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1. INTRODUCTION 

The "intermit tent  assertion" method  of proving programs correct has begun to 
at t ract  a good deal of attention. The  purpose of this paper  is to compare the 
method, as it is explained in [6], with the now conventional  method  proposed by 
Hoare [4]. 

We shall have to give the latter method a name. "Axiomatic method"  will not  
do because most  methods  can be axiomatized. "Invar iant  assertion method,"  
proposed in [6], is unacceptable because it is too long and because the term 
"invariant" has already been connected with loops. My solution in this paper  is 
to provide short  names for both  methods.  The  intermit tent  assertion method  will 
be called the sometime method, for reasons tha t  will become apparent  later. By 
analogy, the conventional method of [4], along with the concept  of total correct- 
ness (see, for example, [2]), will be called the alway method. (Alway is poetic for 
always.) I t  is assumed tha t  the reader is familiar with the alway method. 

The sometime method  has been used mainly to reason about  iterative algo- 
r i thms that  compute  recursiveiy defined functions, and in this setting it has been 
thought  to be more "natural"  than  the alway method.  In fact, [6] contains a 
challenge to use the alway method  on an iterative algorithm tha t  computes  
Ackermann 's  function. We meet  this challenge in Section 2. Section 3 outlines 
the sometime method  and presents for comparison a second proof  of correctness 
of the iterative Ackermann algorithm. Section 4 shows how to t ransform a 
particular recursive definition scheme into an equivalent iterative algorithm using 
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Is Sometime Ever Better Than Alway? 259 

the alway method.  T h e  scheme was taken  f rom [6]. Finally, the discussion in 
Section 5 leads to the conclusion tha t  the alway me thod  is to be preferred.  

2. THE ACKERMANN ALGORITHM AND THE ALWAY METHOD 

Ackermann ' s  function A(m, n) is defined for m, n ___ 0 by  

t 
m = 0  --> n + 1 

A ( m , n ) =  m # O , n = O - - ) A ( m - l ,  1) 
m # O , n  #O---) A ( m -  1, A ( m , n -  1)). 

T h e  following a lgor i thm to compute  A(m, n) uses a "sequence" variable  s. Each  
e lement  si of sequence s = {sn . . . . .  s2, s l )  satisfies si >_ O, a n d  n = size(s) >_ 0 is 
the length of the  sequence. Using a sequence instead of a s tack and number ing  
the  e lements  in reverse order, as done here, simplifies la ter  notat ion.  E l emen t  si 
of s will be referenced within the 'algori thm by  s(i), while s( . .  i) refers to the  
possibly e m p t y  sequence (s(n), s(n - 1) . . . . .  s(i)). Operat ion s i x  denotes  the 
concatenat ion of value x to sequence s. For  example,  if size(s) _> 2, then  
s --" s( . .  3) Is(2) I s(1). 

{m, n _> O) 
s := (m, n);  
do  size(s) # 1 --) 

i f  s(2) = 0 ---) s := s( . .  3) Is( l )  + 1 
[3 s(2) # 0 a n d  s(1) = 0 ~ s := s( . .  3) Is(2) - 1 ] 1 
D s(2) # 0 a n d  s(1) # 0 --) s := s( . .  3) Is(2) - 1 Is(2) Is( l )  - 1 
fi 

od  
{s = (A(m, n))} 

This  a lgor i thm repea ted ly  manipula tes  sequence s until  its length is 1. Our  
p rob lem is to prove t ha t  the loop hal ts  and that ,  when it halts,  s contains the 
desired result. In  order  to provide means  for solving the  problem,  it seems 
reasonable  to abs t rac t  f rom the a lgor i thm the manne r  in which sequences are 
manipu la ted  and to examine this manipula t ion  in a p u r e l y m a t h e m a t i c a l  setting. 
Thus  we analyze how a single i terat ion of the loop can t rans form any sequence S' 
into a sequence s" and define a relat ion > be tween such s '  and s". 

Definition 2.1. T h e  relat ion > on sequences is defined by 

(a) s[ 0 [ b > s[ b + 1, for b _> O, any  sequence s 
(b) s[ a [ 0 > s[ a - 1 ] 1, for a > O, any  sequence s 
(c) s[ a[  b > s [a  - l [ a [  b - 1, for a, b > O, any  sequence s. 

Note  t ha t  for any  sequence s' with size(s') > 1 there  exists exact ly one sequence 
s" such tha t  s' > s". For  s '  with size(s') _< 1 there  is no such s". 

