Methods for

$$
\begin{aligned}
& \text { Proving } \\
& \text { Termination }
\end{aligned}
$$

Termination

1. Termination

Software Correctness

- Outputs Are Correct
- Terminates (or Doesn't)
- Resource issues
- Accuracy Issues
- Timing Issues

Termination

- Algorithm Halts for All (Specified) Inputs
- Iteratíve Loops
- Nested Loops
- Recursíve Loops
- Symbolic Computation

Microsoft: Liveness

\rightarrow A matter of practical importance:

- Is every call to AcquireLock() is followed by a call to ReleaseLock()?
- Does SerialPnpDispatch(.....) always return control back to its caller?

Plan

- Termínation is Undecidable
- The Easy Cases
- The Hard Cases

Requirements

- Attendance and participation
- Readings and díscussions
- Try to solve assignments
- final exam or term paper or system (tbd)

Readings

- Turing, 1936
- Strachey, 1965
- Katz \& Manna, 1975

History

- Euclid
- Alan Turíng
- Bob Floyd
- Zohar Manna

Euclid (c. -300)

Euclid's GCD algorithm appeared in his Elements.
Formulated geometrically: Find common measure for 2 lines.
Used repeated subtraction of the shorter segment from the longer.

ANTIQUE ALGORITHM

Antenaresis

$\Delta u ́ o ~ \alpha ̉ \rho ı \theta \mu \tilde{\omega} v \alpha ̉ v i ́ \sigma \omega v$ દ̇ккєєนદ́v ωv,
 ब̉દı тои̃ દ̉ $\lambda \alpha ́ \sigma \sigma o v o \varsigma ~$ ब̉ாò тои̃ μ кі́弓ovoऽ,
 $\mu \eta \delta \varepsilon ́ т о т \varepsilon$ к $\alpha т \alpha \mu є \rho \underline{n}$
 oữ $\lambda \varepsilon เ \varphi \theta \tilde{1}$ นová́s, oí દ̇ ξ ब̉ $\rho \times \tilde{n} \varsigma ~ \alpha ̉ \rho ı \theta \mu o i ̀$ три̃то тро̀ऽ

When two unequal numbers are set out, and the less is continually
subtracted in turn from the greater, if the number which is left never
measures the one before it until a unit is left, then the original numbers are relatively prime.

Greatest Common

repeat

if $m=n$ then return n
if $\mathrm{m}<\mathrm{n}$ then $\mathrm{n}:=\mathrm{n}-\mathrm{m}$
if $m>n$ then $m:=m-n$

Hailstones

Loop until $x=1$
if $21 \times$
then $x: \approx x / 2$
else $x:=3 x+1$

A 2-MINUTE PROOF OF THE
2nd-MOST IMPORTANT THEOREM OF THE and MILLENNIUM
by Doron Zeilberger
Written: Oct. 4, 1998

Correspondence

To the Editor,
The Computer Journal.

An impossible program

Sir,
A well-known piece of folk-lore among programmers holds that it is impossible to write a program which can examine any other program and tell, in every case, if it will terminate or get into a closed loop when it is run. I have never actually seen a proof of this in print, and though Alan Turing once gave me a verbal proof (in a railway carriage on the way to a Conference at the NPL in 1953), I unfortunately and promptly forgot the details. This left me with an uneasy feeling that the proof must be long or complicated, but in fact it is so short and simple that it may be of interest to casual readers. The version below uses CPL, but not in any essential way.

Suppose T [(or program) argument and
if run and the
Consider the 1
rec r

If $T[P]=1$ only terminate exactly the wi that the functi

Churchill Coll Cambridge.

Correspondence

Suppose $T[R]$ is a Boolean function taking a routine (or program) R with no formal or free variables as its argument and that for all $R, T[R]=$ True if R terminates if run and that $T[R]=$ False if R does not terminate. Consider the routine P defined as follows
g programmers gram which can every case, if it when it is run. is in print, and bal proof (in a ference at the ptly forgot the eeling that the in fact it is so erest to casual put not in any
rec routine P

$$
\S L: \text { if } T[P] \text { go to } L
$$

Return §
If $T[P]=$ True the routine P will loop, and it will only terminate if $T[P]=$ False. In each case $T[P]$ has exactly the wrong value, and this contradiction shows that the function T cannot exist.

Churchill College,
Yours faithfully,
C. Strachey. Cambridge.

ON COMPUTABLE NUMBERS, WITH AN APPLICATION TO THE ENTSCHEIDUNGSPROBLEM

By A. M. Turing.

[Receired 28 May, 1936.-Read 12 November, 1936.]

The fallacy in this argument lies in the assumption that β is computable. It would be true if we could enumerate the computable sequences by finite means, but the problem of enumerating computable sequences is equivalent to the problem of finding out whether a given number is the D.N of a circle-free machine, and we have no general process for doing this in a finite number of steps. In fact, by applying the diagonal process argument correctly, we can show that there cannot be any such general process.

Proof

- Imagine some program halt (p, x) that answers "yes" when $p(x)$ halts and "no" otherwise.
- Construct the program
alan $(p)=$ if halt (p, p) says "yes" then "do nothing" forever otherwise answer "yes"
- Consider the question halt(alan,alan).

Proof

- Imagine some program halt (p, x) that answers "yes" when $p(x)$ halts and "no" otherwise.
- Consider halt(alan,alan)
alan(alan) if halt(alan,alan) says "yes"
then "do nothing" forever
otherwise answer "yes"
-halt(alan,alan)?

Proof

- Imagine some program halt (p, x) that answers "yes" when $p(x)$ halts and "no" otherwise.
- Consider halt(alan,alan)
alan(alan) if halt(alan,alan) says "yes"
then "do nothing" forever
otherwise answer "yes"
- No answer: BAD

Proof

- Imagine some program halt (p, x) that answers "yes" when $p(x)$ halts and "no" otherwise.
- Consider halt(alan,alan)
alan(alan) \approx if halt(alan,alan) says "yes"
then "do nothing" forever
otherwise answer "yes"
- Yes: alan(alan) = do nothing forever: BAD

Proof

- Imagine some program halt (p, x) that answers "yes" when $p(x)$ halts and "no" otherwise.
- Consider halt(alan,alan)
alan(alan) $=$ if halt(alan,alan) says "yes"
then "do nothing" forever
otherwise answer "yes"
- No: alan (alan) $=$ yes: BAD

Size Proof

- Imagine some program halt (p, x) that answers "yes" when $p(x)$ halts and "no" otherwise ~ - provided |pl,| $x \mid \leq n$
- Consider halt(alan,alan)
alan $(x)=$ if halt (x, x) says "yes"
then "do nothing" forever otherwise answer "yes"
- |alan $|=|$ halt $\mid+c>n$

Size Proof

- Imagine some program halt (p, x) that answers "yes" when $p(x)$ halts and "no" otherwise ~ - provided $|p|, \mid$ $x \mid \leq n$
- Consider halt(alan,alan)
alan $(x)=$ if halt (x, x) says "yes"
then "do nothing" forever otherwise answer "yes"
- |halt $\mid>n-c$

Size Proof

- Imagine some program halt (p, x) that answers "yes" when $p(x)$ halts and "no" otherwise ~ ~ provided |p|,| $x \mid \leq n$
- Consider halt(alan,alan)
alan $(x)=$ if halt (x, x) says "yes"
then "do nothing" forever otherwise answer "yes"
- assuming almost nothíng

$$
\text { Sriday, } 24 \text { th Junes. }
$$

Chocking a large routine. by Dr. A. Turing.
How onn ond chack a routing in the sense of making suro that it lo right?
In erlar that tho men No ohecka may not kavo too dirfioult a tank the prograsiar abould mako a manber of definito anoortiona mbioh oan be chocked individually, and from mhtoh the corroctneas of the whole prograweo easily rollown.

Conaidar tho analogy of obeoking an malition. If it la given wat

$$
\begin{aligned}
& 1374 \\
& 5906 \\
& 6719 \\
& 4337 \\
& 7768 \\
& \hline 26104
\end{aligned}
$$

one taut shack tha male at ona atitting, becauge of the curries. Hut if the totela for the varloun ooluma ara givon, as balowi

$$
1374
$$

5906
6719

Invariants

Invariants

$$
\begin{aligned}
& r: \approx 1 \\
& u: \approx 1 \\
& \text { loop } v: \approx u \quad l \leq r \leq n \\
& \text { until } r \geq n \\
& s: \approx 1 \\
& \text { loop } u: \approx u+v \\
& \\
& s: \approx s+1 \\
& \text { while } s \leq r \\
& \\
& \\
& \text { repeat }
\end{aligned}
$$

He has slae to verity that each of the aseorbtona in tho lower half of the table is cozrect. In telng thia the columas may ba taken in sry order and quite indepentently. Thus for coluan B the checicer mould argub.
 tho upger port of the coluen for f mel havo $u=r$. Honoo $r^{\prime}=r$ 1. 0 . the entry for $\mathrm{T} 1,0$, for 11 ve 3 I in C should bo T. The other entriva are tho esan an in B^{*}.

Ynsily the chocker has to verify that the prooses comos to an ond, lioro sazin he should be aosiatod by tho programer giving a furthor dofinite ssaortion to be verifled. This may take the foms of a quantity which is aswertol to deoreazo contioually sal vanduh whun the unching atops. To the there rasthmatiolas it 15 natural to give ma ordian muba\%. In this problom
 Taking tha lattor oxas anal tha atop frop ${ }^{3}$ to C thay moild bo a decreasa
 to $2^{80}(n-r+1)+240(r+1-8)+5$.

In the ecuras of cheaking that the process coanas to an end the tion involvol asy also bd estinated by arranghig that the docroasing quantity ropseacats an upper hound so the the till tive ahchine stops.

Turing's Proof

- The checker has to verify that the process comes to an end. Here again he should be assisted by the programmer giving a further definite assertion to be verified. This may take the form of a quantity which is asserted to decrease continually and vanish when the machine stops. To the pure mathematician it is natural to give an ordinal number. In this problem the ordinal might be $(n-r) \omega^{2}+(r-s) \omega+k$. A less highbrow form of the same thing would be to give the integer $2^{80}(n-r)+2^{40}(r-s)+k$.

A Closer Look at Termination

Shmuel Katz and Zohar Manna

Received October 16, 1974
Summary. Several methods for proving that computer programs terminate are presented and illustrated. The methods considered involve (a) using the "no-infini-tely-descending-chain" property of well-founded sets (Floyd's approach), (b) bounding a counter associated with each loop (loop approach), (c) showing that some exit of each loop must be taken (exit approach), or (d) inducting on the structure of the data domain (Burstall's approach). We indicate the relative merit of each method for proving termination or non-termination as an integral part of an automatic verification system.

Greatest Common

repeat

if $m=n$ then return n
if $\mathrm{m}<\mathrm{n}$ then $\mathrm{n}:=\mathrm{n}-\mathrm{m}$
if $m>n$ then $m:=m-n$

Method

- Find a measure that decreases with each iteration
- And cannot decrease forever

Loop Invariants

- Need to know that m and n are nonnegative

Knuth (1966)

A computational method
comprises a set of states...

In this way we can divorce abstract algorithms from particular programs that represent them.

Transikion system

Díscrete Steps

- An algorithm is a discrete state-transition system.
- Its transitions are a binary relation on states.

Hartley Rogers, Jr.

For any given input, the computation is carried out in a discrete stepwise fashion, without use of continuous methods or analogue devices.
Computation is carried forward deterministically, without resort to random methods or devices, e.g., dice.

91

> (a) int mecarthy (int n)
> (b) fint c;
> (c) $\operatorname{for}_{\text {if }}(\mathrm{c}=1 ; c \mathrm{c}>100$; $)$ \{
> (e) $\quad n=n-10$;
> \} else;
> $n=n+11 ;$
> $\begin{aligned} & \text { (i) } \\ & \text { (i) } \\ & \text { (m) }\end{aligned}$

Solve for Decrease

- Suppose measure is a linear combination of the variables
- $n>100: a n+b c>a(n-10)+b(c-1)$
- $n<99: a n+b c>a(n+11)+b(c+1)$
- $11 a+b<0<10 a+b$

Artificial Variables

(a) int mecarthy (int n)
(b) fint $c ; i=0 ; j=0$;
(c) for $(c=1 ; c!=0 ;)$ \{
(d) if $(n>100)$;
(e) $\quad n=n-10$;
(f)
(g)
c~~; i++;
\} else \{
$n=n+11 ;$
(i) $\mathrm{i}^{(i)} \mathrm{c}^{++} ; j^{++}$;
(k)
(l) return n;
(m) \}
Infer Invariants

- $c=j-i+1$

König's Lemma

- A tree is finite (has finitely many edges)

if and only if

- all nodes have finite degree
and
- all branches (simple paths) have finite length.

Binary Search

- $1: \approx \mathrm{a}$
- $r:=b$
- loop untill=r
- $m: \approx[(1+r) \div 2]$
- if $y[m] \geq x$
- then $r: \approx ? ?$
- elsel: $=? ?$
- given:
- $a \leq b$
- $y[j] \leq y[j+1]$
- $x=y[i], a \leq i \leq b$
- unbounded integers

Binary Search

- $1: \approx a$
- $r: \approx b$
- loop untill=r
- $m: \approx[(1+r) \div 2]$
- if $y[m] \geq x$
- then $r: \approx \underline{m}$
- else $1: \approx \underline{m+1}$
- given:
- $a \leq b$
- $y[j] \leq y[j+1]$
- $x=y[i], a \leq i \leq b$
- unbounded integers
- invaríants:
- $a \leq 1 \leq r \leq b$
- $y[l] \leq x \leq y[r]$

Binary Search is Hard

- Don Knuth: the idea is comparatively straightforward; the details can be surprisingly tricky.
- Jon Bentley assigned it as a problem ín a course for professional programmers. 90% failed even after several hours.
- accurate code is only found in 5 out of 20 textbooks.
- Bentley's own implementation (in hís Programming Pearls) contaíns an error that went undetected for over 20 years.

Termination

2. Games

Readings

- Floyd, "Assigning Meaníng to Programs"
- "Proving Termination with Multiset Orderings"

Robert W. Floyd

ASSIGNING MEANINGS TO PROGRAMS ${ }^{1}$

Introduction. This paper attempts to provide an adequate basis for formal definitions of the meanings of programs in appropriately defined programming languages, in such a way that a rigorous standard is established for proofs about computer programs, including proofs of correctness, equivalence, and termination. The basis of our approach is the notion of an interpretation of a program: that is, an association of a proposition with each connection in the flow of control through a program, where the proposition is asserted to hold whenever that connection is taken. To prevent an interpretation from being chosen arbitrarily, a condition is imposed on each command of the program. This condition guarantees that whenever a command is reached by way of a connection whose associated proposition

Invariants

$$
\begin{aligned}
& r: \approx 1 \\
& u: \approx 1 \\
& \text { loop } v: \approx u \\
& \text { until } r \geq n \\
& \mathrm{l} \leq \mathrm{r} \leq \mathrm{n} \\
& s: \approx 1 \\
& \text { loop } u: \approx u+v \quad l \leq s \leq r+1 \\
& s: \approx s+1 \\
& \text { while } s \leq r \\
& \text { repeat } \\
& r: \approx r+1 \\
& \text { repeat }
\end{aligned}
$$

Double Induction

- Innerloop
- Outer loop

Orderings

-Partial ordering
alrreflexive
-Transitive
Asymmetric

Hasse Díagram
 PKHTAZ

Orderings (Well-founded)

- Partial ordering
alrreflexive
-Transitive
-Asymmetric
-Well-founded
-No infinite decreasing chains

Well-Founded

- $\mathrm{N},>$
- $Z^{-},<$
- Z, ???
- Finite trees, subtree
- $N \times N$, lexicographic
- Σ^{*}, subword
- Σ^{*}, lexicographic ???

Couples

$(a, b)>\left(a^{\prime}, b^{\prime}\right)$

- Component-wise: $a>a^{\prime} \& b \geq b$ or $a \geq a a^{\prime} \& b>b^{\prime}$
- Lexicographic: $a>a$ or $a \approx a a^{\prime} \& b>b$ '
- Reverse lexicographic: $a>a^{\prime} \& b=b$ or $b>b^{\prime}$
- Pairs of pairs: $(1,0)>(0,(1,0))>\ldots$

Míxed Couples

If V and W are well-founded, then their pairs $V \times W$ are well-founded lexicographically.

