
Acta Informatica 5, 333--352 (t975) 
�9 by Springer-Verlag 1975 

A Closer Look at Termination 

Shmuel Katz and Zohar Manna 

Received October t 6, t 974 

Summary. Several methods for proving that computer programs terminate are 
presented and illustrated. The methods considered involve (a) using the "no-infini- 
tely-descending-chain" property of well-founded sets (Floyd's approach), (b) bounding 
a counter associated with each loop (loop approach), (c)showing that some exit of 
each loop must be taken (exit approach), or (d) inducting on the structure of the data 
domain (Burstall's approach). We indicate the relative merit of each method for pro- 
ring termination or non-termination as an integral part of an automatic verification 
system. 

Introduction 

In recent years a considerable number of verification systems for proving 
correctness of computer programs have been developed (e.g., [7, t2, t5, t9]) 
but, surprisingly, very few of these t ry  to treat the problem of termination. (One 
of the interesting exceptions is the work of Cooper [6].) A program is said to 
terminate if for all legal input values the execution of the program will eventually 
reach a HALT statement. In this paper we give an overview of several possible 
methods for proving termination, and indicate which method seems to us to be 
most compatible with automatic verification systems. 

In Section t,  we outline the classic Floyd technique [10] for proving termina- 
tion, which uses the "no-infinitely-descending-chain" property of well-founded 
sets. We demonstrate two possible directions for overcoming some difficulties 
in practically applying the method. 

In Section 2, we introduce a loop approach to proving termination. In 
this approach, we associate a counter with each loop, reflecting the number of 
times the loop has been executed, and show that  all the counters are absolutely 
bounded from above. (A similar technique has been suggested by Elspas [8].) 

In Section 3, an exit approach is defined, where termination is shown by 
directly proving that  for each loop the conditions for exiting the loop must be 
true at some stage of the computation (see also Sites' Ph.D. thesis [t8]). 

Finally, in Section 4, we illustrate the possibility of proving termination 
along with correctness by using a technique suggested by Burstall [3]- In 
this technique, we show that if some property PA is assumed at a point A (in 
particular, the START point), we must eventually reach another point B (in 
particular, a HALT point), with some property qB true. This is shown by induction 
on the possible values of the data domain. 

In each section we t ry  to point out briefly the advantages and the disadvantages 
of each method. As indicated in Section 2, we consider the loop approach to be 
the method for proving termination which can be most easily integrated into an 
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automatic verification system. This method also provides the greatest information 
about the complexity and control behavior of the program. 

Since we may not assume a priori that  the program actually terminates, any 
automatic verification system should also at tempt to prove non-termination of a 
program which loops forever for some input value. In Section 3 we claim that  
the exit approach, while of limited use in proving termination, is actually the 
natural way to prove non-termination. 

1. Floyd's Method 

The traditional method of proving termination, which was suggested by 
Floyd It0], makes use of a well-founded set (W, ~-) with a partial ordering >- 
having the property that  there is no infinitely descending chain of elements from 
W, i.e., any chain of the form w 1 >- w~ >- ... must be finite. The procedure requires 
finding a set of cutpoints which cut every loop of the program at least once. 
Then for each cutpoint A, a partial function ua and an assertion qA must be 
chosen. The function u A maps elements of the program's data domain into W, 
while qA serves to restrict the domain of u A. The assertion qA must be true each 
time the cutpoint A is reached (and thus is called an invariant); it indicates a 
set of values of the data domain that  includes all those values that  can be reached 
at A during the execution of the program. The proof of termination consists of 
showing that  u A >-u 8 each time control moves along a simple path (which is a 
part of a loop), from a cutpoint A to a cutpoint B. A path is simple if it contains 
no other cutpoints.). Thus clearly no loop or combination of loops could be 
executed indefinitely because the no-infinitely-descending-chain condition would 
be violated. 

In the above method the actual proof of termination is generally mechanical 
once the proper choices of a well-founded set (W, >-), cutpoints {A}, functions 
{ua}, and assertions {qa} have been made. In fact, considerable progress has been 
achieved recently in automatically finding the invariants of a program, and there 
are several existing or proposed systems for this purpose (e.g., [4, 9, 11, t4, 17, 20]). 
Thus the main remaining requirement for an automation of Floyd's technique 
for proving termination is a systemization of techniques for finding the well- 
founded set (W, >-) and the functions {ua}. Unfortunately, making the correct 
choice of the functions {UA} is a difficult task qualitatively different from the 
discovery of the invariants {qn}. In the following example we demonstrate one 
possible heuristic which sometimes can be profitably applied to yield such functions. 

Example 1 (Floyd's approach). The program in Fig. I is a flowchart version 
of McCarthy's "9t - funct ion" .  I t  computes the function 

z = i f x > 1 0 1  then  x - - 1 0  e l se  91 

over the integers. We will consider only termination. 
For convenience we will call the path around the loop which is taken when 

Yl =< 100, the le]t path, and the path around the loop which is used when Yl > 100 
and yz 4:1, the right path. We choose point A as the cutpoint which cuts both 
paths around the loop. Let us take the set N of all natural numbers, with the 
regular < ordering, as the well-founded set. We might initially t ry  to show that  



A Closer Look at Termination 335 

F 

[(y, ,yz)-(y, ..,yz*t) ] 
] 

START) 
4 

(,,.  

