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Habilitation à diriger des recherches - Universtité Paris 7 Denis Diderot
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Hardware/software bugs can have dramatic consequences

I 1993: Intel Pentium bug on floating point
number division cost $475 millions

I 1996: Ariane V exploded because of an
overflow

I 2000: 8 patients died because of
miscalculated radiation dosage at the
National Cancer Institute, Panama

I 2008: some investors lost 60% of their
investment because of a bug in Moody’s
software

I 2012: Orange?

I . . .
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Goal of my research work

design tools and methodologies for helping hardware/software
developers to write bug-free systems
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How to prove the correctness of a program?

a program is a syntactic object (term) p

proving that p satisfies some property Q requires to have a clear
semantics, i.e. a (partial) function [[p]] : IN→ OUT

⇒ proving the correctness of a program is a particular case of
theorem proving
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Is it decidable to find a proof?

In general: NO (Turing 1936)

BUT there are various decidable classes very important in practice:
SAT, linear arithmetic, . . .

Frédéric Blanqui (INRIA) - Habilitation Functions, rewriting and proofs: termination and certification



Type theory and rewriting
Computability closure

Conclusion and perspectives

Is it decidable to find check a proof?

proof assistant: tool for defining mathematical objects, stating
theorems and building proofs

I 1967: Automath (De Bruijn)
I 1972: LCF (Milner)
I 1973: Mizar (Trybulec)
I 1979: Nuprl (Bates and Constable)
I 1984: Coq (Coquand and Huet)
I 1986: HOL (Gordon)
I 1986: Isabelle (Paulson)
I 1992: Lego (Luo and Pollack)
I 1992: PVS (Owre, Rushby and Shankar)
I 2005: Matita (Asperti)
I 2007: Agda (Norell) 2009: Dedukti (Boespflug)
I 2010: CoqMT (Strub)
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Examples of machine-checked proofs

I 2000: fundamental theorem of algebra (Geuvers et al)

I 2005: 4-color theorem (Gonthier)

I 2006: formal verification of a C compiler back-end (Leroy et al)

I 2006: rewriting theory (CoLoR, Coccinelle, CeTA)

I 2009: formal verification of an OS kernel (NICTA)

I 2012?: 1998 Hales proof of Kepler conjecture (Flyspeck project)

I 2012?: 1962 Feit-Thompson odd order theorem (Gonthier et al)
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What is a proof? Deduction vs Computation

I Purely axiomatic approach: every thing is defined using axioms

(∀x) x + 0 = x
(∀x)(∀y) x + (sy) = s(x + y)

Even a statement like “s0 + s0 = ss0” requires a long proof

I Mixed approach: deduction modulo some decidable congruence

The proof of “s0 + s0 = ss0” reduces to reflexivity
(equality on closed arithmetic expressions is decidable)

• in dependent type systems, more terms are definable

• reduce the gap with informal mathematical practice
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What congruence?

if the object language contains λ-expressions
(Church 1940):

x | λxt | tu

one may consider the β-congruence:

(λxt)u =β tux
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What congruence?

if the object language contains first-order terms:

x | ft1 . . . tn

one may consider some equational theory E :

l1 = r1 . . . ln = rn
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How to prove that a congruence is decidable?

given a congruence E , find a relation R that is (Knuth 1967):

I decidable

I terminating: 6 ∃ infinite R-sequence

I confluent: R-congruent terms are R-joinable

I correct: R-congruent terms are E -congruent

I complete: E -congruent terms are R-congruent
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Rewriting and completion

The basic idea is to orient equations l = r into rewrite rules l → r
(replacement becomes unidirectional)

“Rewrite systems are directed equations used to compute by
repeatedly replacing subterms of a given formula with equal
terms until the simplest form possible is obtained.” (DJ’90)

In 1967, Knuth devised a completion algorithm that, given a set of
first-order equations E , tries to build a set of first-order rules R
that is terminating, confluent, correct and complete

Remark: →β has all the above properties except termination
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Descendants

λ-calculus and first-order rewriting led to two important families of
programming languages:

I functional programming languages: Lisp
(1958), ML (1972), Haskell (1990), OCaml
(1996), F# (2005), . . .

