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Software Correctness

• Outputs Are Correct

• Terminates (or Doesn’t)

• Resource issues

• Accuracy Issues

• Timing Issues



Termination

• Algorithm Halts for All (Specified) 
Inputs

• Iterative Loops

• Nested Loops

• Recursive Loops

• Symbolic Computation
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Introduction 

!
!  !Hal.ng!problem!has!troubled!us!since!the!beginning!of!
compu.ng!
!  One!of!the!first!problems!proved!undecidable!!

!
!  !The!source!of!unsolved!puzzles!

!  !A!maEer!of!prac.cal!importance:!
!  Is!every!call!to!AcquireLock()!is!followed!by!a!call!to!
ReleaseLock()?!!!!

!  Does!SerialPnpDispatch(…..)!always!return!control!back!to!its!
caller?!!!

!



Plan

• Termination is Undecidable

• The Easy Cases

• The Hard Cases



Requirements

• Attendance and participation

• Readings and discussions

• Try to solve assignments

• final exam or term paper or system 
(tbd)



Readings

• Turing, 1936

• Strachey, 1965

• Katz & Manna, 1975



History

• Euclid

• Alan Turing

• Bob Floyd

• Zohar Manna



Euclid (c. -300) 
 Euclid�s GCD 
algorithm appeared in 
his Elements.   
 Formulated 
geometrically: Find 
common measure for 
2 lines.   
 Used repeated 
subtraction of the 
shorter segment 
from the longer. 
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Antique Algorithm



Antenaresis
Δύο ἀριθμῶν ἀνίσων 
ἐκκειμένων, 
ἀνθυφαιρουμένου δὲ 
ἀεὶ τοῦ ἐλάσσονος 
ἀπὸ τοῦ μείζονος, 
ἐὰν ὁ λειπόμενος 
μηδέποτε καταμετρῇ 
τὸν πρὸ ἑαυτοῦ, ἕως 
οὗ λειφθῇ μονάς, οἱ 
ἐξ ἀρχῆς ἀριθμοὶ 
πρῶτοι πρὸς 
ἀλλήλους ἔσονται

When two unequal 
numbers are set out, and 
the less is continually 
subtracted in turn from 
the greater, if the number 
which is left never 
measures the one before 
it until a unit is left, then 
the original numbers are 
relatively prime.



Greatest Common 

repeat

if m=n then return n

if m<n then n := n-m

if m>n then m := m-n



Hailstones

Loop until x=1

   if 2|x

      then x := x/2

      else x := 3x+1





A 2-MINUTE PROOF
OF THE

2nd-MOST IMPORTANT THEOREM
OF THE

2nd MILLENNIUM

by Doron Zeilberger

Written: Oct. 4, 1998 



then the coefficients are estimated as
Function minimization

so that the variance-covariance matrix is given by

a; = 2y0i - (y, + 3yo)/2, i=\,...,n
ba = 2(j>,- + y0- 2y0l), i=l,...,n
bu = 2(yu +y0- yOi - y0J), i ¥^ j ,

where y, is the function value at P; and ya that at Pl7.
The estimated minimum is then given by

and the information matrix is just B.
If Pi denotes the co-ordinates of .P, in the original

system, and if Q is the n x n matrix whose ith column
is />, — p0, then the minimum is estimated to be at

Pmin = Po
_ nrt-i'a.

The minimum value of the function is estimated to be

ymin = Qo — a'B~la.
The information matrix in the original co-ordinate
system is given by

(Q-'YBQ- 1

If normal equal-variance independent errors are involved
and the sum of squares of residuals is minimized, then
this matrix must be multiplied by 2a2, where as usual
a2 would be estimated by ymin/(N — n), N being the
total number of observations, and n the number of
parameters fitted.

In estimating B numerically it is necessary to steer a
course between two hazards. In one the simplex is so
small that (yu + j 0 — yOi — y0J) consists largely of
rounding-off errors incurred in calculating the y's. In
the other the simplex is so large that the quadratic
approximation is poor, and the b's are correspondingly
biased. If the method given in this paper is used, the
former hazard will usually be the important one, and
it may be necessary to enlarge the final simplex before
adding the extra points. A possible way of doing this
is to double the distance of each point /", from the
centroid until the corresponding function value exceeds
that at the centroid by more than a given constant.
The choice of this would depend on the rounding-off
error attaching to the evaluation of the function, and
would need to be at least 103 times that rounding error,
if acceptable estimates of the b's were to be obtained.
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An impossible program

Sir,
A well-known piece of folk-lore among programmers
holds that it is impossible to write a program which can
examine any other program and tell, in every case, if it
will terminate or get into a closed loop when it is run.
I have never actually seen a proof of this in print, and
though Alan Turing once gave me a verbal proof (in a
railway carriage on the way to a Conference at the
NPL in 1953), I unfortunately and promptly forgot the
details. This left me with an uneasy feeling that the
proof must be long or complicated, but in fact it is so
short and simple that it may be of interest to casual
readers. The version below uses CPL, but not in any
essential way.

Suppose T[R] is a Boolean function taking a routine
(or program) R with no formal or free variables as its
argument and that for all R, T[R] — True if R terminates
if run and that T[R] = False if R does not terminate.
Consider the routine P defined as follows

rec routine P
§L :if T[P]gotoL

Return §

If T[P] = True the routine P will loop, and it will
only terminate if T[P] = False. In each case T[P] has
exactly the wrong value, and this contradiction shows
that the function T cannot exist.

Churchill College,
Cambridge.

Yours faithfully,
C. STRACHEY.
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246 A. M. TURING [NOV. 12,

in«t fl(t(in«1),tt) «**• T h e n e x t complete
configuration is written down,.

a R, E in^t1(a) carrying out the marked instruc-
L) ce5(o»,.t>, y, x, u, w) t i o n s - T h e l e t t e r s u> v> w> x> V

are erased. -^anf.
i?) ce5(o», v, x, u, y, w)

\nitx{N) ec5(ot>, v, x, y, u, w)

co c(anf)

8. Application of the diagonal process.

It may be thought that arguments which prove that the real numbers
are not enumerable would also prove that the computable numbers and
sequences cannot be enumerable*. It might, for instance, be thought
that the limit of a sequence of computable numbers must be computable.
This is clearly only true if the sequence of computable numbers is defined
by some rule.

Or we might apply the diagonal process. "If the computable sequences
are enumerable, let a/( be the n-th computable sequence, and let </>;l(ra) be
the ?n-th figure in au. Let /? be the sequence with \—<j>n(n) as its n-th.
figure. Since /3 is computable, there exists a number K such that
l—cf)ll(n) = <f)K(n) all n. Putting n = K, we have 1 = 2(f>K(K), i.e. 1 is
even. This is impossible. The computable sequences are therefore not
enumerable".

The fallacy in this argument lies in the assumption that § is computable.
It would be true if we could enumerate the computable sequences by finite
means, but the problem of enumerating computable sequences is equivalent
to the problem of finding out whether a given number is the D.N of a
circle-free machine, and we have no general process for doing this in a finite
number of steps. In fact, by applying the diagonal process argument
correctly, we can show that there cannot be any such general process.

The simplest and most direct proof of this is by showing that, if this
general process exists, then there is a machine which computes /?. This
proof, although perfectly sound, has the disadvantage that it may leave
the reader with a feeling that "there must be something wrong". The
proof which I shall give has not this disadvantage, and gives a certain
insight into the significance of the idea "circle-free". It depends not on
constructing /3, but on constructing fi', whose n-th. figure is <j>n{n).

* Cf. Hobson, Theory of functions of a real variable (2nd ed., 1921), 87, 88.

230 A. M. TUKING [Nov. 12,

ON COMPUTABLE NUMBERS, WITH AN APPLICATION TO
THE ENTSCHEIDUNGSPROBLEM

By A. M. TURING.

[Received 28 May, 1936.—Read 12 November, 1936.]

The "computable" numbers may be described briefly as the real
numbers whose expressions as a decimal are calculable by finite means.
Although the subject of this paper is ostensibly the computable numbers.
it is almost equally easy to define and investigate computable functions
of an integral variable or a real or computable variable, computable
predicates, and so forth. The fundamental problems involved are,
however, the same in each case, and I have chosen the computable numbers
for explicit treatment as involving the least cumbrous technique. I hope
shortly to give an account of the relations of the computable numbers,
functions, and so forth to one another. This will include a development
of the theory of functions of a real variable expressed in terms of com-
putable numbers. According to my definition, a number is computable
if its decimal can be written down by a machine.

In §§ 9, 10 I give some arguments with the intention of showing that the
computable numbers include all numbers which could naturally be
regarded as computable. In particular, I show that certain large classes
of numbers are computable. They include, for instance, the real parts of
all algebraic numbers, the real parts of the zeros of the Bessel functions,
the numbers IT, e, etc. The computable numbers do not, however, include
all definable numbers, and an example is given of a definable number
which is not computable.

Although the class of computable numbers is so great, and in many
Avays similar to the class of real numbers, it is nevertheless enumerable.
In § 81 examine certain arguments which would seem to prove the contrary.
By the correct application of one of these arguments, conclusions are
reached which are superficially similar to those of Gbdelf. These results

f Godel, " Uber formal unentscheidbare Satze der Principia Mathematica und ver-
•vvandter Systeme, I " . Monatsheftc Math. Phys., 38 (1931), 173-198.



Proof

• Imagine some program halt(p,x) that answers 
“yes” when p(x) halts and “no” otherwise.

• Construct the program

  alan(p) = if halt(p,p) says “yes”
                then “do nothing” forever
                otherwise answer “yes” 

 Consider the question halt(alan,alan).



Proof

• Imagine some program halt(p,x) that answers 
“yes” when p(x) halts and “no” otherwise.

• Consider halt(alan,alan)

  alan(alan) = if halt(alan,alan) says “yes”
                then “do nothing” forever
                otherwise answer “yes” 

 halt(alan,alan)?



Proof

• Imagine some program halt(p,x) that answers 
“yes” when p(x) halts and “no” otherwise.

• Consider halt(alan,alan)

  alan(alan) = if halt(alan,alan) says “yes”
                then “do nothing” forever
                otherwise answer “yes” 

 No answer: BAD



Proof

• Imagine some program halt(p,x) that answers “yes” 
when p(x) halts and “no” otherwise.

• Consider halt(alan,alan)

  alan(alan) = if halt(alan,alan) says “yes”
                then “do nothing” forever
                otherwise answer “yes” 

 Yes: alan(alan) = do nothing forever: BAD



Proof

• Imagine some program halt(p,x) that answers “yes” 
when p(x) halts and “no” otherwise.

• Consider halt(alan,alan)

  alan(alan) = if halt(alan,alan) says “yes”
                then “do nothing” forever
                otherwise answer “yes” 

 No: alan(alan) = yes: BAD



Size Proof
• Imagine some program halt(p,x) that answers “yes” 

when p(x) halts and “no” otherwise -- provided |p|,|
x| < n

• Consider halt(alan,alan)

  alan(x) = if halt(x,x) says “yes”
                then “do nothing” forever
                otherwise answer “yes” 

 |alan| = |halt|+c > n



Size Proof
• Imagine some program halt(p,x) that answers “yes” 

when p(x) halts and “no” otherwise -- provided |p|,|
x| < n

• Consider halt(alan,alan)

  alan(x) = if halt(x,x) says “yes”
                then “do nothing” forever
                otherwise answer “yes” 

 |halt| > n-c



Size Proof
• Imagine some program halt(p,x) that answers “yes” 

when p(x) halts and “no” otherwise -- provided |p|,|
x| < n

• Consider halt(alan,alan)

  alan(x) = if halt(x,x) says “yes”
                then “do nothing” forever
                otherwise answer “yes” 

 assuming almost nothing
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\, 
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0 F 
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+ TESTS-r I .p r’=r+l-\ 
, 

I 

Figure 1 (Redrawn from Turing’s original) 

Conference Discussion (from page 70 of the conference 
report) 

Prof. Hartree said that he thought that Dr Turing had 
used the terms “induction” and “inductive variable” in a 
misleading sense since to most mathematicians induction 
would suggest “mathematical induction” whereas the pro- 
cess so called by von Neumann and Turing often consisted 
of repetition without logical connection. Prof. Newman sug- 
gested that the term “recursive variable” should be used. Dr 
Turing, however, still thought that his original terminology 
could be justified. 

Comments 

The contributors to the conference discussion were 
M. H. A. Newman, then professor of pure mathematics 
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IFr-cn 

v  WITHY = r + 1 
IFsrr 
TO @ 
WlTHs’=s+l .- 

at Manchester University, who had played a leading 
part in setting up the Manchester computer project, 
and D. R. Hartree, then professor of mathematical 
physics at Cambridge University, who had been a 
moving force both at the NPL and at Cambridge. 

We now turn to a discussion of Turing’s proof 
method. Present methods might combine Turing’s 
Figures 1 and 2 into a flowchart that includes the 
assertions. Figure A is an annotated flowchart in the 
style of Floyd (1967). Two significant differences be- 
tween Figure A and Turing’s presentation may be 
observed. 

1. In the Floyd style, assertions may be any propo- 
sitions relating the values of the variables to each 

Figure 2 (Redrawn from Turing’s original) 
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Invariants

•

F. L. Morris & C. B. Jones * Turing Proof F. L. Morris & C. B. Jones * Turing Proof 
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I I 
I I 
I 

r5n r5n 15 rcn ‘STOP scr<n slr<n 
u = r! u = r! ll= ll = r! u = sr! 
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I I I A I I I I- I 

’ s:=s+l 

I 
I 
I 

r-en 
u=(r+l)r! 

u = sr! 
v  = r! 

Figure A 

other, whereas the format of Figure 2 tends to restrict remarks in Figure 2, the test at F is meant to compare 
one to giving an explicit expression for the value of r with the unincremented value of s. Just how this 
each variable of interest. Thus it is possible to express, test is to be implemented, s being no longer the con- 
for example, the inequality r I n, which strictly speak- tents of any location, is presumably left to the coder’s 
ing is necessary for inferring the u = n! claim at D ingenuity. 
from u = r! (holding at C) and r 2 n (shown by arrival Turing’s convention here-that the increase of s 
at D from C). (Note, that Turing speaks of giving, in need not coincide with execution of the box “s’ = s +’ 
the upper part of Figure 2, “restrictions on the quan- 1”-cannot be regarded as happily chosen; indeed, the 
tities s, r”; these do not appear, however.) notation of Figure 1 must probably be considered as 

2. In Figure 1 the contents of the individual boxes potentially ambiguous standing on its own, because 
(e.g., “r’ = r + 1”) are best regarded as specifications there seems to be no clear rule about when the addition 
to be met by coding: “achieve that r on exit is one of a prime to a letter makes a difference. We conjec- 
more than r on entry.” The corresponding assignment ture, however, that the flow diagram (Figure 1) was 
statement in Figure A (“r := r + 1”) is to be thought drawn just for the occasion, because “there is no 
of as a directly executable statement; the level of coding system sufficiently generally known,” and that 
necessary representation of quantities and implemen- what Turing had in mind to be passed between the 
tation of operations lying below the atomic statements programmer and the checker was the actual code of a 
of Figure A is entirely ignored. In particular, the Floyd routine, marked with letters A, B, . . . , together with 
notation makes no use of primed variables; every use an equivalent of Figure 2. There would then be no 
of a variable in an expression, whether in a box or in appearance of inconsistency between the code corre- 
an assertion, is to be understood as referring to the sponding to box G, incrementing the contents of lo- 
current value. cation 27, and the behavior of the variable s, belonging 

The most striking discrepancy between the two solely to the assertions, which increased-as might 
versions of the flowchart arises form this last point. seem more natural to the programmer-at the point 
Turing chooses to regard the box at G (“s ’ = s + 1”) of closure of the loop it controlled. 
as having no effect on the values of his variables, but An additional, minor, remark on the proof concerns 
instead as causing location 27 to contain s + 1 in place the intended domain of the program. It would appear 
of s, an outcome that in Floyd’s notation one would to compute factorial zero correctly, but the assertions 
have no means of expressing. As is clear from the are not framed so as to prove this. The necessary 
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Invariants
r := 1
u := 1
loop     v := u

until r≥n
s := 1
loop   u := u+v

s := s+1
while s≤r
repeat 

1≤r≤n

1≤s≤r+1





Turing’s Proof
• The checker has to verify that the process comes 

to an end. Here again he should be assisted by 
the programmer giving a further definite assertion 
to be verified. This may take the form of a 
quantity which is asserted to decrease 
continually and vanish when the machine stops. 
To the pure mathematician it is natural to give an 
ordinal number. In this problem the ordinal might 
be (n - r)ω2 + (r - s)ω + k. A less highbrow form 
of the same thing would be to give the integer 
280(n - r) + 240(r - s) + k.
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A Closer Look at Termination 
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Summary. Several methods for proving that computer programs terminate are 
presented and illustrated. The methods considered involve (a) using the "no-infini- 
tely-descending-chain" property of well-founded sets (Floyd's approach), (b) bounding 
a counter associated with each loop (loop approach), (c)showing that some exit of 
each loop must be taken (exit approach), or (d) inducting on the structure of the data 
domain (Burstall's approach). We indicate the relative merit of each method for pro- 
ring termination or non-termination as an integral part of an automatic verification 
system. 