Ackermann

- Termination of recursion
- Induction on (m, n)

Turing's Program

$$
\begin{aligned}
& r: \approx 1 \\
& u: \approx 1
\end{aligned}
$$

$$
\operatorname{loOp} \quad v:=u
$$

$$
\text { until } r \geq n
$$

$$
(n-r, r-s)
$$

$$
s: \approx 1
$$

$$
\text { loop } u: \approx u+v
$$

$$
s: \approx s+1
$$

$$
\text { while } s \leq r
$$

repeat

$$
r: \approx r+1
$$

repeat

Dutch National Flag

Dutch National Flag

Flag Problem

Dutch National Flag

Dutch National Flag

Dutch National Flag

Dutch National Flag

Dutch National Flag

Dutch National Flag

Dutch National Flag

Dutch National Flag

Ackermann's

$$
\begin{gathered}
A(0, n) \approx n+1 \\
A(m+1,0) \approx a(m, 1) \\
a(m+1, n+1) \approx a(m, a(m+1, n))
\end{gathered}
$$

Ackermann

INIEGER FUNCTION ACKER(M. N)
© COMFUTE ACKEKMANN FUNCTIUN. UEFINED BY
$\mathrm{C} \quad \begin{array}{ll}\operatorname{ACKER}(0, N)=N+1 \\ \operatorname{ACKER}(M+1,0) & =\operatorname{ACKER}(M, 1)\end{array}$
$\operatorname{ACKER}(M+1, N+1)=\operatorname{ACKER}(M, \operatorname{ACKER}(M+1, N))$.
SI2E UF VALUE aND Place tables is one mokf than lahgest m expected.
INIEGER VALUE (6), PLACE゙(6)
C TEST FOK ZERO M.
IF (M .NE. 0) GO TO 1
ACKER $=\mathrm{N}+1$
RETURN
C NON-ZLRO M. INITIALIZE FOR ITERATION.
$1 \quad$ VALUE $=1$
PLACE $=0$
IIERAIION LOOP. GET NEW VALUE.
VALUE = VALUE +1
PLACE $=$ PLACE + 1
FROFAGATE VALUE.
NO $4 \quad I=1, M$
IF (PLACE (I) .NE. 1) 60 TO 3
INIIIATE NEW LEVEL.
VALUE $(I+1)=$ VALUE
MLACE (I+1) $=0$
If (I •EQ. M) GOTO 5
GU TO 2
Ir (PLACE(D).NE. VALUE(I+1)) GO TO a
$\operatorname{VALUE}(I+1)=$ VALUE
$\operatorname{PLACE}(\mathrm{I}+1)=\operatorname{PLACE}(\mathrm{I}+1)+1$
CHECK FOR END OF ITERATION.
If (PLACE (M+1) .NE. N) GO TO 2
ACKEK $=$ VALUE
KETUKN
E is 0

Ackermann

- $a(4,4) \approx 2 \uparrow 7-3$
- Computation is much longer
- Fact: $a(m, n)>m+n \geq m, n$

Double Induction

- Call by value termination
- Assume terminating for smaller m
- Assume terminating for same m and smaller n

Primitive Recursion

- O
- +1
- projections
- composition
- $f(x, n):=$ if $n \approx 0$ then $g(x)$ elseh $(f(x, n-1), x, n-1)$

Ackermann's Function

- $A(O, n) \approx n+1$
- $A(m+1,0) \approx A(m, 1)$
- $A(m+1, n+1)=A(m, A(m+1, n))$

$A(m, n)>m+n$

- Induction on (m,n)
- $A(O, n) \approx n+1>n$
- $A(m+1,0) \approx A(m, 1)>m+1$
- $A(m+1, n+1) \approx A(m, A(m+1, n))$
$>m+A(m+1, n) \geq m+n+2$

$x>y \Rightarrow A(m, x)>A(m, y)$

- Induction on (m, x)

$$
\text { - } \begin{aligned}
& A(0, x)=x+1>y+1=A(0, y) \\
& \text { - } A(m+1, x+1)=A(m, A(m+1, x))>A(m, A(m \\
&+1, y))=A(m+1, y+1)
\end{aligned}
$$

$$
x>y \Rightarrow A(x, n)>A(y, n)
$$

- Induction on (x, n)
- $A(x, n)>x+n>n \approx A(0, n)$
- $A(x+1,0) \approx A(x, 1)>A(y, 1) \approx A(y+1,0)$
- $A(x+1, n+1) \approx A(x, A(x+1, n))>$ $A(y, A(x+1, n))>A(y, A(y+1, n)) \quad=$ $A(y+1, n+1)$

$A(m+n+2, x)>$

- Induction ($m+n, x$)
- $A(n+2, x)>A(n+1, x) \geq A(n, x)+1=A(0, A(n, x))$
- $A(m+n+2,0)=A(m+n+1,1)>A(m, A(n-1,1)) \approx$ $A(m, A(n, O))$
- $A(m+n+2, x+1)=A(m+n+1, A(n+m+2, x))>$ $A(m, A(n, A(m, x)))>A(m, A(n, x+m)) \geq A(m, A(n, x$ +1))

A isn't Primitive

- Denote $x=x_{1}, \ldots, x_{k}$ and $x_{m}=\max x_{j}$
- Say $A_{i}>g$ if $A\left(i, x_{m}\right)>g(x)$ for all x
- Easy: $A_{0}>0 ; A_{1}>+1 ; A_{0}>$ prof
- Suppose $f(x)=h\left(g_{1} x, \ldots, g_{k} x\right), A_{s}>g_{1}, \ldots, g_{k}, h$
- $A_{2 s+2}>f: A(2 s+2, x)>A(s, A(s, x))$

A isn't Primitive

- Suppose $A_{s}>g, h$ and $f(x, n)=$ if $n=0$ then $g(x)$ else $h(f(x, n-1), x, n-1)$
- $A\left(r, n+x_{m}\right)>f(x, n), r \approx 2 s+1$, by induction on n :
- $f(x, 0)=g(x)<A\left(s, x_{m}\right)<A\left(r, O+x_{m}\right)$
- $f(x, n+1)=h(f(x, n), x, n)<A\left(s, \operatorname{maxi}\left(f(x, n), n, x_{m}\right)<\right.$ $A\left(s, A\left(r, n+x_{m}\right)\right)<A\left(2 s, A\left(r, n+x_{m}\right)\right)=A\left(r, n+1+x_{m}\right)$
- $f(x, n)<A\left(r, n+x_{m}\right)<A(r, 2 N+3)=A(r, A(2, N))<A(r+4, N)$ where $N=\max \left\{n, x_{m}\right\}$

Basic A (m, n)

```
DIM s(tsize + 1)
\(\mathrm{t}_{\mathrm{DO}}=1: \mathrm{s}(\mathrm{t})=\mathrm{m}\)
    \(c=c+1\)
    \(\mathrm{m}_{\mathrm{IF}}=\mathrm{m}(\mathrm{t}): \mathrm{t}_{\mathrm{O}}^{\mathrm{THEN}}=\mathrm{t}-1\)
    \(\begin{array}{rl}n=n & n \\ \text { ELSEIF } \\ n & =0\end{array}\)
        \(t=t+1: s(t)=m-1\)
\(n=1\)
    ELSE
        \(t=t+1: s(t)=m-1\)
        \(t=t+1: s(t)=m\)
        \(\mathbf{n}=\mathbf{n}-1\)
    END IF
    IF \(t>d\) THEN
        \({ }^{d}=d \quad d \quad\) tsize THEN
                PRINT "failure": END
        END IF
    END IF
LOOP UNTIL \(t=0\)
```

$\mathrm{A}=\mathbf{n}$
END FUNCTION

Basic A (m, n)

```
DIM s(tsize + 1)
\(\mathrm{ta}_{\mathrm{DO}}=1: \mathrm{s}(\mathrm{t})=\mathrm{m}\)
    \(\mathrm{c}=\mathrm{c}+1\)
    \(\left.\mathrm{m}_{\mathrm{IF}}=\mathrm{m}=\mathrm{t}\right): \underset{\mathrm{THEN}}{\mathrm{t}}=\mathrm{t}-1\)
    \(\underset{\operatorname{ELSEIF}}{\mathrm{n}} \mathrm{n}_{\mathrm{n}}^{+} \stackrel{1}{=}\) THEN
        \(t=t+1: s(t)=m-1\)
\(n=1\)
    ELSE
        \(t=t+1: s(t)=m-1\)
        \(t=t+1: s(t)=m\)
        \(\mathbf{n}=\mathbf{n}-1\)
    END IF
    IF \(t>d\) THEN
        \(\underset{I F}{d} d^{t}>\) tsize THEN
                PRINT "failure": END
        END IF
    END IF
LOOP UNTIL \(t=0\)
```

$\mathrm{A}=\mathrm{n}$
END FUNCTION

Basic A (m, n)

```
DIM s(tsize + 1)
\(\mathrm{t}_{\mathrm{DO}}=1: \mathbf{s}(\mathrm{t})=\mathrm{m}\)
    \(c=c+1\)
    \(\left.\mathrm{m}_{\mathrm{IF}}^{\mathrm{m}} \mathrm{m}=\mathrm{t}\right): \underset{\text { THEN }}{t}=t-1\)
    \(\begin{array}{rl}n & n \\ \text { ELSEIF } & \mathbf{n}=0\end{array}\) THEN
        \(t=t+1: s(t)=m-1\)
\(n=1\)
    ELSE
        \(t=t+1: s(t)=m-1\)
        \(t=t+1: s(t)=m\)
        \(\mathbf{n}=\mathbf{n}-1\)
    END IF
    IF \(t>d\) THEN
        \(\mathrm{dF}_{\mathrm{IF}}=\mathrm{d}>\) tsize THEN
                PRINT "failure": END
        END IF
    END IF
LOOP UNTIL \(t=0\)
```

$\mathrm{A}=\mathbf{n}$
END FUNCTION

Sequences

$$
(a, D, C, \ldots)>\left(\vec{a}, \square^{,}, \infty, 0\right)
$$

- Lex is bad: $10>010>0 \mathrm{OlO}>\ldots$
- Length-lex: $\mathrm{OOlO}>\mathrm{OlO}>\mathrm{OOI}>10>\mathrm{Ol}$

Unbounded

- Sorted-lex: $221>211110000>2111000000>\ldots$
- Sorted-lex: $\infty \infty 21>\infty 88880>9998888000>\ldots$

Sorted Sequences

- $\operatorname{s11} \geq s 12 \geq s 13 \geq \ldots \geq s 1 j \geq \ldots$
- $s 21 \geq s 22 \geq s 23 \geq \ldots \geq s 2 j \geq \ldots$
- etc. ...
- Let j be first unstable column, changing ati
- $s_{-} 1,1 \sim s_{-} i, 1 \geq s_{-} i, j>s_{-} i+1, j$
- Consider rest: $s[i+1 . . \infty, j . . \infty]$ and continue

Harder A(m,n)

```
t := 1
s[t] := m
loop
```



```
m:=s[t]
tif:= t = 1
    then
    n := n + 1
    elseif n = 0
    then
        t := t + 1
        s[t] i=m - 1
    else
        t:=t+2
        s[t-1] := m - 1
        S[t] := m
    until:= n = = 1
```

s can grow and grow
(sorted) lex doesn't work

Harder A(m,n)

```
t := 1
s[t] := m
loop
c}:=c+
    m := s[t]
tif:= t = 1
    then
    n:=n + 1
    elseif n = 0
    then
        t := t + 1
        s[t] i= m - 1
    else
        t := t + 2
        s[t-1] :=m-1
        S[t] := m
        until t = n = 0
```

$\mathrm{N}:=\mathrm{a}(\mathrm{m}, \mathrm{n})$
$\Sigma 3^{N s[j]+\left\{\begin{array}{l}N \\ n\end{array}, ~(m)\right.}$

Well-Orderings

- abc...
- abc...
- abc...O12...
- aO al a2 ... bo bi b2 ...cO cl c2
- $000001002 \ldots 010011 \ldots 020 \ldots 100$

Chocolate Bar

- Yumm (click here)

Before \& After

- $n \rightarrow\lfloor n / 2\rfloor,\lceil n / 2\rceil(n>1)$

Before \& After

- $1 \rightarrow$
- $n \rightarrow\lfloor n / 2\rfloor,\lceil n / 2\rceil \quad(n>1)$

Before \& After

- $1 \rightarrow$
- $n \rightarrow 1, n-1 \quad(n>1)$

Before \& After

- $1 \rightarrow$
- $n \rightarrow i, n-i \quad(n>1, i>0)$

Before \& After

$\mathrm{m} \rightarrow$

$n \rightarrow n-1, n-1 \quad(n>1, i>0)$

Proof by Cases

$$
A[x]
$$

A[true], A[false]

Before \& After

- $1 \rightarrow$
- $n \rightarrow i, j \quad(O<i, j<n)$

Before \& After

- $1 \rightarrow$
- $n \rightarrow i, j, k \quad(O<i, j, k<n)$

Before \& After

- $1+$
- $n \rightarrow n 1, n 2, \ldots, n k \quad(O<n i<n)$

Konig's Lemma

- A tree is finite (has finitely many EDGES)

```
IF AND ONLY IF
```

- ALL NODES HAVE FINITE DEGREE

AND

- ALL BRANCHES (SIMPLE PATHS) HAVE
Billiards

Smullyan's Billiards

Multiset (Bag)

Multiset (Bag)

Harder A(m,n)

```
\(t:=1\)
s[t] := m
loop
\(c:=c+1\)
\(m:=\)
\(s[t]\)
\(\mathrm{t}:=\mathrm{t}=\overline{\mathrm{o}} 1\)
then
\(n:=n+1\)
elseif \(n=0\)
then
\(t:=t+1\)
\(\mathrm{s}[\mathrm{t}]\)
n
i
1
else
\(t:=t+2\)
\(s[t-1]:=m-1\)
\(\mathrm{S}[\mathrm{t}]\)
\(\mathrm{n}:=\mathrm{m}\)
n
m
m
until \(\mathbf{t}=\mathbf{n}=1\)
```


Nested Matryoshka

Nested Bags

Nested Ordering

Nested Ordering

$0000 \times 0 \times \times \times 0 \times \sim$

Hercules' Second Labor $000 \times 0 \times \sim \times \lll<$

Each time Hercules bashed one of Hydra's heads, Iolaus held a torch to the headless neck.

After destroying eight mortal heads, Hercules chopped off the ninth, immortal head, which he buried at the side of the road from Lerna to Elaeus, and covered with a heavy rock.

Hydra vs. Hercules

Hydra vs. Hercules

Hydra vs. Hercules

Hercules > Hydra

Hercules > Hydra

Hercules > Hydra

Hercules Defeats Hydra

- Cannot be proved ín Peano Arithmetic [Paris \& Kirby]
- Requíres induction up to ε_{0}
- Natural numbers do not suffice
- Sophisticated varíants requíre more

Termination

3. Bígger \& Bigger

Well-Founded

$$
\frac{\forall x .[\forall y<x . P(y)] \Rightarrow P(x)}{\forall x \cdot P(x)}
$$

Ordinals

$$
0<1<2<\cdots
$$

$$
<\omega<\omega+1<\omega+2<\cdots
$$

$$
<\omega 2<\omega 2+1<\cdots<\omega 3<\cdots<\omega 4<\cdots
$$

$$
<\omega^{2}<\omega^{2}+1<\cdots<\omega^{2}+w<\omega^{2}+\omega+1<\cdots
$$

$$
<\omega^{3}<\omega^{3}+1<\cdots<\omega^{4}<\cdots<\omega^{5}<\cdots
$$

Bags of Bags

- An empty bag is worth o
- A bag containing bags worth α_{i}, is worth $\Sigma \omega^{\alpha i}$

Goodsteín Step

- Increment base \& decrement number
- $4: 2^{2}$
- $26: 3^{3}-1=27-1=26=3^{2}+3^{2}+3+3+2$
- $41: 4^{2}+4^{2}+4+4+1$

Goodsteín 4

$4,26,41,60,83,109,139,173,211,253,299,348$, $401,458,519,584,653,726,803,884,969,1058$, $1151,1222,1295,1370,1447,1526,1607,1690,1775$, 1862, 1951, 2042, 2135, 2230, 2327, 2426, 2527, $2630,2735,2842,2951,3062,3175,3290,3407, \ldots$, $11115,11327, \ldots, 40492,40895, \ldots, 154349$,

162129585780031489,162129586585337855 ,
$3 \cdot 2^{402653210}-1, \ldots \ldots \ldots \ldots \ldots \ldots2,1,0$

Goodsteín 19

- 19, $7625597484990,{ }^{\sim} 1.3 \times 10^{154}, \ldots$

Goodsteín Step

- Increment base \& decrement number
- $4: 2^{2}$
- $26: 3^{3}-1=27-1=26=3^{2}+3^{2}+3+3+2$
- $41: 4^{2}+4^{2}+4+4+1$

Goodsteín Step

- Base is a bag (and the whole thing is in a bag)
- 2^{2} is $\{\{1\}\}$
- $3^{2}+3^{2}+3+3+2$ is $\{\{2\},\{2\},\{ \},\{ \}, 2\}$
- $4^{2}+4^{2}+4+4+1$ is $\{\{2\},\{2\},\{ \},\{ \}, 1\}$