I rewriting-based languages: OBJ (1976), Elan
(1994), Maude (1996), . . .

“One framework to rule them all?”
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Higher-order rewriting

higher-order rewriting is rewriting on λ-terms

f | x | λxt | tu

I Combinatory Reduction Systems (CRS) (Klop 1980)
I Expression Reduction Systems (ERS) (Khasidashvili 1990)
I Higher-order Rewrite Systems (HRS) (Nipkow 1991)

I simply-typed λ-terms in β-normal η-long form
I matching modulo αβη
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Higher-order rewriting

I Higher-order Algebraic Specification Languages (HOASL)
(Jouannaud, Okada 1991)
I arbitrary terms
I matching modulo α
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“To infinity ... and beyond!”

I λ-calculus with patterns (van Oostrom 1990)

I ρ-calculus (Cirstea, Kirchner 1998)

I pattern calculus (Jay, Kesner 2004)
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What congruence?

I β-reduction (Church 1940, . . . )

Automath, Coc, Isabelle

I β-reduction + induction (Tait 1967, . . . )

LCF, Nuprl, Coq, HOL, Lego, Matita, Agda

I β-reduction + first-order rewriting (Breazu-Tannen 1988, . . . )

I β-reduction + higher-order rewriting
(Barbanera, Fernández, Geuvers 1993, . . . )

Coq+CiME, Cac, Dedukti

I β-reduction + induction + FO decision procedures
(Owre, Rushby and Shankar 1992, Stehr 2002, Strub 2008)

PVS, CoqMT
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Dealing with matching modulo βη
Revisiting (HO)RPO

Problem

how to prove the termination of →β ∪ →R?

remark: termination is not modular! (Toyama 1987)

if R is first-order, R cannot create new β-redexes and →β ∪ →R
terminates on all R-stable subset of SN(→β) (a weak form of
typing) (Dougherty 1991)
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Termination of β-reduction alone?

in the simply-typed λ-calculus:

I →β can be proved terminating by a direct induction on the type
of the substituted variable (Sanchis 1967, van Daalen 1980)
does not extend to rewriting where the type of substituted variables

can increase, e.g. f(cx)→ x with x : A⇒ B

I λI -terms can be interpreted by hereditarily monotone functions
on N (Gandy 1980)
can be used to build interpretations but these interpretations can also

be obtained from an extended computability proof (van de Pol 1996)
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Computability

computability has been introduced for proving termination of
β-reduction in typed λ-calculi (Tait, 1967) (Girard, 1970)

I every type T is mapped to a set [[T ]] of computable terms

I every term t : T is proved to be computable, i.e. t ∈ [[T ]]
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Computability predicates

there are different definitions of computability (Tait Sat, Girard
Red, Parigot SatInd, Girard Bi⊥) but Girard’s definition Red is
better suited for handling arbitrary rewriting

let Red be the set of P such that:

I termination: P ⊆ SN(→β)

I stability by reduction: →β (P) ⊆ P

I if t is neutral and →β (t) ⊆ P then t ∈ P

neutral = not head-reducible after application (λxu is not neutral)
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Computable terms

Red is a complete lattice for set inclusion closed by:

a(P,Q) = {t | ∀u ∈ P, tu ∈ Q}

by taking [[U ⇒ V ]] := a([[U]], [[V ]]), a term t : U ⇒ V is
computable if, for every computable u : U, tu is computable
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Application to rewriting (Jouannaud, Okada 1991)

Given a set R of rewrite rules, let → =→β ∪→R and RedR be
the set of P such that:

I termination: P ⊆ SN(→)

I stability by reduction: →(P) ⊆ P

I if t is neutral and → (t) ⊆ P then t ∈ P

(taking f~t neutral if |~t| ≥ sup{|~l | | f~l → r ∈ R})

Theorem: Given a set R of rules, the relation →β ∪ →R
terminates if every rule of R is of the form f~l → r with
r ∈ CCR,f(~l), where CCR,f(~l) is a set of terms that are

R-computable whenever ~l so are.
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Computability closure

By what operation CCR,f(~l) can be closed?