I(,, I [,-, ,- ,ol 

Fig. t. The "9t-function" program 

either Yz or y, alone are strictly monotonic, and are bounded. A glance at the 
program will show that such an attempt would fail since the two variables both 
increase and decrease in the loop. 

As a next heuristic step, we assume that a linear function involving Yz and y ,  
is required. That is, that  uA has the form 

o~. Y1+f l"  Y2+7 

for some constants x, r, and ~. By considering the two paths around the loop, and 
the requirement that there be a drop in the value of u A, we can see that 0t, r ,  
and ~, must fulfill 

a" Yl + r "  Y2 + 7 > ~" (Yl + t ~ ) + ft. (y, + 1) + ~ . . -  for the left path 
and 

o~. Y z + f l "  y z + v > a  �9 (yl--  10) + f t .  (y~--t) + 7  .-. for the right path. 

Thus we have obtained a set of inequalities. 

Simplifying, we have 
0> 1 

and 
0 >  -- tO,t--ft. 

These may be solved; one (integer) solution is ~ = - - 2 ,  fl = 2t. Thus we have found 
that  for any u a of the form - - 2 y z + 2 1 y z + T ,  there will be a drop in the value of 
the (integer-valued) functions each time the loop is executed. 

In order to show that the resultant sequence is well-founded, we would like 
to choose the non-negative integers N as the domain W and fix 7 so that the values 
of u a will always be non-negative. For this purpose, we seek an upper bound a on 
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Yl and lower bound b on Yv Using known invariant-generating techniques, it is 
possible to find that  

(Y1<=tll ^ y ~ l )  v (yl-----x ̂  y ~ l )  

is an invariant at A. Thus, a = m a x  ( t t t ,  x) and b----t. Therefore the smaUest 
possible value of the function is - - 2 ,  max (11t, x )+21  + 7 ,  and a sufficient 7 to 
guarantee that  the function is always non-negative is y----2, max ( t l t ,  x). We 
have thereby obtained the function 

ua:- -2Yl+21y~+2 �9 max (111, x). 

Note that  the heuristic of assuming a linear u~ was crucial to the develop- 
ment. []  

In the following example we illustrate another common problem which 
involves the complexity of the required functions {uA}. As it stands, in order to 
prove termination using Floyd's method, a drop must be shown along every 
simple path from a cutpoint to another cutpoint (which is on a loop). This often 
makes the choice of functions very sensitive to the placement of the cutpoints, 
and requires adding unnatural components to the functions {ua} in order to 
ensure a drop. As we demonstrate, this difficulty may be overcome by slightly 
generalizing Floyd's method, showing that  for every possible path simple or not 
from a cutpoint, there will eventually be a drop in the function. 

Example 2 (Floyd's approach). The program in Fig. 2 computes the greatest 
common divisor (g.c.d.) of two positive integers x~ and x,. Since this program 
consists of two inner loops and an outer loop, it is natural to choose A, B, and C 
as the cutpoints. If we use the original Floyd method with these cutpoints, a 
typical set of functions 1 is 

uA : (Yl+Y,, 2) 

us: i fyz~=y ~ then (Yz+Yz, 1) else (Yz+Y2, 4) 

Uc: if y 1 <  y 2 then (y~ + y , ,  O) else (Yl + Y,, 3) 

where the well-founded set is the set of all pairs of non-negative integers with the 
lexicographical ordering *. The needed invariants at A, B, and C are y~ > 0 and 
y2>0. 

There will be a drop in the path from B to C, for example, because the path 
condition Yl~Y~ implies that  either Yl<Y~, so that  us is (Yl-bY~, 1) and uc is 
(Yl-kY2, 0), or Yl=Y~, so that  u B is (Yl+Y~, 4) but  u c is (Yl+Y2, 3). Similarly, the 
path condition Y2 ~Yl  for taking the pat.h from C to A implies that  whenever this 
path is followed u c is (Yl +Y~, 3) (because y~ >Yl  is false), and so there is a drop 
to (YI + Y~, 2). For the path around the first inner loop, from B back to B, we 
use the invariant y~ > 0 at B to show that  the function value drops because the 
first component always descends from Yl +Y2 to 3'1 even though the second 
component may increase from t to 4. 

1 These functions were suggested by Martin Fiirer. 
2 That is, (r %) < (fly f12) in the lexicographical ordering iff ~1 < fll or, ~ = ~1 and 
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On the other hand, choosing cutpoints E and C allows using the far simpler 
functions 

u~: (Yl + Y2, 0) 

Uc: (Yl + Y2, t) 

where W is again the set of all pairs of non-negative integers with the lexico- 
graphical ordering. 

Finally, if we choose cutpoints D and G, then 

UD: Yl + Y v  

u~ : Yl + Y2 

are sufficient, where W is the set of all natural numbers. In this case, it is neces- 
sary to note that  we have cut only every possible path around the loops. The 
"impossible" path around the outer loop A -  B - - C - - A  (which does not execute 
either inner loop) is not cut; but  since this cannot occur, the set of cutpoints is 
nevertheless adequate. 