Introduction 
In recent years a considerable number of verification systems for proving 

correctness of computer programs have been developed (e.g., [7, t2, t5, t9]) 
but, surprisingly, very few of these t ry  to treat the problem of termination. (One 
of the interesting exceptions is the work of Cooper [6].) A program is said to 
terminate if for all legal input values the execution of the program will eventually 
reach a HALT statement. In this paper we give an overview of several possible 
methods for proving termination, and indicate which method seems to us to be 
most compatible with automatic verification systems. 

In Section t,  we outline the classic Floyd technique [10] for proving termina- 
tion, which uses the "no-infinitely-descending-chain" property of well-founded 
sets. We demonstrate two possible directions for overcoming some difficulties 
in practically applying the method. 

In Section 2, we introduce a loop approach to proving termination. In 
this approach, we associate a counter with each loop, reflecting the number of 
times the loop has been executed, and show that  all the counters are absolutely 
bounded from above. (A similar technique has been suggested by Elspas [8].) 

In Section 3, an exit approach is defined, where termination is shown by 
directly proving that  for each loop the conditions for exiting the loop must be 
true at some stage of the computation (see also Sites' Ph.D. thesis [t8]). 

Finally, in Section 4, we illustrate the possibility of proving termination 
along with correctness by using a technique suggested by Burstall [3]- In 
this technique, we show that if some property PA is assumed at a point A (in 
particular, the START point), we must eventually reach another point B (in 
particular, a HALT point), with some property qB true. This is shown by induction 
on the possible values of the data domain. 

In each section we t ry  to point out briefly the advantages and the disadvantages 
of each method. As indicated in Section 2, we consider the loop approach to be 
the method for proving termination which can be most easily integrated into an 
22 Acta Informatica, Vol. 5 



Greatest Common 

repeat

if m=n then return n

if m<n then n := n-m

if m>n then m := m-n



Method

• Find a measure that decreases with 
each iteration

• And cannot decrease forever



Loop Invariants

• Need to know that m and n are 
nonnegative



 A computational

 method 

comprises 

a set of states…

 In this way we can divorce abstract algorithms from particular 
programs that represent them.

Knuth (1966)
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terminal



Transition System
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O

Q



• An algorithm is a discrete state-transition 
system.

• Its transitions are a binary relation on states.

Discrete Steps



For any given input, the computation is carried out 
in a discrete stepwise fashion, without use of 
continuous methods or analogue devices.

Computation is carried forward deterministically, 
without resort to random methods or devices, 
e.g., dice.

Hartley Rogers, Jr.



Non-Example
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F 

[(y, ,yz)-(y, ..,yz*t) ] 
] 

START) 
4 

(,,.  

I(,, I [,-, ,- ,ol 

Fig. t. The "9t-function" program 

either Yz or y, alone are strictly monotonic, and are bounded. A glance at the 
program will show that such an attempt would fail since the two variables both 
increase and decrease in the loop. 

As a next heuristic step, we assume that a linear function involving Yz and y ,  
is required. That is, that  uA has the form 

o~. Y1+f l"  Y2+7 

for some constants x, r, and ~. By considering the two paths around the loop, and 
the requirement that there be a drop in the value of u A, we can see that 0t, r ,  
and ~, must fulfill 

a" Yl + r "  Y2 + 7 > ~" (Yl + t ~ ) + ft. (y, + 1) + ~ . . -  for the left path 
and 

o~. Y z + f l "  y z + v > a   9 (yl--  10) + f t .  (y~--t) + 7  .-. for the right path. 

Thus we have obtained a set of inequalities. 
Simplifying, we have 

0> 1 
and 

0 >  -- tO,t--ft. 

These may be solved; one (integer) solution is ~ = - - 2 ,  fl = 2t. Thus we have found 
that  for any u a of the form - - 2 y z + 2 1 y z + T ,  there will be a drop in the value of 
the (integer-valued) functions each time the loop is executed. 

In order to show that the resultant sequence is well-founded, we would like 
to choose the non-negative integers N as the domain W and fix 7 so that the values 
of u a will always be non-negative. For this purpose, we seek an upper bound a on 
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(a) int mccarthy (int n)
(b) { int c;
(c)     for (c = 1 ;  c !=  0; )  {
(d)         if  (n > 100) {
(e)             n = n - 10;
(f)             c--;
(g)         }  else {
(h)             n = n + 1 1 ;
(i)              c++;
(j)         }
(k)     }
(l)     return n;
(m) }



Solve for Decrease

• Suppose measure is a linear 
combination of the variables

• n > 100: an+bc > a(n-10)+b(c-1)

• n < 99: an+bc > a(n+11)+b(c+1)

• 11a+b < 0 < 10a+b



Artificial Variables
(a) int mccarthy (int n)
(b) { int c;  i=0; j=0;
(c)     for (c = 1 ;  c !=  0; )  {
(d)         if  (n > 100) {
(e)             n = n - 10;
(f)             c--;  i++;
(g)         }  else {
(h)             n = n + 1 1 ;
(i)              c++; j++;
(j)         }
(k)     }
(l)     return n;
(m) }



Infer Invariants

• c = j-i+1

• ...





König’s Lemma

• A tree is finite (has finitely many edges) 

                      if and only if                                              

• all nodes have finite degree 

and 

• all branches (simple paths) have finite 
length.



Binary Search 
• l := a

• r := b

• loop until l=r

• m := [(l+r)÷2]

• if y[m] ≥ x

• then r := ??

• else l := ???

• given:

• a ≤ b

• y[j] ≤ y[j+1]

• x=y[i], a ≤ i ≤ b

• unbounded 
integers



Binary Search 
• l := a

• r := b

• loop until l=r

• m := [(l+r)÷2]

• if y[m] ≥ x

• then r := m

• else l := m+1

• given:

• a ≤ b

• y[j] ≤ y[j+1]

• x=y[i], a ≤ i ≤ b

• unbounded integers

• invariants:

• a ≤ l ≤ r ≤ b

• y[l] ≤ x ≤ y[r]



Binary Search is Hard
• Don Knuth: the idea is comparatively straightforward; 

the details can be surprisingly tricky.

• Jon Bentley assigned it as a problem in a course for 
professional programmers. 90% failed even after 
several hours.

• accurate code is only found in 5 out of 20 textbooks.

• Bentley's own implementation (in his Programming 
Pearls) contains an error that went undetected for over 
20 years.

http://en.wikipedia.org/wiki/Jon_Bentley
http://en.wikipedia.org/wiki/Jon_Bentley


Termination
2. Games



Readings

• Floyd, “Assigning Meaning to Programs”

• “Proving Termination with Multiset 
Orderings”



Robert W. Floyd 

ASSIGNING MEANINGS TO PROGRAMSl 

Introduction. This paper attempts to provide an adequate basis for 
formal definitions of the meanings of programs in appropriately defined 
programming languages, in such a way that a rigorous standard is established 
for proofs about computer programs, including proofs of correctness, 
equivalence, and termination. The basis of our approach is the notion of 
an interpretation of a program: that is, an association of a proposition 
with each connection in the flow of control through a program, where the 
proposition is asserted to hold whenever that connection is taken. To prevent 
an interpretation from being chosen arbitrarily, a condition is imposed on 
each command of the program. This condition guarantees that whenever 
a command is reached by way of a connection whose associated proposition 
is then true, it will be left (if at all) by a connection whose associated 
proposition will be true at that time. Then by induction on the number of 
commands executed, one sees that if a program is entered by a connection 
whose associated proposition is then true, it will be left (if at all) by a 
connection whose associated proposition will be true at that time. By this 
means, we may prove certain properties of programs, particularly properties 
of the form: "If the initial values of the program variables satisfy the 
relation Rit the final values on completion will satisfy the relation Rz." 
Proofs of termination are dealt with by showing that each step of a program 
decreases some entity which cannot decrease indefinitely. 

These modes of proof of correctness and termination are not original; 
they are based on ideas of Perlis and Gorn, and may have made their 
earliest appearance in an unpublished paper by Gorn. The establishment 
of formal standards for proofs about programs in languages which admit 
assignments, transfer of control, etc., and the proposal that the semantics 
of a programming language may be defined independently of all processors 
for that language, by establishing standards of rigor for proofs about 

1 This work was supported by the Advanced Projects Agency of the Office of 
the Secretary of Defense (SD-146). 
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Invariants
r := 1
u := 1
loop     v := u

until r≥n
s := 1
loop   u := u+v

s := s+1
while s≤r
repeat 

r := r+1
repeat

1≤r≤n

1≤s≤r+1



Double Induction

• Inner loop

• Outer loop



Orderings
nPartial ordering

nIrreflexive

nTransitive

nAsymmetric



Hasse Diagram



Orderings (Well-founded)

nPartial ordering

nIrreflexive

nTransitive

nAsymmetric

nWell-founded

nNo infinite decreasing chains



Well-Founded 
• N, >

• Z-, <

• Z, ???

• Finite trees, subtree

• NxN, lexicographic

• ∑*, subword

• ∑*, lexicographic ???



Couples

(a,b) > (a’,b’)

• Component-wise: a>a’ & b≥b’ or a≥a’ & b>b’

• Lexicographic: a>a’ or a=a’ & b>b’

• Reverse lexicographic: a>a’ & b=b’ or b>b’

• Pairs of pairs: (1,0) > (0,(1,0)) > ...



Mixed Couples

If V and W are well-founded, then their pairs 
VxW are well-founded lexicographically.



Ackermann

• Termination of recursion

• Induction on (m,n)



Turing’s Program
r := 1
u := 1
loop     v := u

until r≥n
s := 1
loop   u := u+v

s := s+1
while s≤r
repeat 

r := r+1
repeat

(n-r,r-s)
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Dutch National Flag



Dutch National Flag



Flag Problem



Dutch National Flag



Dutch National Flag



Dutch National Flag
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Dutch National Flag



Dutch National Flag



Dutch National Flag



Ackermann’s 

A(0,n) = n+1

A(m+1,0) = a(m,1)

a(m+1,n+1) = a(m,a(m+1,n))



Ackermann

HI~;(;UIISI()N ANI) IT17;PIATION 
In lhe N(wemher,  V,)(i3 issue of C(nnm~nicalion.% James  A. Ayer 

le : tvPs  t ln :~nswerc( l  t h e  l , r u th  of t h e  chdnI tha t  "all r e e u r s i v e  r e l a -  
t i o n s  (:a~ be reduced 1o i-e(:|ll'l'(![l(~(~ o r  i t c I ' [ t t i v e  rekt t ions."  The 
chdm is indeed true, and i~l this n(~te [ would like to present  as 
much (,f tim (,vial(race as is pra(:ti(:al ill a smMl space alld for a 
~(', rl (!1':1 ] :tildJ(~tiCe, 

A ] { h l ) l l g h  t l le (liscussiol~ here is l imiied to [urlctiotls el ileal 
neKat ire intPgPrs, I hP, resulls exteltd i o  [ t l l /q t ioI IS  ( f I'e{t[ I tU l l lbe r s  
with(ml an} Kreai ([ifli(:ulty. The extension, however,  i~,volves 

t nerv with which il sPems inappropriate  to chl t ter  this dis 
<:II:--:SiO/I. 

1. / ' rD ,  iUrc Ih;c,raivc I,'ur~cli(ms. The class of primitive re- 
cursive ful, : t i(ms may be defined a.s f(dlows. The "ini t ia l  fune- 
I i o l l S  '~ 

,S()~) n "}- ] (stt(;cessor function) 

(£'(~t~ , " "  , *+~) a. (eonstant  functi(ms) 

/(~l, , , ' ,  , n; , "'" , *l~.) .... n,. ( identi ty functions) 

zre pr imii ivc reeu/'sive. Any fun(dion formed by subs t i tu t ions  o7 
pr in i i l iv ( !  re(Hli'siv(~ funct ions in (!Itch ot i ier is p r im i t i ve  rec, ursive. 
l,'ilul, ll,y, It l ly f l l l l ( : i ion j'(zG 7,% , " ' "  , 'nlk) is lWimi l ive rccursive if 
i l  ('.Hi I)e (tel|nell in |(Wills ol' prJni i l ive recurs|re t'tlnctions ( . l ( i ~  
' ' '  , t 'k) a l l d  h,(, i l  , ' ' *  , , /z! '2) b y  l h e  t'olh>wing r e t l t i r s i o l i  s c t i e l l i e ;  

j'(l), 'm,i , " "  , n./~) ...... g(m,i , ' "  , 're, k), 

f (n -FI ,  m, , . - ,  , ma:) == h,(u, j'(n., 'm, , ,-" , 'm4~), .mi . . . .  /~m~), 

Wh(!r(~ the sel of v,~t/'iabh!s h i , ,  " '  , 're, s; tiit~y I)e empty  and the 
f l l i i l ! l io l i  q s n i p l y  It (~OliSlltiil, (This def in i t ion is froin 13, I ), 219t.) 

] )esl)il e i l s  ip lN i ren l ly  niod(!st I~eginnin~s, lhe class of In ' iuf i t ive 
reel lrsive fl ln(Hions is ex l ren ie ly  r icl i  nild ext,elisive. The c l iar t  
<lpll(tsile llage 3~ o f  {41 wi l l  give soliie idea of ti le l i rs i  slops iiil 
bu ih l ing  a, ' q i l n ' a r y "  of usel'til In ' in i i i ive rectirsive funct ions, i l /- 
(dtl( l ing eXl l (ment ia l i (m an(l S(Ulare reid. AS a f u r l h e r  exiHFq)iej 
lhe ful iPI ion ])(H) wtiose vMUe for itll in leger '#t, is lhe n l i l  ( l ig i t  of 
l l ie (h!ciln:il ex l i a ,  l i s i l i i l  of ",<r iS ~t In'indt,ive i'el;lirsiv/'~ f( lnct iol l  121 
In t'acl,, 1 w .uh l  ven lure  to say |ha t  ;i, ll funct ions ever eva, lua(ed 
Oi l  eOill|)lll(q's SO far have been prJ ln i l ive l'ecltrsivc, w i th  one ex, 
C I p  O11 wli ieh is discussed l:t, ier. 

N o w  c l e a l ' ] y  l i  r e ( ~ l l r s i v e  S l l } H ' ( ) l l l i l i e  iS l I O I  l i c e ( l e d  ( o  e v a | t i t t l e  a 
funcl ion wilh a. pr imi l ive  r(!(~ursiv(! (lefini(i(m, ~s given ab()ve. 
[l'he sinlpie i iel 'ai ive pr(~c(!ss (les(:ribe([ i l l leoll/rl:,xN IV by 

INTI~;(II';I~, I, 'UN(:T ()N F(N,  M1, . , ,  , M K )  

I N l l  G l , h  G, Ill 

F = G ( M I ,  . . .  , M I ( )  

[ = 0 

GO TO 2 

1 1 ~  I + 1  

F = I [ ( [ ,  F ,  MI ,  . . .  , M K )  

2 ll," (I , I ,T .  N )  ( ' , ()  T ( )  1 

11 F, TU IIN 

1!; N I ) 

does the job, ~md wi th  greater  efficiency thtm a reeurs ive  sub-  
routine.  