Given an initial sequence s -- (m, n) ,  a number of i terat ions of  the  loop is 
supposed to t rans form s into (A(m, n)).  Since one i terat ion t ransforms s into s '  
such tha t  s > s', we are led to consider relat ions >+, the  t ransi t ive closure of >; 
>*, the reflexive t ransi t ive closure; and >t for fixed t _> O, which represents  exact ly 
t applicat ions of >-. T h e  necessary proper t ies  are proved  in the following lemma.  

LEMMA 2.2. Given a, b >- O, for any sequence s there exists t > 0 such that  
s l a l b  >t s IA(a ,  b). 
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260 David Gries 

PROOF. T h e  proof  is by  induction on the lexicographic ordering of pairs  of 
nonnegat ive  integers. We assume the l e m m a  t rue  for d, /~ satisfying (a, b) >2 
(5, 5) and prove  it t rue  for a, b, where (a, b) >2 (5,/~) is defined by  

(a, b) >2 (d,/~) - a >  5 o r  (a = d a n d  b >  b) 

The re  are three  cases to consider, based on the  definition of >. 
Case  a = O. s I 0 ] b > s ] b + 1 = s ]A(O, b), and  t = 1. (This is the basis step.) 
Case  a ~ 0, b = 0. s ] a l0 > s] a - 1 ] 1. Since (a, 0) >2 (a  - 1, 1), by  induct ion 

there  exists t l  such t ha t  s ] a - 1 ] 1 >tl s ] A (a - 1, 1) = s ]A (a, 0). Thus  s I a ] 0 
~t  s ] A ( a ,  0) with t - -  t l  + 1. 

Case  a, b ~ O. s ] a l b  > s l a  - 1 ] a l b  - 1. Since (a,  b) >2 (a,  b - 1), by  
induction there  is a t l  such t ha t  s ] a - 11 a I b - 1 >tl s ] a - 1 ]A (a, b - 1). Since 
(a, b) >2 (a  - 1, A ( a ,  b - 1)), by  induction there  is a t2 such tha t  s ] a  - 1] 
A ( a ,  b - 1) >t2 s l A (  a _ 1, A ( a ,  b - 1)) = s ] A ( a ,  b). Hence  s] a I b >t s ] A ( a ,  b) 

with t = 1 + t l  + t2. Th is  ends the proof. 
Now consider s = (m, n) .  By  the lemma,  there  is a t > 0 such t ha t  s = (m, n)  

>t (A(m, n)) .  Fur thermore ,  t is unique, since for any  sequence s' there  is at  mos t  
one s" such tha t  s '  > s" and there  is no s" such tha t  (A(m, n)) > s". Hence  for 
any  sequence s satisfying (m, n) >* s there  is a unique value r(s), v(s) __ 0, a 
function of s, such t ha t  s >,(8) (A(m, n)) .  We therefore  take  as the necessary  loop 
invar iant  

P: (m,  n )  >* s >~(~) ( A ( m ,  n ) ) .  

P is initially t rue  with s = (m, n)  and r(s) = r ( (m,  n));  upon te rmina t ion  (P  a n d  
size(s)  = 1) implies the  desired result. T h a t  P remains  t rue  is a lmost  trivial to 
show, since > was expressly defined so tha t  execution of the loop body  with 
var iable  s containing a value s' would change s to the unique value s" satisfying 
s' >- s". For  a t e rmina t ion  function we use r(s), which is dec remented  by  1 each 
t ime the  loop body  is executed. 

R e m a r k  1. T h e  invar iant  P was not  as easy to derive as the  above descript ion 
indicates, a l though it should have  been. [] 

R e m a r k  2. Reference  [6] says t ha t  the alway me thod  requires  two separa te  
proofs to establish to ta l  correctness,  one to show part ia l  correctness  and the  o ther  
to show terminat ion.  While this is true,  the  example  indicates t ha t  a p roper  
choice of invar iant  can make  the proof  of t e rmina t ion  a lmost  trivial. []  

R e m a r k  3. T h e  formalizat ion of the me thod  for proving te rmina t ion  has  
previously been  done in two ways, which we summar ize  here. 