A generalized version of Floyd's method which is less sensitive to the placement 
of the cutpoints will now be used. We will prove that  for each cutpoint i there 
will eventually be a drop in the value of the function at some cutpoint i along 
every path from i, ignoring intermediate values. The advantage of this generaliza- 
tion is that  simpler functions can often be used, but the penalty is that  more 
paths must be treated. 

This approach enables us to prove termination by  considering the cutpoints 
A, B, and C with te A, UB, and u c being y~ + y2 8. In order to show a drop somewhere 

3 The invariants needed are still y l>O y~>O at A, B and C. 
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along every non-simple possible path from A, we consider three cases: (a) For 
all paths which begin A -  B - - B  . . . .  (i.e., from A to B, and then do the first 
inner loop at least once), the second time B is reached u B is yl--y ,+y2-=yl  
(relative to Yl and y ,  at A). This value is always smaller than Yl+Y ,  because 
y ,  > 0. (b) For all paths which begin A -  B - - C - - C  . . . .  (i.e., do not include the 
upper inner loop, but  do at least one circuit around the lower inner loop) the 
second time C is reached u c is y l+y , - - y l=y2 .  This value is again smaller than 
Yl + Y2 because Yl > 0. (c) Finally, we note that  any path which begins A -  B- -  
C--A . . . .  (i.e., from A to A, without doing either inner loop) cannot be executed 
because the condition for following such a path is that  Yl 4:y, ,  Yl =<Y,, and 
Y2 ~Yl  are all true, which is impossible. 

Similar reasoning can be used to show an eventual drop for every path from 
B, and from C, thus the program must terminate. []  

As a final example, we bring a more typical program, where termination is 
not based on any complicated tricks, and the variables which control termination 
are basically counters. The example illustrates how the functions {uA} can be 
chosen in the case of a more complicated nested loop structure. 

Example 3 (Floyd's approach). The program in Fig. 3 computes the deter- 
minant IX[a, b]l of order M, M-->t, by Gaussian elimination. We choose the 
three cutpoints A, B, and C. 

This program has three loops, where ~ is the top loop controlled by the variable 
a, fl is the middle loop controlled by b, and 7 is the bottom loop controlled by  c. 
Loop ~r can be said to "dominate" fl and 7 because a is not changed in fl or 7. 
Similarly,/5 dominates 7 because b is not changed in 7. This suggests using the 
triples of non-negative integers with the lexicographical ordering as the well- 
founded set, with a leftmost component for ~r a middle component for/5, and a 
right component for 7" The functions over N 8 can be 

ua: (M--a, M + t ,  M + l ) ,  

UB: (M--a, M + l - - b ,  M + t ) ,  

Uc: (M--a, M + t - - b ,  c). 

The functions include M and M +  t either in order to guarantee a drop along the 
paths from A to B and from B to C, or to guarantee that  the values are non- 
negative. The ordering of the components is clearly important. For example, 
along the path from C to B the value of the third component increases, but the 
second component decreases. 

The invariants needed to guarantee that  there will indeed be a drop from 
cutpoint to cutpoint, and that  the values of each component are non-negative 
integers, are 

qa: t <--a~M, 

qB: t " < a < M h b < = M + t ,  

qc: t < = a < M ^ b < M + t  ^a<=c. 

Such invariants can all be generated automatically using existing methods. []  
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Fig. 3. Program for evaluating the determinant z = I X ]. 

2. The Loop Approach 

Another solution to the problem of proving termination systematically is 
to rely more on the invariants than on the functions. This shift of emphasis 
should allow the methods we suggest to take full advantage of the progress in 
finding invariants automatically. In order to facilitate this process, it is also 
convenient to consider loops as the basic entities, rather than paths between 
cutpoints. 

In the remainder of this paper we will assume that  the loops of a program have 
been identified. Algorithms for this task can be found in [t ] or [2]. We further 
assume that  for the programs we treat,  the loops can be enclosed in blocks, such 
that  every block contains at most one top-level loop, ignoring lower-level loops 
which are possibly contained in inner blocks. There is exactly one entrance to 
each block, and one or more exits. We then associate one cutpoint with each 
block so that  its top-level loop will be cut. 

Note that  a top-level loop may actually consist of several looping paths, 
obtained by test branching and join points, but sharing a single cutpoint. 
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We use counters as an essential tool for this technique. With each cutpoint, 
and thus each block with a loop, we associate a counter. The counter must  be 
initialized before entering the block so that  its value is zero upon first reaching 
the cutpoint, and incremented exactly once by  one along the top-level loop inside 
the block before control returns again to the cutpoint. 

There are many  locations where the counters could be initialized to zero. The 
two extreme possibilities are of special interest: (a) the counter is initialized only 
once, at the beginning of the program (a "g loba l"  initialization, parameterizing 
the total  number of times the cutpoint is reached), or (b) the counter is initialized 
]ust before entering its block (a " loca l"  initialization, indicating the number of 
executions of the corresponding loop since the most recent entrance to the block). 