2. General Recursive Functions. There  exist  func t ions  theft 
can be defined by recursions of various kinds,  bu t  no t  by  any re- 
cursion tha t  can be reduced to the pr imi t ive  reeurs ion scheme 
given above. So the general form of p rogram for compu t ing  a 
pr imit ive  recursivc funct ion by an i t e ra t ive  process  fails for s u c h  
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fu~,ctions, However ,  a basic theorem o[ t( leone I;L ('.h. X[, normal 
form theorem] s ta tes  t h a t  there is a geuer;d iier:t.iive process 
which applies e,v(m to reeurs ively  (]cfiu(3d rue(q ions which ~tre 
not  pr imi t ive  rccursive,  t-!afertuim't(lS;, th is  t)ro(~ess is l':u' t00 
complex to descri |)e here, nor is i~ t)r:w, ii(:id t(~ imp /eme td  on any 
exist ing computer ,  

'.['hc next  best  evidence i can p re se t s  is the (me mmprimitiw~ 
recursive funct ion thM, [ kmm' h~ts been p r o g r a m m e d  for a com- 
puter ,  Tiffs fune.tion, knowu a,s Ac:kernuutn's fuuc:tion after its 
creator  [11, was cons t ruc ted  solely' te prove the oxis lencc of n0/> 
pr imit ive  recursive funetim~s, Var ious  defiNilions are available, 
giving sl ight ly different  vers ious of the I!u,mtiou, b u t  tit(' simplest 
is the  f o l l o w i n g :  

I f  m -= 0, 

I f ' m  ~ 0, n = 0, 

I f  'ra, n ¢ O, 

ACKEII.  (0, n) .... n i - 1  

ACKF, I'[ (m, 0) =: ACKI!;H. ('m,--l, 1) 

ACKEII ,  (m, n)  

= .ACKER ( m - l ,  ACKI!; | I  fin, n - l ) )  

The double recurs ion on b o t h  m and  n canno t  be expresBed ill 
terms of pr imit ive  recursion.  

A recursive subrout ine  to eva lua t e  the func t ion  can be coded 
direct ly from the  definit ion.  This  has  been done  for m o s t  program> 
m i n t  languages wi th  recurs ivc  subrou t ine  capab i l i t y ,  and run 
¼'or checkout,  demons t r a t i on  or the sheer  p leasure  of watching it 
at  work. (And " w o r k "  is the  word;  if the  reader  is not  [amilLr 
with the funct ion,  he might  Lake five minu t e s  to compute ,  say, 
ACKER (2, 3) from the  defini t ion,  using back  subs t i tu t ion . )  

Now Mthough the  general  i t e ra t ive  process  for reeurs ive  rune- 
thins is not usable, its exis tence sugges ts  t ha t  for parl, ieular func- 
t ions,  special i tera t ive  proecsses may  exist  which arc  re~Ls(mable 
arm economical. Such a process  for A C K E l t  is g iven ia Figure 1. 

The reason for not  expect ing a wdue  of M grea te r  thrill 5 ]~ 
tha t  all funct ion values for M ~ 6 ~re too large for the  regist.ers 
t)f any exist ing word-organized compute r ,  and  even  for M = ,I, 
N = 0, l are the only tolerable cases. 

I t  would be ins t ruct ive  to p resen t  actual  niaeli ine t imes  fur all 
evaluat ion of A(3KEI/ bo th  i te ra t ive ly  i~. l!'owruAN iX' zmd 
recursively in Ai,(Jol, or 1ASP. This  would be ~ (h.alnalic ob.ie 0i 
lesson in the iMterently greater  etlieieucy el' the, i l e r a t i ve  scheum, 
the cost of housekeeping in recursive subrout ines ,  and  the value 
of the code oI)timizl~tion in a modern  FotvrmxN c(mipiler.  15iifor- 
lured;ely, there  are two dilticulties involved in do ing  this.  First, 
the time for the i tera t ive  scheme is roughly  l inear  in t h e  function 
value being computed ,  while the recurs ive  meUJod varicB ill a 

5 

4 
c 
5 

INI~GER FUNC~IION ACKER(N* N) 
COI~i['UIL ACKERNANN F U N C I ' I o N ~  U E F i N E D  SY 

A C K E R ( 0 r  N)  : N + !  
A C K E R ( N + I p  O} = ACKER(M~ 1 )  , 
A C K E R ( N + i ~  N + I )  = ACKER(Np A C K E R ( M t l ,  N ) )  • 

S I Z E  OF VALUE AND PLACE TABLES I S  ONE MONF T;-tAN LARGEST M EXPECTED' 
iNIEGEN VALUE(6) r PLACE(6) 

IES [  ~OR ZERO M , 
IF (M .NE. O) GO TO I 
ACKER = N + l  
REIURN 

NON-ZLRO M , IN IT IALIZE FOR iTERATION. 
VALUE = I 
PLACE : 0 

ITERA]ION LOOP. OET NEW VALUE. 
VALUE : VALUE+I 
PLACE ; PLACE+I 

PROPAGATE VALUE. 
UO 4 I : I , N  

1E (PLACE(1) .NE. i )  60 [0 5 
I N I I I A T E  NEW LEVEL. 

VALUEiI+I )  = VALUE 
PLACE(I÷I) = 0 
It- { I  .EQ. M) GO [0 5 
Gu TO 2 
IF IPLACEIi)  .NL.  VALUE( I+ I ) )  GO TO 2 
VALUE(I÷ i)  = VALUE 
PLACE(I~i} = PLACE( I+ I )+ I  

CH~C~, FOR END OF ITERATION. 
iF (PLACE(M*i) ,N~. N) GO TO 2 
ACHES = VALUE 
HI IURN 

E N {) 

FFm. 1 

V o l u m e  8 / N u m b e r  2 / F e b r u a r y ,  1965 

r 
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Ackermann

•  a(4,4) = 2↑7-3

•  Computation is much longer

•  Fact: a(m,n) > m+n ≥ m,n



Double Induction

• Call by value termination

• Assume terminating for smaller m

• Assume terminating for same m and 
smaller n



Primitive Recursion

• 0

• +1

• projections

• composition

• f(x,n) := if n=0 then g(x) else h(f(x,n-1),x,n-1)



Ackermann’s Function

• A(0,n) = n+1

• A(m+1,0) = A(m,1)

• A(m+1,n+1) = A(m,A(m+1,n)) 



A(m,n) > m+n

• Induction on (m,n)

• A(0,n) = n+1 > n

• A(m+1,0) = A(m,1) > m+1

• A(m+1,n+1) = A(m,A(m+1,n))                        
> m+A(m+1,n) ≥ m+n+2



x>y ⇒ A(m,x) > A(m,y)

• Induction on (m,x)

• A(0,x) = x+1 > y+1 = A(0,y)

• A(m+1,x+1) = A(m,A(m+1,x)) > A(m,A(m
+1,y)) = A(m+1,y+1)



x>y ⇒ A(x,n) > A(y,n)

• Induction on (x,n)

• A(x,n) > x+n > n = A(0,n)

• A(x+1,0) = A(x,1) > A(y,1) = A(y+1,0)

• A(x+1,n+1) = A(x,A(x+1,n))          > 
A(y,A(x+1,n)) > A(y,A(y+1,n))            = 
A(y+1,n+1)



A(m+n+2,x) > 
• Induction (m+n,x)

• A(n+2,x) > A(n+1,x) ≥ A(n,x)+1 = A(0,A(n,x))

• A(m+n+2,0) = A(m+n+1,1) > A(m,A(n-1,1)) = 
A(m,A(n,0))

• A(m+n+2,x+1) = A(m+n+1,A(n+m+2,x)) > 
A(m,A(n,A(m,x))) > A(m,A(n,x+m)) ≥ A(m,A(n,x
+1))



A isn’t Primitive 
• Denote x = x1,...,xk and xm = max xj

• Say Ai  > g  if A(i,xm) > g(x) for all x

• Easy: A0 > 0; A1 > +1; A0 > proji

• Suppose f(x) = h(g1x,...,gkx), As > g1,...,gk,h

• A2s+2 > f: A(2s+2,x) > A(s,A(s,x))                      



A isn’t Primitive 
• Suppose As > g,h and                                                      

f(x,n)=if n=0 then g(x) else h(f(x,n-1),x,n-1)

• A(r,n+xm) > f(x,n), r = 2s+1, by induction on n:

• f(x,0) = g(x) < A(s,xm) < A(r,0+xm)

• f(x,n+1) = h(f(x,n),x,n) < A(s,max{f(x,n),n,xm}) < 
A(s,A(r,n+xm)) < A(2s,A(r,n+xm)) = A(r,n+1+xm)

• f(x,n) < A(r,n+xm) < A(r,2N+3)= A(r,A(2,N))< A(r+4,N)       
where N = max{n,xm}



Basic A(m,n)
DIM s(tsize + 1)

   t = 1: s(t) = m
   DO
      c = c + 1
      m = s(t): t = t - 1
      IF m = 0 THEN
         n = n + 1
      ELSEIF n = 0 THEN
         t = t + 1: s(t) = m - 1
         n = 1
      ELSE
         t = t + 1: s(t) = m - 1
         t = t + 1: s(t) = m
         n = n - 1
      END IF
      IF t > d THEN
         d = t
         IF d > tsize THEN
            PRINT "failure": END
         END IF
      END IF
   LOOP UNTIL t = 0

A = n
END FUNCTION



Basic A(m,n)
DIM s(tsize + 1)

   t = 1: s(t) = m
   DO
      c = c + 1
      m = s(t): t = t - 1
      IF m = 0 THEN
         n = n + 1
      ELSEIF n = 0 THEN
         t = t + 1: s(t) = m - 1
         n = 1
      ELSE
         t = t + 1: s(t) = m - 1
         t = t + 1: s(t) = m
         n = n - 1
      END IF
      IF t > d THEN
         d = t
         IF d > tsize THEN
            PRINT "failure": END
         END IF
      END IF
   LOOP UNTIL t = 0

A = n
END FUNCTION



Basic A(m,n)
DIM s(tsize + 1)

   t = 1: s(t) = m
   DO
      c = c + 1
      m = s(t): t = t - 1
      IF m = 0 THEN
         n = n + 1
      ELSEIF n = 0 THEN
         t = t + 1: s(t) = m - 1
         n = 1
      ELSE
         t = t + 1: s(t) = m - 1
         t = t + 1: s(t) = m
         n = n - 1
      END IF
      IF t > d THEN
         d = t
         IF d > tsize THEN
            PRINT "failure": END
         END IF
      END IF
   LOOP UNTIL t = 0

A = n
END FUNCTION

s(1:tsize) 
lexicographically



Sequences

(a,b,c,...) > (a’,b’,c’,d’,...)

• Lex is bad : 10 > 010 > 0010 > ...

• Length-lex: 0010 > 010 > 001 > 10 > 01



Unbounded 

• Sorted-lex: 221 > 211110000 > 2111000000 > ...

• Sorted-lex: ∞∞21 > ∞88880 > 9998888000 > ...



Sorted Sequences
• s11 ≥ s12 ≥ s13 ≥ ... ≥ s1j ≥ ...

• s21 ≥ s22 ≥ s23 ≥ ... ≥ s2j ≥ ...

• etc. ...

• Let j be first unstable column, changing at i

• s_1,1 = s_i,1 ≥ s_i,j > s_i+1,j 

• Consider rest: s[i+1..∞,j..∞] and continue



Harder A(m,n)
 t := 1

   s[t] := m
   loop
      c := c + 1
      m := s[t]
      t := t - 1
      if m = 0 
      then
         n := n + 1
      elseif n = 0 
      then
         t := t + 1
         s[t] := m - 1
         n := 1
      else
         t := t + 2
         s[t-1] := m - 1
         s[t] := m
         n := n - 1
      until t = 0

s can grow and grow

(sorted) lex doesn’t work



Harder A(m,n)
 t := 1

   s[t] := m
   loop
      c := c + 1
      m := s[t]
      t := t - 1
      if m = 0 
      then
         n := n + 1
      elseif n = 0 
      then
         t := t + 1
         s[t] := m - 1
         n := 1
      else
         t := t + 2
         s[t-1] := m - 1
         s[t] := m
         n := n - 1
      until t = 0

{ 
∑ 3

Ns[j]+
N
n

N:=a(m,n)



Well-Orderings

• a b c ...

• a b c ... ∞

• a b c ... 0 1 2 ...

• a0 a1 a2 ... b0 b1 b2 ... c0 c1 c2 ... ...

• 000 001 002 ... 010 011 ... 020 ... 100 



Chocolate Bar

• Yumm (click here)

http://www.cut-the-knot.org/proofs/chocolad.shtml
http://www.cut-the-knot.org/proofs/chocolad.shtml










Before & After

• n ↝ ⎣n/2⎦ , ⎡n/2⎤    (n>1)



Before & After

• 1 ↝

• n ↝ ⎣n/2⎦ , ⎡n/2⎤    (n>1)              



Before & After

• 1 ↝

• n ↝ 1 , n-1    (n>1)



Before & After

• 1 ↝

• n ↝   i , n-i    (n>1, i>0)



Before & After

• m ↝

• n ↝ n-1 , n-1    (n>1, i>0)



Proof by Cases

A[x]

-----------------

A[true], A[false]



Before & After

• 1 ↝

• n ↝ i , j    (0<i,j<n)



Before & After

• 1 ↝

• n ↝ i , j , k    (0<i,j,k<n)



Before & After

• 1 ↝

• n ↝ n1 , n2 , ..., nk    (0<ni<n)



A tree is finite (has finitely many 
edges) 

                      if and only if                                              

all nodes have finite degree 

and 

all branches (simple paths) have 

Konig’s Lemma



Billiards



Smullyan’s Billiards



Multiset (Bag) 

>

>



Multiset (Bag) 

>

>
Well-founded

by
König’s Lemma



Harder A(m,n)
 t := 1

   s[t] := m
   loop
      c := c + 1
      m := s[t]
      t := t - 1
      if m = 0 
      then
         n := n + 1
      elseif n = 0 
      then
         t := t + 1
         s[t] := m - 1
         n := 1
      else
         t := t + 2
         s[t-1] := m - 1
         s[t] := m
         n := n - 1
      until t = 0

Bag of pairs
(s[i],∞)   i<t
(s[t],n)     



Nested Matryoshka 



Nested Bags



Nested Ordering

>

>



Nested Ordering

>

>



Hydra





Hercules’ Second Labor



	 Each time Hercules bashed one of Hydra's heads, 
Iolaus held a torch to the headless neck. 

    After destroying eight mortal heads, Hercules 
chopped off the ninth, immortal head, which he 
buried at the side of the road from Lerna to Elaeus, 
and covered with a heavy rock. 





Hydra vs. Hercules



Hydra vs. Hercules



Hydra vs. Hercules



Hercules > Hydra

>



Hercules > Hydra

>



Hercules > Hydra

>

{{o{{ooo}o} {oo{oo}} {o{oooo}o} {oo}} >         {{o{{ooo}o} 
{o{oo}} {o{oo}} {o{oo}} {o{oooo}o} {oo}}



142

Hercules Defeats Hydra

• Cannot be proved in Peano Arithmetic 
[Paris & Kirby]

• Requires induction up to ε0

• Natural numbers do not suffice

• Sophisticated variants require more 



Termination
3. Bigger & Bigger



>

>
Well-founded

by
König’s Lemma



>

>



Well-Founded 

∀x. [∀y<x. P(y)] ⇒ P(x)
∀x. P(x)



Ordinals
0 < 1 < 2 < ...

< ω < ω+1 < ω+2 < ...

< ω2 < ω2+1 < ... < ω3 < ... < ω4 < ...

< ω2  < ω2+1 < ... < ω2+ω < ω2+ω+1 < ...