Goodsteín 16

$$
\begin{aligned}
& g_{16}(2)=16 \approx 2^{2^{\wedge} 2} \\
& g_{16}(3)=3^{3 \times 3}-1=2 \cdot 3^{2 \cdot 3} \cdot 2+2 \cdot 3+2+2 \cdot 3^{2 \cdot 3} \cdot 2+2 \cdot 3+1 \\
& +2 \cdot 3^{2 \cdot 3^{\prime}} 2+2 \cdot 3+2 \cdot 3^{2} \cdot 3^{\prime} 2+1 \cdot 3+2+2 \cdot 3^{2} \cdot 3^{\prime} 2+1 \cdot 3+1 \\
& +2 \cdot 3^{2} \cdot 3^{\wedge} 2+1 \cdot 3+2 \cdot 3^{2} \cdot 3^{\wedge} 2+2+2 \cdot 3^{2} \cdot 3^{\wedge} 2+1+2 \cdot 3^{2 \cdot 3}{ }^{\wedge} 2 \\
& +2 \cdot 3^{\wedge} 2+2 \cdot 3+2+2 \cdot 3^{\wedge} 2+2 \cdot 3+1+2 \cdot 3^{\wedge} 2+2 \cdot 3+2 \cdot 3^{3} 2+1 \cdot 3+2 \\
& +2 \cdot 3^{\wedge} 2+1 \cdot 3+1+2 \cdot 3^{\wedge} 2+1 \cdot 3+2 \cdot 3^{\wedge} 2+2+2 \cdot 3^{\wedge} 2+1+2 \cdot 3^{\wedge} 2 \\
& +2 \cdot 3 \cdot 3+2+2 \cdot 3^{2 \cdot 3}+1+2 \cdot 3^{2 \cdot 3}+2 \cdot 3^{1 \cdot 3+2}+2 \cdot 3^{1 \cdot 3+1}+2 \cdot 3^{1 \cdot 3} \\
& +2 \cdot 3^{2}+2 \cdot 3^{1}+2 \approx 7625597484986 \\
& a(4)=50973998591214355139406377 .
\end{aligned}
$$

Goodsteín 16

$$
\begin{aligned}
& g_{16}(2)=16=2^{2^{\wedge} 2} \\
& g_{16}(3) \approx 3^{[1000]}-1=2 \cdot 3^{[222]}+2 \cdot 3^{[221]}+2 \cdot 3^{[220]}+ \\
& 2 \cdot 3^{[212]}+2 \cdot 3^{[211]}+2 \cdot 3^{[210]}+2 \cdot 3^{[202]}+2 \cdot 3^{[201]}+ \\
& 2 \cdot 3^{[200]}+2 \cdot 3^{[122]}+2 \cdot 3^{[121]}+2 \cdot 3^{[120]}+2 \cdot 3^{[112]}+2 \cdot 3^{[111]}+ \\
& 2 \cdot 3^{[110]}+2 \cdot 3^{[102]}+2 \cdot 3^{[101]}+2 \cdot 3^{[100]}+2 \cdot 3^{[022]}+2 \cdot 3^{[021]} \\
& +2 \cdot 3^{[020]}+2 \cdot 3^{[012]}+2 \cdot 3^{[011]}+2 \cdot 3^{[010]}+2 \cdot 3^{[002]}+ \\
& 2 \cdot 3^{[001]}+2 \cdot 3^{[000]} \approx 7625597484986
\end{aligned}
$$

where [abc] is the base 3 representation

Goodsteín 16

$$
\begin{aligned}
& g_{16}(2) \approx w^{w^{\wedge}} w \\
& g_{6}(3) \approx 2 \cdot w^{2} \cdot w^{\wedge} 2+2 \cdot w+2+2 \cdot w^{2} \cdot w^{\wedge} 2+2 \cdot w+1+2 \cdot w^{2} \cdot w^{\wedge} 2+2 \cdot w \\
& +2 \cdot w^{2} \cdot w^{\wedge} 2+1 \cdot w+2+2 \cdot w^{2} \cdot w^{\wedge} 2+1 \cdot w+1+2 \cdot w^{2} \cdot w^{\wedge} 2+1 \cdot w+ \\
& 2 \cdot w^{2} \cdot w^{\wedge} 2+2+2 \cdot w^{2} \cdot w^{\wedge} 2+1+2 \cdot w^{2} \cdot w^{\wedge} 2+2 \cdot w^{w^{\wedge}} 2+2 \cdot w+2+ \\
& 2 \cdot w^{w^{\wedge} 2+2 \cdot w+1}+2 \cdot w^{w^{\wedge} 2+2 \cdot w}+2 \cdot w^{w^{\wedge} 2+1 \cdot w+2}+ \\
& 2 \cdot w^{w^{\wedge} 2+1 \cdot w+1}+2 \cdot w^{w^{\wedge} 2+1 \cdot w+2 \cdot w^{w^{\wedge}} 2+2+2 \cdot w^{w^{\wedge} 2+1}+} \\
& 2 \cdot w^{w^{\wedge}}+2 \cdot w^{2} \cdot w+2+2 \cdot w^{2 \cdot w+1}+2 \cdot w^{2 \cdot w}+2 \cdot w^{1 \cdot w+2}+ \\
& 2 \cdot w^{1 \cdot w+1}+2 \cdot w^{1 \cdot w}+2 \cdot w^{2}+2 \cdot w^{1}+2
\end{aligned}
$$

Goodsteín

- Cannot be proved terminating in Peano Arithmetic

Hercules Defeats

- Cannot be proved in Peano Arithmetic [Paris \& Kirby]
- Requíres índuction up to ε_{0}
- Natural numbers do not suffice
- Sophisticated varíants requíre more powerful systems [Friedman]

Hydra Step

- Every head is an empty bag
- Every node (including the ground) is a bag of its children
- Each step replaces some internal bag with some number of smaller bags

Hydra Step

- Heads are worth O
- Every node (including the ground), with children worth α_{i}, is worth $\Sigma \omega^{\alpha i}$
- The kth step replaces a term $\omega^{\alpha+1}$ with $\omega^{\alpha} k$
- But if a head sprouting from the ground is cut, the total decreases by 1

Hercules Defeats Hydra

- Cannot be proved ín Peano Arithmetic [Paris \& Kirby]
- Requíres induction up to ε_{0}
- Natural numbers do not suffice
- Sophisticated varíants requíre more

Termination

4. Well-Founded Orderings

Amoebae

Fission

Colony Dies Out

- depth $(0)=0$
- depth $($ al...an $)=1+$ maxidepthaifs
- $\{$ (depth (a), |al) : subcolony $\}$
- outer fission: depth decreases
- fusion: síze decreases

Colony Dies Out

- $d(a)=\operatorname{depth}(a)$
- $\#_{d}(a)=$ number ín a of depth d
- $\left\{\left(d(a), \#_{d(a)}(a), \#_{d(a)-1}(a), \ldots\right):\right.$ colony $\left.a\right\}$
- fission: depth decreases
- fusion: síze decreases

Big Picture

- Programs are state-transition systems
- Choose a well-founded order on states
- Show that transitions are decreases

Real Picture

- Programs are state-transition systems
- Choose a function for "ranking" states
- Choose a well-founded order on ranks
- Show that transitions always decrease rank

Imaginary Picture

- Programs are state-transition systems
- Choose a function for "ranking" states
- Choose a well-founded order on ranks
- Show that transitions eventually decrease rank

Nested Loops

$$
\begin{aligned}
& r: \approx 1 \\
& u: \approx 1 \\
& \text { loop } v: \approx u \quad \omega^{2}(n \\
& \text { until } r \geq n \\
& s: \approx 1 \\
& \text { loop } u: \approx u+v \\
& \\
& \\
& \\
& \text { while } s \leq s+1 \\
& \\
& \\
& \text { repeat }
\end{aligned}
$$

$$
\text { loop } v: \approx u \quad \omega^{2}(n-r)+\omega(r-s)+k
$$

Per Iteration

$$
\begin{aligned}
& r: \approx 1 \\
& u: \approx 1 \\
& \text { loop } v: \approx u \quad \omega(n-r)+r+1-s \\
& \text { until } r \geq n \\
& s: \approx 1 \\
& \text { loop } u: \approx u+v \\
& \\
& \\
& \text { while }: \approx s+r \\
& \\
& \text { repeat }
\end{aligned}
$$

Lexicographic

$$
\begin{aligned}
& r: \approx 1 \\
& u: \approx 1 \\
& \text { loop } \\
& \\
& \text { until }: \approx \geq n \\
& s: \approx 1 \\
& \text { loop } u: \approx u+v \\
& \\
& \\
& \\
& \\
& \text { while }: \approx s \leq r+1 \\
& \\
& \\
&
\end{aligned}
$$

Invariants

$$
\begin{aligned}
& r: \approx 1 \\
& u: \approx 1 \\
& \text { loop } v: \approx u \quad l \leq r \leq n \\
& \text { until } r \geq n \\
& s: \approx 1 \\
& \text { loop } u: \approx u+v \\
& \\
& s: \approx s+1 \\
& \text { while } s \leq r \\
& \\
& \\
& \text { repeat }
\end{aligned}
$$

Well-Founded

- No infinite descending sequences

$$
x 1>x 2>x 3>\ldots
$$

Well-Founded

$>$ is a wfo of X

$$
\frac{\forall x \in X .[\forall y<x . P(y)] \Rightarrow P(x)}{\forall x \in X \cdot P(x)}
$$

Why?

David Gries

- Under the reasonable assumption that nondeterminism is bounded, the two methods are equivalent.... In this situation, we prefer using strong termínation.
$n:=0$
while $x>0$ do
$n:=n+1$
$y:=0 ;$ while $y^{2}+2 y \leq x$ do $y:=y+1$
if $x=y^{2}$
then $x:=y-1$
else $s:=0$
$r:=0 ;$ while $r^{2}+2 r \leq x-y^{2}$ do $r:=r+1$ while $x>y^{2}+r^{2}$ do
$y:=0 ;$ while $y^{2}+2 y \leq x$ do $y:=y+1$
$s:=s+\left(s+y^{2}+y-x\right)^{2}$
$x:=x-y^{2}$
$r:=0$; while $r^{2}+2 r \leq x-y^{2}$ do $r:=r+1$
for $i:=1$ to n do $x:=r^{2}+r-1$
while $s>0$ do

$$
\begin{aligned}
& r:=0 ; \text { while } r^{2}+2 r \leq s \text { do } r:=r+1 \\
& x:=x+\left(x+r^{2}+r-s\right)^{2} \\
& s:=s-r^{2}
\end{aligned}
$$

Contra-Gries

- To prove terminating with a natural (strong) ranking function requires ε_{0} ~ induction

$$
\begin{aligned}
& \text { AlfPLTPOSP R PMKS } \\
& 0<1<2<\cdots \\
& <\omega<\omega+1<\omega+2<\cdots \\
& <\omega 2<\omega 2+1<\cdots<\omega 3<\cdots<\omega 4<\cdots \\
& <\omega^{2}<\omega^{2}+1<\cdots<\omega^{2}+\omega<\omega^{2}+\omega+1<\cdots \\
& <\omega^{3}<\omega^{3}+1<\cdots<\omega^{4}<\cdots<\omega^{5}<\cdots
\end{aligned}
$$

Ordinals

$$
0,1,2, \ldots,
$$

$$
\begin{gathered}
\omega, \omega+1, \omega+2, \ldots \\
\omega 2, \omega 2+1, \ldots, \omega 3, \ldots \\
\omega^{2}, \ldots, \omega^{2}+\omega 2+3, \ldots, \omega^{3}, \ldots \\
\omega^{\omega}, \ldots, \omega^{\omega \omega}, \ldots \\
\varepsilon_{0}, \varepsilon_{0}+1, \ldots, \varepsilon_{0} 2+\omega^{\omega+}, \omega 2+3, \ldots \\
\varepsilon_{1}, \ldots, \varepsilon_{\varepsilon_{0}}, \ldots
\end{gathered}
$$

Transition System

Well-Founded

- States Q
- Algorithm $R \subseteq Q \times Q$
- Well-founded order $>$ on Q
- $R \subseteq>$

All-Purpose Ranking

- $r: Q \rightarrow$ Ord
- $r(x)=\sup \{r(y)+1: x \rightarrow y\}$

Abstraction

Frank Ramsey

Ramsey's Theorem

Infinite complete graph
Finitely colored edges

Monochrome infinite clique

Closure

Proof
 $\rightarrow \infty$

Proof

Proof

Disjunctive Orders

- States Q
- Algorithm $R \subseteq Q \times Q$
- Transitive closure R^{+}
- Well-founded orders $>$ and \lrcorner on Q
- $R^{+} \subseteq>\cup コ$

Ranking Method

- States Q
- Algorithm $R \subseteq Q \times Q$
- Well-founded order $>$ on W
- Ranking function $r: Q \rightarrow W$
- Define $X>Y$ if $r(X)>r(Y)$

Invariants

- States Q
- Algorithm $R \subseteq Q \times Q$
- Well-founded order $>$ on W
- Ranking function $r: Q \rightarrow W$
- Define $X>Y$ if $r(X)>r(Y)$

Algorithmic System

Classical Algorithms

- Every algorithm can be expressed precisely as a set of conditional assignments, executed in parallel repeatedly.

$$
\begin{aligned}
& \text { if } \mathrm{c} \text { then } f(\mathrm{~s} 1, \ldots, \mathrm{sn}):=\mathrm{t} \\
& \text { if } \mathrm{c} \text { then } f(\mathrm{~s} 1, \ldots, \mathrm{sn}):=\mathrm{t}
\end{aligned}
$$

Practical Method

- States Q
- Algorithm $R \subseteq Q \times Q$
- Well-founded order $>$ on W
- Ranking function $r: Q \rightarrow W$
- Define $X>Y$ if $r(X)>r(Y)$

Color Code

Bordeaux Azure

"Well, lemme think. ... You've stumped me, son. Most folks only wanna know how to go the other way."

Mortal (black) nodes on bottom and immortal (green) nodes on top

Mortal in each alone (dashed Azure or solid Bordeaux), but immortal in their union

Infinite Separation

Infinite Separation

Enough?

Enough?

Enough?

Jumping

Jumping

Constriction + Jumping

Constriction + Jumping

Constriction + Jumping

Termination

5. Well-Quasi Orderings

- $D t \approx 1$
- $D C=0$
- $D(x+y)=D x+D y$
- $D(x y)=y D x+x D y$

CONTRIBUTIONS TO MECHANICAL MATHEMATICS

by
 Renato Iturriaga

May 27, 1967
管。

Carnegie-Mellon University
Pittsburgh, Pennsylvania

Title : TERMINATION OF ALGORITHMS.

Information for the Defense Community
Descriptive Note : Doctoral thesis,
Corporate Author : CARNEGIE-MELLON UNIV PITTSBURGH PA DEPT OF COMPUTER SCIENCE
Personal Author(s) : Manna,Zohar
Report Date : APR 1968
Pagination or Media Count : 105
Abstract : The thesis contains two parts which are self-contained units. In Part 1 we present several results on the relation between the problem of termination and equivalence of programs and abstract programs, and the first order predicate calculus. Part 2 is concerned with the relation between the termination of interpreted graphs, and properties of well-ordered sets and graph theory. (Author)

Descriptors : (*COMPUTER PROGRAMMING, ALGORITHMS), COMPUTER PROGRAMS, NUMERICAL ANALYSIS, SET THEORY, GRAPHICS, THEORY, FLOW CHARTING, SEQUENCES(MATHEMATICS), COMPATIBILITY, MATRICES(MATHEMATICS), THESES

Subject Categories : Theoretical Mathematics

Disjunctiveness

while c do
A $\mid B$
a, b wfo
$(A \cup B)^{+} \subseteq a \cup b$

Disjunctiveness
while $x>0$ and $y>0$ do

$$
\begin{array}{l|l}
x:=x-1 & y:=y-1 \\
y:=?
\end{array}
$$

$x i>x j \vee y i>y j$ for icj need $x i \geq x j$

Jumping

while c do
A | B
while c do A while c do B
$B A \subseteq A(A \cup B)^{*} \cup B$

Jumping

while $x>0$ and $y>0$ do

$$
\begin{array}{l|l}
x: \approx x-1 & y: \approx y-1 \\
u: \approx ? &
\end{array}
$$

$B A \subseteq A$

Jumping

while $x>0$ and $y>0$ do

$$
\begin{array}{l|l}
x: \approx x-1 & y: \approx y-1
\end{array}
$$

$B A \subseteq A B$

Disjunctiveness

while $x>0$ and $y>0$ do

$$
\begin{array}{l|l}
x: \approx x-1 \\
u: & : x u
\end{array} \quad y:=y-1
$$

$B A \subseteq A B^{*}$

Fairness

$s: \approx$ true

$n: \approx 0$
while s do

$$
\mathrm{n}: \approx \mathrm{n}+1 \quad \mid \quad \mathrm{s}: \approx \text { false }
$$

Fairness

$$
s: \approx ?
$$

$n: \approx 0$
while $s>0$ do

$$
n: \approx n+1 \quad \mid \quad s: \approx s-1
$$

Grid Game

- Given (upper-right) grid coordínates (xO, yO)
- Choose ($x j, y j$) to prolong game s.t.
- $x j<x i O R y j<y i ́ f o r a l l i<j$

Grid Game

														I	

Grid Game

												-	,

Grid Game

												\square	-

Grid Game

Grid Game

												\square	-

Tricolor

- Color pairs i<j of points
- Purple if $x i>x j$ and $y i ́>y j$
- Blue if only xi>xj
- Red if only yí> yj
- Consider sequence of poínts
- Ramsey contradicts well-foundedness

Ramsey's Theorem

- Two colors: yes and no
- Extend yes as long as possible
- If can forever, then done (all yes)
- If not, then repeat

Ramsey's Theorem

- Reduce more than 2 colors to 2 (colorblindness). Repeat.
- For 2: Form sequence of nodes al a2 a3 ... by repeatedly taking monochromatically-connected subsets

$S:=V$
$R:=\emptyset$
do forever

$$
\begin{aligned}
& x: \in S \\
& R:=R \cup\{x\} \\
& S:=S \backslash\{x\} \\
& W:=\{s \in S \mid c(x, s)=\text { white }\} \\
& S:= \begin{cases}W & \text { if }|W|=\infty \\
S \backslash W & \text { otherwise }\end{cases}
\end{aligned}
$$

$W:=\{x \in R \mid \forall y \in R . y \neq x \rightarrow c(x, y)=$ white $\}$
return $\begin{cases}W & \text { if }|W|=\infty \\ R \backslash W & \text { otherwise }\end{cases}$

Ramsey's Theorem

Infinite complete multí-graph
Finitely colored multi-edges
can have myltiple multi-edges
Monochrome infinite clique

Quasi-ordering

- Greater or equívalent
- Transítive
- Reflexive

Quasi-ordering

- Equivalence (both directions)
- Strict part (only one)

Well-quasi-ordering

- Well-founded
- no infinite strictly-descending sequences
- No infinite antí-chaíns

Wqo

A THEOREM ON PARTLALLY ORDERED SETS (Sumary)

Michael Rebin

In the following note re aive a condition for the finiteness of a partially ordered set. This theorem was established in order to prove the finiteness of certain classes of ideals.