These counters will serve a dual purpose: 

(t) We may  indicate the values of the program variables in terms of the 
counters. For example, for a cutpoint A with counter n, y (no) indicates the value 
of the variable y when cutpoint A is reached with n = n  o. (If there is no way of 
reaching A with n=no,  then y(no) is undefined.) 

(2) We may  also denote relations among the number of times various paths 
have been executed. For example, an invariant  i >/" at cutpoint A means that  
whenever control reaches A, the statements adjoining counter i have been executed 
more often than those adjoining counter i- Similarly, i ~ r ,  for fixed r, means 
that  the statements adjoining counter i will not be executed more than r times. 

For convenience we shall assume that  every invariant  involving counters 
implicitly contains the information that  they are non-negative integers. 

Variables which are not par t  of the program but are useful and even necessary 
in order to prove properties of the program have been used previously by  several 
researchers (e.g., E51)- Knuth  Et6] uses a ' t ime  clock' incremented before every 
s tatement  in order to prove termination. We found that  such" impl ic i t "  variables 
are virtually indispensable whenever it is necessary to discuss how the control 
moves along various paths through the program. For this reason, we often use 
additional auxiliary counters in order to facilitate a proof of termination. 

The loop approach depends upon the fact tha t  a counter at cutpoint A indi- 
cates the number of times the control has passed A (as mentioned above, either 
globally or locally). Thus, if we are able to show for each block tha t  its counter is 
absolutely bound from above at the cutpoint of the block, then the program must  
terminate. Proving termination becomes equivalent to finding invariants of the 
loop which guarantee tha t  for each cutpoint A, its counter i has a fixed upper 
bound r at A 4. In effect, for a single loop we have added counters and then adopted 
a particular case of Floyd's method, with W the non-negative integers and r 
the upper bound needed to establish that  uA: r - - i  assumes values in N. The 
advantage gained is that  a program to generate invariants for proving correctness 
may  simultaneously produce invariants which are useful for proving termination 
by  this method. In addition, invariants involving the counters are often useful 
for proving correctness as well. 

4 The bound r may be expressed in terms of constants and any variables which are 
not changed in that  block. 
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Fig. 4. The "9t-function" program (with counters) 

Example 1 (loop approach). We again consider the 9t-program, this time 
proving termination by the loop approach (see Fig. 4). There is only one block 
which includes one top-level loop (with two alternative p a t h s ) t h a t  is cut by  
cutpoint A. We associate the counter n with the cutpoint. Furthermore, it is 
convenient to use the two additional counters i and/' ,  as indicated in Fig. 4. We 
want to find invariants at A which will establish a bound on n. However, since 
n=i--b/, at A, we shall first look for bounds on i and/ ' .  

The counters i and i allow us to express at cutpoint A the obvious invariant 

y~- - i - / .+  t (t) 

(because y ,  is increased b y 1  each time i is increased, and decreased by t each 
time/, is increased, and y ,  is initially t). Similarly, we obtain 

y l =  t t  i - -  t 0 / '+  x. (2) 

We seek bounds on Yx and y ,  which will allow us to bound i and/. by  the loop 
approach. We have 

y ,  > t (3) 

(because y ,  is initially t ,  is increased on the left path, and can be decreased by t 
on the right path only when its value is greater than t). 
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Combining (t) and (3) we obtain the invariant 

i __> i (4) 

i.e., the right path around the loop cannot be executed more often than the left. 

By using (4) with (2) we obtain both 

y ~ l i i - - l O i +  x > i +  x (5) 
and 

y,  ~ 11 i - - t 0 ]  + x  -------i + x  (6) 

(depending on whether we substitute i for i, or i for i). 

I t  is clear that  

n - - i + i  (7) 
at A. This is a typical "s tructural  invariant" ,  i.e., an assertion which contains 
only counters and is dependent only on the structure of the graph of the flow- 
chart. 

From (5) and (6) we may obtain 2y 1 >__i + i  + 2 x ,  and by (7) 

Yl >= n/2 + x. (8) 

We now would like to bound Yl from above. Initially we reach A with 
y~ = x ^ y ,  = t ^ n = 0. If the left path is then taken, Yl --<-- t 1 t after completing 
it, and this will then remain true at A. If the yl > 100 branch is taken initially, 
the program will immediately terminate. Thus at A we have 

(Yl = x ^ Y2---- 1 ^ n---- 0) v Yl --~ 11 !. (9) 

If we let the invariant qa be the conjunction of (8) and (9), then 

qa ~ I n = 0  v n/2+x<=ttt] .  

Thus the counter n is absolutely bounded at A and the program must terminate. []  

Example 2 (loop approach). We apply the loop approach to the g.c.d, program 
of Fig. 5. I t  contains one outer block with counter i and two inner blocks with 
counters I" and k globally initialized. To prove termination of the program, we 
have to find bounds for i at A, 1" at B, and k at C. 