< ω3  < ω3+1 < ... < ω4  < ... < ω5  <... 
ω ωω



Bags of Bags

• An empty bag is worth 0

• A bag containing bags worth αi, is worth 
∑ωαi



Goodstein Step

• Increment base & decrement number

• 4 : 22

• 26 : 33 -1 = 27-1 = 26 = 32 + 32 + 3 + 3 + 2

• 41 : 42 + 42 + 4 + 4 + 1



Goodstein 4

4, 26, 41, 60, 83, 109, 139, 173, 211, 253, 299, 348, 
401, 458, 519, 584, 653, 726, 803, 884, 969, 1058, 
1151, 1222, 1295, 1370, 1447, 1526, 1607, 1690, 1775, 
1862, 1951, 2042, 2135, 2230, 2327, 2426, 2527, 
2630, 2735, 2842, 2951, 3062, 3175, 3290, 3407,..., 
11115, 11327,..., 40492,40895,..., 154349, 

162129585780031489, 162129586585337855,         
3⋅2 402653210−1, ......................, 2, 1, 0



Goodstein 19

• 19, 7625597484990, ~1.3x10154, ...

•



Goodstein Step

• Increment base & decrement number

• 4 : 22

• 26 : 33 -1 = 27-1 = 26 = 32 + 32 + 3 + 3 + 2

• 41 : 42 + 42 + 4 + 4 + 1



Goodstein Step

• Base is a bag (and the whole thing is in a bag)

• 22 is {{{}}}

• 32 + 32 + 3 + 3 + 2 is {{2},{2},{},{},2}

• 42 + 42 + 4 + 4 + 1 is {{2},{2},{},{},1}



Goodstein 16
g16(2) = 16 = 22^2

g16(3) = 33^3-1 = 2∙32∙3^2 + 2∙3 + 2 + 2∙32∙3^2 + 2∙3 + 1                  
+ 2∙32∙3^2 + 2∙3 + 2∙32∙3^2 + 1∙3 + 2 + 2∙32∙3^2 + 1∙3 + 1                    
+ 2∙32∙3^2 + 1∙3 + 2∙32∙3^2 + 2 + 2∙32∙3^2 + 1 + 2∙32∙3^2               
+ 2∙33^2 + 2∙3 + 2 + 2∙33^2 + 2∙3 + 1 + 2∙33^2 + 2∙3 + 2∙33^2 + 1∙3 + 2 
+ 2∙33^2 + 1∙3 + 1 + 2∙33^2 + 1∙3 + 2∙33^2 + 2 + 2∙33^2 + 1 + 2∙33^2 
+ 2∙32∙3 + 2 + 2∙32∙3 + 1 + 2∙32∙3 + 2∙31∙3 + 2 + 2∙31∙3 + 1 + 2∙31∙3 
+ 2∙32 + 2∙31 + 2 = 7625597484986

a(4) = 50973998591214355139406377.



Goodstein 16

g16(2) = 16 = 22^2

g16(3) = 3[1000]-1 = 2∙3[222] + 2∙3[221] + 2∙3[220] + 
2∙3[212] + 2∙3[211] + 2∙3[210] + 2∙3[202] + 2∙3[201] + 
2∙3[200] + 2∙3[122] + 2∙3[121] + 2∙3[120] + 2∙3[112] + 2∙3[111] + 
2∙3[110] + 2∙3[102] + 2∙3[101] + 2∙3[100] + 2∙3[022] + 2∙3[021] 
+ 2∙3[020] + 2∙3[012] + 2∙3[011] + 2∙3[010] + 2∙3[002] + 
2∙3[001] + 2∙3[000] = 7625597484986

where [abc] is the base 3 representation



Goodstein 16
g16(2) = ωω^ω

g16(3) = 2∙ω2∙ω^2 + 2∙ω + 2 + 2∙ω2∙ω^2 + 2∙ω + 1 + 2∙ω2∙ω^2 + 2∙ω 
+ 2∙ω2∙ω^2 + 1∙ω + 2 + 2∙ω2∙ω^2 + 1∙ω + 1 + 2∙ω2∙ω^2 + 1∙ω + 
2∙ω2∙ω^2 + 2 + 2∙ω2∙ω^2 + 1 + 2∙ω2∙ω^2 + 2∙ωω^2 + 2∙ω + 2 + 
2∙ωω^2 + 2∙ω + 1 + 2∙ωω^2 + 2∙ω + 2∙ωω^2 + 1∙ω + 2 +        
2∙ωω^2 + 1∙ω + 1 + 2∙ωω^2 + 1∙ω + 2∙ωω^2 + 2 + 2∙ωω^2 + 1 + 
2∙ωω^2 + 2∙ω2∙ω + 2 + 2∙ω2∙ω + 1 + 2∙ω2∙ω + 2∙ω1∙ω + 2 + 
2∙ω1∙ω + 1 + 2∙ω1∙ω + 2∙ω2 + 2∙ω1 + 2



Goodstein

• Cannot be proved terminating in Peano 
Arithmetic



>



Hercules Defeats 

• Cannot be proved in Peano Arithmetic 
[Paris & Kirby]

• Requires induction up to ε0

• Natural numbers do not suffice

• Sophisticated variants require more 
powerful systems [Friedman]



Hydra Step

• Every head is an empty bag 

• Every node (including the ground) is a bag of 
its children

• Each step replaces some internal bag with 
some number of smaller bags



Hydra Step

• Heads are worth 0

• Every node (including the ground), with 
children worth αi, is worth ∑ωαi

• The kth step replaces a term ωα+1 with ωαk

• But if a head sprouting from the ground is cut, 
the total decreases by 1



Hercules Defeats Hydra

• Cannot be proved in Peano Arithmetic 
[Paris & Kirby]

• Requires induction up to ε0

• Natural numbers do not suffice

• Sophisticated variants require more 



Termination
4. Well-Founded Orderings









Amoebae

A.2 Multisets 179

root

!!!!!!!!!!!!!!!

"""""""""""""""""

s1 s1

##
##

##
##

#

$$
$$

$$
$$

s2

s′1 . . . s′k s2

deleted

Figure A.2: Labelled tree for M3 ≺# M2 ≺# M1

of a sequence of such steps (a ‘life’) of an amoebae colony is given in Figure A.3.
Prove that a colony of amoebae has only a finite life.

amoeba colony

...

life of amoeba colony

Figure A.3: Amoebae

Next, we extend the capabilities of amoebae by allowing them to reproduce.
Two amoebae which can touch each other may reproduce, thereby sharing their
outer membrane, and making arbitrarily many copies of their sons (as suggested
in Figure A.4). In particular, an amoeba is allowed to multiply its sons and retain
its outer membrane, while ‘eating’ another amoeba. Show that even together with
this second rule of activity, each colony must eventually terminate.



Fission

A.2 Multisets 179

root

!!!!!!!!!!!!!!!

"""""""""""""""""

s1 s1

##
##

##
##

#

$$
$$

$$
$$

s2

s′1 . . . s′k s2

deleted

Figure A.2: Labelled tree for M3 ≺# M2 ≺# M1

of a sequence of such steps (a ‘life’) of an amoebae colony is given in Figure A.3.
Prove that a colony of amoebae has only a finite life.

amoeba colony

...

life of amoeba colony

Figure A.3: Amoebae

Next, we extend the capabilities of amoebae by allowing them to reproduce.
Two amoebae which can touch each other may reproduce, thereby sharing their
outer membrane, and making arbitrarily many copies of their sons (as suggested
in Figure A.4). In particular, an amoeba is allowed to multiply its sons and retain
its outer membrane, while ‘eating’ another amoeba. Show that even together with
this second rule of activity, each colony must eventually terminate.



180 Mathematical background

fusion

fusion

Figure A.4: Fusion of two amoebae



Colony Dies Out
• depth(o) = 0

• depth( a1 ... an ) = 1+max{depth{ai}}

•  { (depth(a),|a|) : subcolony a }

• outer fission: depth decreases

• fusion: size decreases



Colony Dies Out

• d(a) = depth(a)

• #d(a) = number in a of depth d

•  { (d(a), #d(a)(a), #d(a)-1(a),...) : colony a }

• fission: depth decreases

• fusion: size decreases



Big Picture

• Programs are state-transition systems

• Choose a well-founded order on states

• Show that transitions are decreases



Real Picture

• Programs are state-transition systems

• Choose a function for “ranking” states

• Choose a well-founded order on ranks

• Show that transitions always       
decrease rank



Imaginary Picture

• Programs are state-transition systems

• Choose a function for “ranking” states

• Choose a well-founded order on ranks

• Show that transitions eventually 
decrease rank



Nested Loops
r := 1
u := 1
loop     v := u

until r≥n
s := 1
loop   u := u+v

s := s+1
while s≤r
repeat 

ω2 (n - r) + ω(r - s) + k



Per Iteration
r := 1
u := 1
loop     v := u

until r≥n
s := 1
loop   u := u+v

s := s+1
while s≤r
repeat 

ω(n-r)+r+1-s



Lexicographic
r := 1
u := 1
loop     v := u

until r≥n
s := 1
loop   u := u+v

s := s+1
while s≤r
repeat 

(n-r,r+1-s)



Invariants
r := 1
u := 1
loop     v := u

until r≥n
s := 1
loop   u := u+v

s := s+1
while s≤r
repeat 

1≤r≤n

1≤s≤r+1



Well-Founded 

• No infinite descending sequences

x1 > x2 > x3 > ...



Well-Founded 

∀x∈X. [∀y<x. P(y)] ⇒ P(x)
∀x∈X. P(x)

Why?

> is a wfo of X



David Gries

• Under the reasonable assumption that 
nondeterminism is bounded, the two 
methods are equivalent…. In this 
situation, we prefer using strong 
termination.







Contra-Gries

• To prove terminating with a natural 
(strong) ranking function requires ε0-

induction



All-Purpose Ranks
0 < 1 < 2 < ...

< ω < ω+1 < ω+2 < ...

< ω2 < ω2+1 < ... < ω3 < ... < ω4 < ...

< ω2  < ω2+1 < ... < ω2+ω < ω2+ω+1 < ...

< ω3  < ω3+1 < ... < ω4  < ... < ω5  <... 
ω ωω



Ordinals
0, 1, 2, ...,

ω, ω+1, ω+2, ..., 

ω2, ω2+1, ..., ω3, ..., 

ω2, ..., ω2+ω2+3, ..., ω3, ..., 

ωω, ..., ωωω, ...,

ε0, ε0+1, ..., ε02+ωω+ω2+3, ...,

ε1, ..., εε0
, ...,





Transition System

State

Transition



Discrete Transition System

Q0

QF

Q



Well-Founded 

• States Q

• Algorithm R ⊆ QxQ

• Well-founded order > on Q

• R ⊆ >



All-Purpose Ranking

• r : Q → Ord

• r(x) = sup { r(y)+1 : x → y }



Computation



Abstraction



Frank Ramsey



Ramsey’s Theorem

Infinite complete graph

Finitely colored edges

Monochrome infinite clique



Closure



Proof



Proof



Proof



Disjunctive Orders

• States Q

• Algorithm R ⊆ QxQ

• Transitive closure R+

• Well-founded orders > and ⊐ on Q

• R+ ⊆ > ∪ ⊐



Ranking Method

• States Q

• Algorithm R ⊆ QxQ

• Well-founded order ≻ on W

• Ranking function r : Q → W

• Define X > Y if r(X) ≻ r(Y)



Invariants

• States Q

• Algorithm R ⊆ QxQ

• Well-founded order ≻ on W

• Ranking function r : Q → W

• Define X > Y if r(X) ≻ r(Y)



Algorithmic System

State

Transition

P
r
o
g
r
a
m



Classical Algorithms

• Every algorithm can be expressed 
precisely as a set of conditional 
assignments, executed in parallel 
repeatedly.

if c then f(s1,...,sn) := t

if c then f(s1,...,sn) := t



Practical Method

• States Q

• Algorithm R ⊆ QxQ

• Well-founded order ≻ on W

• Ranking function r : Q → W

• Define X > Y if r(X) ≻ r(Y)









Color Code!

Bordeaux 

Azure 





Mortal (black) nodes on bottom and immortal (green)
nodes on top

· · ·

· · ·• • • • •

• • • • •



Mortal in each alone (dashed Azure or solid Bordeaux),
but immortal in their union

· · ·• • • • •



Infinite Separation!



Infinite Separation!



Enough?



Enough?



Enough?



Lazy Commutation!Jumping



Lazy Commutation!Jumping





Constriction + Laziness!Jumping



Constriction + Laziness!Jumping



Constriction + Laziness!Jumping



Termination
5. Well-Quasi Orderings



• Dt = 1

• Dc = 0

• D(x+y) = Dx+Dy

• D(xy) = yDx+xDy



CONTRIBUTIONS TO MECHANICAL MATHEMATICS 

May 27, 1967 

by 

Renato Iturriaga 

..!.l"'" '} . 

'" .. 

Carnegie-Mellon University 
Pittsburgh, Pennsylvania 

; " I 

Submitted to the Carnegie Institute of Technology (now Carnegie-Mellon University) 
in partial fulfillment of the requirements for the degree of Doctor of 
Philosophy, this work was supported by the Advanced Research Projects 
Agency of the Office of the Secretary of Defense (SD-l46). 





Disjunctiveness

while c do

A    |    B

a,b wfo

(A∪B)+ ⊆ a ∪ b



Disjunctiveness

while x > 0 and y > 0 do

x := x-1    |     y := y-1
y := ?       |

xi > xj ∨ yi > yj     for i>j

need xi ≥ xj



Jumping

while c do

A    |    B

while c do A         while c do B

BA ⊆ A(A∪B)* ∪ B



Jumping

while x > 0 and y > 0 do

x := x-1    |     y := y-1
y := ?       |

BA ⊆ A



Jumping

while x > 0 and y > 0 do

x := x-1    |     y := y-1
y := x+y  |

BA ⊆ AB



Disjunctiveness

while x > 0 and y > 0 do

x := x-1    |     y := y-1
y := xy     |

BA ⊆ AB*



Fairness

s := true

n := 0

while s do

n := n+1    |    s := false



Fairness

s := ?

n := 0

while s>0 do

n := n+1    |    s := s-1



Grid Game

• Given (upper-right) grid coordinates 
(x0,y0)

• Choose (xj,yj) to prolong game s.t.

• xj < xi OR yj < yi     for all i<j



Grid Game



Grid Game



Grid Game



Grid Game



Grid Game



Tricolor

• Color pairs i<j of points

• Purple if xi > xj and yi > yj

• Blue if only xi > xj

• Red if only yi > yj

• Consider sequence of points

• Ramsey contradicts well-foundedness



Ramsey’s Theorem

• Two colors: yes and no

• Extend yes as long as possible

• If can forever, then done (all yes)

• If not, then repeat



Ramsey’s Theorem

• Reduce more than 2 colors to 2 (color-
blindness).  Repeat.

• For 2: Form sequence of nodes                 
a1 a2 a3 ...           by repeatedly taking 
monochromatically-connected subsets







Ramsey’s Theorem

Infinite complete multi-graph

Finitely colored multi-edges

Monochrome infinite clique
can have multiple multi-edges



Quasi-ordering

• Greater or equivalent

• Transitive

• Reflexive



Quasi-ordering

• Equivalence (both directions)

• Strict part (only one)



Well-quasi-ordering

• Well-founded 

• no infinite strictly-descending 
sequences

• No infinite anti-chains



Wqo







Equivalent Properties

• Wqo

• Every infinite sequence has an ordered 
pair



Well-Quasi-Order



Equivalent Properties
• Standard: wf and no inf antichain

• Simple: Every infinite sequence has an 
ordered pair

• Useful: Every infinite sequence contains 
an infinite non-decreasing chain

• Why?  -- Ramsey



Properties

• Every refinement (more order) is also 
wqo

• Every linearization (refinement s.t. all 
equivalence classes are comparable) is 
well-ordered



Dickson’s Lemma

• Order (n-) tuples in product ordering

• All components are in order

• Tuples of wqos are wqo



Good

• A pair is good if it is ordered

• A sequence is good if it has a good pair

• A set is good (wqo) if all sequences are 
good



Bad

• A sequence is bad if there is no good pair

• It is good if it has at least one pair



Good & Bad
• A qo is a wqo if all sequences are good 

• A sequence is bad if it is not good

• If a set is not good, then there is a 
minimal counterexample (bad 
sequence)



Higman’s Lemma

• Every infinite sequence of words (over a 
finite alphabet) includes an embedding.



