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Abstract. W e  define a s t rong and  versat i le  t e rmina t ion  order  for te rm rewri t ing  
systems, cal led the Improved General Path Order, which simplifies and  s t rengthens  
D e r s h o w i t z / H o o t ' s  Genera l  P a t h  Order .  W e  demons t r a t e  the power  of the Im-  
p roved  Genera l  P a t h  O r d e r  by proofs  of t e rmina t ion  of non- t r iv ia l  examples ,  
a m o n g  them a medium-sca le  te rm rewri t ing system tha t  models  a lift control .  
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1 Introduction 

A term rewriting system R is called terminating if there is no infinite derivation 

t - - + R  t '  --'-~R t'~ - - * R  " " " �9 

Termination of term rewriting systems is the key to effective term rewriting. For  
instance the following properties do not hold for an arbitrary rewrite system, but 
hold for every finite, terminating term rewriting system R. 

�9 Every term can safely be rewritten into a R-normal form, by an arbitrary 
strategy. 

�9 The reachability problem (given t, t', does t--*~t' hold?) is decidable. 
�9 The principle of rewriting induction is valid, i.e. Noetherian inductionwith the 

+ of the rewrite relation as inductive order. Newman's transitive closure ~R 
proof of confluence by local confluence for terminating rewrite systems admits 
a short presentation as a proof by rewriting induction [22]. Rewriting 
induction is an elegant proof technique, encoded in the "proof by consistency" 
method. 

�9 If moreover R is confluent then the simple word problem is solvable, and 
normal forms are unique. For  the class of finite, terminating rewrite systems, 
confluence is decidable by local confluence of critical pairs [29]. 

As is known, a rewrite system terminates if and only if, there is a termination 
order for it, i.e. if there is a wellfounded order, closed under substitution and 
contexts, that contains ("orders") each rule of the rewrite system. Termination 
orders are an essential ingredient in the Knuth/Bendix completion procedure [29] 
which tries to convert a given set of equations into a terminating, confluent rewrite 
system. 

Termination of rewrite systems is known to be undecidable [23,6]. So the 
challenge is to design termination orders that are powerful enough for practical 
application. 
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1.1 Path Orders 

Besides the interpretation orders, the path orders are most widely used to prove 
termination of term rewriting systems. The multiset path order [8] to begin with, uses 
a precedence, i.e. a wellfounded quasiorder on function symbols, to split cases where 
arguments are compared recursively or where collections of arguments are recur- 
sively compared as multisets. 

Collections of arguments may be compared recursively also in other ways, an 
observation that has led to the notion of status mapping. A status is a functional 
STAT > that maps a binary relation > on ground terms to a binary relation 
STAT > (>)  on ground terms, and satisfies a number of technical properties: It has to 
preserve orders, be monotonic and continuous w.r.t, the subset relation, and satisfy 

s >spot ~ f ( . . . ,  s . . . .  ) STAT >(>spo)f( . . . .  t . . . .  ). (1) 

For  instance lexicographic comparison of the tuples of arguments, permuted 
according to the top function symbol, is a status. Thus Kamin/L6vy defined the 
recursive path order (with status) [26]. 

If the subterms of a term are compared recursively, two equal subterms cannot 
be distinguished. This restriction vanishes when subterms together with their 
contexts are compared. Following this idea, the recursive decomposition order 
[25, 32], the path of subterms order [34], and the KNS path order [27], have been 
designed. 

Independently, one may try to involve semantic arguments into the comparison. 
The basic idea is that a strict subterm of a term t, i.e. a term syntactically smaller than 
t, may though be semantically greater than t. For  instance in a recursive definition of 
the factorial function s  one would like to employ the property n + 1 > n + 1 - 1 
on natural numbers to compare fac (s (x) )>  f_ac(p(s(x))). The semantics is ex- 
pressed by a model, i.e. a value-preserving congruence ~[ I of R, closed under 
substitution. Here a congruence is an equivalence closed under contexts; value- 
preserving means R __ ~[_~. Such a congruence is typically defined by a homomor- 
phic interpretation [_] of ground terms into a domain ~ of values. 

Plaisted (as mentioned in [11]) defined the value-preserving path order to 
compare two terms first by precedence and then lexicographically by a wellfounded 
order on the interpretations of the arguments. Kamin/L6vy [26] extended this 
non-recursive order towards an order where after the precedence and the compari- 
son of the interpretations of arguments there may be still a recursive comparison of 
the arguments according to a status map. This became known as the semantic path 
order >~po. It was Kamin/Lbvy's great contribution to show that although >~po is 
usually not closed under contexts, it is so when accompanied by a rewrite step, i.e. the 
relation >~po c~ ~R is closed under contexts. To this end, they require the condition 1 

S ~ R  t ~  f (  . . . .  S . . . .  ) > ~ f ( . . . , t , . . . ) .  (C) 

Formally similar to the semantic path order, in the Knuth /Bendix  order [29] two 
terms are compared first by their weights (i.e. weighted sums of nonnegative 
numbers assigned to each function symbol) then by the precedence, and then 

1 Originally, "~,". An unknown reader of Kamin/L6vy's manuscript has remarked that it can be 
relaxed to "> ~". 
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recursively their arguments in a lexicographic way. Lankford [30] replaced the 
weights by strictly monotonic polynomials with positive integer coefficients; De- 
rshowitz [8] defined an extended Knuth/Bendix order by allowing instead of weights 
any monotonic interpretation that has the (weak) subterm property. 

The 9eneral path order >gpo [10, 11] deserves its name for its ability to cover all 
known path orders and all extensions of the Knuth/Bendix order. In contrast to the 
semantic path order, the general path order has no fixed order of comparisons. 
Rather, recursive comparisons, precedences, and semantic comparisons may be 
mixed. Mimicking the Knuth/Bendix order, it may first use a monotonic interpreta- 
tion that has the subterm property. This interpretation may be expressed also as 
a tuple, lexicographically ordered, of monotonic interpretations, all except the last 
one strictly monotonic, which have the strict subterm property. 

This is the spot where we can offer three basic improvements which both simplify 
the framework and strengthen the capabilities of the general path order. We call the 
new order the improved 9eneral path order [20]. 

1.2 Three Improvements to the General Path Order 

From Zantema's "semantic labelling" approach [37] two concepts are carried over: 
Quasi-model and measure function. 

Quasimodels 

First, the requirement of model can be relaxed to that of a quasimodel. A quasimodel 
is a quasiorder >f_l on ground terms, closed under contexts and substitution, such 
that R___ >t_l" Again such a quasiorder is typically induced by a monotonic 
interpretation [ ]  to a quasi-ordered domain of values (9, >~). 

Measure Functions 

Second, Zantema introduces the notion of a labelling function. A labelling function is 
a function rc that maps a ground term into a wellfounded, quasi-ordered set (6 ~, >8) 
of labels. The top function symbol of a term t is now decorated with its label 7r(t), the 
purpose being that a precedence can be tuned much finer on labelled function 
symbols f~(t) than on symbols f that are not labelled. Most noticeable, labelling 
functions are based on monotonic interpretations but need not be interpretations 
themselves. 

As semantic labelling and semantic path order are closely related, the formalism 
of labelling function can be carried over to the semantic path order. Rather than 
labellings we speak of measures here, and use the letter qS. The semantic comparison 
is done by >~. 

