M., and Sivakumar, G. "Canonical conditional
rewrite systems," Proceedings of the Ninth Conference on Automated Deduction, Argonne, IL,
pp. 538-549, May 1988 (Available as Vol. 310, Lecture Notes in Computer Science, Springer,
Berlin.)

[Fay, 1979] Fay, M. "First-order unification in an equational theory," Proceedings of the Fourth
Workshop on Automated Deduction, Austin, TX (February 1979), pp. 161-167.

[Fribourg, 1985] Fribourg, L. "SLOG: A logic programming language interpreter based on clausal
superposition and rewriting," Proceedings of the 1985 Symposium on Logic Programming,
Boston, MA (July 1985), pp. 172-184.

[Ganzinger, 1987] Ganzinger, H., "A Completion Procedure for Conditional Equations," First In-
ternational Workshop on Conditional Rewriting Systems, Orsay, France, pp. 62-83, July
1987. (Available as Vol. 308, Lecture Notes in Computer Science, Springer, Berlin.)

[Goguen and Meseguer, 1986] Goguen, J. A., and Meseguer, J. "EQLOG: Equality, types and
generic modules for logic programming," In Logic Programming: Functions, relations and
equations (D. DeGroot and G. Lindstrom, eds.), Prentice-Hall, Englewood Cliffs, NJ, pp.
295-363, 1986.

[Hsiang, 1982] Hsiang, J., "Topics in automated theorem proving and program generation," Ph.
D. thesis, Report R-82-1113, Department of Computer Science, University of Illinois, Urbana,
IL, December 1982.

[Hsiang and Rusinowitch, 1987] Hsiang, J., and Rusinowitch, M., "On word problems in equational
theories," Proceedings of the Fourteenth EATCS International Conference on Automata, Lan-
guages and Programming, Karlsruhe, West Germany, pp. 54-71, July 1987.

101

[Huet, 1981] Huet, G., "A complete proof of correctness of the Knuth-Bendix completion algo-
rithm," J. Computer and Systems Sciences, Vol. 23, No. 1, pp. 11-21,1981.

[Huet and Oppen, 1980] Huet, G., and Oppen, D. C , "Equations and rewrite rules: A survey,"
Formal Language Theory: Perspectives and Open Problems, ed. R. Book, Academic Press,
New York, 1980, pp. 349-405.

[Hullot, 1980] Hullot, J. M. "Canonical forms and unification," Proceedings of the Fifth Conference
on Automated Deduction, Les Arcs, France (July 1980), pp. 318-334.

[Jouannaud and Waldmann, 1986] Jouannaud, J. P., and Waldmann, B. "Reductive Conditional
term rewriting systems," Proceedings of the Third IFIP Working Conference on Formal De-
scription of Programming Concepts, Ebberup, Denmark.

[Kaplan, 1984] Kaplan, S. "Fair conditional term rewriting systems: Unification, termination and
confluency," Laboratoire de Recherche en Informatique, Universite de Paris-Sud, Orsay,
France, November 1984.

[Kaplan, 1987] Kaplan, S. "Simplifying conditional term rewriting systems: Unification, termina-
tion and confluence," Journal of Symbolic Computation, 1987 4(3), pp. 295-334.

[Kaplan and Remy, 1989] Kaplan, S. and Remy, J. L., "Completion algorithms for conditional
rewriting systems," Resolution of Equations in Algebraic Structures, H. Ait-Kaci and M.
Nivat, editors, Academic Press, New York, 1989.

[Kapur and Sivakumar, 1984] Kapur, D., and Sivakumar, G. "Experiments with and architecture
of RRL, a rewrite rule laboratory," Proceedings of an NSF Workshop on the Rewrite Rule
Laboratory, Schenectady, NY (September 1983), pp. 33-56. (Available as Report 84GEN008,
General Electric Research and Development [April 1984].)

[Kapur and Zhang, 1986] Kapur, D. and Zhang, H., "An overview of Rewrite Rule Laboratory
(RRL)," Proceedings of the Third International Conference on Rewriting Techniques and
Applications, Chapel Hill, NC, pp. 559-563, April 1989. (Available as Vol. 355, Lecture
Notes in Computer Science, Springer, Berlin.)

[Kirchner, 1985] Kirchner, C , "Methodes et outils de conception systematique d'algorithmes
d'unification dans les theories equationnelles," These d'Etat,, Universite de Nancy, June 1985.

[Klop, 1987] Klop, J. W., "Term rewriting systems: A tutorial," J Bulletin of the European Asso-
ciation for Theoretical Computer Science, June 1987, Vol. 32, pp. 143-183.