Homeomorphic 



Higman’s Lemma
• Suppose a finite or infinite alphabet is 

wqo

• Extend order to string embedding

• letters map in order to bigger or 
equivalent ones

• Strings are wqo



Precedence

• Example, Σ 

a0<a1<a2<... 

b0<b1<b2<...

...

z0<z1<...



Minimal Bad Sequence

• acd eef afda ...

• afda ab acd ...

• ab eef afda ...

• ab acd eef afda ...

• ab afda acd ...



Minimal Bad Sequence

• acd eef afda ...

• afda ab acd ...

• ab eef afda ...

• ab acd eef afda ...

• ab afda acd ...



Minimal Bad Sequence

• ab eef afda ...

• ab acd eef afda ...

• ab afda acd ...



Minimal Bad Sequence

• ab eef afda ...

• ab acd eef afda ...

• ab afda acd ...



Minimal Bad Sequence

• ab acd eef afda ...



Minimal Bad Sequence

• ab acd eef afda ...



Minimal Bad Sequence

• ab acd        afda ...



Proof

• Consider minimal bad sequence

• α1x1  α2x2  α3x3  ...  αixi  ...  αjxj  ...

• Extract subsequence with first letters    
αi1 αi2 αi3 ... ordered

• Consider rests xi1 xi2 xi3 ... 



• Tails (or substrings) of minimal bad 
sequence are good

• Why?

• Suppose bad tails x9 ... x3 x18 ... 

• Consider x3 x18 ... (where 3 min index)

• α1x1  α2x2  x3 x18 ... would be smaller than 



Contradiction

• ab acd        afda ...   aacafad  ...



Corollary: Bag 

• Given wfo ≻ on elements X, consider bag order

• Extend (by Zorn’s Lemma) to total well-order 
>; X is wqo by ≥

• By Higman, sequences X* are wqo

• Were there an infinite descending sequence {bi} 
of multisets wrt ≻, it would be decreasing wrt > 

• By Higman, there’s a pair bj ≤ bk; by bag order 



Termination
6. Tree Orderings



Symbolic 

• Dt = 1

• Dc = 0

• D(x+y) = Dx + Dy

• D(xy) = xDy + yDx

• ...



Exponential 

• [Dx] = 3[x]

• [t] = [c] = 3

• [x+y] = ... = [xy] = [x] + [y]



WQO
• Standard: wf and no inf antichain

• Simple: Every infinite sequence has an 
ordered pair

• Useful: Every infinite sequence contains 
an infinite non-decreasing chain

• Why?  -- Ramsey



Corollary

• Multiset ordering

• Bounded-arity tree ordering



Tree Embedding



Kruskal’s Tree Theorem

• Every infinite sequence of trees (over a 
wqo alphabet) includes an embedding.



Good Sequence

















Labels



Gremlins



Gremlins



• s = f(s1,...,sm)    t = g(t1,...,tn)

• s > t if si ≳ t for some i

• s > t if 

• (f,{s1,...,sm}) >lex (g,{t1,...,tn}) 

• and s > tj for all j

Multiset Path Order



Symbolic 

• Dt = 1

• Dc = 0

• D(x+y) = Dx + Dy

• D(xy) = xDy + yDx

• ...



Distributivity

• x(y+z) = xy + xz



DNF

• ¬ ¬x = x

• ¬(x∨y) = (¬ x)∧(¬ y)

• ¬(x∧y) = (¬ x)∨(¬ y)

• x∧(y∨z) = (x∧y)∨(x∧z)

• (y∨z)∧x = (y∧x)∨(z∧x)



Simplification Order

• f(...,si,...) > si

• si > ti  ⇒ f(...,si,...) > f(...,ti,...) 

• Finite alphabet



Simplification Order

• f(...,si,...) > si

• si > ti  ⇒ f(...,si,...) > f(...,ti,...) 

• f > g  ⇒ f(...,si,...) > g(...,si,...) 



• s = f(s1,...,sm)    t = g(t1,...,tn)

• s > t if si ≳ t for some i

• s > t if 

• (f,s1,...,sm) >lex (g,t1,...,tn) 

• and s > tj for all j

Lexicographic Path 



• s = f(s1,...,sm)    t = g(t1,...,tn)

• s > t if si ≳ t for some i

• s > t if

• (f,s1,...,{si,...,sm}) >lex (g,t1,...,{ti,...,tn}) 

• and s > tj for all j

Recursive Path Order



Weak 
Simplification Order

• f(...,si,...) ≳ si

• si ≳ ti  ⇒ f(...,si,...) ≳ f(...,ti,...) 



Simplification Ordering

• (Weakly) Monotonic

• (Weakly) Subterm

• They are well-quasi-orders



Termination
7. Rewriting
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root

!!!!!!!!!!!!!!!

"""""""""""""""""

s1 s1

##
##

##
##

#

$$
$$

$$
$$

s2

s′1 . . . s′k s2

deleted

Figure A.2: Labelled tree for M3 ≺# M2 ≺# M1

of a sequence of such steps (a ‘life’) of an amoebae colony is given in Figure A.3.
Prove that a colony of amoebae has only a finite life.

amoeba colony

...

life of amoeba colony

Figure A.3: Amoebae

Next, we extend the capabilities of amoebae by allowing them to reproduce.
Two amoebae which can touch each other may reproduce, thereby sharing their
outer membrane, and making arbitrarily many copies of their sons (as suggested
in Figure A.4). In particular, an amoeba is allowed to multiply its sons and retain
its outer membrane, while ‘eating’ another amoeba. Show that even together with
this second rule of activity, each colony must eventually terminate.



180 Mathematical background

fusion

fusion

Figure A.4: Fusion of two amoebae



Better

• d(a) = depth(a)

• { {d(a) : a in A} : colony A }

• fission: depth decreases

• fusion: one deep item removed



DNF0

• ¬ ¬x ➯ x

• ¬(x∨y) ➯ (¬ x)∧(¬ y)

• ¬(x∧y) ➯ (¬ x)∨(¬ y)

• x∧(y∨z) ➯ (x∧y)∨(x∧z)

• (y∨z)∧x ➯ (y∧x)∨(z∧x)



DNF1
• ¬ ¬x ➯ x

• ¬(x∨y) ➯ (¬ x)∧(¬ y)

• ¬(x∧y) ➯ (¬ x)∨(¬ y)

• x∧(y∧z) ➯ (x∧y)∧z

• x∨(y∨z) ➯ (x∨y)∨z

• x∧(y∨z) ➯ (x∧y)∨(x∧z)

• (y∨z)∧x ➯ (y∧x)∨(z∧x)



DNF2
• ¬ ¬x ➯ x

• ¬(x∨y) ➯ (¬ x)∧(¬ y)

• ¬(x∧y) ➯ (¬ x)∨(¬ y)

• (x∧y)∧z ➯ x∧(y∧z)

• x∨(y∨z) ➯ (x∨y)∨z

• x∧(y∨z) ➯ (x∧y)∨(x∧z)

• (y∨z)∧x ➯ (y∧x)∨(z∧x)



DNF3

• ¬ ¬x ➯ x

• ¬(x∨y) ➯ (¬ ¬ ¬ x)∧(¬ ¬ ¬ y)

• ¬(x∧y) ➯ (¬ ¬ ¬ x)∨(¬ ¬ ¬ y)

• x∧(y∨z) ➯ (x∧y)∨(x∧z)

• (y∨z)∧x ➯ (y∧x)∨(z∧x)



DNF3

• ¬ ¬x ➯ x

• ¬(x∨y) ➯ (¬ ¬ ¬ x)∧(¬ ¬ ¬ y)

• ¬(x∧y) ➯ (¬ ¬ ¬ x)∨(¬ ¬ ¬ y)

• x∧(y∨z) ➯ (x∧y)∨(x∧z)

• (y∨z)∧x ➯ (y∧x)∨(z∧x)

¬ ¬(a∧(b∨c))



DNF4
• ¬ ¬x ➯ x

• ¬(x∨y) ➯ (¬ x)∧(¬ y)

• ¬(x∧y) ➯ (¬ x)∨(¬ y)

• x∧(y∨z) ➯ (x∧y)∨(x∧z)∨(x∧y)∨(x∧z)

• (y∨z)∧x ➯ (x∧y)∨(x∧z)∨(x∧y)∨(x∧z)

• x∨x ➯ x



DNF5
• ¬ ¬x ➯ x

• ¬(x∨y) ➯ (¬ x)∧(¬ y)∧(¬ x)∧(¬ y)

• ¬(x∧y) ➯ (¬ x)∨(¬ y)∨(¬ x)∨(¬ y)

• x∧(y∨z) ➯ (x∧y)∨(x∧z)

• (y∨z)∧x ➯ (x∧y)∨(x∧z)

• x∨x ➯ x       

• x∧x ➯ x



DNF6

• ¬ ¬x ➯ x

• ¬(x∨y) ➯ (¬ ¬ ¬ x)∧(¬ ¬ ¬ y)∧(¬ ¬ ¬ x)∧(¬ ¬ ¬ y)

• ¬(x∧y) ➯ (¬ ¬ ¬ x)∨(¬ ¬ ¬ y)∨(¬ ¬ ¬ x)∨(¬ ¬ ¬ y)

• x∨x ➯ x

• x∧x ➯ x



DNF7

• ¬ ¬x ➯ x

• ¬(x∨y) ➯ (¬ x)∧(¬ y)∧(¬ x)∧(¬ y)

• ¬(x∧y) ➯ (¬ x)∨(¬ y)∨(¬ x)∨(¬ y)

• x∨x ➯ x

• x∧x ➯ x



Symbolic Computation

• Dt = 1

• Dc = 0

• D(x+y) = Dx + Dy

• D(xy) = xDy + yDx

• ...



Rewriting

• Dt ➯ 1

• Dc ➯ 0

• D(x+y) ➯ Dx + Dy

• D(xy) ➯ xDy + yDx

• ...



Factorial
• x+0 ➯ x

• x+s(y) ➯ s(x+y)

• x*0 ➯ 0

• x*s(y) ➯ y + x*y

• f(0) ➯ s(0)

• f(s(x)) ➯ s(x)*f(x)

•



Factorial
• x+0 ➯ x

• x+s(y) ➯ s(x+y)

• x*0 ➯ 0

• x*s(y) ➯ y + x*y

• f(0) ➯ s(0)

• f(s(x)) ➯ s(x)*f(p(s(x)))

• p(s(x)) ➯ x



Termination

• If s[x] ➯ t[x] is a rule

• then c[s[v]] ➯ c[t[v]] is a rewrite

• Want c[s[v]] > c[t[v]] in some wfo

• Want monotonicity

• s > t  ⇒ f(...,s,...) > f(...,t,...)



Exponential Interpretation

• [Dx] = 3[x]

• [t] = [c] = 3

• [x+y] = ... = [xy] = [x] + [y]



Polynomial Interpretation
• [Dx] = [x]2

• [x+y] = ... = [xy] = [x] + [y]

• Eventually positive

• x2 + y2 + 2xy - x2 - y2 - x - y = 2xy - x - y

• Derivatives: 2x-1; 2y-1



• s = f(s1,...,sm)    t = g(t1,...,tn)

• s > t if si ≳ t for some i

• s > t if

• (f,{s1,...,sm}) >lex (g,{t1,...,tn}) 

• and s > tj for all j

Multiset Path Order



• s = f(s1,...,sm)    t = g(t1,...,tn)

• s > t if si ≳ t for some i

• s > t if

• (f,s1,...,sm) >lex (g,t1,...,tn) 

• and s > tj for all j

Lexicographic Path Order



Boyer & Moore

• if(if(x,y,z),u,v) ➯ if(x,if(y,u,v),if(z,u,v))



• s = f(s1,...,sm)    t = g(t1,...,tn)

• s > t if si ≳ t for some i

• s > t if

• (f,s1,...,{si,...,sm}) >lex (g,t1,...,{ti,...,tn}) 

• and s > tj for all j

Recursive Path Order



Simplification Order

• Suppose finite vocabulary

• Subterm: f(...,s,...) > s

• Monotonic: s > t  ⇒ f(...,s,...) > f(...,t,...)

• Must be well-founded



Weak Simplification Order
• Weak subterm: f(...,si,...) ≳ si

• Weak monotonicity:                                             
si ≳ ti  ⇒ f(...,si,...) ≳ f(...,ti,...) 

• Well-quasi-order by Kruskal

• Enough for termination of rewriting

• Why?



Total Order

• Suppose finite vocabulary

• Monotonic: s > t  ⇒ f(...,s,...) > f(...,t,...)

• Well-founded iff subterm



• s = f(s1,...,sm)    t = g(t1,...,tn)     >

• s > t if si ≳ t for some i

• s > t if

• (s,s1,...,sm) >lex (t,t1,...,tn) 

• and s > tj for all j 

• require s ➯ t ⇒ f(...s...) ≥ f(...t...)

Semantic Path Order



Proof

• Extend base order to a total w.f. order

• Consider minimal bad sequence

• Subterms are well-founded

• No use of si ≳ t case

• So base order decreases and stabilizes



Termination
8. Semantic Path Order



DNF3

• ¬ ¬x ➯ x

• ¬(x∨y) ➯ (¬ ¬ ¬ x)∧(¬ ¬ ¬ y)

• ¬(x∧y) ➯ (¬ ¬ ¬ x)∨(¬ ¬ ¬ y)

• x∧(y∨z) ➯ (x∧y)∨(x∧z)

• (y∨z)∧x ➯ (y∧x)∨(z∧x)

¬ ¬(a∧(b∨c))



DNF4
• ¬ ¬x ➯ x

• ¬(x∨y) ➯ (¬ x)∧(¬ y)

• ¬(x∧y) ➯ (¬ x)∨(¬ y)

• x∧(y∨z) ➯ (x∧y)∨(x∧z)∨(x∧y)∨(x∧z)

• (y∨z)∧x ➯ (x∧y)∨(x∧z)∨(x∧y)∨(x∧z)

• x∨x ➯ x



DNF5
• ¬ ¬x ➯ x

• ¬(x∨y) ➯ (¬ x)∧(¬ y)∧(¬ x)∧(¬ y)

• ¬(x∧y) ➯ (¬ x)∨(¬ y)∨(¬ x)∨(¬ y)

• x∧(y∨z) ➯ (x∧y)∨(x∧z)

• (y∨z)∧x ➯ (x∧y)∨(x∧z)

• x∨x ➯ x       

• x∧x ➯ x



DNF6

• ¬ ¬x ➯ x

• ¬(x∨y) ➯ (¬ ¬ ¬ x)∧(¬ ¬ ¬ y)∧(¬ ¬ ¬ x)∧(¬ ¬ ¬ y)

• ¬(x∧y) ➯ (¬ ¬ ¬ x)∨(¬ ¬ ¬ y)∨(¬ ¬ ¬ x)∨(¬ ¬ ¬ y)

• x∨x ➯ x

• x∧x ➯ x



DNF6

• ¬ ¬x ➯ x

• ¬(x∨y) ➯ (¬ ¬ ¬ x)∧(¬ ¬ ¬ y)∧(¬ ¬ ¬ x)∧(¬ ¬ ¬ y)

• ¬(x∧y) ➯ (¬ ¬ ¬ x)∨(¬ ¬ ¬ y)∨(¬ ¬ ¬ x)∨(¬ ¬ ¬ y)

• x∨x ➯ x

• x∧x ➯ x
¬ ¬(x∨y)



Labeling

• ffx ➯ fgfx

• ffx ➯ fgfx

• fffx ➯ ffgfx



• Given a well-founded term order ≿

• s = f(s1,...,sm)    t = g(t1,...,tn)     

• s > t if si ≳ t for some i

• s > t if (s,s1,...,sm) >lex (t,t1,...,tn) 

• and s > tj for all j 

• s ≈ t iff (s,s1,...,sm) ≈ (t,t1,...,tn)

Semantic Path Order



• require s ➯ t ⇒ f(...s...) ≥ f(...t...)