Like the interpretation functions, the measure functions have to be monotonic. 
In effect, a measure ~b induces a quasiorder > ~ on ground terms that satisfies 

s>~f_l t~ f (  . . . .  s , . . . )> , f (  . . . .  t . . . .  ). (2) 
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This requirement is in fact only a concretisation of the proof obligation (C), as can 
easily be seen. Kamin/Lbvy's proof method so establishes that R is ordered by the 
wellfounded order > spon > L_ ~ that is closed under contexts [19]. The semantic path 
order may be treated technically as simple as other termination orders. 

As a straightforward consequence, the extended Knuth/Bendix order is a special 
case of the semantic path order (Theorem 5 in [19]) where proper quasimodels are 
used. Dershowitz/Hoot's natural path order [11] is another special case of the 
semantic path order, where the quasimodel is even a model and the status is empty. 

At some examples we can demonstrate that the distinction between measure 
functions and interpretation is an essential progress from Dershowitz/Hoot's 
general path order. Monotonicity of the interpretation and of the measure functions 
are natural conditions easy to satisfy; even trivial when >~ ~ is the equality on ~.  This 
relieves the designer from the hardest monotonicity proof obligations. 

Preparedness for Contexts 

We will define the improved general path order as a kind of simplified semantic path 
order where the semantic comparison >~ is no longer a distinguished part of the 
definition but instead some component of the status functional. However Condition 
(1) is too restrictive to obtain >gpoC~ >[_] closed under contexts. And this is the 
spot where we put the third essential change. We weaken Condition (1) to the 
condition 

s>opo t/x s > [ _ l t ~ f (  . . . .  s . . . .  )STAT>(>opo)f( . . . .  t . . . .  ). (3) 

This condition, which we call "(strict) preparedness for contexts", is natural with 
regard to the proof of closure under contexts, and accordingly the proof gets rather 
simple. Unlike (1) Condition (3) is weak enough to enable a number of measure 
comparisons > ~1,'", > ~, that satisfy Condition (2) each, as components anywhere 
in a status functional. Neither the semantic path order nor Dershowitz/Hoot's 
general path order share this capability. 

After the preliminaries (Sect. 2), we define the notions of interpretation, of status, 
and of the improved general path order (Sect. 3) and prove a general abstract 
theorem (Sect. 4). Thereafter we outline a toolbox of status components and give 
a checklist for developers of improved general path orders (Sect 5). Next we 
enumerate some small examples for illustration, including a'special application for 
conditional term rewriting systems (Sect. 6). We conclude by an accurate compari- 
son to Dershowitz/Hoot's general path order (Sect. 7). In Appendix A we demon- 
strate that improved general path order can handle a realistic 41-rule term rewriting 
system that formalizes a simple lift control [173. 

2 Preliminaries 

We assume that the reader is familiar with term rewriting, in particular with 
termination orders. For surveys on term rewriting see [24, 2, 28, 13, 33]. For 
notation see [ 12]. A comprehensive survey on termination of term rewriting systems 
is [9]. 
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Let ~ be any countable  set, and let ~ _~ ~2 be a binary relation on ~ .  
A ~ -de r iva t i on  is a sequence of steps t I ~ t 2 - + . - - ,  that  may  be finite or infinite. If  
there is no infinite--,-derivation then--, is  said to terminate or to be terminating. 

A binary relation on ~ is called an order if it is irreflexive and transitive, and 
a quasiorder if it is reflexive and transitive. The reflexive, transitive closure of ~ will 
be denoted by ~* .  This relation is a quasiorder  by definition. A quasiorder  > defines 
its strict part, > ,  an order, by s > t, ifs > t and t g: s, and its equivalence kernel, ~ ,  an 
equivalence relation, by  s ~ t, if s >~ t and t > s. We say that  > strictly satisfies 
a proper ty  P if both  > and > satisfy P. If  > is an order  that  terminates, we prefer to 
say that  each > and > are wellfounded. 

Let two disjoint sets ~ of funct ion symbols and X of variables be preassumed 
together with a function a r i t y  : ~ - - ,  N which assigns each function symbol  its 
fixed number  of arguments.  The set Y of terms upon  ~ and W is defined to be the 
smallest set containing X and satisfying 

arity(f)=n and t 1 . . . .  , t , ~ Y  i m p l i e s ( f ,  t l , . . . , t , ) ~ 3 -  

Funct ion  symbols f may  also be seen as term construct ing functions f : J "  ~ ~-- by 
f ( t  I . . . .  , t,) = (f, t l , . . . ,  t,), a fact that  allows to replace the formal tuple nota t ion by 
the more  convenient  nota t ion f ( t l , . . . ,  t,). A ground term is a term that  contains no 
variable. NY- denotes the set of all g round  terms. 

A contex t  c(_) is a term which contains the distinguished extra symbol _ of arity 
0 exactly once. The symbol _ acts as a placeholder and may  be replaced by any term. 
So c(t) means c(_) where t replaces _. 

A substitution a is a function a :Y- -*  J -  that satisfies f ( t  I . . . . .  t ,)~ = f ( h  a . . . . .  t ,a) 
for every function symbol  f E ~ .  Applicat ion of  a substitution is denoted by 
postfixing the substitution. Because it is a homomorph i sm,  o- is uniquely given by its 
restriction to the mapping  o-:~f-~Y-. A g round  substitution is a substitution that  
maps every variable to a g round  term. 

A binary relation, ~ ___ 3 -2, on terms is called closed under substitution, if 
s ~  t~ sa - - - ,  ta holds for every substitution a, and for all terms s and t. The 
relation ~ is called closed under contexts ,  if s ---, t ~ c ( s )  ~ c(t) holds for all terms s, t, 
and contexts c ( ) .  For  this it is sufficient to show s---, t ~ f ( . . . ,  s,. . .) ~ f (  . . . . .  t , . . .) 
for all terms s and t, for every function symbol f e ~ ,  and for every argument  
posit ion i, 1 _< i < a r i t y  ( f )  o f _  in f (  . . . . .  ,...). Here f (  . . . . . . . . .  ) is a convenient 
abbreviat ion for f (u 1 . . . . .  u~_ 1, - ,  ui + 1 . . . .  , u,). It is unders tood that  the posit ion i is 
the same in f (  . . . .  s . . . .  ) and f (  . . . .  t,...). 

Given two binary relations > 1, > 2, on the same set, their lexicographic combina- 
tion, ( >  1, >2)~x,  is the binary relation > l U ( ~ l C ~  >2). It  is known that  lexi- 
cographic  combina t ion  preserves reflexivity, transitivity, termination, and strict 
closure under  contexts and under  substitution. 