Theorem.
Assumption: Let the partially ordered set M satisfy the following conditions:
a) The maximum condition (that is, the ascendine shain condition;.
b) The minirium condition (that is, the descending chain condition).
c) svery subset of M in winich all pairs of elements are uncomperaisle, is Pinite.

Conclusion: M is einite.

The crucial point of the proof lies in the following eereral principle.

Equivalent Properties

- Wqo
- Every infinite sequence has an ordered pair

Well-Quasí-Order

Definition. A set A is Well Quasi Ordered under えif for all infinite sequences from A:

$$
a_{1}, a_{2}, a_{3}, \ldots
$$

there exists some $i<j$ such that $a_{i} \precsim a_{j}$.

Equivalent Properties

- Standard: wf and no inf antichaín
- Simple: Every ínfiníte sequence has an ordered paír
- Useful: Every infinite sequence contains an infinite non-decreasing chaín
- Why? ~ Ramsey

Properties

- Every refinement (more order) is also wqo
- Every linearization (refinement s.t. all equivalence classes are comparable) is well-ordered

Dickson's Lemma

- Order ($n-$) tuples in product ordering
- All components are in order
- Tuples of wqos are wqo

Good

- A pair ís good if it is ordered
- A sequence is good if it has a good pair
- A set is good (wqo) if all sequences are good

Bad

- A sequence is bad if there is no good pair
- It is good if it has at least one paír

Good \& Bad

- A qo is a wqo if all sequences are good
- A sequence is bad if it is not good
- If a set is not good, then there is a minímal counterexample (bad sequence)

Higman's Lemma

- Every infinite sequence of words (over a finite alphabet) includes an embedding.

Homeomorphic

$a b b$

b	a	b	d	b

Higman's Lemma

- Suppose a finite or infinite alphabet is wqo
- Extend order to string embedding
- letters map in order to bigger or equivalent ones
- Stríngs are wqo

Precedence

- Example, Σ

$$
\begin{aligned}
& a_{0}<a_{1}<a_{2}<\ldots \\
& b_{0}<b_{1}<b_{2}<\ldots \\
& \ldots \\
& z_{0}<z_{1}<\ldots
\end{aligned}
$$

Minimal Bad Sequence

- acd eef afda ...
- afda ab acd ...
- ab eef afda ...
- ab acd eef afda ...
- ab afda acd ...

Minimal Bad Sequence

- acd eef afda ...
- afda ab acd ...
- ab eef afda ...
- ab acd eef afda ...
- ab afda acd ...

Minimal Bad Sequence

- ab eef afda ...
- ab acd eef afda ...
- ab afda acd ...

Minimal Bad Sequence

- ab eef afda ...
- ab acd eef afda ...
- ab afda acd ...

Minimal Bad Sequence
. ab acd eef afda ...

Minimal Bad Sequence

- ab acd eef afda ...

Minimal Bad Sequence

- ab acd afda ...

Proof

- Consider minímal bad sequence
- $\alpha_{1} x_{1} \alpha_{2} x_{2} \alpha_{3} x_{3} \ldots \alpha_{i} x_{i} \ldots \alpha_{j} x_{j} \ldots$
- Extract subsequence with first letters $\alpha_{i 1} \alpha_{i 2} \alpha_{i 3} \ldots$ ordered
- Consider rests $x_{i 1} x_{i 2} x_{13} \ldots$
- Tails (or substrings) of mínimal bad sequence are good
- why?
- Suppose bad tails $x_{9} \ldots x_{3} x_{18} \ldots$
- Consider $x_{3} x_{18} \ldots$ (where 3 min index)
- $\alpha_{1} x_{1} \alpha_{2} x_{2} x_{3} x_{18} \ldots$ would be smaller than

Contradiction

. ab acd afda ... aacafad ...

Corollary: Bag

- Gíven wfo > on elements X, consider bag order
- Extend (by Zorn's Lemma) to total well-order $>$; X is wqo by \geq
- By Higman, sequences X^{*} are wqo
- Were there an infinite descending sequence $\left\{b_{i}\right\}$ of multisets wrt >, it would be decreasing wrt >
- By Higman, there's a pair bj \leq bk; by bag order

Termination

6. Tree Orderíngs

Symbolic

- $D t \approx 1$
- $D C=0$
- $D(x+y) \approx D x+D y$
- $D(x y)=x D y+y D x$

Exponential

- $[D x]=3^{[x]}$
- $[\mathrm{t}]=[\mathrm{c}]=3$
- $[x+y] \approx \ldots \approx[x y] \approx[x]+[y]$

WQO

- Standard: wf and no inf antichaín
- Simple: Every ínfinite sequence has an ordered pair
- Useful: Every infinite sequence contains an ínfinite non-decreasing chaín
- Why? - Ramsey

Corollary

- Multiset ordering
- Bounded-arity tree ordering

Kruskal's Tree Theorem

- Every infinite sequence of trees (over a wgo alphabet) includes an embedding.

Good Sequence

$\mathrm{T}:=\mathbb{4} \mathbb{4}$

S:=

$\mathrm{T}=\mathbb{\mathbb { 4 }} \mathbb{4} \mathbb{4} \mathbb{N}^{-1}$

$S^{\prime}:=$

$$
-\Lambda
$$

$$
\Lambda
$$

Labels

Gremlins

Gremlins

Multiset Path Order

- $s \approx f\left(s_{1}, \ldots, s_{m}\right) \quad t \approx g\left(t_{1}, \ldots, t_{n}\right)$
- $s>t$ if $s_{i} \geqslant t$ for some i
- $s>t$ if
- $\left(f,\left\{s_{1}, \ldots, s_{m}\right\}\right)>_{\text {lex }}\left(g,\left\{t_{1}, \ldots, t_{n}\right\}\right)$
- and $s>t_{j}$ for all j

Symbolic

- $D t \approx 1$
- $D C=0$
- $D(x+y) \approx D x+D y$
- $D(x y)=x D y+y D x$

Distributivity

- $x(y+z)=x y+x z$

DNF

- $\neg \neg x=x$
- $\neg(x \vee y)=(\neg x) \wedge(\neg y)$
- $\neg(x \wedge y)=(\neg x) \vee(\neg y)$
- $x \wedge(y \vee z)=(x \wedge y) \vee(x \wedge z)$
- $(y \vee z) \wedge x=(y \wedge x) \vee(z \wedge x)$

Simplification Order

- $f\left(\ldots, s_{i}, \ldots\right)>s_{i}$
- $s_{i}>t_{i} \Rightarrow f\left(\ldots, s_{i}, \ldots\right)>f\left(\ldots, t_{i}, \ldots\right)$
- Finite alphabet

Simplification Order

- $f\left(\ldots, s_{i}, \ldots\right)>s_{i}$
- $s_{i}>t_{i} \Rightarrow f\left(\ldots, s_{i}, \ldots\right)>f\left(\ldots, t_{i}, \ldots\right)$
- $f>g \Rightarrow f\left(\ldots, s_{i}, \ldots\right)>g\left(\ldots, s_{1}, \ldots\right)$

Lexicographic Path

- $s \approx f\left(s_{1}, \ldots, s_{m}\right) \quad t \approx g\left(t_{1}, \ldots, t_{n}\right)$
- $s>t$ if $s_{i} \geq t$ for some i
- $s>t$ if
- $\left(f, s_{1}, \ldots, s_{m}\right)>_{\text {lex }}\left(g, t_{1}, \ldots, t_{n}\right)$
- and $s>t_{j}$ for all j

Recursive Path Order

- $s \approx f\left(s_{1}, \ldots, s_{m}\right) \quad t \approx g\left(t_{1}, \ldots, t_{n}\right)$
- $s>t$ if $s_{i} \geq t$ for some i
- $s>t$ if
- $\left(f, s_{1}, \ldots,\left\{s_{i}, \ldots, s_{m}\right\}\right)>_{l e x}\left(g, t_{1}, \ldots,\left\{t_{i}, \ldots, t_{n}\right\}\right)$
- and $s>t_{j}$ for all j

Weak
Simplification Order

- $f\left(\ldots, s_{i}, \ldots\right) \geqslant s_{i}$
- $s_{i} \geqslant t_{i} \Rightarrow f\left(\ldots, s_{i}, \ldots\right) \geqslant f\left(\ldots, t_{i}, \ldots\right)$

Simplification Ordering

- (Weakly) Monotonic
- (Weakly) Subterm
- They are well-quasi-orders

Termination

7. Rewriting

Fission

Better

- $d(a)=\operatorname{depth}(a)$
- $\{$ id (a) : a in A : colony A$\}$
- fission: depth decreases
- fusion: one deep item removed

DNFO

- $\neg \rightarrow x$ - x
- $\neg(x \vee y) \Rightarrow(\neg x) \wedge(\neg y)$
- $\neg(x \wedge y) \Rightarrow(\neg x) \vee(\neg y)$
- $x \wedge(y \vee z) \Rightarrow(x \wedge y) \vee(x \wedge z)$
- $(y \vee z) \wedge x \Rightarrow(y \wedge x) \vee(z \wedge x)$

DNFI

- $\neg \neg x \Rightarrow x$
- $\neg(x \vee y) \Rightarrow(\neg x) \wedge(\neg y)$
- $\neg(x \wedge y) \Rightarrow(\neg x) \vee(\neg y)$
- $x \wedge(y \wedge z) \Rightarrow(x \wedge y) \wedge z$
- $x \vee(y \vee z) \Rightarrow(x \vee y) \vee z$
- $x \wedge(y \vee z) \Rightarrow(x \wedge y) \vee(x \wedge z)$
- $(y \vee z) \wedge x \Rightarrow(y \wedge x) \vee(z \wedge x)$

DNF2

- $\neg \neg x \Rightarrow x$
- $\neg(x \vee y) \Rightarrow(\neg x) \wedge(\neg y)$
- $\neg(x \wedge y) \Rightarrow(\neg x) \vee(\neg y)$
- $(x \wedge y) \wedge z \Rightarrow x \wedge(y \wedge z)$
- $x \vee(y \vee z) \Rightarrow(x \vee y) \vee z$
- $x \wedge(y \vee z) \Rightarrow(x \wedge y) \vee(x \wedge z)$
- ($y \vee z) \wedge x \Rightarrow(y \wedge x) \vee(z \wedge x)$

DNF3

- $\neg \neg x \leadsto x$
- $\neg(x \vee y) \Rightarrow(\neg \neg \neg x) \wedge(\neg \neg \neg y)$
- $\neg(x \wedge y) \Rightarrow(\neg \neg \neg x) \vee(\neg \neg \neg y)$
- $x \wedge(y \vee z) \Rightarrow(x \wedge y) \vee(x \wedge z)$
- $(y \vee z) \wedge x \Rightarrow(y \wedge x) \vee(z \wedge x)$

DNF3

- $\neg \neg x \Rightarrow x$
- $\neg(x \vee y) \Rightarrow(\neg \neg \neg x) \wedge(\neg \neg \neg y)$
- $\neg(x \wedge y) \Rightarrow(\neg \neg \neg x) \vee(\neg \neg \neg y)$
- $x \wedge(y \vee z) \Rightarrow(x \wedge y) \vee(x \wedge z)$
- $(y \vee z) \wedge x \Rightarrow(y \wedge x) \vee(z \wedge x)$
$\neg \neg(a \wedge(b \vee c))$

DNF4

- $\neg \neg x \Rightarrow x$
- $\neg(x \vee y) \Rightarrow(\neg x) \wedge(\neg y)$
- $\neg(x \wedge y) \Rightarrow(\neg x) \vee(\neg y)$
- $x \wedge(y \vee z) \Rightarrow(x \wedge y) \vee(x \wedge z) \vee(x \wedge y) \vee(x \wedge z)$
- $(y \vee z) \wedge x \Rightarrow(x \wedge y) \vee(x \wedge z) \vee(x \wedge y) \vee(x \wedge z)$
- $x \vee x \Rightarrow x$

DNF5

- $\neg \neg x \Rightarrow x$
- $\neg(x \vee y) \Rightarrow(\neg x) \wedge(\neg y) \wedge(\neg x) \wedge(\neg y)$
- $\neg(x \wedge y) \Rightarrow(\neg x) \vee(\neg y) \vee(\neg x) \vee(\neg y)$
- $x \wedge(y \vee z) \Rightarrow(x \wedge y) \vee(x \wedge z)$
- $(y \vee z) \wedge x \Rightarrow(x \wedge y) \vee(x \wedge z)$
- $x \vee x \Rightarrow x$
- $x \wedge x \Rightarrow x$

DNF 6

- $\neg \neg x \Rightarrow x$
- $\neg(x \vee y) \Rightarrow(\neg \neg \neg x) \wedge(\neg \neg \neg y) \wedge(\neg \neg \neg x) \wedge(\neg \neg \neg y)$
- $\neg(x \wedge y) \Rightarrow(\neg \neg \neg x) \vee(\neg \neg \neg y) \vee(\neg \neg \neg x) \vee(\neg \neg \neg y)$
- $x \vee x 』 x$
- $x \wedge x \Rightarrow x$

DNF7

- $\neg \neg x \Rightarrow x$
- $\neg(x \vee y) \Rightarrow(\neg x) \wedge(\neg y) \wedge(\neg x) \wedge(\neg y)$
- $\neg(x \wedge y) \Rightarrow(\neg x) \vee(\neg y) \vee(\neg x) \vee(\neg y)$
- $x \vee x 』 x$
- $x \wedge x \Rightarrow x$

Symbolic Computation

- $D t=1$
- $D C=0$
- $D(x+y)=D x+D y$
- $D(x y)=x D y+y D x$

Rewriting

- Dt $\Rightarrow 1$
- $D c \Rightarrow 0$
- $D(x+y) \Rightarrow D x+D y$
- $D(x y) \Rightarrow x D y+y D x$
- ...