(1) St rong Termina t ion .  Der ive  an integer  funct ion t(~) of the  p rog ram varia-  
bles 2, show tha t  t _> 0 whenever  the loop is still executing, and show tha t  each 
execution of the  loop body decreases t by  a t  least  1. For  a loop do  B ---) S o d  with  
invar iant  P this means  proving t ha t  

( P a n d B ) ~ t _ > 0  and { P a n d B }  T : = t ;  S ( t _ T - 1 }  

where T is a new variable.  
(2) Weak  Termina t ion .  Choose a "well-founded" set  (W, >), i.e., > is a part ial  

ordering with the p roper ty  t ha t  for any  w in W there  is no infinite chain w > wl  
> w2 > . . . .  T h e n  choose a function f (2 )  of the  p rogram variables  ~ and prove  
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tha t  

{P and B} u) := ~; S{f(u)) > f(2)} 

where & is a new set of variables. 
Under  the reasonable assumption tha t  nondeterminism is bounded [2], the two 

methods  are equivalent. The  first induces a function f(2) = t(2) and a well- 
founded ordering defined by f(2) > f(:~) iff (P  a n d  B) implies t (x)  > t ( y )  >_ O. 
Given bounded nondeterminism and a proof  by the second method,  one can show 
tha t  the number  of i terations of the loop for any initial state 2 is bounded, and we 
choose t(2) as tha t  bound. 

In this situation, we prefer using strong termination.  Having an explicit bound 
on the number  of i terations of each loop is indeed useful if one wants to analyze 
the execution t ime of an algorithm. [] 

3. THE SOMETIME METHOD 

The  sometime method  was invented as early as 1972 by R.M. Burstall  and 
presented in a 19,74 IFIP  Congress lecture [1]. Burstall  felt tha t  it would have 
intuitive appeal, since "it is very  much like checking out a program by doing a 
step-by-step hand simulation" [1]. His student,  R.W. Topor,  noticed after  the 
fact tha t  D.E. Knuth  actually used a similar style of argument  on a few problems 
[5], but  Knuth  had not  explained it as a general method  for reasoning about  
programs. Manna and Waldinger bestowed the te rm " in termi t tent  assertion" on 
the method in their  1978 paper  [6], which is responsible for the current  wave of 
interest  in the method.  Topor  [7] also uses it to prove correct  a version of the 
Schorr-Waite algori thm for marking nodes of a directed graph; a proof  by the 
alway method  appears in [3]. 

The  method involves associating an assertion with a point  in the algori thm 
with the intention tha t  s o m e t i m e  during execution control will pass through tha t  
point  with the assertion true, but  tha t  it need not  be true every t ime control 
passes tha t  point. Based on the fact tha t  sometime control  will be at tha t  point  
with the assertion true, one then argues tha t  control will later  reach another  point  
(e.g., the end of the algorithm) with another  assertion t rue (e.g., the  output  
assertion). 

To illustrate the method,  let us first of all rewrite the iterative Ackermann 
algorithm to include labels, which are necessary in order  to discuss it. This  
algorithm is actually a res ta tement  of tha t  given in [6], paraphased to make it 
and its proof  as clear as we possibly could. 

start: s := ( m, n);  
do test: s ize(s)  ~ 1 --~ 

i f  s(2) = 0 --) s :-- s ( . .  3) [s(1) + 1 
s(2) # 0 a n d  s(1) = 0 -* s := s(. .  3) [s(2) - 1[ 1 

0 s(2) # 0 a n d  s(1) ~ 0 --) s := s(. .  3) [s(2) - 1 [ s(2) [s(1) - 1 
fi 

od;  
finish: skip 

The  sometime method allows one to use an assertion tha t  is t rue at a point  of 
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a program, but  not  necessarily always. A typical example is contained in the 
following lemma. 

LEMMA 3.1. I f  s o m e t i m e  s i ze (s )  >-- 2 a n d  s = s l a I b, a, b __ 0, a t  test ,  t h e n  

s o m e t i m e  s = d l A  (a, b) a t  test .  
PROOF. Suppose s = s l a I b at  test .  The  lemma is proved by induction on the 

lexicographic ordering >2 on pairs of nonnegative integers. Thus  we assume the 
lemma holds for any sequence ~ and pair  (5, /~) satisfying (a, b) >2 (5, 6), and 
we show tha t  it holds for any sequence g and (a, b). Th e  reasoning is based on an 
informal understanding of how programs are executed. The re  are three  cases to 
consider, corresponding to the three  guarded commands  of the al ternat ive state- 
ment  of the loop body. 

Case  a = 0: s = s l 01 b a t  test .  Since s i ze ( s )  # 1 the loop body is execute d, the 
first guarded command  is executed,  s is changed to s = d lb + 1 ,  and control  
returns to t e s t  w i t h  s = s l  b + 1 = ~IA(0, b). 