Semantic Path Order



Proof

• Extend base order to a total w.f. order

• Consider minimal bad sequence

• Subterms are well-founded

• No use of si ≳ t case

• So base order decreases and stabilizes



Jumping
• Let P = R∪B

• If s R u B t

• then s R t

• or s B v1 P v2 P ... P vn P t  

• In short RB ⊆ R ∪ BP*

• Hence (induction) RB* ⊆ R ∪ BP*



Constricting
• Let P = R∪B

• If there is an immortal purple chain                
s1 P s2 P s3 P...

• then there is an immortal constricting chain 
s1 BB...B t1 R u1 BB...B t2 R...   

• R only when “necessary”

• if ti B v, then v is mortal



Constriction + Laziness!Jumping



Constriction + Laziness!Jumping



Constriction + Laziness!Jumping



Constricted Jumping

• Constricted s1 BB...B t2 R t3 BB...B t4 R...   

• Jumping RB* ⊆ R ∪ BP*

• Jumping RB* ⊆ R

• s1 BB...B t2 R t4 R... 



Jumping Union

• If B jumps over R 

• then union well-founded iff both are

• s1 BB...B t1 RB* t2 RB* t2 RB* ... 

• s1 BB...B t1 R t2 R t3 R ...

• s1 BB...B t1 RB* t2 RB* t2 RBBBB... 

• s1 BB...B t1 R R R uk BBBB... 



Lifting

• For any immortal red chain                            
s1 R s2 R s3 R...

• there is also an immortal purple chain 
after taking an immediate blue turn                                                    
s1 B t1 P t2 P...

• Example: R is multiset; B is subset



Lifting Union

• If B jumps over R

• and B lifts to R

• then union well-founded iff B is

• s1 BB...B t1 R t2 R t3 R ... XXX

• s1 BB...B t1 R R R uk BBBB... 



Nested Multisets

• subset jumps over multiset

• subset lifts to multiset

• well-founded since subset is



Escaping

• For any immortal red chain                            
s1 R s2 R s3 R...

• there is also an immortal purple chain 
after some blue turn                                                   
s1 R s2 R ... R sk B t1 P t2 P...



Laziness + Escaping!Jumping



Laziness + Escaping!Jumping



Escaping Union

• If B jumps over R

• and B escapes from R

• then union well-founded iff B is

• s1 BB...B t1 R t2 R t3 R ... XXX

• s1 BB...B t1 R R R uk BBBB... 



Termination
9. Dependencies



Assumption

• Simplification orders

• Assume fixed or bounded arity

• Otherwise need another condition

• f(...s...) ≳ f(... ...)



Substitutions

• substitution {xi ↦ ui}

• apply t{xi ↦ ui}, replace each occurrence 
of variable xi in t with term ui

• compose {xi ↦ ui}σ = {xi ↦ uiσ}



Unifiers

• substitution σ unifies terms s and t if sσ = tσ

• substitution μ more general than σ if there’s 
a τ (not a renaming) such that σ = μ τ

• if there is a unifier, then there is a unique 
most general one μ (unique up to renaming)



Unifiers
• x,y distinct variables

• f,g distinct symbols

• mgu(x,x) = ∅;  mgu(x,y) = {x↦y}

• mgu(x,t) = {x↦t}, t does not contain x

• mgu(x,t) = fail, t contains x (but isn’t x)

• mgu(f(s),g(t)) = fail; mgu(f(),f()) = ∅

• mgu(f(u,s),f(v,t)) =  μ ∪ mgu(f(sμ),f(tμ)) 
where μ = mgu(u,v)



Non-termination

• Can use most general unifier to look for examples 
of nontermination

• Given two derivations s ⇢ t  and u ⇢ v

• renamed so that the two have distinct variables

• rules are one-step derivations

• extend (if possible) by mgu μ of u and 
nonvariable subterm of t

• sμ ⇢ tμ = rμ[uμ] ⇢ rμ[vμ]



Jumping
• Let P = R∪B

• If s R u B t

• then s R t

• or s B v1 P v2 P ... P vn P t  

• In short RB ⊆ R ∪ BP*

• Hence (induction) RB* ⊆ R ∪ BP*



Jumping Union

• If B jumps over R 

• then union well-founded iff both are

• s1 BB...B t1 RB* t2 RB* t2 RB* ... 

• s1 BB...B t1 R t2 R t3 R ...

• s1 BB...B t1 RB* t2 RB* t2 RBBBB... 

• s1 BB...B t1 R R R uk BBBB... 



Escaping

• For any immortal red chain                            
s1 R s2 R s3 R...

• there is also an immortal purple chain 
after some blue turn                                                   
s1 R s2 R ... R sk B t1 P t2 P...



Escaping Union

• If B jumps over R

• and B escapes from R

• then union well-founded iff B is

• s1 BB...B t1 R t2 R t3 R ... XXX

• s1 BB...B t1 R R R uk BBBB... 



Top & Not

• Two parts to rewriting ➯ 

• instance of rule         ➯top

• within a context         ➯in



Top | Not

• Immediate subterm: f(...t...) ⊳ t

• If s1 ➯ s2 ➯ s3 ➯ ...

• Either si ➯top ... sj ➯top ... sk ➯top

• Or s1 ➯ ... ➯ sk ⊳t1 ➯ t2 ➯ ...



Facts

• f(...s...u...) ➯in f(...t...u...) ⊳ t

• f(...s...u...) ⊳ s ➯ t

• f(...s...u...) ➯in f(...t...u...) ⊳ u

• f(...s...u...) ⊳ u



Dependencies

• Let ➤ be   ➯top ⊳*

• Rule s ➯ t[u]

• s ➤ u

• exclude variable u



Dependency Pairs
• R    rewrite step

• T top step

• I   inner step (not at top)

• D  dependency pair (includes top step)

• A  subterm



Dependencies

• B = D ∪ I

• R ⊆ B

• DA  ⊆ D ∪ A+ ⊆ B ∪ A+

• IA ⊆ A ∪ AR ⊆ A ∪ AB

• BA ⊆ B ∪ A+ ∪ AB

• A jumps over B (D∪I)



Dependencies

• Show B = D ∪ I is terminating

• D ⊆ >

• I  ⊆ ≳

• > well-founded

• ≳ > ⊆ >   “compatible”



Proof

• Infinite D & I, with infinitely many Ds

• A escapes from I and jumps over I

• Can’t have infinite tail of only I

• So show I*D terminates

• I*D ⊆ ≳ > ⊆ >



Advantage

• Must have infinitely many D steps at top

• So enough to show other steps ≳



Quotient

• x - 0 ➯ x

• sx - sy ➯ x - y

• 0 ÷ sy ➯ 0

• sx ÷ sy ➯ s( [x-y] ÷ sy )



Rules

• x - 0 ≳ x

• sx - sy ≳ x - y

• 0 ÷ sy ≳ 0

• sx ÷ sy ≳ s( [x-y] ÷ sy )



Drop Subtrahend
LPO with only first argument of -

• -x ≳ x

• -sx ≳ -x

• 0 ÷ sy ≳ 0

• sx ÷ sy ≳ s( -x ÷ sy )



Pairs

• sx - sy > x - y

• sx ÷ sy > (x-y) ÷ sy 

• sx ÷ sy > x-y



Pairs

• -sx > -x

• sx ÷ sy > -x ÷ sy 

• sx ÷ sy > -x



Dependency Graph

P : M s x , s y M x, y R : minus x, 0 x

D s x , s y M x, y minus s x , s y minus x, y

D s x , s y D minus x, y , s y div 0, s y 0

div s x , s y s div minus x, y , s y

Dependency Graph Processor (sound & complete)

Proc P,R P1,R , . . . , Pn,R

where P1, . . . ,Pn

are the SCCs of the
P,R -dependency graph

D s x , s y D minus x, y , s y

M s x , s y M x, y

!

"

!

!

D s x , s y M x, y

P,R -Dependency Graph
directed graph whose nodes are the pairs of P
arc from s t to v w iff s t, v w is a P,R -chain



Termination
10. Recursion











Apply
apply(t,σ) := 
        if var?(t)
        then if σ ={} 
                  then t 
                  else let {x↦u}∪σ’=σ in 
                           if t=x 
                           then u 
                           else apply(t,σ’) 
        else let f(t1,...,tn)=t in 
                f(apply(t1,σ),...,apply(tn,σ))



Occur?

occur?(x,t) := 

      if var?(t) 

      then (x=t) 

      else let f(t1,...,tn)=t in 

               occur?(x,t1) ∨...∨ occur?(x,tn)



Unify
unify(s,t) := 
     if var?(s) 
     then if var?(t)

               then if s=t then {} else {s↦t} 
               else if occur?(s,t) 
                        then fail 

                        else {s↦t}
     else let f(s1,...,sm) = s & g(t1,...,tn) = t in 
              if f≠g 
              then fail
              else if m=0 [assuming m=n]

                       then {}
                       else let σ = unify(s1,t1) in 
                                let τ = unify(apply(f(s2,...,sm), σ),apply(f(t2,...,tn), σ)) in
                                τ ∪ στ [composition of substitutions....]



Primitive Recursion

• f(n,x,...,z) :=      

      if n=0

      then g(x,...,z)

      else h(f(n-1,x,...,z),n-1,x,...,z)



Inductive Definitions

• Constructors

• 0, s(0), s(s(0)), ...

• e, a(e), b(e), a(a(e)), ...

• e, b(e,e), b(b(e,e),e), ...



Structural Induction

• a(x,y) := if x=() then y else c(hd(x),a(tl(x),y))

• r(x) := if x=() then () else a(r(tl(x)),c(hd(x),()))



Functions

• Basic (e.g. arithmetic, boolean)

• Constructors (e.g. lists, trees)

• Conditional (if c then a else b)

• Defined (recursively, perhaps)



Definitions

• f(x,y,...,z) := t[x,y,...,z]

• e(m,n) := if n=0 then 1 else m×e(m,n−1)



Evaluations

• if(T,x,y) ➯ x

• if(F,x,y) ➯ y

• if(c,x,y) ➯ if(c’,x,y)

• f(x,y) ➯ t[x,y]

• f(x,y) ➯ f(x’,y)

• f(x,y) ➯ f(x,y’)



Inner/Outer

• if(T,x,y) ➯ x

• if(F,x,y) ➯ y

• if(c,x,y) ➯ if(c’,x,y)

• f(x,y) ➯ t[x,y]

• f(x,y) ➯ f(x’,y)

• f(x,y) ➯ f(x,y’)



Inner & Outer

• N: normative; nothing above

• A: applicative; nothing below

• I: inner; something above (not normal)

• O: outer; something below



91 Example

• f(x) := if x>100

                    then x-10

                    else f(f(x+11))



Example

• f(x,y) := if x=0

                    then 2

                    else f(x-1,f(x+y,y))



Example

• f(x,y) := if x=0

                    then 0

                    else if x=1

                             then f(0,f(1,y))

                             else f(x-2,y+1)



Example

• f(1,1) = f(0,f(1,1)) = ???



In vs. Out

• If any computation is terminating,                
then outermost (normal order) is 
terminating. 

• If any computation is non-terminating, 
then innermost (applicative order) is 
non-terminating.



Normal is Very Good
• Suppose not

• Consider minimal counterexample

• u NNNNINNIINNNNIII v ; v value

• I N = I O ⊆ N A*

• So: u N...N I...I v

• But can’t have Iv, so u N* v



Applicative is Very Bad

• If u O v, then

• there are u’ v’ v’’ such that

• u A! u’ A v’ A! v’’

• v A* v’ A! v’’

• A! means as much as possible



Termination
11. Eventuality



Transformation



Transitions

• Program: s1 ⤳	
  s2 ⤳	
  s3 ⤳	
  ...

• Transformation si ↦ si 

• Schema: s1 ⤳	
  s2 ⤳	
  s3 ⤳	
  ...

• s ⤳	
  s’ if s ⤳	
  s’ 



Homework



Example
x - 0 ➯ x

sx - sy ➯ x - y

0 ÷ sy ➯ 0

sx ÷ sy ➯ s((x-y)÷ sy)

0 + y ➯ y

sx + y ➯ s(x+y)

(x-y) - z ➯ x - (y+z)



Easy Rules
x - 0 ➯ x

 

0 ÷ sy ➯ 0

 

0 + y ➯ y

 

 



Precedence

 

 

÷ , +  >  s  > - (lr?) 



Hard Rule
 

 

 

sx ÷ sy ➯ s((x-y)÷ sy)

 

 

 



Solution
 

 

 

sx ÷ sy ➯ s((x-y)÷ sy)

 

 

 

X



Problem
 

 

 

sx ÷ sy ➯ s((x-y)÷ sy) ➯ s((u+v)÷ sy)

 

 

 



Pairs
 

sx - sy ➯ x - y

 

sx ÷ sy ➯ (x-y)÷ sy          sx ÷ sy ➯ x-y

 

sx + y ➯ x + y

(x-y) - z ➯ x - (y+z)    (x-y) - z ➯ y + z



Pairs - Colored
 

sx - sy ➯ x - y

 

sx ÷ sy ➯ (x-y)÷ sy          sx ÷ sy ➯ x-y

 

sx + y ➯ x + y

(x-y) - z ➯ x - (y+z)    (x-y) - z ➯ y + z



Pairs - Separated
 

sx - sy ➯ x - y

 

sx ÷ sy ➯ (x-y)÷ sy          sx ÷ sy ➯ x-y

 

sx + y ➯ x + y

(x-y) - z ➯ x - (y+z)    (x-y) - z ➯ y + z



Pairs - Separated
 

 

 

 

 

sx + y ➯ x + y

 



Pairs - Separated
 

 

sx ÷ sy ➯ (x-y)÷ sy          sx ÷ sy ➯ x-y

 

 

 



Pairs - Separated
 

 

sx ÷ sy ➯   x-     ÷ sy          sx ÷ sy ➯ x -

 

 

 



Pairs - Separated
 

sx - sy ➯ x - y

 

 

 

 

(x-y) - z ➯ x - (y+z)    (x-y) - z ➯ y + z



Rules
x - 0 ➯ x

sx - sy ➯ x - y

0 ÷ sy ➯ 0

sx ÷ sy ➯ s((x-y)÷ sy)

0 + y ➯ y

sx + y ➯ s(x+y)

(x-y) - z ➯ x - (y+z)



Rules -
x -    ➯ x

sx -     ➯ x -  

0 ÷ sy ➯ 0

sx ÷ sy ➯ s((x-  )÷ sy)

0 + y ➯ y

sx + y ➯ s(x+y)

(x-)  -   ➯ x -  



Rules ≳
x -    ≳  x

sx -     ≳  x -  

0 ÷ sy  ≳  0

sx ÷ sy  ≳  s((x-  )÷ sy)

0 + y  ≳  y

sx + y  ≳  s(x+y)

(x-)  -   ≳  x -  



0 ≤ y ➯ T

sx ≤ 0 ➯ F

sx ≤ sy ➯ x ≤ y

0 - y ➯ 0

sx - y ➯ if(sx≤y,sx,y)

if(T,sx,y) ➯ 0

if(F,sx,y) ➯ s(x-y)

0 ÷ sy ➯ 0

sx ÷ sy ➯ s((x-y)÷ sy)



0 ≤ y ➯ T
sx ≤ y ➯ F
sx ≤ sy ➯ x ≤ y
psx ➯ x
x - 0 ➯ x
x - sy ➯ p(x-y)
gcd(sx,0) ➯ s(x)
gcd(sx,sy) ➯ if(y≤x,sx,sy)
if(T,sx,sy) ➯ gcd(x-y,sy)
if(F,sx,sy) ➯ gcd(y-x,sx)





Dataflow



Top Graph

• Pierre Réty & al. (1987): Narrowing

• Jürgen Giesl & al. (2000): Rewriting 



Argument Graph

• Shuki Sagiv & al. (1991): Logic languages

• Neil Jones & al. (2000): Functional 
languages



Induction



Leaves

leaves(t) := 

       if leaf(t)

       then  1

       else leaves(left(t)) + leaves(right(t))



Counting Leaves
s := push(t,empty)
n := 0
loop while s ≠ empty
     h := top(s)
     s := pop(s)
     if leaf(h)
     then n := n + 1
     else s := push(left(h),push(right(h),s))