I t  is not difficult to discover the invariant 

y ~ > 0  ^ y 2 > 0  at A, B and C. (t) 

To link ] with Yl, we note that  Yl and Y2 are integers and that  each time 1" is in- 
creased by one, Yl is decreased by at least one (because Y2 ~ t). Thus we obtain 

Yx<----xl--l' at A, B a n d C ,  (2) 
and similarly 

y2<=x,--k at A, B and C. (3) 

We may use (t) with (2) and (t) with (3) to conclude that  

i < x l  ^ k<x2  (4) 

throughout the computation, bounding the total  number of executions of the 
inner loops. 
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Fig. 5. g.c.d, program (with counters) 

Since we have upper bounds on t" and k, but  need an upper bound on the 
counter i of the outer loop, we would like to show tha t  

i~_i+k at A, (5) 

i.e., tha t  each t ime we complete the outer loop, at  least one of the inner loops has 
been executed on that  pass. In order to establish that  this is indeed an invariant,  
we must  also show that  

(y14=y~^i<=j+k) v i < j + k  at B. 

That  is, either control has arrived at B from A, so Yl 4:y~ n i-----j+k holds, or 
control was already at B and made a pass around the loop, so i < j + k. Similarly 
we must  show tha t  

(yl<y2^i<=i+k) v i < j + k  at C. 

Using these assertions, it is easy to verify that  in fact i ____~" + k  is an invariant  
at A. Then clearly the outer loop must also terminate because from (4) and (5) 
it follows that  

i < x  l + x ~  at A. (6) 

Note that  the use of the counters served to reduce the sensitivity to the 
placement of the cutpoints seen in Floyd's method. This is because an invariant  
which is true at the cutpoint of a loop, and which involves only counters and 
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Fig. 6. Program for evaluating the determinant z = J X I (with counters) 

constants, is actually true anywhere on the loop, except for possible minor per- 
turbat ion by a constant. []  

Example 3 (loop approach). Let us consider the Gaussian elimination pro- 
gram of Example  3. We demonstrate the division to blocks and the (local) place- 
ment  of the counters in Fig. 6. The invariants needed to bound the counters are 

qA: I ~ a ~ M  A i = a - - t ,  

qB: "l ~ a < M  A b ~ M +  l A i = a - - I  A j = b - - ( a + t ) ,  

qc: l ~ a < M A b < M + t A a ~ c A i = a - - t h j = b - - ( a + t )  A k = M - - c .  
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Then clearly 

q a D i ~ M - - t ,  

qB~i <=M--t, 

qc~k<_M--l, 

proving termination by the loop approach. 

Note that  since the program variables are very similar to counters, the in- 
variants connecting the variables to the counters are trivial. The nesting of the 
blocks and the local initialization of the counters take care of the relations between 
the loops which were handled in Floyd's method by  using "triples". []  

An important side-benefit of the loop approach lies in the added information 
provided on the (time) complexity and the control behavior of the given program. 
In proving termination by showing counters bounded, we actually have obtained 
upper bounds on the number of times the loops may be executed. Note that  in 
Example t we also obtained the interesting information that  the right path 
around the loop will ultimately be executed the same number of times as the 
left path (i.e., i = j  when the program terminates). Moreover, since n = 0  v 
n / 2 + x ~ l t t ,  the loop itself will be executed no more than max (0,222--2x) 
times. Similarly, in Example 2 we obtained the (rather loose) bound of xl+x ~ 
on the number of executions of the outer loop, and the bounds of x 1 and x 2, 
respectively, for the inner loops. 

I t  would be natural to extend this by  refining the estimates and by also con- 
sidering lower bounds on the counters. Although, of course, at a cutpoint inside 
the loop we may only assert that  its counter i is non-negative, we can often 
establish a constant r', such that  r'<=i is an invariant immediately after exit 
from the loop. 

3. The Exit Approach 

Note that  both in Floyd's method and in the loop approach there is not neces- 
sarily any direct reference to those tests of the program which lead out of the 
block. Another type of proof, which we term the exit approach, involves generating 
for each cutpoint the conditions which would lead out of the block from the 
cutpoint. The program will terminate for a given input if for every cutpoint 
either (a) such a condition will eventually hold; or ( b ) t h e  cutpoint is never 
reached. 

For the cutpoint A of a block with a locally initialized counter n and k 
exits we define the exit condition R A (~, 9(n)) as 

v v . . .  

where Pi (x, Y (n)) is the condition for traversing the path from the cutpoint A to 
the i--th exit of the block. We then t ry  to find loop invariants qa at A such that  

v x  [qA = 3noRA Y(n0))] .  