[Knuth and Bendix, 1970] Knuth, D. E., and Bendix, P. B. "Simple word problems in universal
algebras," In: Computational Problems in Abstract Algebra, J. Leech, ed. Pergamon Press,
Oxford, U. K., 1970, pp. 263-297.

[Kounalis and Rusinowitch, 1988] Kounalis, E., and Rusinowitch, M., "On word problems in Horn
theories," Proceedings of the Ninth Conference on Automated Deduction, Argonne, IL, pp.
526-537, May 1988 (Available as Vol. 310, Lecture Notes in Computer Science, Springer,
Berlin.)

102

[Lankford, 1975] Lankford, D. S., "Canonical Inference," Memo ATP-25, Automatic Theorem
Proving Project, University of Texas, Austin, TX, May 1975.

[Martelli, et al., 1986] Martelli, A., Moiso, C. and Rossi, G. F. "An algorithm for unification in
Equational Theories," Proceedings of the Third IEEE Symposium on Logic Programming,
Salt Lake City, UT (September 1986), pp. 180-186.

[Musser, 1980] Musser, D. R., "On proving inductive properties of abstract data types," Proceedings
of the Seventh ACM Symposium on Principles of Programming Languages, 1980, Las Vegas,
NV, pp. 154-162.

[Newman, 1942] Newman, M. H. A., "On theories with a combinatorial definition of equivalence,"
Annals of Mathematics 43 (2), pp. 223-243,1942.

[O'Donnell, 1985] O'Donnell, M. J., "Equational logic as a programming language," MIT Press,
Cambridge, Mass., 1985.

[Okada, 1987] Okada, M. "A simple relationship between Buchholz's new system of ordinal nota-
tions and Takeuti's system of ordinal diagrams," Journal of Symbolic Logic 52 (1987).

[Plaisted, 1987] Plaisted, D. A., "A Logic for Conditional Term Rewriting Systems," First Interna-
tional Workshop on Conditional Rewriting Systems, Orsay, France (July 1987), pp. 212-227.
(Available as Vol. 308, Lecture Notes in Computer Science, Springer, Berlin.)

[Reddy, 1986] Reddy, U. S., "On the relationship between logic and functional languages," Logic
Programming: Functions, Relations, and Equations, ed. D. DeGroot and G. Lindstrom,
Prentice-Hall, Englewood Cliffs, NJ, pp. 3-36, 1986.

[Remy, 1982] Remy J .L . , "Etude des systemes de reeecriture conditionnels et applications aux
types abstraits algebriques," These, Institut National Polytechnique de Lorraine, July 1982.

[Rety, 1987] Rety, P. "Improving basic narrowing techniques," Proceedings of the Second Interna-
tional Conference on Rewriting Techniques and Applications, Bordeaux, France (May 1987),
pp. 228-241. (Available as Vol. 256, Lecture Notes in Computer Science, Springer, Berlin.)

[Rety, et al, 1985] Rety, P., Kirchner, C , Kirchner, H., and Lescanne, P. "NARROWER: A new
algorithm for unification and its application to logic programming," Proceedings of the First
International Conference on Rewriting Techniques and Applications, Dijon, France (May
1985), pp. 141-157. (Available as Vol. 202, Lecture Notes in Computer Science, Springer,
Berlin [September 1985].)

[Slagle, 1974] Slagle, J. R., "Automated theorem-proving for theories with simplifiers, commuta-
tivity, and associativity," J. of the Association for Computing Machinery, Vol. 21, No. 4, pp.
622-642,1974.

[Toyama, 1987] Toyama, Y. "Term Rewriting Systems with membership conditions," First Inter-
national Workshop on Conditional Rewriting Systems, Orsay, France, July 1987. (Available
as Vol. 308, Lecture Notes in Computer Science, Springer, Berlin.)

103

[Zhang and Remy, 1985] Zhang, H., and Reiny, J. L. "Contextual rewriting," Proceedings First
International Conference on Rewriting Techniques and Applications, Dijon, France (May
1985), pp. 46-62. (Available as Vol. 202, Lecture Notes in Computer Science, Springer,
Berlin [September 1985].)

104

VITA

G. Sivakumar was born on September 30, 1960 in Madurai, India. He received his Bachelor

of Technology degree in Electrical Engineering, in 1984, from the Indian Institute of Technology,

Madras, and the Master of Science degree in Computer Science, in 1984, from Renssealaer Poly-

technic Institute, New York. He then joined the University of Illinois at Urbana- Champaign for

his doctoral studies. On completing his Ph.D., he joined the the faculty of the Department of

Computer and Information Science, at the University of Delaware.

105