Case  a # 0, b = 0: s = s l a l O  a t  test .  Note  tha t  A ( a ,  O) = A ( a  - 1, 1). 
Execution of the second guarded command  changes s to s l a - 111 and control  
returns to test .  Since (a, 0) >2 (a  - 1, 1), by induction control  will at some point  
reach tes t  with s = d lA (a - 1, 1) = ~ l A ( a ,  0) .  Thus  the lemma is established in 
this case. 

Case  a, b # 0: s = s l a I b a t  test .  The  third guarded command  is executed, s 
becomes g ! a  - l l a l b  - 1, and control  re turns  to tes t .  Since (a,  b! >2 
(a, b - 1), by induction control  will r e tu rn  to t e s t  at  some point  with s = 
sl  a - 1 [A(a ,  b - 1). Since (a, b) >2 (a  - 1, A ( a ,  b - ! ) ) ,  by induction fur ther  
execution is guaranteed to cause control  to reach t e s t  again, with s = ~ I A (a - 1, 
A ( a ,  b - 1)) = s l A (a, b). The  lemma is established. 

This  is typical of the reasoning used with the somet ime method.  Notice how 
one is relying on informal "hand  'simulation" of the  algorithm, but  with an 
assertion tha t  represents  a set of possible initial s tates (e.g., s = ~ l a l  b a n d  
a, b _> 0), ra ther  than  one part icular  set of initial values. This  is an informal way 
of performing what  has been called "symbolic evaluation." 

Now suppose execution of the algori thm beginswi th  m, n _ 0. Control  reaches 
tes t  with s = (m, n) .  By  the lemma, control  will r each  t e s t  again with s -- 
( A ( m ,  n ) ) ,  the loop will te rminate  because s i ze ( s )  = 1, and control  will reach 
f i n i sh  with s(1) = A ( m ,  n).  Thus  we have proved the following theorem.  

THEOREM 3.2. I f  s o m e t i m e  m,  n >_ 0 a t  s tar t ,  t h e n  s o m e t i m e  s(1) = A ( m ,  n) a t  

f in i sh .  

4. A TRANSFORMATION SCHEME 

In [6] it is proved using the sometime method  tha t  a recursive definition (or 
algorithm) of the form 

~ p ( x )  , - - ,  f ( x )  
F ( x )  [ n o t p ( x j  -*  h ( F ( g l ( x ) ) ,  F ( g 2 ( x ) ) )  

under  the assumptions 

(1) p, f, g l ,  g2, and h are total  functions 
(2) h is associative: h(u ,  h(v ,  w))  = h (h (u ,  v), w) for all u, v, w 
(3) e is the left ident i ty  of h: h(e,  u) = u for all u 
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is equivalent  to the following i terat ive algori thm. T h e  a lgor i thm uses a sequence 
variable s and a simple variable z: 

{F(x) well defined) 
s, z := (x),  e; 
d o s e ( ) - - )  

i f  p(s(1))  ---) s, z := s( . .  2), h(z, f(s(1))) 
n o t  p(s(1))  ---) s := s( . .  2 ) Ig2(s (1 ) ) [g l ( s (1 ) )  

f i  

o d  
{z = F(x)} 

We want  to prove the same thing using the alway method.  I t  is t empt ing  to apply  
the technique used to prove the  Acke rmann  algor i thm correct,  and indeed it 
works like a charm.  

We first note tha t  there  mus t  be a well-founded ordering ~; defined by  (F(x) 
well defined a n d  n o t  p (x)) implies (x ~; g l (x )  a n d  x ~ g2(x)).  This  means  tha t  
there is no infinite chain x ~; x l  $ . . .  such tha t  n o t p  (xi) if F(x) is well defined, 
and tha t  we can use the ordering $ to prove something  by induction, the way 
>2 was used in Section 2. 

In a t t empt ing  to define an ordering on sequences as in Section 3, we find tha t  
we mus t  also take into account  the value of s imple variable z. So we define 
instead a relat ion > on pairs  (s; z), where s is a sequence and z a value. 

Definition 4.1. Relat ion > is defined for any  sequence s and values x and z as 
follows: 

(a) i fp(x) ,  then  (s ix ;  z) > (s; h(z, f(x))) 
(b) if n o t  p(x),  then  (six; z) > (slg2(x) lgl(x); z). 
LEMMA 4.2. Given x for which F(x) is well defined, for any sequence s and 

value z there exists a t >_ 0 such that (s] x; z) >t (s; h(z, F(x))). 
PRooF. The  proof  is by  induction on the ordering ~; described above. The re  

are two cases, corresponding to the cases in Definit ion 4.1. 
Case p(x): (six; z) > (s; h(z, f(x) ) ) = (s; h(z, F(x))) ,  and t = 1. 
Case n o t p ( x ) :  We have  

(six; z) 
(slg2(x) Igl(x);  z) 

>t~ (s Ig2(x); h(z, F(gl(x)))) 
~t2 (s; h(h(z, F(gl(x))), F(g2(x)))) 
-- (s; h(z, h(F(gl(x)), F(g2(x))))) 
= (s; h(z, F(x))} 

by definition 
by  induction, since x ~ g l  (x) 
by  induction, since x ~ g2(x)  
by  associat ivi ty of h 
by definition of F. 