This indicates that  there must be a value n o => O, such that  after n o iterations 
of the top-level loop of the block, one of the p~ (•, y (n)) will be true and therefore 
the corresponding exit path of the block will be taken. 
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For the common case of "s t ructured blocks", i.e. blocks with a single exit, 
the cutpoint may be located next to the exit test and the exit condition may be 
generated by "forward substi tution" along the path between the cutpoint and 
the exit. In the more general case, there may be several exits from the block, 
and it may be impossible to generate the entire exit condition at a given cutpoint, 
because of inner blocks between the cutpoint and the exit, as is the case for cut- 
point A of Figs. 7a and 7b. This difficulty may often be overcome simply by 
choosing the location of the cutpoint with more care. For example, for the loop 
of Fig. 7a, the exit condition RB(X , ~(n)): ~b2(s , y (n ) )v  p l ( i , / (y (n) ) )  is easy to 
generate at point B. When there is no way to generate the entire exit condition 
at a single cutpoint, as in Fig. 7b, the problem can usually be treated by using a 
set of cutpolnts, such as A and B in Fig. 7b. In this case we generate for every one 
of these cutpoints partial exit conditions each of which would "cover"  only 
some of the exits from the block. For the loop of Fig. 7b, the partial exit con- 
ditions are Ra: ~bl(:~ , ~(n)) and RB: p~(x, ~(n))v  ps(~,/(~(n))). Then to show 
termination it is sufficient to prove that  

V~{[9A~ 3noRA (i, ~(no))] v [ q ~  3noRB(~, P(n0))] }. 
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Example 3 (exit approach). For  the Gaussian el iminat ion p rogram of Fig. 6, 
a proof  b y  the  exi t  approach  would use the same invar ian ts  as for the loop ap- 
proach.  

For  the innermost  block, wi th  the exit  test  c = a, we mus t  show tha t  

qc ~ 3 h0 [e (ho) = a]. 

We use the facts t h a t  a and M are cons tant  in the  block, t ha t  the a and M 
are integers, and  t ha t  t --< a < M and e = M - -  k are invar ian ts  a t  C. Since t =< a < M 
implies t ha t  3 k 0 [ M - -  k o = a], and  c ----- M - -  k implies V k o [e (k0) = M - -  k0] clearly 

t < a  < M  ^ c = M - - k  = 3k o [c(ko) = a ] ,  

and  therefore the innermost  loop mus t  t e rmina te  each t ime it is entered. 

Similarly,  i t  is not  difficult to show tha t  

qB D S ]o [b (io) = M + t ], 

q~ = 3 i o [a (io) = M].  [ ]  

Even  if we ignore the problem of genera t ing the exit  conditions, we do not  
consider the exit  approach  to be the preferable me thod  for proving terminat ion.  
The  basic difficulty is t ha t  it is often unfeasible to show directly t ha t  certain 
values will occur during execution of the program.  In  the g.c.d, program (Fig. 2), 
for  example ,  i t  is bo th  difficult and  unnecessary  (even for correctness) to de- 
mons t r a t e  direct ly t ha t  Ya (n )=y2(n)  will eventua l ly  occur a t  point  A. 

The  real impor tance  of the exit  approach  lies in proving non-termination. Both  
Floyd ' s  me thod  and the loop approach  are not  sui table for this task.  If  we fail 
to find an appropr ia te  set  of descending functions {ua}, or to find invar ian ts  which 
bound the counters,  we still have not  proven  tha t  it is impossible to  find other,  
more  successful, funct ions or invar iants .  However ,  if we are able to show tha t  
there exits some legal input  value x 0 and  some invar iants  qa a t  a cutpoint  A, 
such t ha t  

qa = Vn ~ Ra  (~o, Y (n)) 

then  the exit  condition can never  be t rue  for execution with input  x o and  the 
block is proven  non-terminat ing.  A proof  of non- te rminat ion  could be valuable  
as an aid in debugging the p rog ram (see [13]). 

Modi/ied Example 2 (non-termination). The p rog ram of Fig. 8 differs f rom 
tha t  of Fig. 5 only  in t ha t  the exit  test  of the first inner loop is Yl >Y~ ins tead 
of Yl > Yz. As in Example  2, it is not  difficult to discover t ha t  Yl > 0 and Y2 > 0 
are invar ian ts  a t  A, B, and C. Using Yz > 0, we can prove te rmina t ion  of the 
first inner loop (by the loop approach).  However ,  we cannot  prove  te rmina t ion  
of the second inner loop only b y  using Yl > 0. The  problem is clearly the pos- 
sibil i ty t ha t  Yl = 0 a t  C. 

Thus we t r y  to see if there are input  values such t ha t  the first  inner loop 
could end with  y l  = 0, so t ha t  C will be reached with t ha t  value. The  first t ime  
the first  inner block is entered, Yl ( ] )=Yl  ( 0 ) - - ] .  y2(0). We wan t  to choose Yl (0) 
and  Y2 (0) so t ha t  Yl (/') will be zero when the exit  condit ion Yl < Y2 becomes true. 
If  we take  Y l ( 0 ) = m .  y2(0) for some m => l,  then cutpoint  B is reached, and  
Yl (i) = m .  Y2 (0) - -  ] .  Y2 (0) = (m- -  ]) �9 y~ (0). In  this case, since Yl => 0 ^ y~ > 0 is 
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Fig. 8. A modified g.c.d, program 

an invariant ,  Yz < Y2 can occur only when 7" = m. Intui t ively,  this means tha t  we 
will choose the initial value of Yl as an exact  multiple of y=, and since Y2 is sub- 
t rac ted  f rom yl  each t ime the first inner loop is executed until  Yl <Y~, the loop 
will end with Yl = 0. Since Yl (0) = xx and  Y2 (0) = x=, we choose inputs x~ > 0 and 
x 2 > 0 such tha t  x~ = m �9 x~ for some m > t. 