Correctness

• if s=t.e and n=0

• then eventually s=e and n=#(t)



Lemma

• if s=t.r and n=k

• then eventually s=r and n=k+#(t)



Induction (1)

• if s=leaf.r and n=k

• then eventually s=r and n=k+#(leaf)

• then eventually s=r and n=k+1



Induction (2)

• if s=b(lt,rt).r and n=k

• then s=lt.rt.r and n=k

• then eventually s=rt.r and n=k+#(lt)

• then eventually s=r and n=k+#(lt)+#(rt)

• then eventually s=r and n=k+#b(lt,rt)



Termination

• if s=t.e

• then eventually s=e



Lemma

• if s=t.r

• then eventually s=r



Ackermann
t := 1
s[t] := m
loop m := s[t]
          t := t-1
          if m=0
          then n := n+1
          else if n=0
          then t := t+1
                    s[t] := m-1
                    n := 1
          else t := t+2
                   s[t-1] := m-1
                   s[t] := m
                   n := n-1
          until t=0



Termination
• If t=k then eventually t=k-1 and s[0:k-1] same

• Induction on (m,n) just after m := s[t]

• Case I, m=0: t’ = t-1

• Case 2, m>0, n=0: t’ = t; m’ = m-1

• Case 3, m,n>0: t’ = t+1; m’ = m; n’ = n-1; s[t’] = m-1 

• By induction, eventually t’’=t; m’’ = m-1



Termination
12. Typing



Grades

• 10% - participation & exercises

• 90% - term paper



• Alonzo Church (1903-1995)

• invented lambda calculus 
(1932)

• first programming-
language researcher 
(sans computers)

• Turing’s advisor



free and bound variables



symbols do not have pre-conceived 
meanings



symbols do not have pre-conceived 
meanings



Proof terms, well-formed objects



Lambda Calculus

• Everything is a function

• For example, λx.x is the identity 
function

• λy.λx.x is a constant function, always 
returning identity



Lambda Terms

• Constants C; Variables X

• L = constant | variable | application | 
abstraction 

• L ::= C  |  X  |  (LL)  |  λX.L



Positions

• Dewey decimal system

• Number children, left to right

• Path to position gives “address”



Free Occurrences

• Constants C; Variables X

• L := C  |  X  |  (LL)  |  λX.L

• Fx(c) = {}        Fx(x) = {e}

• Fx(st) = 0.Fx(s) ∪ 1.Fx(t)

• Fx(λx.s) = {}

• Fx(λy.s) = 1.Fx(s)



Lambda Calculus

• β-rule: (λx.s)t ➙ s[x↦t]

• Replace (all free) x in s with t



Substitution
• x[x↦t] = t

• y[x↦t] = y            

• c[x↦t] = c

• (su)[x↦t] = s[x↦t] u[x↦t]

• (λx.s)[x↦t] = λx.s

• (λy.s)[x↦t] = λy. s[x↦t]



Beta Immortality

• λx.x(x) λx.x(x) ➙ λx.x(x) λx.x(x)



Completeness
• Every recursive function can be 

simulated by a pure lambda expression.

• Church numerals represent the 
naturals.

• Termination is undecidable.



Church Numerals

• n • λf,x.fn(x)



Church Numerals
• T

• F

• if(c,a,b)

• 0

• n++

• n--

• n=0

• λx,y.x

• λx,y.y

• λc,a,b.c(a,b)

• λf,x.x

• λf,x.f(n(f,x))

• hard

• n(λx.F,T)



Synagogue Numerals
• T

• F

• if(c,a,b)

• 0

• n++

• n--

• n=0

• λx,y.x

• λx,y.y

• λc,a,b.c(a,b)

• λx.x

• λx.x(F,n)

• n(F)

• n(T)



Scheme

• (((lambda (x y) (y x)) (lambda (z) z) 
(lambda (z) (z z))) 5)

• (((lambda (z) (z z)) (lambda (z) z)) 5)

• (((lambda (z) z) (lambda (z) z)) 5)

• ((lambda (z) z) 5)

• 5



Inner vs. Outer

• Scheme uses innermost

• Haskell uses outermost



Recursor

• Y := (λx.(λy.x(y(y)))(λy.x(y(y))))

• Y(b): recursive function with body b

• fixpoint: Y(b) = b(Y(b))

• (Y(λf.λm,n.if(n=0,m,(f(m,n--))++))))(3,4)



Currying

λx.λy.A[x,y] instead of λx,y.A[x,y]

+ is the binary addition function

+(3) adds 3 to any number

+(3)(4) evaluates to 7



Arithmetic (Rosser)

• 0

• n++

• m+n

• mn

• mn

• λf.λx.x

• λf.λx.n(f)(f(x))

• λf.λx.m(f)((n(f))(x))

• λf.m(n(f))

• λf.n(m)(f)



Type theory and rewriting
Computability closure

Conclusion and perspectives

Descendants

�-calculus and first-order rewriting led to two important families of
programming languages:

I functional programming languages: Lisp
(1958), ML (1972), Haskell (1990), OCaml
(1996), F# (2005), . . .

I rewriting-based languages: OBJ (1976), Elan
(1994), Maude (1996), . . .

“One framework to rule them all?”

Frédéric Blanqui (INRIA) - Habilitation Functions, rewriting and proofs: termination and certification



Simple Types

• Base types B (e.g. Nat)

• Arrow types [e.g. Nat → (Nat → Bool)]

• Each constant/variable has a type

• Type(λx:σ. s:τ) = σ→τ 

• Type(s:σ→τ t:σ) = τ



Typing Rules



Typed Lambda Calculus

• β-rule: (λx:σ. s:τ)t:σ  ➙  s[x:σ ↦t:σ]:τ



Typed Beta Mortality

• λx:σ→τ.(x:σ→τ x:σ):(σ→τ)→τ



Termination

• Turing gave first proof

• Tait’s proof

• Induction on term structure

• Induction on type structure



Type theory and rewriting
Computability closure

Conclusion and perspectives

Computability
Dealing with matching modulo �⌘
Revisiting (HO)RPO

Termination of �-reduction alone?

in the simply-typed �-calculus:

I !� can be proved terminating by a direct induction on the type
of the substituted variable (Sanchis 1967, van Daalen 1980)
does not extend to rewriting where the type of substituted variables

can increase, e.g. f(cx) ! x with x : A ) B

I �I -terms can be interpreted by hereditarily monotone functions
on N (Gandy 1980)
can be used to build interpretations but these interpretations can also

be obtained from an extended computability proof (van de Pol 1996)

Frédéric Blanqui (INRIA) - Habilitation Functions, rewriting and proofs: termination and certification



Type theory and rewriting
Computability closure

Conclusion and perspectives

Computability
Dealing with matching modulo �⌘
Revisiting (HO)RPO

Computability

computability has been introduced for proving termination of
�-reduction in typed �-calculi (Tait, 1967) (Girard, 1970)

I every type T is mapped to a set [[T ]] of computable terms

I every term t : T is proved to be computable, i.e. t 2 [[T ]]

Frédéric Blanqui (INRIA) - Habilitation Functions, rewriting and proofs: termination and certification



Predicates

• S[t]: t is “terminating” (no infinite paths)

• C[t]: t is “computable” (typed terminating)

• N[t]: t is “normalizing” (has a normal form)



Facts

• S[t] & t ➙ u ⇒ S[u]

• S[t] & t ⊳ u ⇒ S[u]

• { ∀u. t ➙ u ⇒ S[u] } ⇒ S[t] 



Desiderata

1. C[t] ⇒ S[t]

2. C[s] & s ➙ t ⇒ C[t]

3. C[x]      C[c]

4.∀t { u(v) ➙ t ⇒ C[t] } ⇒ C[u(v)] 

5. C[u] ⇔ ∀v { C[v] ⇒ C[u(v)] }



Type theory and rewriting
Computability closure

Conclusion and perspectives

Computability
Dealing with matching modulo �⌘
Revisiting (HO)RPO

Computability predicates

there are di↵erent definitions of computability (Tait Sat, Girard
Red, Parigot SatInd, Girard Bi?) but Girard’s definition Red is
better suited for handling arbitrary rewriting

let Red be the set of P such that:

I termination: P ✓ SN(!�)

I stability by reduction: !� (P) ✓ P

I if t is neutral and !� (t) ✓ P then t 2 P

neutral = not head-reducible after application (�xu is not neutral)

Frédéric Blanqui (INRIA) - Habilitation Functions, rewriting and proofs: termination and certification



Termination
13. Higher-Order Orderings



Predicates

• S[t]: t is terminating

• C[t]: t is computable



Computability

Inductive definition of C[t]: 

• Basic t: C[t] if S[t]

• Arrow t: C[t] if C[t(s)] for all 
computable s (of the right type)



Lemmas

0. Reducts of computable terms are computable

1. Computable terms are terminating

2. Applications are computable if all reducts are

Main. Computable substitutions yield 
computable terms



Lemma 0

• Reducts of computable terms are 
computable

C[t] & t ➙ u ⇒ C[u]



Proof of Lemma 0

C[t] & t ➙ u ⇒ C[u]

• Induction on type

• Basic t: C[u] if S[u] if S[t] if C[t]

• Arrow t:σ→τ: By def, C[t(s):τ] for all 
computable s. By ind, C[u(s):τ], for all 
s. By def, C[u].



Lemma 1

• Computable terms are terminating

C[t] ⇒ S[t]



Proof of Lemma 1

C[t] ⇒ S[t] 

• Induction on type 

• Basic t: By definition

• Arrow t:σ→τ

By def, C[t(s)] for all computable s:σ.       
By ind, S[t(s):τ]. It must be that S[t], too.



Neutrality

• applying creates no new redexes

t neutral: redexes of t(s) are in t or s

• computable if reducts are

C[t]  if  C[r] for all r s.t. t ➙ r



Lemma 2

Applications are neutral: 

C[s(t)]  if  C[r] for all r s.t. s(t) ➙ r



Proof of Lemma 2

C[s(t)]  if  ∀r. s(t)➙r ⇒ C[r]

• Induction on type of s(t)

• Basic: S[s(t)]  iff  S[r] ∀r

• Arrow: Show C[s(t)(u)] for each computable u. 

By ind, C[r(u)] ∀r suffices, which is just C[r].



Corollary

C[(λx.s)(t)] if C[s{x↦t}] & C[t]

By well-founded induction on s,t



Proof of Corollary
C[s{x↦t}] & C[t] ⇒ C[(λx.s)(t)]

By L0, S[s] & S[t]. Let s ➙ s’, t ➙ t’

So C[s’{x↦t}] & C[t] ⇒ C[(λx.s’)(t)] 
       C[s{x↦t}] & C[t’] ⇒ C[(λx.s)(t’)] 

By L2, C[(λx.s)(t)] if C[(λx.s’)(t)] & 
C[(λx.s)(t’)] & C[s{x↦t}] 

But C[t]⇒C[t’] and C[s{x↦t}]⇒C[s’{x↦t}]



Lemma 3

S[t1] & ...  & S[tn] ⇒ C[x(t1)(t2)...(tn)]

• Induction on type of t = x(t1)(t2)...(tn)

• Basic t: Since only reducible inside 
terminating ti, S[t]. By def, C[t].

• Arrow t:σ→τ. For any computable s:σ, S[s] 
by L1. By ind, C[t(s):τ]. By def, C[t].



Main Lemma

• Computable substitutions yield computable 
terms 

Main: C[uσ] for all u and computable σ

• where C[σ] if C[t] for all x↦t in σ



Proof of Main Lemma
C[uσ] for computable σ

• Structural induction on u
• u constant: u=uσ is basic and terminating; so C[u] by def.
• u is variable x: If xσ=x, L3 applies; otherwise xσ is computable.
• u=t(s): uσ=tσ(sσ). By ind, C[tσ]; by def, C[tσ(sσ)], since 

C[sσ] by ind.

• u=λx.s: For computable t, let σ’=σ-{x↦xσ}∪{x↦t}. By ind, 

C[sσ’]. By L2c, C[((λx.s)σ)(t)], as (λx.s)σ = λx.s(σ-{x↦xσ}) 
and s(σ-{x↦xσ}){x↦t} = sσ’. By def, C[(λx.s)σ].



Theorem

• All typed terms are terminating

• C[t] for all t

• Main lemma (empty substitution)

• S[t] for all t

• By Lemma 1



Frédéric



Functional

• D(λx.y) ➙ λx.0

• D(λx.x) ➙ λx.1

• D(λx.sin(F(x))) ➙ λx.D(F(x))∙cos(F(x))



Higher-Order Rewriting

• map(F,e) ➙ e

• map(F,x:y) ➙ F(x):map(F,y)



System T

• rec(0,u,F) ➙ u

• rec(s(x),u,F) ➙ F(x,rec(x,u,F)))

• n! ➙ rec(n,1, λy,z.s(y)∙z)



Mixing Problem

• f(c(x)) ➙ x

• f: A→(A→B)   c: (A→B)→A    x: A→B

• w = λz:A.f(z)(z)    

• w(c(w)) ➙ f(c(w))(c(w)) ➙ w(c(w)) ➙ 



Explicit Application

• @(s,t) for s(t)

• @(F,t) for F(t)



System T

• rec(0,u,F) ➙ u

• rec(s(x),u,F) ➙ @(F,x,rec(x,u,F)))



Eta

• λx.f(x) =η f         (for x∉f)

• eta long: λx.f(x)



Higher-Order RPO

• precedence > 

• @ minimal

• assume total (for simplicity)

• type order >

• various conditions



Example Type Order

• σ→τ > τ

• σ→τ > a ⇔ τ ≥ a (base a)

• σ→τ > σ’→τ’ ⇔ τ>τ’ V σ ≥ σ’→τ’

• well-founded even when enriched with 
σ→τ > σ



Higher-Order RPO

• ≻ = ≻∅

• ≻X   (keep track of variables X)

• ≻X = ≻X ∩ ≥



Plain Cases
• s = f(s1,...,sm) ≻X g(t1,...,tn) 

• if f>g & s ≻X t1,...,tn 

• s = f(s1,...,sm) ≻X f(t1,...,tn) 

• if {s1,...,sm} ≻ {t1,...,tn} and s ≻X t1,...,tn

• s = f(s1,...,sm) ≻X t

• if some si ≳X t



Variable Case

• s ≻{...x...} x 

• if s ≠ x 



Lambda Cases

• λx:α.w[x] ≻X t

• if w[z:α] ≳X  t 

• s ≻X  λy:β.w[y]

• if s ≻X∪{z:β} w[z]



Beta-Eta Cases

• λx.@(v,x) ≻X t

• if x ∉ v, v ≳X t

• @(λx.w[x],v) ≻X  t

• if w[v] ≳X  t



Lambda-Lambda

• λx:α.u[x] ≻X λy:α.w[y]

• if u[z:α] ≻X w[z]

• s = λx:α.u[x] ≻X λy:β.w[y]

• if α ≠ β & s ≻X w[z:β] 



System T

• rec(0,u,F) ➙ u

• rec(s(x),u,F) ➙ @(F,x,rec(x,u,F)))



Brower Ordinals

• rec(0,U,V,W) ➙ U

• rec(s(X),U,V,W) ➙ @(V,X,rec(X,U,V,W))

• rec(lim(F ), U, V, W ) ➙                               
@(W, F, λn.rec(@(F, n), U, V, W ))

• a little more needed



Termination
14. Terminate



ε0

• 0, 1, 2, ..., ω, ω+1, ω+2, ..., ω2, ω2+1, ..., 
ω3, ..., ω2, ..., ω2+ω2+3, ..., ω3, ..., ωω, ..., 
ωωω, ...



Ordinal Indexing

• f0, ..., f100, ..., fω, ..., fω2, ..., fε0, ....



Defenestration



Graduate
Students



“Binary” Search

          1

p     

         0

0 1 2 3                           z



Unbounded Search

• Cost c(z): number of  queries p(i) when 
answer is z

• There is a transfinite sequence of 
algorithms, each dramatically better 
than its predecessor.







Iterated Ackermann

• A1(n) := A(n,n)

• A2(n) := A1(n) = A1(A1(A1(...(n))))

• ...