(arg) li ∈ CCR,f(~l)

(app)
t : U ⇒ V ∈ CCR,f(~l) u : U ∈ CCR,f(~l)

tu ∈ CCR,f(~l)

(red)
t ∈ CCR,f(~l) t →β ∪ →R t ′

t ′ ∈ CCR,f(~l)
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Dealing with bound variables

Annotate CCR,f(~l) with a set X of (bound) variables:

(var)
x ∈ X

x ∈ CCX
R,f(

~l)

(lam)
t ∈ CC

X∪{x}
R,f (~l) x /∈ FV(~l)

λxt ∈ CCX
R,f(

~l)

Frédéric Blanqui (INRIA) - Habilitation Functions, rewriting and proofs: termination and certification



Type theory and rewriting
Computability closure

Conclusion and perspectives

Computability
Dealing with matching modulo βη
Revisiting (HO)RPO

Dealing with subterms

problem: computability is not preserved by subterm. . . :-(

example: with c : (B⇒ A)⇒ B and f : B⇒ (B⇒ A), →β ∪→R
with R = {f(cx)→ x} does not terminate (Mendler 1987)

with w = λxfxx : B⇒ A, w(cw)→β f(cw)(cw)→R w(cw)

⇒ restrictions on subterms (based on types) are necessary:

(sub-app-fun)
g~t ∈ CCX

R,f(
~l) g : ~T ⇒ B Pos(B,Ti ) ⊆ Pos+(Ti )

ti ∈ CCX
R,f(

~l)
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Dealing with subterms

(sub-app-var-l)
tu ∈ CCX

R,f(
~l) u ↓η ∈ X

t ∈ CCX
f (~l)

(sub-app-var-r)
tu ∈ CCX

R,f(
~l) t ↓η ∈ X t : U ⇒ ~U ⇒ U

u ∈ CCX
f (~l)

(sub-lam)
λxt ∈ CCX

R,f(
~l) x /∈ FV(~l)

t ∈ CC
X∪{x}
R,f (~l)

(sub-SN)
t ∈ CCX

R,f(
~l) u : B � t FV(u) ⊆ FV(t) [[B]] = SN

u ∈ CCX
R,f(

~l)
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Dealing with function calls

Consider a relation = on pairs (h, ~v), where ~v are computable
arguments of h, such that = ∪ →prod is well-founded.

(app-fun)
(f,~l) = (g,~t) ~t ∈ CCR,f(~l)

g~t ∈ CCR,f(~l)

Example: (f,~l) = (g,~t) if either:

I f > g

I f ' g and ~l ((� ∪→)+)stat[f] ~t

where ≥ is a well-founded quasi-ordering on symbols
and stat[f] = stat[g] ∈ {lex,mul}
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Dealing with matching modulo βη

f~t =βη g~lσ →R rσ

Problem: ~t computable ⇒ ~lσ computable?
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Dealing with higher-order pattern-matching

Dale Miller (1991): if l is an higher-order
pattern and lσ =βη t with σ and t in β-
normal η-long form, then lσ →∗β0=η t where
C [(λxu)v ] →β0 C [uv

x ] if v ∈ X

⇒ consider β0-normalized rewriting with matching modulo β0η
(subsumes CRS and HRS rewriting)!