Once we have shown tha t  C can be reached initially with ya = 0, it is easy to 
prove tha t  Yl = 0 and y= > yl  will then be invariants  at  C, since y~ > 0 is invar iant  
and  Yl is not  changed in the second inner loop. 

Thus, we m a y  conclude tha t  in order to prove non-termination,  we can choose 
integer inputs such t h a t  

x l > 0 A X ~ > 0 A X l = m . x  2 for some m > t  

and  then show tha t  

qA: y l = x ~  ^ Y2=X2 ^'i=O, 
qB: Y x = ( m - - i )  "Y~ ^ Y l ~ O  ^ y=>O,  

qc: y~=O A y~ < y~ A y ~ > O  

are invariants  for such inputs. Clearly, cutpoint  C is reached, and 

Vk [qc ~ y~(k) >Yl] ,  

i.e., the negation of the exit condition of the second inner loop is an invar iant  for 
inputs as indicated, so the program is therefore proven non-terminating.  [ ]  
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4. Structural Induction 

All of the methods in the previous sections prove termination independently 
of a proof of correctness. Burstall [3], however, has suggested an alternative 
which proves correctness and termination together. In this approach we show that  
if we assume some property Pa at a point A (in particular, t he  START point), we 
must eventually reach a point B (in particular, a HALT point) with some pro- 
perry qB true. Instead of using invariants, such a claim is proven by  induction on 
the domain of the input values (and is therefore called structural induction). 

The notation of the exit approach is exactly suited to Burstall's method. 
We denote by  ~0 (~, ~) the desired relation between the input variables �9 and 

the output variables 3. Let us consider a simple program having the structure 
indicated in Fig. 9. 

To show termination, we must prove that  

3no[P(~, ~(n0))] at A. 

Similarly, to show termination and correctness w.r.t. ~(s ~), we want to es- 
tablish that  

3no[P(~, ~(no) ) ^ ~0(s ] at A. 

Note that  due to the way we defined p (n), if the above equation is true for n 0, 
then 9 (no) is defiried and must actually occur at A, implying that  the loop was 
not exited with n<n o. 

Example 1 (structural induction). Consider the termination and correctness 
of the "91-program" of Example I (see Fig. 4) with respect to the termination 
condition 

p(x, y(n)): yl(n) > 100 ^ y2(n)=1 
23 Acta Informatica, Vol. S 
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and the input -output  relation 

~ ( x ,  z): z = i f  x > t 0 t  then x - - 1 0  else 9t .  

For  x >  10t, the correctness, including terminat ion,  is trivial. Thus it suffices 
to prove tha t  (using the initial values Yl (0) = x and Y2 (0) = t)  at A, for any  integer 
x, x < 1 0 t  : 

[Yl (0) = x ^ y~ (0) = 11 = 

3n[n >=0 A yl(n) > 100 A y , (n )=t  A (1) 

(yx (n) - -  t 0) -= (if  x >  t0 t  then x - - 1 0  else 91)] .  

Since x<101 ,  this can be simplified to 

[Yl (0) = x A y ,  (0) = t ] = 

3n In > 0  A y l ( n ) =  10t A y , ( n ) = t ] .  
(2) 

Instead of using invariants,  we t ry  to  prove (2) by  induction on x. However,  as 
in m a n y  proofs by  induction, it is easier to prove a more general s tatement ,  since 
this way  the inductive hypothesis  used is stronger. Generalizing 0 to a variable g 
and I to h, we t ry  to prove at A tha t  for any  integer x, x < t 0 1  : 

YhVg{E h > i  A g>O A yx(g)=x A y , (g)=h]~ 

3n [n >g A yl(n)=101 A y2(n)=h]}. 
(3) 

This means tha t  if A is reached with yl(g)=x A y,(g)=h when x < 1 0 1 ,  h > t  
and g _--> 0, then A will eventually be reached with some n =>g such tha t  YI (n) = t01 
A y ,  (n) = h. Clearly (2) is a special case of (3), and Yl (0) = x and y ,  (0) = 1 actual ly  
occur at  A, so proving (3) is sufficient to  prove correctness and terminat ion of 
the program. 

We now proceed to prove (3) by  using "go ing-down"  induct ion on x. 

Base step. x= t01. This is trivial:  take n=g. 

Inductive step. Assume (3) holds for every x',  x < x' <= t0 t ,  and show it holds 
for x. We distinguish between two cases 

(a) 9 0 - - x - - t 0 0  

YI (g) = x A Y2 (g) = h 

yx(g+ t ) = x +  t t  A y2(g+ l ) = h +  l 

y l (g+2) .=x+t  A y , (g+2)=h 

y l ( n ' ) = t O t  A y,(n')----h 

(given) 

(executing the left path,  
since x ~ 4 00) 

(executing the right path,  since 
x + 1 1  > 1 0 0  A h + t  > 1 )  

(induction, since x < x +  t ~ t0t) .  

for some n '  => g + 2 
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(b) x < 90. 