• Ak(n) := A k-1(n)

n

n



Knuth’s Arrows

• m↑n = mn

• m↑↑n = m↑(m↑(m↑(m↑...↑m)))

• m↑k+1n = m↑k(m↑k(m↑k(m↑k...↑km)))



Cantor Normal Form
• 0, α+β, ωα

• n = ω0 +ω0 +ω0 + ... +ω0

• ωαn = ωα +ωα +ωα + ... + ωα

• cnf: ωαn + β

• α,β in cnf; ωαn > β

• ωα1 +ωα2 + ... + ωαn ; α1 ≥ α2 ≥ ... ≥ αn



Fundamental Sequence

• limn→ω λ[n] = λ

• (α+β)[n] := α+β[n]

• ωα+1[n] := ωαn

• ωλ[n] := ωλ[n]



Fast Grzegorczyk

• G0(n) := n+1

• Gα+1(n) := Gα (n)

• Gλ(n) := Gλ[n](n)     (λ limit)

n+1



Hardy

• H0(n) := n

• Hα+1(n) := Hα(n+1)

• Hλ(n) := Hλ[n](n)     (λ limit)



Slow-Growing

• g 0(n) := 0

• g α+1(n) := g α (n)+1

• g λ(n) := g λ[n](n)     (λ limit)



Gödel

• For any consistent axiomatization of 
arithmetic, there are true unprovable 
sentences.



Peano Arithmetic

• FO logic w/ =

• Numbers 0 and its successors

• ∀n ¬(s(n)=0)

• ∀m,n  s(m)=s(n) ⇒ m=n

• P(0) ∧ ∀n(P(n)⇒P(s(n)) ⇒ ∀n P(n)



Definable

F(x,z) defines f(x) in L if 

• z=f(x) iff F(x,z) 

• and these are provable:

• ∀x∃z. F(x,z)

• ∀x,z,z’ . F(x,z) & F(x,z’) ⇒ z=z’



Gentzen

• The Peano axioms are consistent

• Proof by ε0 induction



Cut Elimination

L. Carlucci / Theoretical Computer Science 300 (2003) 365–378 371

From the last hydra the result is obtained by an application of L:1 to all subhydras
rooted in T2’s root except one copy of T1.

4. Proof of Theorem 1

The proof of Theorem 1 is given by exhibiting reductions on hydra diagrams corre-
sponding to each step of Gentzen’s strategy in his consistency proof. We refer to [8,
Chapters 2, 12], for an exposition of this proof.
Step 0: Replacement of free variables does not a!ect the tree assignment.
Step 1: Weakenings in the End-Part. We just show Case 1 in Takeuti.

This reduction makes apparent the opportunity of modifying the height assignment,
which can now be correctly done as shown in D′. Using Gentzen’s de"nition (re-
place ¿by= in De"nition 1), the hydra assigned to D′ would have been obtained
from H(D) by deleting the A3–A4 nodes, besides d2. It is easily seen to be im-
possible for Hercules to destroy an intermediate portion of an hydra without any



Conclusion

• There are true sentences about 
arithmetic that are not provable from 
the Peano axioms.

• Hercules beats Hydra

• Finitized Kruskal Theorem

• Finitized Ramsey Theorem



Paris-Harrington

• ∀ n,k,m>0, ∃ N s.t. if we color each n-element 

subset of S = {1, 2, 3,..., N} with one of k colors, 

then ∃ Y ⊆ S , |Y| ≥ m, such that all n element 

subsets of Y are monochrome, and |Y| ≥ min Y.



Finite Tree Theorem

• ∀n∃m s.t. for trees T1,...,Tm, where 

each Tk has k+n nodes, then Ti ↬ Tj for 
some i < j.



Colored Finite           
Tree Theorem

• ∀n∃m s.t. for trees T1,...,Tm, where 

each Tk has up to k nodes, labeled in n 

colors, then Ti ↬ Tj for some i < j.



Kruskal Bound

• Tree(1) = 1 [length of sequence, 1 color]

• Tree(2) = 3

• Tree(3) > 2↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑ 
↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑
↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑
↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑
↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑...



Γ0

• 0, α+β, φα(β)

• φ0(β) = ωβ

• φα+1(β) = {ɣ : φα(ɣ) = ɣ}β
• φλ(β) = limα<λ φα(β) 



Division

• A,B binary relations

• A/B is the relation s.t.

• (A/B)∘B ⊆ A

• s (A/B) t if s A u for all u s.t. t B u



MPO

• (f,{b1,...,bm}) ⊳ b1,...,bm

• (f,{})

• s > t if

• s ⊳≥ t or

• s >lex t and s >/⊳ t



Abstract Path Order

• s > t if

• s ⊳≥ t or

• s ≫ t and s >/⊳ t

• ⊳ wfo

• ⊳ wfo escapes from ≫



Level i Subterm

•  ⊳i

• Subterm with i in node just above and >i 
from root to there



Ordinal Diagrams

• triples ⟨f,i,{b1,...,bm}⟩; think tree

• f: countably many, linearly ordered >

• level i: 1..N, linearly ordered >

• {...bi...} multiset of diagrams, ms order



Lexicographic Level

• >0 is lexicographic

• (f,i,x) >0 (g,j,y) if

• f>g

• f=g, i>j

• f=g, i=j, x >i y



Higher Levels

• s >k t (k>0) if

• s ⊳k ≥k t or

• s >k-1 t and s >k/⊳k t



Conditionals

COMPARISON 0.. SIMPLE EXAMPLES OF NORMALIZATION 
PARADIGM IN PROOF THEORY AND TERM REWRITING THEORY 

PeaDo Arithmetic: 
(GeDtun) 

onIiDal otdinaIa leu 
ufignment than '0 

maDmal euential cut 
elemeut (rnaximel Ccnnula) 

a::iat;ea ce boIda for 
lemma proo(a 01 -formulae 

. It ia ouiIy .... that it • _tionaI er natural 
ooaditionaI rewrite I)"8tem R iI eonverpa.t (or -eancx»cal-, 
i.e.. hu the IenDiDaliooo aDd Chun:h-_ propertieI) 
then it ia equivaJeDt t4 the COl ' ..... ..w., equational 
lyatem E. i. •.• alt in R it aDd oal7 it a - tinE. It ia 
aJoo ouiIy .... that for ..,y natunl. DOt -.riIy 
"",,_t. conditional rewrite oyatem R &lid the 
c:ornopooding equational oyatem E, a -' t in It it &lid 
only it a - tinE. W.!bIIow the uoual definitioaa 01 
_ _ liDcIudiDc a "critical pair") for cooditional 
re""';te .-,. (el. [3. 1J). 

However. firat _ remark that the _liooo for the 
__ lemma obouJd be mocIiIIod for ot&DdanI 
conditional rewrite oyatemo. A<:tuaIIy. it '"' keep the 
aome condition, i.e_. .....,. critical·paD- ia joinable.. then 
the aio_ lemma dooo DOt boId_ ID other wcrda. the 
eritical Pair Lemma 01 KDuth-l!eadi:< [11J aDd Huet [9J 
dooo DOt cany over t4 otandanI C<IIIditionaI oyatemo. .. 
can be .... from the £oIIowing counter-ezample. 

Counler-eumple (A): 

h(fta)) - c 
b(l[) - k(X) 
c - k(lta)) 
a - b 
c - k(&(b)) 
kc.a.))lh(/tx)) : /tx) - c(l[) 

Hen a peak k<CW) - k(/lo)) - k(I'(b)) allowo DO reduction. 0.. the _ _. u eui1y _. fIYW7 

critical paD- ia joinabIa. <See [81 for IUrtbor dioc:uuicIl "" 
the counter_ple_) 
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Unc:ooditionaJ 
Rewrite System 

multiaet extensioa of 
reduction ordering 

ordering peak 
lmuimaI tenn) 

boIda it every 
critical paD- ia joinable 

Hence our aim ia t4 pnMde luit.ahle additional 
ax>ditiODa for the aiotenee Here _ give two 
oueh ezamploo. Tbo firat _ ia a poen.Iizaliooo of 
Berptra-KIop'a reeult [3J; the -.ad _ ia """"'" ned with 
a poen.Iizaliooo 01 Kaplan', aimplificaliooo oyatemo [13J 
ODd of Jouanaaud-WaJdmann'a reducti ... ay,tem [12). 

Definiliooo (depth of a prooIl 

(l) Tbo depth 01 • proof 01 ,-t ia 0 it ,-t ia the 
_ 01 an .pp'iaotioa 01 an unc:ooditional rule. 

(2) Tbo depth 01 a proof of , - t ia one more than the 
muimum depth 01 oubpn>olo for _tioaa u1IVI ..... 
u I" it ,-t ia the _ 01 an applic:atioo of a 
a a 

cooditiona! rule which hu a aubotituliooo instance of 
the Corm Ut!Tr .... Un!Yo : t - r. 

(3) Tbo depth of a proof at , - 'I - ·2 -... - "m 
- v - to - tl - t q the m&%itnum depth of 

auhproof'a for • - 8 t , 'I - ..... 'm - Y, tn -

Y, •••• tl - t - tl' 

Def'lIIitiog For a critical paD- 10. t) aDd overlap u at the 
form • - u - t aucb. that u - • baa depth. n and u 
_ t hu depth m. the critical paD- ia ·,halIow joinable- it 
there eD.u • term y web. that t _. v is provable with 

depth lea thaD or equal to nand. _. v ia provable 
with depth leu than or equal t4 m. 

Fer a nonaal rcrm (i.... irndueible term) Nand. 
term a. a ax>diliooo at the rcrm ,IN ia called • "DOnna! 
ax>diliooo· era "Berptra-Klop coaditioa·. A ecnditionaJ 
rewrite ayatem in "hich every coaditional rule ia of the 
rona 'IINI' .... 'nlNa : l - r. for nonaal ecnditioao 
ajlN j' ia called a "narmaI _tionaI ayotem'. 

Normal coaditioa.1 ,,- ...... introduced by 
Berptra_KIop [3). Firat we eonoider __ ol the 
roDowinl Theo<em in Berptra-Klop [3). A "Ieft-u-r" 
ayatem ia a ayotem in "hich a 1eft-h&Dd aide l at a rule e : l - r _ onl,. _ oc:eummc:o for any variable. 

Berptra-KIop •• Thtor!m [3J. Fer every 1eft-1iMu (not 
aeceoaarily terminating) anrmaI ax>ditional aystem with no 
critical paD-. fIYW7 proof io nonna1izable. 



We can relu the "no critical pair" condition of 
Bergstra-Klop, at the erpense of insisting on tennination. 
at follows. 

Exlstence Lemma For any left-linear nonnal condit..ional 
system. if every critical pair is shanow joinable then every 
non·normal proof has a reduction. 

ThE' Existence Lemma is obtained via the following 
lemma. 

Substitution lA>mma If N lnB} it: provable with depth n. 
and if 8-t ie provable. then Nlr(tl il a.t.o provable with 
depth at moat n, where N il an irreduCIble tenn. 

Th. proof ia carried out by double induction 011 (.+m, 
ria)), ",here m ia the depth for ,-to (See [8J for 
details.> 

Theorem For any left·linear nonnal conditional Iystem. if 
every crit.iea.l pair it: Ihallow joinable then every proof of 
thie syatem l8 normaliuble. Hence such a Iystem hu 
the Church·Rouer property. 

Here we can take the same (multiseU ordinal 
aBSignment for unconditional ayatem •. 

Nut we c:ormder an alternative restriction to give an 
eziatence lemma. By the reduction ordering, we mean the 
transitive closure of finite reductions in a given Iystem. 

A conditional ayatem ill called. a "decreasing· Iystem 
if there emu a well-founded extenaion < of the reduction 
orderin8 which aatiafieo the following propertieo: 

ill For each conditiODai rule of the form a11tr .... 'nit. 
t - r. lilT < 1st and tt < 1st (or all i (1 :S i S 

nl and for all .ube:titutionl; IT. 
(2) < baa the aubterm property, i.e.. if • w a proper 

8ubt.enn of t then • < t. 
Then a dec:naoing ayatem baa the followinc 

propertieo: 

1. the Iy.tem ia terminating 
2. the basic notionJI are decidable, i.e .• for any terma • 

and t, ODe atop reductioo 0 - t, a Mite reduction 
I _. t. Ilt. "s ia • normal form" are aU de.:ideNe. 
W. can readily _ that KapaiD'o aimplification 

syatema [13J and Jouannaud·WaIduwm', red ___ 
[121 are apec:iaJ caaeo of OW' ayatemo. 

The fo11owiDr "c:riticII pair" lemma CIID be prooed by 
eaaentiaJly the ...... ...........t .. uaod by tho obcMo 
authon. 

_Lemma 
For any _ ojD, ayoIem, if every c:riticII pair ia 

joinable thea every _DOnD&I proal -. • reduction. 
It abouId be remartm that tho Gift • lemma _ 

not bold in paera1 it we omit the ... liitic", the 
"auI>-term in ..... cIo&>itioD - ml __ . In particuIal' ....... _pIa W aI>ooe aatio8ee 
aD tho __ doc:reuiJ>c .-pt .... tbo 
aubterm jAopest,. 
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Now we .how tru.. For thiI purpc:.. we utilize 
.ysterm of proof theoretic ordinalt in Iogic:. which provide 
various weD-founded without the sub-t.enn 
pr'OPf"rty. Here we actuaUy consider an embedding of our 
counter-example into Ta.keuti's aystem 0(2. 1) of ordinal 
diagram., which ia one of the two major .ystema of 'proo( 
theoretic onlinaJa. 

The reduction ordering of this Iyatem i.I embeddable 
into the ordering <00 in 0(2. 1) (see eg. Okada [20} or 
Okada·Takeuti [21] for the delinitiona <", and 0(2, W, 
by the following embedding 0: 

o(h(t)) - (0, 0(t)#2) 
o(f(t» - U, o(t» 
o(c) - (0, U, 1)#1) 
o<k(tlJ - <0, o(t)) 
o(a) " 1 
0(1)) " 0 
o(g(t» - (0, O(t» 

Also, <", aatiofieo the additional condition for tho 
decreaaingneu, i.... each CXlDdition term d and h(ftxJ) ia 
I... than the Ieft·hand aide fI:x) the Jut rule in the 
aenae of <00' 

If "" conoicIer a cIocr-eaamr ayatem in which every 
critical pair ia joinable, then the aamo proal .... the 
Normalization Theorem holda, .. before. M""""",,, with a 

ayatem, we can mend the Normalization and 
Church-&aoer propertieo further. We intnxluco a atronger 
fonn Normalization and the Chw-ch·&aoer propertiea to 
analyze CXlDditiODai rewrite __ . 

1. By. "fully normal- prool tS • .. • t in a given 
natural conditional .yatem. we mean a normal proof 

sl t auch that every aubproaf It ... tf UIed. in 
eotaNjahiDC the conditiona .- .... olt ia fully 
DOnD&I. 

2. If..... given proal p a - • t in a natural 
CXlDditionaJ ayatem R there is • fully nonnaJ proal P' 

a)t) in R. ... 08, tho proal P is fully 
n«m-lirable. If every proal tho form • -' tl ia 
full, n«motirable, tho ayatem is WeI to ha.... the 
"otrong" Church·&aoer 

A natural ayatem ia • natural CXlDditiODai 
ayatem which O8tiafiaa aD the .- CCDditiona for • 
docreaaing ayatam. 

Thoorom (J'uIJ Normalization n-- d. [24]) 
For lID' cIoc:reeaing natural ayatem, if every critical 

pair ia joinable, thea every proal ia run,. ......,otirable 
lr- ouch • ayoIem baa tho Chw-ch·&aoer 
pn>pertJ. 

n.. full DCII'DIaiiza_ ia c:uriod out by -a.. 
l>CInD8Iizationa tram tbo ..- prooC to tbo daapoat .... 
More J>nciooI7. IIrot __ tho ..- proal .. ' 
t to • DOnD&I !'arm ojt in tho ...... Datura! ayatem. 
Tbea. we amDdIr the immerti.te CDDditiaDa c1 _. dl' ...• 



It’s a Wrap



Kepler Conjecture



This is really the end