A quasiorder  > on a set @ may  be extended towards its multiset  extension >,,,~t, 
a quasiorder  on multisets over ~ .  A multiset is a collection of elements where unlike 
in a set the multiplicity of each elements counts. We will not  use multisets, but  
assume each multiset represented uniquely by a sequence instead. It  is unders tood  
that  two sequences s, t ~ ~ *  satisfy s > m,u t if their corresponding multisets do. The 
multiset extension >,~,~t~@* of a quasiorder  > is so defined as the smallest 
quasiorder  on ~* ,  closed under permutat ion of elements and concatenat ion,  that  
satisfies (s 1 ) > muir(t1 . . . . .  tn) ifs 1 > ti holds for all i, and satisfies (Sl) ~> ,,,tt(t 1) ifs 1 >~ h ;  
see [15]. 
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A quasiorder > which is closed under contexts, by symmetry entails that its 
equivalence kernel ~ is closed under contexts: s ~ t ~ f (  . . . .  s,.. .) ~ f (  . . . .  t . . . .  ). 
Such an equivalence is also called a congruence. Be aware that there exist quasior- 
ders who are closed under contexts, but not strictly. Recall that this means that their 
strict part, > ,  is not closed under contexts. For  this reason lexicographic combina- 
tion does not preserve closure under contexts, unless strict. To witness, let 
a > 1 b, i f (a)  ~ 1 if(b), and i f(b) > z i f(a) for all n > 1. Then, a > b, but f (b)  > f(a). 
The same holds for closure under substitutions. 

A term rewritin 9 system R (rewrite system for short) is any (usually finite) binary 
relation on terms. Its elements are written l ~  r, and are also called (rewrite) rules. 
The R-rewrite relation --*R --- 3-2 is defined as the closure of R under contexts and 
under substitution. It is well-known that the rewrite step (given R, t, wanted some t' 
such that t ~R t' holds) is computable. R is called a terminatin9 rewrite system, if its 
rewrite relation-,Rterminates.  An equational rewrite system is a pair (R,E) of 
rewrite systems where E is symmetric. The elements of E are written l - r, and are 
also called equations. R is called E-terminating, if ~ *  --+R ~ *  terminates. 

A termination quasiorder > is a wellfounded quasiorder on terms which is 
strictly closed under contexts and under substitution. A termination quasiorder is 
the basis to prove (equational) termination of a rewrite system: R is E-terminating, if 
and only if, there is some termination quasiorder > such that both R _~ > and 
E_~ ~ hold. I.e. one has to prove l > r  for all rules ( l ~ r ) e R  and l ~ r  for all 
equations (1 -- r)e E. 

Termination quasiorders are useful even if E is empty, as the strictorder may 
profit from the equivalence kernel. 

Example 1. Let f and 9 have multiset status. Then 

f (9(x, y), f (y, y) ) > rvof (9(Y, x), y) 

follows from 

(9(x, y), f (y, y) ) > rv . . . .  l,(9(Y, x), y). 

To show this, 9(x, y) ~vog(Y, x) is essential. One arrives at the same conclusion when 
f instead has lexicographic status "left-to-right". 

A term s is said to be a superterm of a term t, formally s_~ t, or equivalently, t is 
a subterm of s, (t_~ s), ifs is of the form c(t) for some context c. The superterm relation 
is a quasiorder. A binary relation on terms ~ _~ c> is also said to have the subterm 
property. A quasiorder > that has the subterm property and is closed under contexts 
is called a simplification quasiorder 2. Each simplification quasiorder by definition 
extends the relation ~ * ,  the converse of the embeddin9 relation. By Kruskal 's  tree 
theorem, every simplification quasiorder is wellfounded if F is finite. 

A rewrite system that terminates by a simplification order is called simply 
terminating. If it terminates by a termination order that is total on ground terms, 
then it is called totally terminating. 

3 Architecture and Constituents 

We are going to define an enhanced version >ovo of Dershowitz/Hoot 's  general path 
order which we will call the improved general path order. The order is given as the 
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strict part > opo = aef > gpo\ < gpo of a quasiorder > gpo. We will establish the quasior- 
der >gpo on the set of ground terms, and lift it to a quasiorder on terms with 
variables that is strictly closed under substitution. 

For the quasiorder >gpo on ground terms we will give a recursive definition 
scheme which is based on a scheme parameter, STAT ~>. The functional 

STAT z: ~(~-2) _, ~(~-2) 

maps each binary relation > _c ~ - -2  on ground terms towards a binary relation 
STAT>~(>) _c N j 2  on ground terms. The functional 8TAT >~ is there to express how 
two terms may be compared, given the results of comparisons of any pair of their 
proper subterms. We call $TAT ~> a status if it satisfies certain essential conditions for 
this job. To admit semantic comparisons as well, one has to provide a monotonic 
interpretation, [_], together with the status. Unlike in the semantic path order, 
semantic comparisons will not be an extra ingredient but part of the functional. For 
the time being this is the most general way to express the path order idea. 

3.1 Monotonic  Interpretations 

It is well-known how to establish a quasiorder which is closed under contexts. Let 
a set 9 be given, provided with a quasiorder > ~, and a homomorphism 

which assigns to each ground term t its interpretation It]. The homomorphism [ J  is 
conveniently given by a ~--sorted family of functions I f ]  : 9  ari:y(y) ~ 9 ,  via 

If(s1 . . . . .  sm)] =def [ f ] ( [S l ]  . . . . .  [Sm]). 

The homomorphism [_] induces a quasiorder, > t  1 _c j-2,  on terms, defined by 

s > t_ 1 t ~*'def [Sa] > ~ [to-] for all ground substitutions o-. 

If each of the I f ]  is >~-monotonic (in every argument), then >t_l is closed 
under contexts. In this case, (9,  >~,  [_]) is also called a monotonic interpreta- 
tion. A monotonic interpretation that satisfies R _  >t_l  is called a quasimodel of 
R [37]. 

It means no restriction to require > ~ antisymmetric since 9 can be partitioned 
into ~-equ iva lence  classes without any change for the termination proof. If 
>~ = = is the equality on 9 then monotonicity follows immediately from the 
homomorphism property. In this case a quasimodel is called a model. 

3.2 Statuses 

In order to ensure that >0po satisfies the properties of termination and quasiorder, 
the functional STAT >~ should essentially preserve these properties. Kamin/L4vy 
[26] gave a list of conditions for STAT ~> to satisfy. Lescanne [31] coined the notion 
of status for a functional that satisfies these conditions. 

2 quasi-simplification ordering in [9]. 
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In  contras t  to Kamin /L6vy ,  we set up the not ion of status for quasiorders.  Fo r  
convenience we will write S T A Y > ( > )  for the strict part ,  and S T A T - ( > )  for the 
equivalence kernel, of  the relat ion STAT~>(>). 

Definition3.1 (Status component, STAT ->, [26], [19]).  Let  >[_]c_NJ-2  be 
a quasiorder on ground terms, closed under contexts. A functional 

STAY .>: ~3(~#Y -2) --, ~ 3 ( ~  -2) 

is called a status component ,  i f  it satisfies the following conditions: 

�9 STAT -> preserves quasiorders, 
�9 STAT -> is subterm-founded,  i .e.for every pair s, t, o f  ground terms, and every 

binary relation > on ground terms, 

s STAT-> ( > ) t <=> s STAT-> ( > ' )  t 

where >'  is defined by 

St ~ ttt <=~def St ~ t t A (St, t') <mull(S, t). 

�9 STAT -> is prepared  for contexts: For every quasiorder > on ground terms, 

S > t A S > [  l t ~ f (  . . . .  s , . . . )STAT~>(>) f (  . . . .  t . . . .  ) 

�9 STAT ~> decreases infinite derivations,  i.e. for  every infinite derivation 

t 1 S T A T > ( > )  t 2 STAT>(>~) . . .  

where >~ is a quasiorder on ground terms, there is an infinite derivation 
u 1 > u a > ... such that t i ~  u I holds for  some index j. 