Factorial

- $x+0 \Rightarrow x$
- $x+s(y) \Rightarrow s(x+y)$
- $\mathrm{x}^{*} \mathrm{O} \Rightarrow \mathrm{O}$
- $x^{*} s(y) \Rightarrow y+x^{*} y$
- $f(0) \Rightarrow_{s}(0)$
- $f(s(x)) \Rightarrow s(x) * f(x)$

Factorial

- $x+O \Rightarrow x$
- $x+s(y) \Rightarrow s(x+y)$
- $\mathrm{x}^{*} \mathrm{O} \Rightarrow \mathrm{O}$
- $x^{*} s(y) \Rightarrow y+x^{*} y$
- $f(0) \Rightarrow_{s}(0)$
- $f(s(x)) \Rightarrow s(x) * f(p(s(x)))$
- $p(s(x)) \Rightarrow x$

Termination

- If $s[x] \Rightarrow t[x]$ is a rule
- then $c[s[v]] \Rightarrow c[t[v]]$ is a rewrite
- Want $c[s[v]]>c[t[v]]$ in some wfo
- Want monotonicity
- $s>t \Rightarrow f(\ldots, s, \ldots)>f(\ldots, t, \ldots)$

Exponential Interpretation

- $[D x]=3^{[x]}$
- $[t]=[c]=3$
- $[x+y]=\ldots=[x y]=[x]+[y]$

Polynomial Interpretation

- $[D x]=[x]^{2}$
- $[x+y]=\ldots=[x y]=[x]+[y]$
- Eventually positive
- $x^{2}+y^{2}+2 x y-x^{2}-y^{2}-x-y=2 x y-x-y$
- Derívatives: $2 x-1 ; 2 y-1$

Multiset Path Order

- $s \approx f\left(s_{1}, \ldots, s_{m}\right) \quad t \approx g\left(t_{1}, \ldots, t_{n}\right)$
- $s>t$ if $s_{i} \geqslant t$ for some i
- $s>t$ if
- $\left(f,\left\{s_{1}, \ldots, s_{m}\right\}\right)>_{\text {lex }}\left(g,\left\{t_{1}, \ldots, t_{n}\right\}\right)$
- and $s>t_{j}$ for all j

Lexicographic Path Order

- $s=f\left(s_{1}, \ldots, s_{m}\right) \quad t \approx g\left(t_{1}, \ldots, t_{n}\right)$
- $s^{>}$ti $_{s_{i}} \gtrsim t$ for some i
- $s>t$ if
- $\left(f, s_{1}, \ldots, s_{m}\right)>_{\text {lex }}\left(g, t_{1}, \ldots, t_{n}\right)$
- and $s>t_{j}$ for all j

Boyer \& Moore

- if(if $(x, y, z), u, v) \Rightarrow$ if $(x, i f(y, u, v), i f(z, u, v))$

Recursive Path Order

- $s \approx f\left(s_{1}, \ldots, s_{m}\right) \quad t \approx g\left(t_{1}, \ldots, t_{n}\right)$
- $s>t$ if $s_{i} \geq t$ for some i
- $s>t$ if
- $\left(f, s_{1}, \ldots,\left\{s_{i}, \ldots, s_{m}\right\}\right)>_{l e x}\left(g, t_{1}, \ldots,\left\{t_{i}, \ldots, t_{n}\right\}\right)$
- and $s>t_{j}$ for all j

Simplification Order

- Suppose finíte vocabulary
- Subterm: $f(\ldots, s, \ldots)>s$
- Monotonic: $s>t \Rightarrow f(\ldots, s, \ldots)>f(\ldots, t, \ldots)$
- Must be well-founded

Weak Simplification Order

- Weak subterm: $f\left(\ldots, s_{i}, \ldots\right) \geqslant s_{i}$
- Weak monotonicity:
$s_{i} \geqslant t_{i} \Rightarrow f\left(\ldots, s_{i}, \ldots\right) \geqslant f\left(\ldots, t_{i}, \ldots\right)$
- Well-quasi-order by Kruskal
- Enough for termination of rewriting - why?

Total Order

- Suppose finite vocabulary
- Monotonic: $s>t \Rightarrow f(\ldots, s, \ldots)>f(\ldots, t, \ldots)$
- Well-founded iff subterm

Semantic Path Order

- $s \approx f\left(s_{1}, \ldots, s_{m}\right) \quad t \approx g\left(t_{1}, \ldots, t_{n}\right) \quad>$
- $s>t$ if $s_{i} \geq t$ for some i
- $s>t$ if
- $\left(s, s_{1}, \ldots, s_{m}\right)>_{\text {lex }}\left(t, t_{1}, \ldots, t_{n}\right)$
- and $s>t_{j}$ for all j
- require $s \Rightarrow t \Rightarrow f(\ldots s \ldots) \geq f(\ldots t \ldots)$

Proof

- Extend base order to a total w.f. order
- Consíder minímal bad sequence
- Subterms are well-founded
- No use of $s_{i} \geqslant t$ case
- So base order decreases and stabilizes

Termination

8. Semantic Path Order

DNF3

- $\neg \neg x \Rightarrow x$
- $\neg(x \vee y) \Rightarrow(\neg \neg \neg x) \wedge(\neg \neg \neg y)$
- $\neg(x \wedge y) \Rightarrow(\neg \neg \neg x) \vee(\neg \neg \neg y)$
- $x \wedge(y \vee z) \Rightarrow(x \wedge y) \vee(x \wedge z)$
- $(y \vee z) \wedge x \Rightarrow(y \wedge x) \vee(z \wedge x)$
$\neg \neg(a \wedge(b \vee c))$

DNF4

- $\neg \neg x \Rightarrow x$
- $\neg(x \vee y) \Rightarrow(\neg x) \wedge(\neg y)$
- $\neg(x \wedge y) \Rightarrow(\neg x) \vee(\neg y)$
- $x \wedge(y \vee z) \Rightarrow(x \wedge y) \vee(x \wedge z) \vee(x \wedge y) \vee(x \wedge z)$
- $(y \vee z) \wedge x \Rightarrow(x \wedge y) \vee(x \wedge z) \vee(x \wedge y) \vee(x \wedge z)$
- $x \vee x \Rightarrow x$

DNF5

- $\neg \neg x \Rightarrow x$
- $\neg(x \vee y) \Rightarrow(\neg x) \wedge(\neg y) \wedge(\neg x) \wedge(\neg y)$
- $\neg(x \wedge y) \Rightarrow(\neg x) \vee(\neg y) \vee(\neg x) \vee(\neg y)$
- $x \wedge(y \vee z) \Rightarrow(x \wedge y) \vee(x \wedge z)$
- $(y \vee z) \wedge x \Rightarrow(x \wedge y) \vee(x \wedge z)$
- $x \vee x \Rightarrow x$
- $x \wedge x \Rightarrow x$

DNF 6

- $\neg \neg x \Rightarrow x$
- $\neg(x \vee y) \Rightarrow(\neg \neg \neg x) \wedge(\neg \neg \neg y) \wedge(\neg \neg \neg x) \wedge(\neg \neg \neg y)$
- $\neg(x \wedge y) \Rightarrow(\neg \neg \neg x) \vee(\neg \neg \neg y) \vee(\neg \neg \neg x) \vee(\neg \neg \neg y)$
- $x \vee x 』 x$
- $x \wedge x \Rightarrow x$

DNF 6

- $\neg \neg x \Rightarrow x$
- $\neg(x \vee y) \Rightarrow(\neg \neg \neg x) \wedge(\neg \neg \neg y) \wedge(\neg \neg \neg x) \wedge(\neg \neg \neg y)$
- $\neg(x \wedge y) \Rightarrow(\neg \neg \neg x) \vee(\neg \neg \neg y) \vee(\neg \neg \neg x) \vee(\neg \neg \neg y)$
- $x \vee x 』 x$
$\neg \neg(x \vee y)$
- $x \wedge x \Rightarrow x$

Labeling

- $f f x=f g f x$
- $f f x=$ fgrx
- fffxaffgr

Semantic Path Order

- Given a well-founded term order \approx
- $s=f\left(s_{1}, \ldots, s_{m}\right) \quad t=g\left(t_{1}, \ldots, t_{n}\right)$
- $s>t$ if $s_{i} \approx t$ for some i
- $s>t$ if $\left(s, s_{1}, \ldots, s_{m}\right)>_{l e x}\left(t, t_{1}, \ldots, t_{n}\right)$
- and $s>t_{j}$ for all j
- $s \approx \operatorname{tiff}\left(s, s_{1}, \ldots, s_{m}\right) \approx\left(t, t_{1}, \ldots, t_{n}\right)$

Semantic Path Order

- requíre $s \Rightarrow t \Rightarrow f(\ldots s ..) \geq f(\ldots t \ldots)$

Proof

- Extend base order to atotalw.f. order
- Consider minimal bad sequence
- Subterms are well-founded
- No use of $s_{i} \geqslant t$ case
- So base order decreases and stabilizes

Jumping

- Let $P \approx R u B$
- IfsRuBt
- thensRt
- ors $B v_{1} P v_{2} P \ldots P v_{n} P t$
- In short $R B \subseteq R \cup B P^{*}$
- Hence (induction) $R B^{*} \subseteq R \cup B P^{*}$

Constricting

- Let $P=R u B$
- If there is an immortal purple chain $s_{1} P s_{2} P s_{3} P \ldots$
- then there is an immortal constricting chain $s_{1} B B \ldots B t_{1} R u_{1} B B \ldots B t_{2} R \ldots$
- R only when "necessary"
- if $t_{i} B v$, then v is mortal

Constriction + Jumping

Constriction + Jumping

Constriction + Jumping

Constricted Jumping

- Constricted $s_{1} B B \ldots B t_{2} \underline{R} t_{3} B B \ldots B t_{4} \underline{R} \ldots$
- Jumping $R B^{*} \subseteq R \cup B P^{*}$
- Jumping $\underline{R}^{*} B^{*} \subseteq \underline{R}$
- $s_{1} B B \ldots B t_{2} \underline{R} t_{4} \underline{R} \ldots$

Jumping Union

- If B jumps over R
- then union well-founded iff both are
- $s_{1} B B \ldots B t_{1} \underline{R} B^{*} t_{2} \underline{R B}^{*} t_{2} \underline{R B}^{*} \ldots$
- $s_{1} B B \ldots B t_{1} \underline{R} t_{2} \underline{R} t_{3} \underline{R} \ldots$
- $s_{1} B B \ldots B t_{1} R B^{*} t_{2} \underline{R} B^{*} t_{2} \underline{R} B B B B \ldots$
- $s_{1} B B \ldots B t_{1} \underline{R} \underline{R} u_{k} B B B B \ldots$

Lifting

- For any immortal red chaín $s_{1} R s_{2} R s_{3} R \ldots$
- there is also an immortal purple chain after taking an immediate blue turn $s_{1} B t_{1} P t_{2} P \ldots$
- Example: R is multiset; B is subset

Lifting Union

- If B jumps over R
- and B lifts to R
- then union well-founded iff Bis
- $s_{1} B B \ldots B t_{1} \underline{R} t_{2} \underline{R} t_{3} \underline{R} \ldots X X X$
- $s_{1} B B \ldots B t_{1} \underline{R} \underline{R} u_{k} B B B B \ldots$

Nested Multisets

- subset jumps over multiset
- subset lifts to multiset
- well-founded since subset is

Escaping

- For any immortal red chaín $s_{1} R s_{2} R s_{3} R \ldots$
- there is also an immortal purple chain after some blue turn

$$
s_{1} R s_{2} R \ldots R s_{k} B t_{1} P t_{2} P \ldots
$$

Jumping + Escaping

Jumping + Escaping

Escaping Union

- If B jumps over R
- and B escapes from R
- then union well-founded iff B is
- $s_{1} B B \ldots B t_{1} \underline{R} t_{2} \underline{R} t_{3} \underline{R} \ldots X X X$
- $s_{1} B B \ldots B t_{1} \underline{R} \underline{R} \underline{R} u_{k} B B B B \ldots$

Termination

9. Dependencies

Assumption

- Simplification orders
- Assume fixed or bounded aríty
- Otherwise need another condition
- $f(\ldots 5 \ldots) \geqslant f(\ldots \ldots)$

Substitutions

- substitution $\left\{X_{i} \mapsto u_{i}\right\}$
- applyt\{$\left.x_{i} \rightarrow u_{i}\right\}$, replace each occurrence of variable x_{i} in t with term u_{i}
- compose $\left\{x_{i} \mapsto u_{i}\right\} \sigma \approx\left\{X_{i} \mapsto u_{i} \sigma\right\}$

Unifiers

- substitution σ unifies terms s and t if $\mathrm{s} \sigma \approx \mathrm{t} \sigma$
- substitution μ more general than σ if there's a \mathbf{T} (not a renaming) such that $\sigma=\mu \mathrm{T}$
- if there is a unifier, then there is a unique most general one μ (unique up to renaming)

Unifiers

- x, y distínct varíables
- f, g distinct symbols
- $\operatorname{mgu}(x, x)=\varnothing ; \operatorname{mgu}(x, y)=\{x \mapsto y\}$
- $m g u(x, t)=\{x \mapsto t\}$, t does not contaín x
- $\operatorname{mgu}(x, t)=$ fail, t contains x (but isn't x)
- $\operatorname{mgu}(f(\underline{s}), g(t))=f a i l ; \operatorname{mgu}(f(), f())=\varnothing$
- $\operatorname{mgu}(f(u, \underline{s}), f(v, \underline{t}))=\mu u \operatorname{mgu}(f(\underline{s} \mu), f(\underline{t} \mu))$ where $\mu=\operatorname{mgu}(u, v)$

Non-termination

- Can use most general unifier to look for examples of nontermination
- Given two derivations $s \rightarrow t$ and $u \rightarrow v$
- renamed so that the two have distinct variables
- rules are one-step derivations
- extend (if possible) by mgu μ of u and nonvariable subterm of t
- $s \mu \cdots t \mu \approx r \mu[u \mu] \rightarrow r \mu[v \mu]$

Jumping

- Let $P \approx R u B$
- IfsRuBt
- thensRt
- ors $B v_{1} P v_{2} P \ldots P v_{n} P t$
- In short $R B \subseteq R \cup B P^{*}$
- Hence (induction) $R B^{*} \subseteq R \cup B P^{*}$

Jumping Union

- If B jumps over R
- then union well-founded iff both are
- $s_{1} B B \ldots B t_{1} \underline{R} B^{*} t_{2} \underline{R B}^{*} t_{2} \underline{R B}^{*} \ldots$
- $s_{1} B B \ldots B t_{1} \underline{R} t_{2} \underline{R} t_{3} \underline{R} \ldots$
- $s_{1} B B \ldots B t_{1} R B^{*} t_{2} \underline{R} B^{*} t_{2} \underline{R} B B B B \ldots$
- $s_{1} B B \ldots B t_{1} \underline{R} \underline{R} u_{k} B B B B \ldots$

Escaping

- For any immortal red chaín $s_{1} R s_{2} R s_{3} R \ldots$
- there is also an immortal purple chain after some blue turn

$$
s_{1} R s_{2} R \ldots R s_{k} B t_{1} P t_{2} P \ldots
$$

Escaping Union

- If B jumps over R
- and B escapes from R
- then union well-founded iff B is
- $s_{1} B B \ldots B t_{1} \underline{R} t_{2} \underline{R} t_{3} \underline{R} \ldots X X X$
- $s_{1} B B \ldots B t_{1} \underline{R} \underline{R} \underline{R} u_{k} B B B B \ldots$

Top $\&$ Not

- Two parts to rewriting \Rightarrow
- instance of rule $\quad \Rightarrow_{\text {top }}$
- within a context

Top / Not

- Immediate subterm: $f(\ldots t . ..) \triangleright t$
- If $s 1 \Rightarrow s 2 \Rightarrow s 3 \Rightarrow$...
- Either sí $\Rightarrow_{\text {top }} \ldots s j \Rightarrow_{\text {top }} \ldots s k \Rightarrow_{\text {top }}$
- $\operatorname{Orsl} \Rightarrow \ldots \Rightarrow s k \triangleright t 1 \Rightarrow t 2 \Rightarrow \ldots$

Facts

- $f(\ldots$.... ... $) \Rightarrow_{\text {in }} f(\ldots$....u... $) \triangleright t$
- $f(\ldots s \ldots u \ldots) \triangleright s \Rightarrow t$
- $f(\ldots s \ldots u \ldots) \Rightarrow_{\text {in }} f(\ldots$........ $) \triangleright u$
- $f(\ldots s \ldots u \ldots) \triangleright u$

Dependencies

- Let $>$ be $\Rightarrow_{\text {top }} \triangleright^{*}$
- Rule $s \Rightarrow t[u]$
- $s>u$
- exclude variable u

Dependency Pairs

- R rewrite step
- Ttop step
- I inner step (not at top)
- D dependency pair (includes top step)
- A subterm

Dependencies

- $B \approx D \cup 1$
- $R \subseteq B$
- $D A \subseteq D \cup A^{+} \subseteq B \cup A^{+}$
- $\mid A \subseteq A \cup A R \subseteq A \cup A B$
- $B A \subseteq B \cup A^{+} \cup A B$
- A jumps over B (Dul)

Dependencies

- Show $B \approx D$ ulis terminating
- $D \subseteq>$
- $\mid \subseteq \approx$
- > well-founded
- $\gtrsim>\subseteq>$ "compatible"

Proof

- Infinite $D \& 1$, with infinitely many Ds
- A escapes from I and jumps over I
- Can't have infinite tail of only 1
- So show I*D termínates
- |*D $\subseteq \approx>\subseteq$ >

Advantage

- Must have infinitely many D steps at top
- So enough to show other steps \approx

Quotient

- $x-0 \Rightarrow x$
- $s x-s y \Rightarrow x-y$
- $0 \div s y \Rightarrow 0$
- $s x \div s y \Rightarrow s([x-y] \div s y)$

Rules

- $x-O \gtrsim x$
- $s x-s y \gtrsim x-y$
- $0 \div s y \geq 0$
- $s x \div s y \gtrsim s([x-y] \div s y)$