Thus  (s I x; z) >t (s; h(z, F(x)))  with t -- 1 + t l  + t2. This  completes  the proof  of 
L e m m a  4.2. 

Now note tha t  L e m m a  4.2 implies the existence of a t _> 0 such tha t  

((x);  e) >t  ( ( ) ;  h(e, F(x))) = ( ( ) ;  F(x)). 

We define a function T as in Sect ion 3 and use the loop invar iant  

P: ((x);  e) >* (s; z) >~,s; z, ( ( ) ;  F(x)). 
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We leave the simple proof that P is indeed the desired invariant to the reader; 
the necessary termination function is • of the invariant P. To the reader we also 
leave the proof that if F(x) is not well defined then the algorithm does not 
terminate. 

5. DISCUSSION OF THE METHODS 

Reference [6, p. 163] has said that all known proofs of the Ackermann algorithm 
using conventional methods are extremely complicated. The proof in Section 2 is 
offered to support our conjecture that  alway method proofs need be no more 
complicated than sometime method proofs. The material in Section 4 offers hope 
that  iterative algorithms that compute recursively defined functions--a major 
stronghold of the sometime method--will quietly succumb to the alway method. 
It is simply a matter of learning the necessary techniques. (In this case the 
technique is, quite simply, to define a relation > such that  s' ~ s" if one iteration 
of the loop transforms the loop variables s' into s", and then to investigate this 
relation.) The authors of [6] quite rightly imply that a proof method should be 
"natural," but "naturalness" in any field of endeavor must be learned. 

Let us compare the two methods, where our knowledge of the practical use of 
the sometime method is based solely on the examples given in [6]. We can begin 
by comparing the two proofs of the Ackermann algorithm. Here one notices a 
strong similarity. Lemmas 2.2 and 3.1 lie at the heart of the proofs, and both are 
proved by induction over the ordering >2. Each proof breaks down into three 
similar cases. The main difference is that one proof requires a detailed analysis 
of an algorithm, while the other requires an analysis only of a simple relation that  
took four lines to define. And herein lies what we would call a major drawback to 
the sometime method, which we now try to explain. 

Any algorithm is based on certain properties of the objects it manipulates and 
it seems desirable to keep a clear distinction between these properties and the 
algorithm that works on the objects. Thus in the alway method proof of Section 
2, Definition 2.1 and Lemma 2.2 define, describe, and prove properties of se- 
quences in a completely mathematical setting. Then the proof of the algorithm 
follows easily by considering the algorithm together with these properties. A 
change in the algorithm does not destroy the neat mathematical properties, but 
only perhaps their relevance. In addition, one can work with mathematical 
properties that  have been proven by others, without having to understand their 
proof. The principle of separation of concerns is being adhered to clearly in the 
alway method. 

The sometime method, on the other hand, as explained in current proofs, seems 
to encourage confusion of properties of the objects and the algorithm itself. Thus, 
in Section 3, all parts of the complete proof, including the use of induction based 
on execution of a program, were packaged together. 

Through programming, we hope to learn to cope with complexity (and to teach 
others how to cope) using principles like abstraction and separation of concerns. 
The alway method encourages the use of and gives insight into these principles; 
the sometime method seems by its very nature to discourage their use, and thus 
seems to be a step backward. 

It is true that  an alway method proof may have more parts to it. For example, 
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once the mathematical properties were stated and proved in Section 2, it was 
necessary to relate them to the algorithm itself, using a loop invariant and 
termination function. We gladly accept this "extra" work, for in return we gain a 
better understanding and have a proof that is clearly structured into its compo- 
nent parts. 

One referee offered the following way of looking at the two methods, which 
may help the reader. For the Ackermann algorithm, using the sometime method 
one 

(1) makes a hypothesis that the "snapshots" of the program variables at 
various points of execution form a finite sequence 

(2) proves the correctness of the hypothesis by induction on program execu- 
tion. 

In the alway method, as used here, one 

(1) defines a sequence and proves that it exists and is of bounded length 
(2) shows that the sequence matches exactly the sequence of snapshots. 
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