Definition 3.2 (Status). A status component STAT ~> is called a status, i f  it moreover 
satisfies strict preparedness for  contexts. 

s > t/x s > [_lt ~ f (  . . . .  s , . . . )  STAT > ( > )  f (  . . . .  t . . . .  ) (*) 

We have put  an extra  definition to distinguish components of a status, which are 
assembled to form a status, f rom the status itself, i.e. their final assembly that  is used 
as the basis to form the improved  general pa th  order  instance. In  view of composi -  
tionality, it is reasonable  not  to require a status c o m p o n e n t  to satisfy (*), the strict 
pa r t  of preparedness  for contexts. This is in agreement  with Der showi t z /Hoo t ' s  
policy. But where they compare  two terms by their multisets of  subterms to get an 
order  that  is closed under  contexts,  we stick to the terms themselves which is 
technically easier. To  obta in  closure under  contexts,  we then have to require that  the 
final status is strictly p repared  for contexts. Fo r  this purpose  we retain where 
a c o m p o n e n t  is a l ready strictly prepared.  

Definition 3.3 (Strictly prepared for (f, i)). L e t  ~ [_ ] ~- ~ ~-'-2 be  a quasiorder, closed 
under contexts,  and STAT -> : ~(,(~--2) __> ~ ( ~ f 2 )  be a status component. Then STAT >- 
is called strictly p repared  for the pair  (f,  i ) , / f  

s > t / x s > [ _ ] t ~ f (  . . . .  s . . . .  ) S T A T > ( > ) f (  . . . .  t . . . .  ) 

holds, where f e Y  and i denotes the position o f__  within f (  . . . . .  , . . .). l f  S is a set o f  
pairs ( f  , i), then STAT >~ is called strictly p repared  for S, i f  it is strictly prepared for  each 
element o f  S. 
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Now if S T A T  >~ is a status component which is strictly prepared for every pair 
(f, i), f E ~ - ,  1 _< i _< a r 2 t y ( f ) ,  then STAT >~ satisfies (.), i.e. is a status. 

The following property is useful for reasoning in proofs below. 

Lemma 3.1. I f  STAT > is subterm-founded, then for  all terms s, t, and binary relations 
> on terms, 

sSTAT>(>~)t<=>sSTAT>(>')t and 

s STAT~(~>)  t <=> s STAT~(~> ' )  t, 

where >'  is defined by 

s' > ' t ' ~ d e f s ' >  t' /, (s',t')<mu~,(s,t). 

Proof  Expand the definition of  >'  and use the property (s, t) =,,,l~(t, s). 

3.3 The  Improved General Path Order 

Now we are prepared to express >gpo as unique fixed point of a recursive scheme 
with the status component STAT ~> as scheme parameter. 

Definition3.4 (Improved general path order, >gpo, [10,11]). For each subterm- 
founded functional STAT >~ : ~3(NY 2) ~ ~(NJ-:) ,  its induced improved general path 
quasiorder >0po -- N y 2  is defined as follows. 

s >gpo t, i f  s = f ( s  1 . . . . .  Sin), t = g(t 1 . . . . .  t,), and 
> > 1. Vi. s > opoti and s STAT~(~gpo) t, or 

2. 3i. s i ~opo  t. 

Well-definedness of >gpo follows from subterm foundedness of STAT ~>. To this 
end one shows that s >,~gpo t has a defined truth value by induction on pairs (s, t) of 
ground terms, ordered by the multiset extension, ~>m,~t, of the subterm order. 

Kamin/L~vy put the condition that STAT ~> is monotonic and continuous w.r.t. 
_ .  Continuity means informally that for each comparison s STAT~>(>)t, only 
a finite number of pairs s' > t' need to be examined. Instead of monotonicity and 
continuity we require a condition that we call subterm-foundedness. Subterm 
foundedness is a harder condition than continuity since it restricts the set of term 
pairs not only to a finite set, but even to a finite set of smaller terms. 

Even so we consider subterm-foundedness an interesting alternative to mono- 
tonicity and continuity, for the following reasons. 

�9 Subterm-foundedness allows for structural induction to prove properties of 
> whereas with continuity instead one has to employ computational ~gpo ,  
induction. 

�9 With subterm-foundedness given, any expression s >gpot yields a unique, 
defined, truth value; we need not care about undefinedness. Technically 
convenient, >gpo as the strict part of >0po is a well-defined notion. 

�9 With terminating algorithms for >[_1 and STAT >~ given, the recursive 
definition of >opo on ground terms turns into a terminating algorithm. 

�9 All statuses in use satisfy subterm-foundedness. On demand, subterm- 
foundedness can still be relaxed, replacing in its definition ~ by any well- 
founded quasiorder which has the subterm property. 
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The improved general path quasiorder is lifted to terms that may contain 
variables by 

S ~ gpo t "r 

�9 Sa >gpot(7 for all ground substitutions a, or 
�9 sa ~opo ta for all ground substitutions a. 

The relation defined thus is strictly closed under substitution. 

4 Main Theorem 

The improved general path order satisfies the following central theorem. 

Theorem 1. I f  > ~ 1 c_ j - 2  is a quasiorder on terms, closed under contexts and under 
substitution, and STAT~> : ~ ( N J  2) --* ~3(NJ 2) a status, then 

1. >gpo is a wellfounded quasiorder that has the strict subterm property, and 
2. (>gpoC~ >r l)w(~0po ~ ~[ 1) is a termination quasiorder. 

The lifting of both > 0,o and ( >gpo c~ > E_ 1) u ( ~0po c~ HE_ 1) from ground terms to 
terms that may contain variables is by construction strictly closed under substitu- 
tion. Furthermore it preserves quasiorder, termination, the strict subterm property, 
and strict closure under contexts, We may therefore resort to the case of ground 
terms. 

Let throughout this section > ~_1 - Ny-2 be a quasiorder, closed under contexts, 
and STAT~> : ~(NY -2) ~ ~3(~f3 -2) be a status. For the proof of Part (1) of Theorem 1, 
we need two simple technical properties. See also Dershowitz/Hoot [10]. 

Lemma 4.1. s ~opotc> t ~ s >opo t holds for  all s, t, t' eN~- .  

Proof  W e  only need to consider the special case 

s >gpog(tl . . . . .  t,) ~ s >gpoti 

f rom which the claim follows by a simple structural induction on t. 
Let  t = g(t~ . . . .  , t,). W e  prove the claim by induction on pairs (s, t), ordered by the 

multiset extension ~',,,~t o f  the subterm relation. Let  s >opo t, and 1 < i < n. I f  Case (1) 
of  the d@nition o f  >gpo has been used then immediately s > opotl. Else Case (2) must 
have been used, so s = f (sl, . . . , s,,) and sj > opot holds for  some 1 <_ j <_ m. By inductive 
hypothesis for  (s j, t) we get sj > gpoti, so by Case (2) of  the definition o f  >opo, it follows 
s >ovoti. To show " > " ,  assume t~ >opos. By  inductive hypothesis for  (t~, s), we get 
t i >gpoSj, a contradiction to sj >gpoti .  S o  t i ~apo  s, hence s >apot i  . 

Lemma 4.2. s E> s' > gvo t ~ s > opo t holds for  all s, s', t ~ ~f ~--. 