Drop Subtrahend LPO with only first argument of ~

- $-x \gtrsim x$
- $-5 x \gtrsim-x$
- $0 \div s y \geq 0$
- $s x \div s y \geqslant s(-x \div s y)$

Pairs

- $5 x-5 y>x-y$
- $s x \div s y>(x-y) \div s y$
- $5 x \div 5 y>x-y$

Pairs

- $-5 x>-x$
- $s x \div s y>-x \div s y$
- $s x \div s y>-x$

Dependency Graph

Termination

10. Recursion

$$
x-0 \rightarrow x
$$

$$
\mathbf{s}(x)-\mathbf{s}(y) \rightarrow x-y
$$

quot $(0, \mathrm{~s}(y)) \rightarrow 0$
$\operatorname{quot}(\mathbf{s}(x), \mathbf{s}(y)) \rightarrow \mathbf{s}(q u o t(x-y, \mathbf{s}(y)))$

$$
\begin{aligned}
0+y & \rightarrow y \\
\mathrm{~s}(x)+y & \rightarrow \mathrm{~s}(x+y) \\
(x-y)-z & \rightarrow x-(y+z)
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{le}(0, y) & \rightarrow \text { true } \\
\mathrm{le}(\mathrm{~s}(x), 0) & \rightarrow \text { false } \\
\mathrm{le}(\mathrm{~s}(x), \mathrm{s}(y)) & \rightarrow \mathrm{le}(x, y) \\
\operatorname{minus}(0, y) & \rightarrow 0 \\
\operatorname{minus}(\mathrm{~s}(x), y) & \rightarrow \mathrm{if}_{\text {minus }}(\mathrm{le}(\mathrm{~s}(x), y), \mathrm{s}(x), y) \\
\mathrm{if}_{\text {minus }}(\text { true }, \mathrm{s}(x), y) & \rightarrow 0 \\
\text { if }_{\text {minus }}(\text { false }, \mathrm{s}(x), y) & \rightarrow \mathrm{s}(\operatorname{minus}(x, y)) \\
\operatorname{quot}(0, \mathrm{~s}(y)) & \rightarrow 0 \\
\operatorname{quot}(\mathrm{~s}(x), \mathrm{s}(y)) & \rightarrow \mathrm{s}(\text { quot }(\operatorname{minus}(x, y), \mathrm{s}(y)))
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{le}(\mathrm{~s}(x), 0) & \rightarrow \text { false } \\
\mathrm{le}(\mathrm{~s}(x), \mathrm{s}(y)) & \rightarrow \mathrm{le}(x, y) \\
\operatorname{pred}(\mathrm{s}(x)) & \rightarrow x \\
\operatorname{minus}(x, 0) & \rightarrow x \\
\operatorname{minus}(x, \mathrm{~s}(y)) & \rightarrow \operatorname{pred}(\operatorname{minus}(x, y)) \\
\operatorname{gcd}(0, y) & \rightarrow y \\
\operatorname{gcd}(\mathrm{~s}(x), 0) & \rightarrow \mathbf{s}(x) \\
\operatorname{gcd}(\mathrm{s}(x), \mathrm{s}(y)) & \rightarrow \operatorname{if}_{\operatorname{gcd}}(\mathrm{le}(y, x), \mathbf{s}(x), \mathbf{s}(y)) \\
\mathrm{if}_{\mathrm{gcd}}(\operatorname{true}, \mathbf{s}(x), \mathrm{s}(y)) & \rightarrow \operatorname{gcd}(\operatorname{minus}(x, y), \mathbf{s}(y)) \\
\mathrm{if}_{\mathrm{gcd}}(\mathrm{false}, \mathbf{s}(x), \mathbf{s}(y)) & \rightarrow \operatorname{gcd}(\operatorname{minus}(y, x), \mathbf{s}(x))
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{le}(\mathbf{s}(x), \mathbf{s}(y)) \rightarrow \mathrm{le}(x, y) \\
& \operatorname{app}(\text { nil }, y) \rightarrow y \\
& \operatorname{app}(\operatorname{add}(n, x), y) \rightarrow \operatorname{add}(n, \operatorname{app}(x, y)) \\
& \operatorname{low}(n, \text { nil }) \rightarrow \text { nil } \\
& \operatorname{low}(n, \operatorname{add}(m, x)) \rightarrow \mathrm{if}_{\mathrm{low}}(\mathrm{le}(m, n), n, \operatorname{add}(m, x)) \\
& \mathrm{if}_{\text {low }}(\operatorname{true}, n, \operatorname{add}(m, x)) \rightarrow \operatorname{add}(m, \operatorname{low}(n, x)) \\
& \mathrm{if}_{\text {low }}(\text { false, } n, \operatorname{add}(m, x)) \rightarrow \operatorname{low}(n, x) \\
& \operatorname{high}(n, \text { nil }) \rightarrow \text { nil } \\
& \operatorname{high}(n, \operatorname{add}(m, x)) \rightarrow \operatorname{if}_{\text {high }}(\operatorname{le}(m, n), n, \operatorname{add}(m, x)) \\
& \text { if }_{\text {high }}(\operatorname{true}, n, \operatorname{add}(m, x)) \rightarrow \operatorname{high}(n, x) \\
& \text { if }_{\text {high }}(\text { false }, n, \operatorname{add}(m, x)) \rightarrow \operatorname{add}(m, \operatorname{high}(n, x)) \\
& \text { quicksort(nil) } \rightarrow \text { nil } \\
& \text { quicksort }(\operatorname{add}(n, x)) \rightarrow \operatorname{app}(q u i c k s o r t(\operatorname{low}(n, x)) \text {, } \\
& \operatorname{add}(n, \text { quicksort }(\operatorname{high}(n, x))))
\end{aligned}
$$

$$
\operatorname{apply}(t, \sigma): \approx
$$

if var? (t)
then if $\sigma=\{ \}$
then t
else let $\{x \mapsto u\} \cup \sigma^{\prime}=\sigma$ in
if $t=x$
then u
else apply $\left(t, \sigma^{\prime}\right)$
else let $f(t 1, \ldots$, tn $)=t$ in
$f(\operatorname{apply}(t 1, \sigma), \ldots$, apply $(\mathrm{tn}, \sigma))$

Occur?

occur? $(x, t):=$
if var? (t)
then $(x=t)$
else let $f(t 1, \ldots, t n)=t$ in
$\operatorname{occur} ?(x, t 1) \vee \ldots \vee \operatorname{occur} ?(x, t n)$
unify $(s, t):=$
if var? (s)
then if var? (t)
then if $s \approx t$ then $\}$ else $\{s \mapsto t\}$
else if occur? (s, t)
then fail
else $\{s \mapsto t\}$
else let $f(s 1, \ldots, s m) \approx s \& g(t 1, \ldots, t n)=t$ in
if $f \neq g$
then fail
else if $\mathrm{m} \approx 0$ [assuming $\mathrm{m}=\mathrm{n}$]
then $\}$
else let $\sigma \approx$ unify $(s 1, t 1)$ in
let $\tau=\operatorname{unify}(\operatorname{apply}(f(s 2, \ldots, s m), \sigma)$, apply $(f(t 2, \ldots, t n), \sigma))$ in $T \cup \sigma T$ [composition of substitutions....]

Primitive Recursion

- $f(\mathrm{n}, \mathrm{x}, \ldots, \mathrm{z}):=$
if $n=0$
then $g(x, \ldots, z)$
elseh(f(n-1,x,..,z),n-1,x,..,z)

Inductive Definitions

- Constructors
- $0, s(0), s(s(0)), \ldots$
- e, $a(e), b(e), a(a(e)), \ldots$
- e, $b(e, e), b(b(e, e), e), \ldots$

Structural Induction

- $a(x, y): \approx$ if $x \approx()$ then y else $c(h d(x), a(t \mid(x), y))$
- $r(x): \approx$ if $x=0$ then () else $a(r(t \mid(x)), c(h d(x),(0))$

Functions

- Basic (e.g. arithmetic, boolean)
- Constructors (e.g. lists, trees)
- Conditional (if c then a else b)
- Defined (recursívely, perhaps)

Definitions

- $f(x, y, \ldots, z): \approx t[x, y, \ldots, z]$
- $e(m, n): z$ if $n=0$ then 1 else $m \times e(m, n-1)$

Evaluations

- $i f(T, x, y)=x$
- if($f(x, y)=y$
- $f(c, x, y)=i f\left(c^{\prime}, x, y\right)$
- $f(x, y)=t[[x, y]$
- $f(x, y)=f\left(x^{\prime}, y\right)$
- $f(x, y) ø f\left(x, y^{\prime}\right)$

Inner/Outer

- if $(T, x, y) \Rightarrow x$
- if $(F, x, y) \Rightarrow y$
- if $(c, x, y) \Rightarrow$ if $\left(c^{\prime}, x, y\right)$
- $f(x, y) \Rightarrow t[x, y]$
- $f(x, y) \Rightarrow f\left(x^{\prime}, y\right)$
- $f(x, y) \Rightarrow f\left(x, y^{\prime}\right)$

Inner \mathcal{E} Outer

- N : normative; nothing above
- A: applicative; nothing below
- I: inner; something above (not normal)
- O: outer; something below

91 Example

- $f(x):=$ if $x>100$
then $x-10$
else $f(f(x+11))$

- $f(x, y): \approx$ if $x=0$
then 2
else $f(x-1, f(x+y, y))$

Example

- $f(x, y):=$ if $x=0$
then O
else if $x=1$
then $f(0, f(1, y))$
else $f(x-2, y+1)$

Example

- $f(1,1)=f(0, f(1,1))=? ? ?$

In vs. Out

- If any computation is terminating, then outermost (normal order) is terminating.
- If any computation is non-terminating, then innermost (applicative order) is non-terminating.

Normal is Very Good

- Suppose not
- Consider mínímal counterexample
- u NNNNINNIINNNNIII v; value
- $1 N=1 O \subseteq N A^{*}$
- So: u N...NI...Iv
- But can't have Iv, so u N* v

Applicative is Very Bad

- IfuOv, then
- there are $u^{\prime} v v^{\prime \prime}$ " such that
- u $A^{\prime} u^{\prime} A v^{\prime} A^{!} v^{\prime \prime}$
- $v A^{*} v^{\prime} A^{\prime} v^{\prime \prime}$
- A! means as much as possible

Termination

11. Eventuality

Transformation

Transitions

- Program: $s 1 \rightarrow s 2 \rightarrow s 3 \rightarrow \ldots$
- Transformation sí \mapsto si
- Schema: $s 1 \leadsto s 2 \leadsto s 3 \leadsto \ldots$
- $s \leadsto s^{\prime}$ if $s \leadsto s^{\prime}$

Homework

$$
\begin{aligned}
& x-0 \Rightarrow x \\
& s x-s y \Rightarrow x \sim y \\
& 0 \div s y \Rightarrow 0 \\
& s x \div s y \Rightarrow s((x-y) \div s y) \\
& 0+y \Rightarrow y \\
& s x+y \Rightarrow s(x+y) \\
& (x-y)-z \Rightarrow x-(y+z)
\end{aligned}
$$

Easy Rules

$$
x-0 \Rightarrow x
$$

$$
0 \div s y \Rightarrow 0
$$

$$
o+y \Rightarrow y
$$

Precedence

$$
\psi,+>s>-(\operatorname{dr} ?)
$$

Hard Rule

$$
s x) \div s y \Rightarrow s((x-y) \div s y)
$$

Solution

$$
s x \div s y \Rightarrow s((x-y) \div s y)
$$

Problem

$$
s x \div s y \Rightarrow s((x-y) \div s y) \Rightarrow s((u+v) \div s y)
$$

Pairs

$$
s x-s y \Rightarrow x-y
$$

$$
s x \div s y \Rightarrow(x-y) \div s y \quad s x \div s y \Rightarrow x-y
$$

$$
\begin{aligned}
& s x+y \Longleftrightarrow x+y \\
& (x-y)-z \Rightarrow x-(y+z) \quad(x-y)-z \Rightarrow y+z
\end{aligned}
$$

Pairs ~ Colored

$$
\begin{aligned}
& s x-s y \Rightarrow x-y \\
& s x \div s y \Rightarrow(x-y) \div s y \quad s x \div s y \Rightarrow x-y \\
& s x+y \Rightarrow x+y \\
& (x-y) \sim z \Rightarrow x-(y+z) \quad(x-y)-z \Rightarrow y+z
\end{aligned}
$$

Pairs - Separated

$$
s x-s y \Rightarrow x-y
$$

$$
s x \div s y \Rightarrow(x-y) \div s y \quad s x \div s y \Rightarrow x-y
$$

$5 x+y \Rightarrow x+y$
$(x-y)-z \Rightarrow x-(y+z) \quad(x-y)-z \Rightarrow y+z$

Pairs - Separated

$$
5 x+y \Rightarrow x+y
$$

Pairs - Separated

$$
s x \div s y \Rightarrow(x-y) \div s y \quad s x \div s y \Rightarrow x-y
$$

Pairs - Separated

$$
s x \div s y \Rightarrow x \sim \div s y \quad s x \div s y \Rightarrow x \sim
$$

Pairs - Separated

$$
s x-s y \Rightarrow x-y
$$

$$
(x-y)-z \Rightarrow x-(y+z) \quad(x-y)-z \Rightarrow y+z
$$

Rules

$$
\begin{aligned}
& x-0 \Rightarrow x \\
& s x-s y \Rightarrow x-y \\
& 0 \div s y \Rightarrow 0 \\
& s x \div s y \Rightarrow s((x-y) \div s y) \\
& 0+y \Rightarrow y \\
& s x+y \Rightarrow s(x+y) \\
& (x-y) \sim z \Rightarrow x-(y+z)
\end{aligned}
$$

Rules -

$$
\begin{aligned}
& x \sim \Rightarrow x \\
& s x \sim \Rightarrow x \sim \\
& 0 \div s y \Rightarrow 0 \\
& s x \div s y \Rightarrow s((x-) \div s y) \\
& 0+y \Rightarrow y \\
& s x+y \Rightarrow s(x+y) \\
& (x-) \sim \Rightarrow x \sim
\end{aligned}
$$

Rules \gtrsim

$$
\begin{aligned}
& x \sim \geqslant x \\
& s x \sim \geqslant x \sim \\
& 0 \div s y \geqslant 0 \\
& s x \div s y \geqslant s((x-) \div s y) \\
& 0+y \geqslant y \\
& s x+y \geqslant s(x+y) \\
& (x-) \sim \geqq x \sim
\end{aligned}
$$

$$
\begin{aligned}
& 0 \leq y \Rightarrow T \\
& s x \leq 0 \Rightarrow F \\
& s x \leq s y \Rightarrow x \leq y \\
& 0-y \Rightarrow 0 \\
& s x-y \Rightarrow \text { if }(s x \leq y, s x, y) \\
& \text { if }(T, s x, y) \Rightarrow 0 \\
& \text { if }(F, s x, y) \Rightarrow s(x-y) \\
& 0 \div s y \Rightarrow 0 \\
& s x \div s y \Rightarrow s((x-y) \div s y)
\end{aligned}
$$

$$
\begin{aligned}
& 0 \leq y \Rightarrow T \\
& s x \leq y \Rightarrow F \\
& s x \leq s y \Rightarrow x \leq y \\
& p s x \Rightarrow x \\
& x \sim 0 \Rightarrow x \\
& x \sim s y \Rightarrow p(x-y) \\
& \operatorname{gcd}(s x, 0) \Rightarrow s(x) \\
& \operatorname{gcd}(s x, s y) \Rightarrow \text { if }(y \leq x, s x, s y) \\
& \text { if }(T, s x, s y) \Rightarrow \operatorname{gcd}(x-y, s y) \\
& i f(F, s x, s y) \Rightarrow \operatorname{gcd}(y-x, s x)
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{le}(\mathbf{s}(x), \mathbf{s}(y)) \rightarrow \mathrm{le}(x, y) \\
& \operatorname{app}(\text { nil }, y) \rightarrow y \\
& \operatorname{app}(\operatorname{add}(n, x), y) \rightarrow \operatorname{add}(n, \operatorname{app}(x, y)) \\
& \operatorname{low}(n, \text { nil }) \rightarrow \text { nil } \\
& \operatorname{low}(n, \operatorname{add}(m, x)) \rightarrow \mathrm{if}_{\mathrm{low}}(\mathrm{le}(m, n), n, \operatorname{add}(m, x)) \\
& \mathrm{if}_{\text {low }}(\operatorname{true}, n, \operatorname{add}(m, x)) \rightarrow \operatorname{add}(m, \operatorname{low}(n, x)) \\
& \mathrm{if}_{\text {low }}(\text { false, } n, \operatorname{add}(m, x)) \rightarrow \operatorname{low}(n, x) \\
& \operatorname{high}(n, \text { nil }) \rightarrow \text { nil } \\
& \operatorname{high}(n, \operatorname{add}(m, x)) \rightarrow \operatorname{if}_{\text {high }}(\operatorname{le}(m, n), n, \operatorname{add}(m, x)) \\
& \text { if }_{\text {high }}(\operatorname{true}, n, \operatorname{add}(m, x)) \rightarrow \operatorname{high}(n, x) \\
& \text { if }_{\text {high }}(\text { false }, n, \operatorname{add}(m, x)) \rightarrow \operatorname{add}(m, \operatorname{high}(n, x)) \\
& \text { quicksort(nil) } \rightarrow \text { nil } \\
& \text { quicksort }(\operatorname{add}(n, x)) \rightarrow \operatorname{app}(q u i c k s o r t(\operatorname{low}(n, x)) \text {, } \\
& \operatorname{add}(n, \text { quicksort }(\operatorname{high}(n, x))))
\end{aligned}
$$