Yl (g) = x ^ y ,  (g) = h 

yx(g+t)=x+11 ^ y 2 ( g + l ) = h + t  

y l ( n ' ) = t 0 t  A y2(n')=h+l 
for some n '  = > g + l  

y l ( n ' + t ) = 9 t  ^ y~(n'+l)=h 

y l ( n " ) = 1 0 1  ^ y,(n")=h 
for some n" >= n' + t 

This me thod  comple te ly  combines  

(given) 

(execut ing the left  p a t h  since 
x__< 100) 

( induct ion,  since x < x +  t t ~ t01) 

(execut ing the  r ight  pa th ,  
since t 0 t  > 100 and  h + t  > I) 

( induct ion,  since x < 91). 
[ ]  

t e rmina t i on  wi th  correctness,  and,  in 
m a n y  cases, yields a ve ry  e legant  proof.  This  seems especial ly  t rue  for i t e ra t ive  
versions of " i n h e r e n t l y "  recursive programs.  However ,  since i t  is not  based  on 
invar ian t s ,  this  t ype  of proof  could not  t ake  full a d v a n t a g e  of the  techniques  used 
in exis t ing ver i f ica t ion systems.  

Acknowledgement. We would like to thank Nachum Dershowitz, Amir  Pnueli and 
Adi Shamir for their  critical reading of the manuscript  and their  many helpful sug- 
gestions. 

References 

t .  Aho, A.V., UUman, J .D.  : The theory of parsing, translation, and compiling 
Vol. 2. Englewood Cliffs (N.J.):  Prentice Hall  t973 

2. Allen, F . E . :  A basis for program optimization. Proc. IF IP ,  Congress 71, Ljub-  
liana, Yugoslavia. Amsterdam:  North-Holland t971, pp. 380-390 

3. Burstall, R.M. : Program proving as hand simulation with a lit t le induction. 
Proc. I F I P  Congress 74, Stockholm, Sweden. Amsterdam:  North-Holland 1974, 
pp. 308-3t2 

4. Caplain, M. : Finding invariant  assertions for proving programs. Proceedings of 
Internat ional  Conference on Reliable Software. Los Angeles (Calif.) Apri l  t975, 
pp. t65-t71 

5. Clint, M. : Program proving: coroutines. Acta Informatica 2, 50-63 (t973) 
6. Cooper, D.C. : Programs for mechanical program verification. Machine Intelligence 

6. New York: American Elsevier 197t, pp. 43-59 
7. Deutsch, L.P.  : An interactive program verifier. Dept. of Comp. Sci., U. of Calif., 

Berkeley (Calif.) Ph.D. Thesis, June 1973 
8. Elspas, B., Levit t ,  K.N.,  Waldinger,  R. J. : An interactive system for the veri- 

fication of computer  programs. SRI, Menlo Park  (Calif.), Sept. t 973 
9. Elspas, B. : The semiautomatic generation of inductive assertions for proving 

program corretness. SRI, Menlo Park  (Calif.), July  1974 
10. Floyd, R .W.  : Assigning meaning to programs. In:  J .T.  Schwartz (ed.) : Proc. of a 

Symposium in Applied Mathematics, 19. Providence (R.I.):  Amer. Math. Soc. 
t967, pp. 19-32 

t 1. German, S.M., Wegbreit ,  B. : A synthesizer of inductive assertions. I E E E  Trans. 
on Software Engineering, SE-t ,  68-75 (t975) 

t 2. Igarashi, S., London, R.L. ,  Lucldaam, D. C. : Automatic  program verification I : 
A logical basis and its implementation.  Acta Informatica 4, t45-182 (1975) 

t 3. Katz, S.M., Manna, Z. : Towards automat ic  debugging of programs. Proceedings 
of Internat ional  Conference on Reliable Software. Los Angeles (Calif.), April  t975 



352 S. Katz  and Z. Manna 

14. Katz,  S.M., Manna, Z. : Logical analysis of programs. Comm. ACM, to appear  (1976) 
t 5. King, J. : A program verifier. Dept. of Comp. Sci., Ca~legie-Mellon U., Pi t tsburgh 

(Pa.) Ph.D. Thesis, t969 
t6. Knuth,  D .E . :  The Ar t  of Computer Programing, Vol. I. Reading (Mass.): Ad- 

dison-Wesley, t968 
t 7. Moriconi, M. S. : Towards the interactive synthesis of assertions. The Universi ty 

of Texas at  Austin Research Report ,  October t 974 
t 8. Sites, R.L.  : Proving tha t  computer  programs terminate  cleanly. Dept.  of Com- 

puter  Science, Stanford University,  STAN-CS-74-4t8 Ph.D. Thesis, May t974 
t9. Waldinger,  R., Levit t ,  K.N.  : Reasoning about  programs. Artificial Intelligence 

5, 235-3t6 (t974) 
20. Wegbreit ,  B. : The synthesis of loop predicates. Comm. ACM 17, t02-1 t2  (t974) 

S. Katz  
Z. Manna 
Applied Mathematics Depar tment  
Weizmann Ins t i tu te  of Science 
Rehovot, Israel 