Proo f  W e  only need to consider the special case 

Sl ~gpo  t = f ( s  1 . . . . .  Sin) >gpo t 

f rom which the claim follows by structural induction on s. 
Let  s = f ( s  1 . . . . .  s~), and si>ovot for  some 1 <i<_m. Using Case (2) of  the 

definition o f  >~gpo, we get s>~gpot. To show " > " ,  assume t >~gpos. By  Lemma 4.1, 
t >gpoS~ holds, a contradiction to the premise s i ~gpo t. So s >apo t. 
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Lemma 4.3. >~gpo is reflexive.  

P r o o f  W e  prove s >~opo s by  induction on s, ordered by E>. L e t  s = f ( s l , . . .  , sin). By  
inductive hypothesis ,  s i >~ ovo si whence  s > opo si by  L e m m a  4.2. B y  ref lexiv i ty  o f  >~E_ ], 
we get  s i >~ t_~si. Preparedness  f o r  con tex t s  o f  STAT >- yields s STAT>-(>~gpo) s. T h e  
claim fo l lows  by Case (1) o f  the definit ion o f  >~opo. 

By Lemma 4.1, the strict  subterm proper ty  follows from reflexivity of ~>ovo. 
Moreover, it follows immediately that >opo is irreflexive.  

To prove transitivity, we need two technical lemmas about the multiset exten- 
sion of the subterm order. 

Lemma 4.4. For  all terms s, s', t, t', u, and u', i f  

V x ~ { s ' , t ' , u ' } 3 y ~ { s ,  t , u } ' x ~  y (4) 

then one o f  the fo l lowing  holds. 

(s',t',u')~_m.~,(s,t,u) or  (5) 

?r ,r ' , r" . (s ' , t ' ,u ' )  =m,u(r ,r ' , r")  /x r ~  r' (6) 

Claim (6) intuitively says that two of the components of (s', t', u') are ordered by 
, i.e. s' ~ t' or s' <~ u' or t' ~ s' or t' ~_ u' or u' ~ s' or u' _~ t' holds. The case of 

a proper subterm may occur as the example (s', t', u') = ( f ( x ) ,  y, x), (s, t, u) = ( f ( x ) ,  y, z) 
shows. Here s' ~ s, t' ~ t, u' <z s whence the premise of Lemma 4.4 holds. Claim (5) 
does not hold since x :~ z. On the other hand u'<~ s' so Claim (6) applies. 

P r o o f  Le t  (4) hold. Case 1: Even V x ~ { s ' , t ' , u ' } 3 y E { s , t , u } .  x < a y  holds. T h e n  (5) 
holds, as can easily be checked.  Case 2: Case 1 does not apply,  whence  
3 x E { s ' , t ' , u ' } 3 y e ( s , t , u } . x = y .  W.l.o.g. let s' = s  hold, Case 2.1: 3 x ~ { t ' , u ' } ' x ~  s, 
then (6) holds with the set t ings r = x, r' = s'. Case 2.2: Case 2.1 does not apply,  whence  
V x ~ { t ' , u ' } 3 y ~ { t , u } . x ~  y. Case 2.2.1: I f  even V x ~ { t ' , u ' } ~ y e { t , u } . x < z  y, then (5) 
holds. Case 2.2.2: I f  Case  2.2.1 does not  apply then 3x  ~ {t', u'} 3 y e  { t, u} " x = y, W.l.o.g. 
let t' = t. I f  now u' ~ t, then (6) holds with the set t ings r = u', r' = t. Otherwise  u' ~ u 
whence  (5) must  hold. 

Lemma 4.5. For  all terms s, s', t, t', u, and u', i f  (s', u')<~ ,,,tt(s, u) and (s', t', u') =,,ult(s, t, u) 
then t ~  s or t ~  u holds. 

! t ~ ! ! ! P r o o f  L e t  (s , u ) ~,it(s, u) and (s ,  t ,  u ) =,, , i t(s,  t, u). Obviously  t' must  be one o f  s, t, u, 
o therwise  (s', t', u') = m,lt(s, t, u) would not  hold. Case 1: t' = t then (s', u') =,,,it(s, u), 
a contradict ion to (s', u ' ) ~  m, zt(S, U). Case 2: t' = s. T h e n  (t, u) =m,lt(S', U')<~ re,it(S, U), 
whence  t-~ s. Case 3: t' = u. T h e n  (s, t) =,,,it  (s', u ')<~ m, tt(s, u), whence  t-~ u. 

We remark that it should be possible to extend these two lemmas towards tuples 
of arbitrary but fixed length, and to multiset extensions of any quasiorder. 

The proof of transitivity is fairly hard, but keep in mind that it does not require 
the status to be monotonic. 

Lemma 4.6. ~'~gpo is transitive. 

P r o o f  W e  claim that f o r  all terms s, t, and u, s >gpo t >ovo u implies s >ovo u. T h e  p roo f  
is done by induction on triples (s, t, u), ordered by the mult iset  order c> m,m I f  s ~ t, then 
s >gpo u fo l lows  f r o m  L e m m a  4.2. I f  t ~  u, then s >ovo u fo l lows  f r o m  L e m m a  4.1. I f  
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s~_ u then s >~gpo u follows by the subterm property o f  >gpo. I f  s<~ t or t .~ u, then we 
use Lemma 4.1 to get a contradiction to irreflexivity o f  >opo" I f  u-~ s then we use 
Lemma 4.1 to obtain a contradiction to the premise s >,% opo t. This settles the case where 
(at least) two of  s, t, u are in the subterm relation. Henceforth we may exclude that case. 

Let  s = f (s 1 . . . . .  sin), t = g(t 1 . . . . .  t,), u = h(ul , . . . , up). W e  distinguish cases along 
the definition of  >ovo for  s >~ opo t and t >~ ovo u, respectively. Case 1: s i ~ opo t holds for  
some I <_ i < m. Then s i >gpo u by inductive hypothesis for  the triple (s i, t, u), so s >gpo u 
by Case (2) of  the definition of  > gpo. Case 2: s STAT~>(> gpo) t, s > gpo t i for  all 1 <_ i <_ n, 
and t i ~ gpo u for  some 1 <_ i <i n. Then s >opo u by inductive hypothesis for  the triple 
(S, ti, U ). Case 3: s STAT>q>gpo)tSTAT>q>opo)U, s>ovo% for all 1 <_i<_n, and 
t >ovoUj for  all 1 < j < p. From s >opo t >gpoUj by inductive hypothesis for  the triple 
(s, t, uj) we get s >~gpoUj. To show " > " ,  assume u i >gvo s. Then u i >gvo t by inductive 
hypothesis for  (ui, s, t), a contradiction to t > gpoUi. So s > gpoUi holds. 

The remainder o f  this proof  is devoted to the proof o f  sSTAT>q>ovo)U. For 
convenience, let fin(s, t) denote the set o f  pairs o f  ground terms smaller than the pair 
(s, t), 

~n(s, t) =.o,  {(s', t ' ) l (s ' ,  t ' ) <  m.,,(s, t)}, 

a notation that allows us to reformulate subtermfoundedness as 

s STAT~>(~>) t ~ s STAT~(~> ~q fin(s, t)) t. 

Let  moreover 

F i n  = def fin(s, t) W ~_n(t, u) u fin(s, u). 