Dataflow

Top Graph

- Pierre Réty \& al. (1987) : Narrowing
- Jürgen Giesl \& al. (2000): Rewriting

Argument Graph

- Shuki Sagiv \&al. (1991): Logic languages
- Neil Jones \& al. (2000): Functional languages

Induction

Leaves

leaves $(t): \approx$

if leaf(t)
then 1
else leaves $(\operatorname{left}(t))+$ leaves $($ right $(t))$

Counting Leaves

$s: \approx \operatorname{push}(t$, empty $)$
$n: \approx 0$
loop while $s \neq$ empty
$h: \approx \operatorname{top}(s)$
$s:=\operatorname{pop}(s)$
ifleaf(h)
then $n: \approx n+1$
else $s: \approx \operatorname{push}(l \mathrm{lft}(\mathrm{h})$, push(right(h),s))

Correctness

- if $s=t . e$ and $n \approx 0$
- then eventually $s \approx e$ and $n \approx \#(t)$

Lemma

- if $s \approx t . r$ and $n \approx k$
- then eventually $s \approx r$ and $n \approx k+\#(t)$

Induction (1)

- if $s=$ leaf. r and $n=k$
- then eventually $s \approx r$ and $n \approx k+\#$ (leaf)
- then eventually $s \approx r$ and $n \approx k+1$

Induction (2)

- if $s=b(l t, r t) \cdot r$ and $n=k$
- then $s=1$ t.rt. r and $n=k$
- then eventually $s=r t . r$ and $n=k+\#(1 t)$
- then eventually $s=r$ and $n=k+\#(t)+\#(r t)$
- then eventually $s=r$ and $n=k+\# b(l t, r t)$

Termination

- if $s=t . e$
- then eventually $s \approx e$

Lemma

- if $s=t . r$
- then eventually $s=r$

Ackermann

$$
\begin{aligned}
& t:=1 \\
& s[t]: \approx m \\
& \text { loop } m: \approx s[t] \\
& t:=t-1 \\
& \text { if } m=0 \\
& \text { then } n:=n+1 \\
& \text { else if } n=0 \\
& \text { then } t: \approx t+1 \\
& s[t]: \approx m-1 \\
& n: \approx 1 \\
& \text { else } t: \approx t+2 \\
& s[t-1]: \approx m-1 \\
& s[t]:=m \\
& n:: n-1 \\
& \text { until } t=0
\end{aligned}
$$

Termination

- If $t=k$ then eventuall $y t=k-1$ and $s[0: k-1]$ same
- Induction on (m,n) just after m: $: s[t]$
- Case I, $\mathrm{m}=0: \mathrm{t}^{\prime} \approx \mathrm{t}-1$
- Case $2, m>0, n \approx 0: t^{\prime} \approx t ; m^{\prime} \approx m-1$
- Case 3, $m, n>0: t^{\prime} \approx t+1 ; m^{\prime} \approx m ; n^{\prime} \approx n-1 ; s\left[t^{\prime}\right] \approx m-1$
- By induction, eventually $t^{\prime \prime} \approx t ; m^{\prime \prime} \approx m-1$

Termination

12. Typing

Grades

- 10% ~ participation \& exercíses
- 90% - term paper
- Alonzo Church (1903-1995)
- ínvented lambda calculus (1932)
- first programming language researcher (sans computers)

- Turing's advisor

A SET OF POSTULATES FOR THE FOUNDATION OF LOGIC. ${ }^{1}$

By Alonzo Ohurch.?

1. Introduction. In this paper we present a set of postulates for the foundation of formal logic, in which we avoid use of the free, or real, variable, and in which we introduce a certain restriction on the law of excluded middle as a means of avoiding the paradoxes connected with the mathematics of the transfinite.

free and bound variables

In consequence of this abstract character of the system which we are about to formulate, it is not admissible, in proving theorems of the system, to make use of the meaning of any of the symbols, although in the application which is intended the symbols do acquire meanings. The initial set of postulates must of themselves define the system as a formal structure, and in developing this formal structure reference to the proposed application must be held irrelevant. There may, indeed, be other applications of the system than its use as a logic.
symbols do not have pre-conceived meanings

In consequence of this abstract character of the system which we are about to formulate, it is not admissible, in proving theorems of the system, to make use of the meaning of any of the symbols, although in the application which is intended the symbols do acquire meanings. The initial set of postulates must of themselves define the system as a formal structure and in develoning this formal structure reference to the proposed application must be held irrelevant. There may, indeed, be other applications of the system than its use as a logic.
symbols do not have pre-conceived meanings

Proof terms, well-formed objects

An occurrence of a variable \mathbf{x} in a given formula is called an occurrence of \mathbf{x} as a bound variable in the given formula if it is an occurrence of \mathbf{x} in a part of the formula of the form $\lambda x[M]$; that is, if there is a formula M such that $\lambda \mathbf{x}[\mathrm{M}]$ occurs in the given formula and the occurrence of \mathbf{x} in question is an occurrence in $\lambda \times[\mathrm{M}]$. All other occurrences of a variable in a formula are called occurrences as a free variable.

A formula is said to be well-formed if it is a variable, or if it is one

Lambda Calculus

- Everything is a function
- For example, $\lambda \times . x$ is the identity function
- $\lambda y . \lambda \times . x$ is a constant function, always returning identity

Lambda Terms

- Constants C; Variables X
- $L=$ constant | variable | application | abstraction
- $L:: \approx C|X|(L L) \mid \lambda \times . L$

Positions

- Dewey decimal system
- Number children, left to right
- Path to position gives "address"

Free Occurrences

- Constants C; Variables X
- $L:=C|X|(L L) \mid \lambda X . L$
- $F_{x}(c)=\{ \} \quad F_{x}(x)=\{e\}$
- $F_{x}(s t)=0 . F_{x}(s) \cup 1 . F_{x}(t)$
- $F_{x}(\lambda \times . s)=\{ \}$
- $F_{x}(\lambda y . s)=1 . F_{x}(s)$

Lambda Calculus

- β-rule: $(\lambda \times . s) t \rightarrow s[x \mapsto t]$
- Replace (all free) x in s with t

Substitution

- $x[x \rightarrow t]=t$
- $y[x \mapsto t]=y$
- $c[x \mapsto t]=c$
- (su) $[x \mapsto t] \approx s[x \mapsto t] u[x \mapsto t]$
- $(\lambda \times . s)[x \mapsto t] \approx \lambda x . s$
- $(\lambda y . s)[x \mapsto t]=\lambda y . s[x \mapsto t]$

Beta Immortality

- $\lambda_{x . x}(x) \lambda_{x . x}(x) \rightarrow \lambda_{x . x}(x) \lambda_{x . x}(x)$

Completeness

- Every recursive function can be simulated by a pure lambda expression.
- Church numerals represent the naturals.
- Termination is undecidable.

Church Numerals

- n
- $\lambda f, x . f n(x)$

Church Numerals

- T
- F
- if(c,a,b)
- O
- n++
-n~~
- $n=0$
- $\lambda x, y \cdot x$
- $\lambda x, y \cdot y$
- $\lambda c, a, b, c(a, b)$
- $\lambda f, x . x$
- $\lambda f, x . f(n(f, x))$
- hard
- $n(\lambda x . F, T)$

$$
\begin{array}{ll}
\text { Synagogue Numerals } \\
\bullet T & \bullet \lambda x, y \cdot x \\
\bullet F & \bullet \lambda x, y \cdot y \\
\bullet \text { if }(c, a, b) & \bullet \lambda c, a, b . c(a, b) \\
\text { - o } & \bullet \lambda x . x \\
\bullet_{n++} & \bullet \lambda x . x(F, n) \\
\text { - } n \sim \sim & \bullet n(F) \\
\bullet n=0 & \bullet n(T)
\end{array}
$$

Scheme

- (((lambda $(x y)(y x))$ (lambda $(z) z)$ (lambda (z) (zz))) 5)
- (((lambda (z) (zz)) (lambda (z) z)) 5)
- (((lambda (z) z) (lambda (z z)) 5)
- ((lambda (z) z) 5)
- 5

Inner vs. Outer

- Scheme uses innermost
- Haskell uses outermost

Recursor

- $Y:=(\lambda \times \cdot(\lambda y \cdot x(y(y)))(\lambda y \cdot x(y(y))))$
- $Y(b)$: recursive function with body b
- fixpoint: $Y(b)=b(Y(b))$
- $(Y(\lambda f, \lambda m, n . i f(n \approx 0, m,(f(m, n-\sim))++)))(3,4)$

Currying

$\lambda x . \lambda y . A[x, y]$ instead of $\lambda x, y . A[x, y]$

+ is the binary addition function
+(3) adds 3 to any number
$+(3)(4)$ evaluates to 7

Arithmetic (Rosser)

- 0
- $\lambda f . \lambda x . x$
- n^{++}
- $\lambda f . \lambda \times . n(f)(f(x))$
- m+n
- $\lambda f . \lambda \times . m(f)((n(f))(x))$
- mn
- λ f.m(n $(f))$
- m^{n}
- $\lambda f . n(m)(f)$
λ-calculus and first-order rewriting led to two important families of programming languages:

- functional programming languages: Lisp (1958), ML (1972), Haskell (1990), OCaml (1996), F\# (2005), ...
- rewriting-based languages: OBJ (1976), Elan (1994), Maude (1996), ...

Simple Types

- Base types B (e.g. Nat)
- Arrow types [e.g. Nat \rightarrow (Nat \rightarrow Bool)]
- Each constant/variable has a type
- Type $(\lambda x: \sigma . s: T) \approx \sigma \rightarrow T$
- Type $(s: \sigma \rightarrow T \mathrm{t}: \sigma)=\mathrm{T}$

Typing Rules

——Id
 $x: A \vdash x: A$

$$
\frac{\Gamma, x: A \vdash u: B}{\Gamma \vdash \lambda x: u: A \rightarrow B} \rightarrow-\Gamma \quad \frac{\Gamma \vdash s: A \rightarrow B \quad \Delta \vdash t: A}{\Gamma, \Delta \vdash s t: B}
$$

Typed Lambda Calculus

- β-rule: $(\lambda x: \sigma . s: T) t: \sigma \rightarrow s[x: \sigma \mapsto t: \sigma]: T$

Typed Beta Mortality

- $\lambda x: \sigma \rightarrow T .(x: \sigma \rightarrow T x: \sigma):(\sigma \rightarrow T) \rightarrow T$

Termination

- Turing gave first proof
- Tait's proof
- Induction on term structure
- Induction on type structure

Termination of β-reduction alone?

in the simply-typed λ-calculus:

- \rightarrow_{β} can be proved terminating by a direct induction on the type of the substituted variable (Sanchis 1967, van Daalen 1980) does not extend to rewriting where the type of substituted variables can increase, e.g. $\mathrm{f}(\mathrm{cx}) \rightarrow x$ with $x: \mathrm{A} \Rightarrow \mathrm{B}$
computability has been introduced for proving termination of β-reduction in typed λ-calculi (Tait, 1967) (Girard, 1970)

- every type T is mapped to a set $\llbracket T \rrbracket$ of computable terms
- every term $t: T$ is proved to be computable, i.e. $t \in \llbracket T \rrbracket$

Predicates

- $S[t]: t$ is "terminating" (no infinite paths)
- $C[t]$: t is "computable" (typed terminating)
- $N[t]$: t is "normalizing" (has a normal form)

Facts

- $S[t] \& t \rightarrow u \Rightarrow S[u]$
- $S[t] \& t \triangleright u \Rightarrow S[u]$
- $\{\forall \mathrm{u} \cdot \mathrm{t} \rightarrow \mathrm{u} \Rightarrow \mathrm{S}[\mathrm{u}]\} \Rightarrow S[\mathrm{t}]$

Desiderata

$$
\begin{aligned}
& \text { 1. } C[t] \Rightarrow S[t] \\
& \text { 2. } C[s] \& s \rightarrow t \Rightarrow C[t] \\
& \text { 3. } C[x] \quad C[c] \\
& \text { 4. } \forall t\{u(v) \rightarrow t \Rightarrow C[t]\} \Rightarrow C[u(v)] \\
& \text { 5. } C[u] \Leftrightarrow \forall v\{C[v] \Rightarrow C[u(v)]\}
\end{aligned}
$$

Computability predicates

there are different definitions of computability (Tait Sat, Girard Red, Parigot SatInd, Girard $\mathrm{Bi} \perp$) but Girard's definition Red is better suited for handling arbitrary rewriting
let Red be the set of P such that:

- termination: $P \subseteq \operatorname{SN}\left(\rightarrow_{\beta}\right)$
- stability by reduction: $\rightarrow_{\beta}(P) \subseteq P$
- if t is neutral and $\rightarrow_{\beta}(t) \subseteq P$ then $t \in P$
neutral $=$ not head-reducible after application ($\lambda x u$ is not neutral)

Termination

13. Higher-Order Orderings

Predicates

- $S[t]$: t is termínatíng
- $C[t]$: t is computable

Computability

Inductive definition of $C[t]$:

- Basic $t: C[t]$ if $S[t]$
- Arrow t: $C[t]$ if $C[t(s)]$ for all
computables (of the right type)

Lemmas

O. Reducts of computable terms are computable

1. Computable terms are terminating
2. Applications are computable if all reducts are

Main. Computable substitutions yield computable terms

Lemma O

- Reducts of computable terms are computable

$$
C[t] \& t \rightarrow u \Rightarrow C[u]
$$

Proof of Lemma O

$$
C[t] \& t \rightarrow u \Rightarrow C[u]
$$

- Induction on type
- Basict: $C[u]$ if $S[u]$ if $S[t]$ if $C[t]$
- Arrow $t: \sigma \rightarrow \mathrm{T}:$ By def, $\mathrm{C}[\mathrm{t}(\mathrm{s}): \mathrm{T}]$ for all computable s. By ind, $\mathrm{C}[\mathrm{u}(\mathrm{s}): \tau]$, for all s. By def, C[u].

Lemma 1

- Computable terms are terminatíng

$$
C[t] \Rightarrow S[t]
$$

Proof of Lemma 1

$C[t] \Rightarrow S[t]$

- Induction on type
- Basic t: By definition
- Arrow t: $\sigma \rightarrow \mathrm{T}$

By def, $C[t(s)]$ for all computable $s: \sigma$. By ind, $S[t(s): \tau]$. It must be that $S[t]$, too.

Neutrality

- applyíng creates no new redexes
t neutral: redexes of $t(s)$ are in t ors
- computable if reducts are
$C[t]$ if $C[r]$ forall r s.t. $t \rightarrow r$

Lemma 2

Applications are neutral:
$C[s(t)]$ if $C[r]$ forall rs.t. $s(t) \rightarrow r$

Proof of Lemma 2

$C[s(t)]$ if $\forall r . s(t) \rightarrow r \Rightarrow C[r]$

- Induction on type of $s(t)$
- Basic: $S[s(t)]$ iff $S[r] \forall r$
- Arrow: Show $C[s(t)(u)]$ for each computable u. By ind, $C[r(u)] \forall r$ suffices, which is just $C[r]$.

Corollary

$C[\lambda \lambda . s)(t)]$ if $C[s(x+t]\} \subset[t]$

By well-founded induction on s, t

Proof of Corollary

$C[s\{x \mapsto t\}] \& C[t] \Rightarrow C[(\lambda \times . s)(t)]$
By LO, $S[s] \& S[t]$. Let $s \rightarrow s^{\prime}, t \rightarrow t^{\prime}$
So $C\left[s^{\prime}\{x \mapsto t\}\right] \& C[t] \Rightarrow C\left[\left(\lambda x . s^{\prime}\right)(t)\right]$ $C[s\{x \mapsto t\}] \& C\left[t^{\prime}\right] \Rightarrow C\left[(\lambda \times . s)\left(t^{\prime}\right)\right]$
$B y L 2, C[(\lambda x . s)(t)]$ if $C\left[\left(\lambda \times . s^{\prime}\right)(t)\right] \&$ $C\left[(\lambda x . s)\left(t^{\prime}\right)\right] \& C[s\{x \mapsto t\}]$
But $C[t] \Rightarrow C\left[t^{\prime}\right]$ and $C[s\{x \mapsto t\}] \Rightarrow C\left[s^{\prime}\{x \mapsto t\}\right]$

Lemma 3

$$
S[t 1] \& \ldots \& S[t n] \Rightarrow C[x(t 1)(t 2) \ldots(t n)]
$$

- Induction on type of $t=x(t 1)(t 2) \ldots(t n)$
- Basic t: Sínce only reducible ínside terminating ti, $S[t]$. By def, $C[t]$.
- Arrow $t: \sigma \rightarrow T$. For any computable $s: \sigma, S[s]$ by LI. By ind, C[t(s):T]. By def, $C[t]$.