Theorem: assuming that ←β0η→R,β0η ⊆ →R,β0η=β0η,
if t is computable and t =β0η lσ with l an higher-order pattern,
then lσ is computable.
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Dealing with higher-order pattern-matching

Theorem: ←β0η→R,β0η ⊆ →R,β0η=β0η if:

I every rule is of the form f~l → r with f~l an higher-order pattern

I if l → r ∈ R, l : T ⇒ U and x /∈ FV(l), then lx → rx ∈ R
I if lx → r ∈ R and x /∈ FV(l), then l → λxr ∈ R

s ←β0 (λxs)x=β0η lσx→Rrσx

s ←η λxsx=β0ηλxlσx→Rλxrσ

⇒ every set of rules of the form f~l → r with f~l an higher-order
pattern can be completed into a set compatible with →β0η
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RPO

RPO is a well-founded quasi-ordering (WFQO) on terms extending
a WFQO on symbols (Plaisted, Dershowitz 1978)

(1)
ti ≥rpo u

f~t >rpo u
(2)

(f,~t) = (g, ~u) f~t >rpo ~u

f~t >rpo g~u

where (f,~t) = (g, ~u) if f > g ∨ (f ' g ∧~t (>rpo)stat[f] ~u)
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HORPO

HORPO is a (non-transitive) extension of RPO to λ-terms
(Jouannaud, Rubio 1999)
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Revisiting (HO)RPO

What is the relation between CC and HORPO?

I both are based on computability

I there are even extensions of HORPO using CC

I CC is defined for a fixed R

but CC itself is a relation!

replace t ∈ CCR,f(~l) by f~l >CC(R) t
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Revisiting (HO)RPO

(arg) f~l >CC(R) li

(red)
f~l >CC(R) t t →β ∪ →R t ′

f~l >CC(R) t ′

(app-fun)
(f,~l) = (g,~t) f~l >CC(R) ~t

f~l >CC(R) g~t

(f,~l) = (g,~t) if f > g ∨ (f ' g ∧~l ((� ∪→β ∪→R)+)stat[f] ~t)

. . .
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Revisiting (HO)RPO

R 7→ {(f~l , r) | r ∈ CC∅R,f , type(f~l) = type(r)}

is a monotone function on the complete lattice of relations

the monotone closure of its fixpoint (Tarski 1955):

I contains HORPO

I is equal to RPO when restricted to FO terms!

⇒ provide a general method to get a powerful termination
ordering for any type system
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What else?

I rewriting modulo some equational theory

I conditional rewriting (Riba 2006)

I size-based termination

I semantic labelling (Roux 2009)

I dependency pairs
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Conclusion

I deduction modulo is essential for doing large proofs

I deduction modulo rewriting is simple and powerful

I we have criteria/tools for checking termination and confluence
(see results of last termination competition!)

⇒ we can check the decidability of proof-checking
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How to increase our confidence in such a proof system?

I use a machine-checked proof-checker kernel
Coq (Barras 97), CoqMT (Strub 2010), . . .

⇒ one can use unproved tools to build proofs

I one can check system properties (termination, confluence, . . . )
by using external tools providing certificates

and use machine-checked certificate verifiers
Rainbow, CiME3 (2006), CeTA (2009)

can we go further?
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Modules and computation

Module Type Group_Sig.

Parameter t : Type.

Parameter zero : t.

Parameter opp : t -> t.

Parameter add : t -> t -> t.

Parameter law1 : forall x, add x (opp x) = zero.

...

End Nat_Sig.

Module Group_Theory (G : Group_Sig).

(* the equational properties of add are not part of the congruence! *)

Theorem Feit_Thompson : ...

...

End Group_Theory.

Module Group_X <: Group_Sig.

Definition t := ...

...

Lemma law1 : forall x, add x (opp x) = zero. Proof. ... Qed.

...

End Group_X.

Module Group_X_Theory := Group_Theory Group_X.

Use completion! ⇒ the congruence becomes dynamic [Dedukti]
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Unorientable equations

some equations may be unorientable (commutativity/associativity)

⇒ use rewriting with matching modulo some equational theory

and/or canonical elements only (by construction)

related works:

I canonizers (Shostak 1984)

I normalized types (Courtieu 2001)

I the open calculus of constructions (Stehr 2002)

I construction functions for quotient types [Moca!]
(B., Hardin, Weis 2007)
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