Now consider the relation 

~ t  . . . .  =def( ~ gpo (') F i n ) * ,  

which is a quasiorder by definition. We  claim that 

s' > , . . . .  u' ~ s' > . . o U '  (*) 

holds for  all (s', u') ~ Y in .  Provided that (*) holds, we can finish the proof o f  transitivity 
by the following derivation. 

s STAT>q >opo) t STAT>q >gpo) u 
< = ~ s S T A T ~ ( > o p o ~ f i n ( s , t ) ) t S T A T ~ ( > o p o C ~ f i n ( t , u ) ) u  (subt. found.) 

<=>sSTAT~>(>, .... c~ f i n ( s , t ) ) t S T A T ~ > ( > ,  .... c~ f i n ( t , u ) ) u  (*) 

,r s STAT~>(>,  . . . .  ) t STAT>q >, .... ) u (subt. found.) 

~ s S T A T Z ( > ,  .... )u  (qu. ord. pres.) 

s STAT>~( >t .... ~ f in(s,  u)) u (sub t. found.) 

4> s STAT>q > .po c~ f in(s,  u)) u (*) 

s STAT>q >gpo) u (subt. found.) 

Finally we have only left to prove the claim (*). This is the most complicated part o f  
the proof. " ~ "  is by definition. For " ~ " ,  let a derivation 

S' = r 0 ~.~gpo rl ~opo " ' "  ~-~Opo rk = t' 

be given where (r i, r i + ~ ) e F i n for  each 0 <_ i < k. By  induction on k, we prove r ~ > 9po rk. 
I f  k = 0 or k = 1 then the claim holds trivially. So let k > 2. 

First we handle the case where two terms in the given derivation are in the subterm 
relation. To this end let 0 <_ i < j <_ k and r i ~  r j or r i ~  r j. Case 1: r i~" r j for  i r O. 
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T h e n  r i - 1 > o rJ using Lemma 4 2 Furthermore, due to (r i-  1, r j) < m,lt ( r i -  1, r i) e F J_n, gp . . �9 . 
the property ( P - l , r 0 e F i n  is maintained. So the inductive hypothesis o f  (*) for  
k - j + i applies to the derivation 

r~  >,~gpo "'" ~gpo  r i -  1 ~gporJ  ~ g p o " *  ~gpo  rk 

and yields the claim. Case 2: r~_ r j for  i = 0 holds. Then (r j, rk)~_ m,~t(r ~ r k) e F i n  by 
premise, and so (r;, r k) e F in .  Hence by inductive hypothesis o f  (*) for  k - j applied to 
the derivation 

rJ >opo"" >gpo rk 

we get r j ~gpo rk, f r o m  which the claim r ~ ~gpo rk is obtained by Lemma 4.2. Case 3: 
rL< r j holds Then r j -  1 > g o r j ~  r~, so r j -  1 > o r~ by Lemma 4 1 On the other hand, 

�9 . �9 . . ~ p .  . g P  �9 . 

(r j -  1, r ' ) ~  mult(r J -  1, rO ' so (r ~- 1, r ~) e Fin. Hence the inductive hypothesis o f  (*)for the 
derivation 

r i > �9 gpo " * ~gpo  rj  1 

applies and yields r i >gpo rj 1, a contradiction. So henceforth we may assume that no 
pair of  terms in the given derivation is in the subterm relation. 

N e x t  we claim that there is an index 0 < j < k such that r ~ >gpo rj ~ gpo rk. C a s e  1: 
There is an index 0 < j < k such that both ( r~  and (rJ, r k ) e F i n .  Since the 
derivations 

r 0 ~ . . .  > J and r j ~ . . .  >gpo rk ~gpo  ~gpo  r ~gpo  

are each strictly shorter than k, r ~ ~2po rj  ~opo rk holds by inductive hypothesis o f  (*). 
Case 2: For every 0 < j < k either (r u, r j) or (r j, r k) is no t  in F i n .  Since each r ~ r j, r k is 
a subterm of  one of  s, t, u, this can happen only i f  one of  r ~ r k is element o f  (s, t, u). The 
other must then be a subterm of  another element of  (s, t, u) to satisfy (r ~ rk)ff  F i n .  But 
then r j must be the remaining third term o f  the multiset (s, t, u). This means that r j is the 
same for  all j in question�9 As  we may rely on the absence of  duplicates, we may conclude 
that k = 2 holds, and the claim follows immediately. 

By definition of  > t ..... we know that each r ~ r j, r k is a subterm o f  one of  s, t, u. 
Applying Lemma 4.4 to (r ~ r j, rk), we  have (r ~ r j, r k]<l "S t, U). By Lemma 4.5, the J - -  mult~ , 
comparison even is strict. So the inductive hypothesis o f  our transitivity claim applies to 
this triple, and we may infer r ~ ~gpo  rk. 

This flnishes the proof  o f  (*). 

Lemma 4.7. > opo terminates. 

Proof. Termination is proven by "minimal counterexample" [26, 10]. Assume that 
there is an infinite derivation t 1 ~gpo  t2 ~ g p o " ' "  Given a nonempty set o f  infinite 
derivations one can approximate a minimal infinite derivation in the following sense: 
For all i e N ,  every derivation that starts with tl >gpo''" >gpo ti-1 ~gpott, satisfies 
t '@ t i. The infinite sequence is approximated by successively constructing finite 
prefixes t 1 > gpo"" > gpo ti. The prefix is trivial for  i = 0 and is prolonged from i to i + 1 
by choosing t ~+1 minimal w.r.t. ~_ among all infinite derivations that start with 
t 1 i > opo"" >spo t .  We  are going to demonstrate by a case analysis on the structure of  
> opo that the existence of  such a minimal counterexample leads to a contradiction, so 

that the set o f  infinite derivations must be empty, and so that > gpo terminates. 
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Case 1: Some step t i >gvot i+1 in the given derivation is due to Case (2) o f  the 
definit ion o f  ~ gpo, say t i > t i + 1 Then  the infinite derivation 3 ~ gpo 

t l  ~ gpo "'" ~ gpo t i -  1 ~ gpot~ ~ gpoti + 2 ~ gpo' '"  

is smaller  at i than the given one, a contradic t ion to the assumpt ion  that  the given 
derivation was  minimal.  Case 2: Case (1) o f  the definit ion o f  >~ gpo is used at each step. 
W e  have thus an infinite derivation 

tl STAT >(>gvo) t2 STAT >(~>gvo).--. 

T h e  f a c t  that  the func t iona l  STAT z decreases infinite derivations,  gives us an infinite 
derivation u 1 > gvo u2 > gvo"" where  f o r  some j >_ 1, tic> u 1 holds. Th is  is suff icient to 
cons truc t  the infinite derivation 

t l  > gpo""  > gpo t j - 1  > gpo u l  > gpo u2  > gpo""  

which is smaller  at  j than the given infinite derivation. Th is  again is a contradic t ion to 
the assumpt ion that  the given derivation is minimal.  

Summarizing, >,,o is reflexive (Lemma 4.3), transitive (Lemma 4.6), wellfounded 
(Lemma 4.7), and has the strict subterm property (remark below Lemma 4.3). This 
finishes the proof of Part (1) of Theorem 1. 

For Part (2), quasiorder and termination follow immediately from Part (1). 
Notice that to maintain termination from >ovo, the problematic part ~ovo c~ > ~ 1 
had to be cut off >opoC~ >t_J" We still have to prove that (>gpo n >t_a)w 
(~gpo c~ ~ t_l) is strictly closed under contexts. The proof is similar to the one in [-19] 
for a variant of the semantic path order. It is surprisingly simple. 