Maín Lemma

- Computable substitutions yield computable terms

Main: $C[u \sigma]$ for all u and computable σ

- where $C[\sigma]$ if $C[t]$ for all $x \mapsto t$ in σ

Proof of Main Lemma

C[uo] for computable σ

- Structural induction on u
u constant: $u=u \sigma$ is basic and terminating; so $C[u]$ by def.
u is variable x : If $x \sigma=x, L 3$ applies; otherwise $x \sigma$ is computable. $u \approx t(s): u \sigma=t \sigma(s \sigma)$. By ind, $C[t \sigma]$; by def, $C[t \sigma(s \sigma)]$, since $C[s \sigma]$ by ind.
- $u=\lambda x . s$: For computable t, let $\sigma^{\prime}=\sigma-\{x \mapsto x \sigma\} u\{x \mapsto t\}$. By ind, $C\left[s \sigma^{\prime}\right]$. By $L 2 c, C[((\lambda x . s) \sigma)(t)]$, as $(\lambda x . s) \sigma=\lambda x . s(\sigma \sim\{x \mapsto \times \sigma\})$ and $s(\sigma-\{x \mapsto x \sigma\})\{x \mapsto t\}=s \sigma^{\prime}$. By def, $C[(\lambda x . s) \sigma]$.

Theorem

- All typed terms are terminating
- $C[t]$ for all t
- Main lemma (empty substitution)
- $S[t]$ for all t
- By Lemma 1

Frédéric

Functional

- $D(\lambda x . y) \rightarrow \lambda \times . O$
- $D(\lambda \times . x) \rightarrow \lambda x .1$
- $D(\lambda x \cdot \sin (F(x))) \rightarrow \lambda x \cdot D(F(x)) \cdot \cos (F(x))$

Higher-Order Rewriting

- $\operatorname{map}(F, e) \rightarrow e$
- $\operatorname{map}(F, x: y) \rightarrow F(x): \operatorname{map}(F, y)$

System T

- $\operatorname{rec}(O, u, F) \rightarrow u$
- $\operatorname{rec}(s(x), u, F) \rightarrow F(x, \operatorname{rec}(x, u, F)))$
$\bullet n!\rightarrow \operatorname{rec}(n, 1, \lambda y, z . s(y) \cdot z)$

Mixing Problem

- $f(c(x)) \rightarrow x$
- $f: A \rightarrow(A \rightarrow B) \quad c:(A \rightarrow B) \rightarrow A \quad x: A \rightarrow B$
- $w \approx \lambda z: A \cdot f(z)(z)$
- $w(c(w)) \rightarrow f(c(w))(c(w)) \rightarrow w(c(w)) \rightarrow$

Explicit Application

- @ (s, t) for $s(t)$
- @ (F, t) for $F(t)$

System T

- $\operatorname{rec}(O, u, F) \rightarrow u$
- $\operatorname{rec}(s(x), u, F) \rightarrow @(F, x, \operatorname{rec}(x, u, F)))$

Eta

- $\lambda x . f(x) \approx_{\eta} f \quad($ for $x \notin f)$
- eta long: $\lambda x . f(x)$

Higher-Order RPO

- precedence >
- @ mínímal
- assume total (for simplicity)
- type order >
- various conditions

Example Type Order

- $\sigma \rightarrow \mathrm{T}>\mathrm{T}$
- $\sigma \rightarrow T>a \Leftrightarrow T \geq a($ base a)
- $\sigma \rightarrow T>\sigma^{\prime} \rightarrow T^{\prime} \Leftrightarrow T>T^{\prime} \vee \sigma \geq \sigma^{\prime} \rightarrow T^{\prime}$
- well-founded even when enriched with $\sigma \rightarrow \mathrm{T}>\sigma$

Higher-Order RPO

- $>\approx>\varnothing$
- >x (keep track of variables X)
- $>^{X} \approx>^{X} \cap \geq$

Plain Cases

- $s \approx f(s 1, \ldots, s m)>^{x} g(t 1, \ldots, t n)$
- if $f>g \& s>^{x} t 1, \ldots, t n$
- $s=f(s 1, \ldots, s m)>\times f(t 1, \ldots, t n)$
- if $\{s 1, \ldots, s m\}>\{\mathrm{t} 1, \ldots, \mathrm{tn}\}$ and $s>^{x} \mathfrak{t} 1, \ldots, \mathrm{tn}$
- $s=f(s 1, \ldots, s m)>^{x} t$
- if some si $\gtrsim^{\times} t$

Variable Case

- $s>^{\{\ldots \times \ldots\}} \times$
- if $s \neq x$

Lambda Cases

- $\lambda x: \alpha \cdot w[x]>^{x} t$
- if $w[z: \alpha] \gtrsim^{x} t$
- $s>^{x} \lambda y: \beta . w[y]$
- if $\left.s>^{x \cup\{z: ~} \beta\right\} w[z]$

Beta-Eta Cases

- $\lambda x . @(v, x)>^{x} t$
- if $x \notin v, v \gtrsim^{x} t$
- @ $(\lambda \times . w[x], v)>^{x} t$
- if $w[v] \gtrsim^{x} t$

Lambda-Lambda

- $\lambda x: \alpha . u[x]>^{x} \lambda y: \alpha . w[y]$
- if $u[z: \alpha]>^{x} w[z]$
- $s=\lambda x: \alpha \cdot u[x]>^{x} \lambda y: \beta . w[y]$
- if $\alpha \neq \beta \& s>^{x} w[z: \beta]$

System T

- $\operatorname{rec}(O, u, F) \rightarrow u$
- $\operatorname{rec}(s(x), u, F) \rightarrow @(F, x, \operatorname{rec}(x, u, F)))$

Brower Ordinals

- $\operatorname{rec}(O, U, V, W) \rightarrow U$
- $\operatorname{rec}(s(X), U, V, W) \rightarrow @(V, X, \operatorname{rec}(X, U, V, W))$
- $\operatorname{rec}(\lim (F), U, V, W) \rightarrow$

$$
@(W, F, \lambda n \cdot \operatorname{rec}(@(F, n), U, V, W))
$$

a little more needed

Termination

14. Terminate

$\varepsilon_{\text {o }}$

- $0,1,2, \ldots, \omega, \omega+1, \omega+2, \ldots, \omega 2, \omega 2+1, \ldots$,

$$
\begin{aligned}
& \omega^{3}, \ldots, \omega^{2}, \ldots, \omega^{2}+\omega 2+3, \ldots, \omega^{3}, \ldots, \omega^{\omega}, \ldots, \\
& \omega^{\omega^{\omega}}, \ldots
\end{aligned}
$$

Ordinal Indexing

- $f_{0}, \ldots, f_{100}, \ldots, f_{\omega}, \ldots, f_{\omega 2}, \ldots, f_{\varepsilon 0}, \ldots$

Defenestration

6) Original Artist

Reproduction rights obta inable from

Graduate Students

"Binary" Search

1

P

0
$0123 z$

Unbounded Search

- Cost $c(z)$: number of queries $p(i)$ when answeris z
- There is a transfinite sequence of algorithms, each dramatically better than its predecessor.

WHAT DOES XKCD MEAN?
IT MEANS SAVING A FEW SECONDS AT A LONG RED LIGHT VIA ELABORATE AND QUESTIONABLY LEGAL MANEUVERS.
\qquad

\qquad \square
 \qquad钼 \square
IT MEANS HAVING SOMEONE CALL YOUR CELL PHONE TO FGURFF OUT WHERF IT IS.

RING

IT MEANS CALLING THE ACKERMANN FUNCTION

 WITH GRAHAM'S NUMBER AS THE ARGUMENTS JUST TO HORRIFY MATHEMATICIANS.$$
A\left(g_{64}, g_{64}\right)=\underbrace{}_{\text {AUGHHH }}
$$

IT MEANS INSTINCTIVELY CONSTRUCTING RULES FOR WHICH FLOOR TILES IT'S OKAY TO STEP ON AND THEN WALKING FUNNY EVER AFTER.

Iterated Ackermann

- $A_{1}(n): \approx A(n, n)$
- $A_{2}(n): \approx A_{1}^{n}(n) \approx A_{1}\left(A_{1}\left(A_{1}(\ldots(n))\right)\right)$
- $A_{k}(n): \approx A_{k-1}^{n}(n)$

Knuth's Arrows

- $m \uparrow n \approx m^{n}$
- $m \uparrow \uparrow n \approx m \uparrow(m \uparrow(m \uparrow(m \uparrow \ldots \uparrow m)))$
- $m \uparrow^{k+1} n=m \uparrow^{k}\left(m \uparrow^{k}\left(m \uparrow^{k}\left(m \uparrow^{k} \ldots \uparrow^{k} m\right)\right)\right)$

Cantor Normal Form

- $O, \alpha+\beta, \omega^{\alpha}$
- $n \approx \omega^{\mathrm{O}}+\omega^{\mathrm{O}}+\omega^{\mathrm{O}}+\ldots+\omega^{\mathrm{O}}$
$\bullet \omega^{\alpha} n=\omega^{\alpha}+\omega^{\alpha}+\omega^{\alpha}+\ldots+\omega^{\alpha}$
- cnf: $\omega^{\alpha} n+\beta$
- α, β in cnf; $\omega^{\alpha} n>\beta$
- $\omega^{\alpha 1}+\omega^{\alpha 2}+\ldots+\omega^{\alpha n ;} \alpha 1 \geq \alpha 2 \geq \ldots \geq \alpha n$

Fundamental Sequence

- $\lim _{n \rightarrow \omega} \lambda[n]=\lambda$
- $(\alpha+\beta)[n]:=\alpha+\beta[n]$
- $\omega^{\alpha+1}[n]: \approx \omega^{\alpha} n$
- $\omega^{\lambda}[n]: \approx \omega^{\lambda[n]}$

Fast Grzegorczyk

- $G_{0}(n): \approx n+1$
- $G_{\alpha+1}(n): \approx G_{\alpha}^{n+1}(n)$
- $G_{\lambda}(n): \approx G_{\lambda[n]}(n) \quad(\lambda$ limit $)$

Hardy

- $H_{0}(n): \approx n$
- $H_{\alpha+1}(n): \approx H_{\alpha}(n+1)$
- $H_{\lambda}(n): \approx H_{\lambda[n]}(n) \quad$ (limít)

Slow-Growing

- $g_{0}(n): \approx 0$
- $g_{\alpha+1}(n): \approx g_{\alpha}(n)+1$
- $g_{\lambda}(n): \approx g_{\lambda[n]}(n) \quad(\lambda$ limit $)$

Gödel

- For any consistent axiomatization of arithmetic, there are true unprovable sentences.

Peano Arithmetic

- FOlogic $w /$ =
- Numbers O and its successors
- $\forall_{n} \neg(s(n) \approx 0)$
- $\forall_{m, n} s(m) \approx s(n) \Rightarrow m \approx n$
- $P(0) \wedge \forall_{n}\left(P(n) \Rightarrow P(s(n)) \Rightarrow \forall_{n} P(n)\right.$

Definable
$F(x, z)$ defines $f(x)$ in L if

- $z=f(x)$ iff $F(x, z)$
- and these are provable:
- $\forall_{x} \exists_{z} \cdot F(x, z)$
- $\forall_{x, z, z^{\prime}} \cdot F(x, z) \& F\left(x, z^{\prime}\right) \Rightarrow z=z^{\prime}$

Gentzen

- The Peano axioms are consistent
- Proof by ε_{0} induction
Cut Elimination

D_{1}
$\begin{array}{cc} & \left(A_{1}\right) \xrightarrow{\Pi^{\prime} \rightarrow \Xi^{\prime}} \\ D_{2} & \left(A_{2}\right) C, \Pi^{\prime} \rightarrow \Xi^{\prime} \\ \ddots \because & \ddots\end{array}$
$\begin{array}{ccc}\left(A_{3}\right) & \Gamma \rightarrow \Delta, C \quad C, \Pi \rightarrow \Xi \\ \left(A_{4}\right) & \Gamma, \Pi \rightarrow \Delta, \Xi\end{array} I^{*}$
$\left(A_{1}\right) \quad \Pi^{\prime} \rightarrow \Xi^{\prime}$
$\left(A_{2}\right) \frac{\text { exchanges }}{\Pi^{\prime} \rightarrow \Xi^{\prime}}$
$\left(A_{3}\right) \quad \Pi \stackrel{\ddots}{\rightarrow} \Xi$
$\left(A_{4}\right) \quad \Gamma, \Pi \rightarrow \Delta, \Xi$

L. 2 on n

Conclusion

- There are true sentences about arithmetic that are not provable from the Peano axioms.
- Hercules beats Hydra
- Finitized Kruskal Theorem
- Finitized Ramsey Theorem

Paris-Harrington

- $\forall n, k, m>0, \exists N s . t$. if we color each n-element subset of $S=\{1,2,3, \ldots, N\}$ with one of k colors, then $\exists Y \subseteq S,|Y| \geq m$, such that all n element subsets of Y are monochrome, and $|Y| \geq \min Y$.

Finite Tree Theorem

- $\forall n \exists m$ s.t. for trees $T 1, \ldots, T m$, where each $T k$ has $k+n$ nodes, then $T i \rightarrow T j$ for some $i<j$.

Colored Finite Tree Theorem

- $\forall n \exists m$ s.t. for trees $T 1, \ldots, T m$, where each $T k$ has up to k nodes, labeled in n colors, then $T i \leftrightarrow T j$ for some $i<j$.

Kruskal Bound

- Tree(1) ≈ 1 [length of sequence, 1 color]
- $\operatorname{Tree}(2) \approx 3$
- Tree (3) > $2 \uparrow \uparrow$ $\uparrow \uparrow \uparrow$ $\uparrow \uparrow \uparrow$ $\uparrow \uparrow \uparrow$ $\uparrow \uparrow \ldots$

Γ_{0}

- $O, \alpha+\beta, \varphi_{\alpha}(\beta)$
- $\varphi_{o}(\beta)=\omega^{\beta}$
- $\varphi_{\alpha+1}(\beta)=\left\{\gamma: \varphi_{\alpha}(\gamma)=\gamma\right\}_{\beta}$
- $\varphi_{\lambda}(\beta)=\lim _{\alpha<\lambda} \varphi_{\alpha}(\beta)$

Dívision

- A,B binary relations
- A / B is the relation s.t.
- $(A / B) \circ B \subseteq A$
- $s(A / B) t$ if s A u for all u s.t. $t B u$

MPO

- $(f,\{b 1, \ldots, b m\}) \triangleright b 1, \ldots, b m$
- (f, f)
- $s>t$ if
- $s D \geq$ tor
- $s>_{\text {lex }}$ tand $s>\mid \triangleright t$

Abstract Path Order

- $s>t$ if
- $s \triangleright \geq$ tor
- $s \gg t$ and $s \gg t$
- \triangleright wfo
- \triangleright wfo escapes from >

Leveli Subterm

- D_{i}
- Subterm with i in node just above and >i from root to there

Ordinal Díagrams

- triples $\langle f, i,\{b 1, \ldots, b m\}\rangle$; think tree
- f: countably many, linearly ordered >
- levelí:1..N, linearly ordered>
- \{...bí..\} multiset of diagrams, ms order

Lexicographic Level

- $>_{0}$ iss lexicographic
- $(f, i, x)>_{0}(g, j, y)$ if
- $f>g$
- $f=g, i$, ${ }^{j}$
- $f \approx g, i \approx j, x>i y$

Higher Levels

- $s>_{k} t(k>0)$ if
- $s \triangleright_{k} \geq_{k}$ tor
- $s>_{k-1} t$ and $s>_{k} / \triangleright_{k} t$

Conditionals

$h(f(a)) \rightarrow \mathbf{c}$ $h(x) \rightarrow \mathbf{t}(\mathbf{x})$ $c \rightarrow k(f(\mathbf{a}))$ $a \rightarrow b$ $c \rightarrow k(g(b))$ $\mathbf{k}(\mathrm{g}(\mathrm{b})) / \mathrm{h}(\mathrm{f}(\mathrm{x})): \mathrm{f}(\mathrm{x}) \rightarrow \mathrm{g}(\mathrm{x})$

$$
\begin{aligned}
& o(h(t))=(0, o(t)<2) \\
& o(f(t))=(1, o(t)) \\
& o(c)=(0,(1,1)=1) \\
& o(Z(t))=(0, o(t)) \\
& o(t)=1 \\
& o(b)=0 \\
& o(g(t))=(0, o(t))
\end{aligned}
$$

It's a Wrap

Kepler Conjecture