Lemma 4.8. ( >opo c~ > t_l) ~ (~gpo ~ ~ t - 7 )  is s tr ic t ly  closed under contex ts .  

P r o o f  T h e  p r o o f  is done by showing that  >gpoC~ > t _ l  and >opo ~ >t_~ are closed 
under contex ts .  

T o  show that  > gpo n > t_l is closed under con tex t s  let s > opot and s > t_l t where  
s, t ~ f# ~--. Since > t _ l is closed under contex ts ,  f (. . . , s . . . .  ) ~ t I f (  . . . .  t, . . .) holds. Th i s  
leaves to show f (. . . , s . . . .  ) >opo f (. . . , t, . . .). W e  do it using Case (1) o f  the definit ion o f  
> 

gpo" 

1. W e  have f (  . . . .  s . . . .  ) >,po s >~opo t, by the s tr ic t  sub term proper ty  o f  >~po. 
Trans i t i v i t y  o f  ~ gpo yields f ( . . . ,  s , . . . )  > o~o t. 

2. f (u 1 . . . . .  u i -  1, s, ui + 1 . . . . .  Un) > ~poUj f o r  all j r i holds by the s tr ict  sub term 
proper ty  o f  >gvo. 

3. f (  . . . .  s . . . .  ) S T A T ~ ( > o p o ) f ( . . . , t  . . . .  ) fo l lows  f r o m  the premises  s > o ; o t  
and s >  I it  by the f a c t  that  the s ta tus  component  STAT ~> is prepared f o r  
contex ts .  

L ikewise ,  s>gpot  and s ~  t i t  implies f (  . . . .  s . . . .  )>apof( . . . .  t . . . .  ). T o  show that  
f (  . . . .  s . . . .  )STAT>(~>gpo)f( . . . .  t . . . .  ), one uses the f a c t  that  STAT z is s tr ic t ly  pre- 
pared f o r  contex ts .  

Th i s  f in ishes  the p r o o f  that  >~gpo n >~I I and >gpoc~ >~t_l are closed under 
contex ts .  Together ,  ( > gpo ~ >~ I_ ]) u (~opo c~ ~ t_ 1) is s tr ic t ly  closed under contex ts .  

So ( > 0po c~ > t 1) w (~  gpo c~ ~ t_l) is a termination quasiorder, and the proof of(2) 
is finished. 
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5 A Toolbox for Status Components 

Which forms of status components are available, is a decisive question for the 
strength of the improved general path order. Among the various ways to define 
status components,  we pick a few which we consider the most important.  We are 
going to introduce measures as constant status components; lexicographic composi- 
tion of status components; intersection of status components; the selection of an 
argument at a specified position; and restriction to a set of function symbols. 
Dershowitz/Hoot  [11] have investigated multisets of specified arguments, and 
multisets of arguments of a specified rank w.r.t. >0po. 

5.1 Measures 

A particular status component  is one where there is no reference to its parameter  at 
all: Constant status components. Measure comparisons > e  form such status 
components. Let g be a set, ordered by the wellfounded quasiorder > ~. A measure is 
then expressed by a function 

that resorts to the arguments of a term only via their interpretation. Such a func- 
tion is conveniently given by a Y-sor ted  family of functions ~bZ:~a-~i~Y(I)~g, by 
defining 

r  . . . . .  Sin)) =def  ~bf ( [ s l ]  . . . . .  [Sm]) 

The induced quasiorder, > ,  _~ y-2, on terms, defined by 

S ~ 4 t <=>clef (~(S) ~ g ~b(t) for all ground substitutions a 

is a wellfounded quasiorder, as can easily be verified. If every ~b ~ is > j m o n o t o n i c ,  
more precisely if 

d > ~ d '  ~ ~ (  . . . .  d . . . .  ) >eq~(  . . . .  d',...), 

then >~, satisfies the condition 

s >  r ] t ~  f (  . . . .  s . . . .  ) > , f ( . . . , t , . . . ) .  

By the following result, >~ e is then a constant status component.  

Proposition 5.1. Let ~ ~ ~_ ~ 9  -2 be a wellfounded quasiorder such that 

s > [  ] t ~ f (  . . . .  s . . . .  )>e~f(  . . . .  t . . . .  ) (2) 

holds for  every function symbol f e J~, and every position i o f  s in f (  . . . .  s . . . .  ). Then the 
constant mapping STAT~>:~3(aEJ 2) ~ ~[~(~-'~2), defined by STAT~>(~) =aef > e for  
every binary relation ~ on terms, is a status component. 

Proof  As  STAT>-(~) does not depend on ~ ,  subterm foundedness is trivial. All other 
required properties of  STAT -> (quasiorder, termination, (2)) are given. 

It is safe to assume that the set of strict preparedness of STAT >- is empty. Of 
course, it may be convenient to reason ad-hoc in favour of a non-empty set of strict 
preparedness. 
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We stipulate that > [ _ ]  and >~ need not coincide. Indeed they may be induced 
by different functions, [_] ~ ~b. Therefore > e, and so > t_ ], need not be wellfounded, 
and ~b need not be a homomorphism. This gives the freedom to choose >~ as strong 
as wanted, without having to strengthen > t_] at the same time. To underline this 
distinction, we will call [_] an interpretation, as opposed to each q5 which we will call 
a measure. Kamin/L6vy [26] seem to have recognized the potential of this distinc- 
tion, but there was no method to exploit it until Zantema [37] expressed the concept 
formally by the notion of labelling function 7r in his "semantic labelling" approach. 

The following special forms of measure functions are worth mentioning. Con- 
stant functions ~b are measure functions. The interpretation [ j  itself may be used 
as a measure function. The function that takes the top function symbol, 
~bY(dl . . . . .  d,) = f ,  to be compared by a precedence, i.e. a wellfounded quasiorder on 
function symbols, ~-~prec ~ ~2 ,  defines a measure: Choose g = J~, with >e = >p . . . .  
and qSY(dl . . . . .  d,) = f.  In that case, the underlying interpretation is irrelevant. 

5.2 Compositions o f  Status Components 

In the previous section, we encountered probably the most important form of status 
component, measures. Next we show that pointwise lexicographic combination 
preserves status components. 

Definition 5.1 (Pointwise lexicographic combination of status components). The 
pointwise lexicographic combination of status components STAT~,STAT2, is 

a functional S T A T f 2  = ( S T A T f ,  STAT2)te x defined by 

STAT~2 ( > )  ~> > = aef (STAT,  ( > ), S T A T i  ~ ( > ))lex 
for  each binary relation > on terms. 

Proposition 5.2. 

1. Pointwise lexicographic combination preserves status components. 
2. I f  STATf,  STATf are strictly prepared for the sets S 1, $2, respectively, then 

(STATf, STAT2)le = is strictly prepared for the set S 1 • S 2. 

Part 2 of the claim demonstrates what the notion of set of strict preparedness is 
useful for. 

Proof  For (1), let STATf and STAT~ be status components, and let STAT~2 = 
(STATf, STATf)te = be their lexicographic combination. To simplify the presentation 

> > 

we will use the abbreviations > 1 =aefSTAT?(>),  >2 =aefSTAT~(~>), >~ 12 =aef 
STATf2(>) = (>  1, > 2)~ex, > 1 =aofSTATf(>') ,  > 2 =aefSTAT2( > ) and >'  - ~ 1 2  - - d e f  > , > ,  > '  
STATr2(> ) = (~  1, ~ 2)~e=. 

I f  > is a quasiorder then so are >1 and > a. Since >12 is a lexicographic 
combination of  quasiorders, it is a quasiorder as well: From s > i s  and s > 2s, by 
symmetry s ~ l s and s ~ 2s follows which is s ~12s  by definition of  STAT ~>. Hence 
> 12 is reflexive. To show that > 12 is transitive, assume s > 12 t ~ 12 u. By definition of  
STATf2, s > 1 t > ~ u holds, and so s > i u. Case 1: s > 1 u. Then s > 12u by definition of  
STATI2. Case 2: s ~ ~ u. Then s ~ 1 t ~ i u, and s > 2 t > 2 u according to the definition of  
STATf2. So s > 2u whence s > 12u. So > ~2 is transitive. Hence we have shown that 
STATf2 preserves quasiorders. 
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Define > '  by 

S t > ' t '  "~::>def S' > t' A (S t, t')'<:l mult(S, t). 

Then  subterm-foundedness is shown by the fo l lowing derivation. 

s > 1 2 t  

r  (defn. STAT12 ) 
e~>s >'l t v s ~'1 t /x  s >'at (subt. found,  o f  STAT~, STAT~; L emma  3.1) 

> '  (defn. STAT >) <=> S ~ 1 2  t 

To show that $TATf2 is prepared for  contexts ,  let s > t and s > [ _ i t  hold. B y  
preparedness o f  STATf and STAT~, we get  f ( . . . , s  . . . .  ) > i f (  . . . .  t , . . . )  as well as 

f (  . . . .  s , . . . ) > 2 f  ( . . . .  t . . . .  ), so f (  . . . .  s . . . .  ) > l z f (  . . . .  t . . . .  ), by definition o f  lexi- 
cographic combination. 

For  the p roo f  o f  decrease o f  infinite derivations, assume the infinite derivation 
tx >12 t2 >12"'" be given. Case 1:>2  occurs infinitely often in this derivation. Then  
there is a subsequence t kl > 1 tk~ >1"'" wi th 1 = k 1 < k 2 < .... By  decrease o f  STATf,  
there is a derivation u 1 > u 2 > ... such that  tJ~> u ~ holds for  some index j .  Case 2: > 1 
occurs only f in i te ly  often. Then  there is a subsequence t N > 2  tN+l >2"" ,  and by 
decrease o f  STAT 2, again a derivation u I > u 2 > ... with tJv-u  1 for  some index j .  

For  (2), let ( f , i ) e S  I u S 2 ,  s > t, s >[_]t .  From preparedness for  contexts ,  we 
already got  f (. . . , s, . . .) >12 f (. . . , t, . . .). W e  have to show f ( . . . .  s . . . .  ) > la f (. . . , t . . . .  ). 
I f  f (  . . . .  s . . . .  ) > 1 f (  . . . .  t . . . .  ) holds, then we are finished. Otherwise f (  . . . .  s . . . .  ) ~ 1 
f (  . . . .  t . . . .  ) and ( f , i) e S 2, so f (. . . , s . . . .  ) > 2 f (. . . , t, . . .). The claim fo l lows  by definition 
o f  lexicographic combination. 

In a similar way, pointwise intersection (STAT >- (>)  = def STAT ~ (>)  c~ STAT~ ( > )) 
can be shown to preserve status components. The set of strict preparedness is again 
the union of the sets of strict preparedness of the components. Pointwise intersec- 
tion, as opposed to pointwise lexicographic combination, is interesting for auto- 
matic tools where it is advantageous to delay the decision whether STAT 1 or 
STAT~ should receive more weight in the comparison. 

5.3 Selection o f  Arguments  

Third we are going to show that comparison of an argument  at a specified posit ion is 
a status component. It may depend on the top function symbol which argument 
position is meant. This is expressed by a function ~. 

Definition 5.2 (Selection of an argument, P~). A n  (argument) selector is a func t ion  
~: ~ ~ N \{0}. I t  induces a funct ional  P~ defined by 

f ( s l , . . . ,  sin) P~(>)g (q , . . . ,  t,), i f  

1. n ( f )  > m and n(g) > n, or 
2. re(f) < m and ~(g) < n and s~(f) > t~(g). 

The case analysis is needed because n(f)  > m may happen, e.g. i f f  has arity 0. In 
this case s~(f) is undefined, and Case (1) is necessary to maintain reflexivity of > ~. We 
will use Pl where ie N to abbreviate the selector P~ where ~(f)  = i holds for every 
f e ~ .  
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Proposition 5.3. 

1. P~ is a status component for  every n. 
2. P,: is strictly prepared for  the set {(f, n(f))l f G ~  A n ( f )  <_ a r i t y ( f ) } .  

Proof  To simplify the presentation, we use the abbreviation > ~ =def Pn(~>). 
Let  > be a quasiorder. I f  re(f) < a r  i t y ( f )  then s=(i) > s~(y) by reflexivity o f  >.  So 

f (sa, . . . , sin) > = f  (s: . . . .  , S,n) by definition of  > ~. Hence > ~ is reflexive. To  show that it 
is transitive, let f ( s :  . . . . .  Sin) > €  t,) >=h(u 1 . . . . .  up) be given. I f  n ( f )  > m, 
n(g) > n, and n(h) > p then clearly f ( s : , . . . ,  sin) >~h(u 1 . . . . .  up). Else n ( f )  < m, 
n(g) <_ n, and n(h) < p, together with s=u- ) > t=(o) >~ us(h) hold. By  transitivity o f  > then 
s=(i) > U~(h), SO f ( s l , . . . ,  S,,) > ,h (u :  . . . . .  up). Hence >~ is transitive. This finishes the 
proof  that P~ preserves quasiorders. 

The subterm foundedness property o f  P= follows f rom the fac t  that s~(y) and t~(o) are 
proper subterms of  s and t, respectively. 

Preparedness for  contexts: Assume s > t. To show f (  . . . .  s . . . .  ) > ~ f (  . . . .  t . . . .  ), we 
distinguish cases. Let  the argument position o f  s in f ( . . . ,  s , . . . )  be i. Case 1: i = n(f). 
Then the claim is equivalent to the premise s > t, by definition of  P~. Moreover  we 
observe strict preparedness in this case: I f s > t then f (  . . . .  s, . . .) > , f  (. . . , t, . . .). Case 2: 
i # n(f ) .  Then by definition of  P~ the claim is true if  n ( f )  > arity(f); and equivalent 
to u~u. ) = u~(f) otherwise. 

To  prove decrease o f  infinite derivations, let the infinite derivation t ~ > ~ t 2 > r ; ' ' "  be 
given where each term t i is o f  the form {q t  i i J ~ 1 . . . . .  t~ ty ( / ) ) .  By definition of  >~ ~, this is 
equivalent to the derivation : 2 t~(y b > t.(y~) > --- where obviously t~(/) ~ is a proper subterm 
o f t  1. 

Lexicographic status, for instance, can now be modelled as a pointwise lexi- 
cographic combination of selectors of arguments. 

5.4 Restriction 

There is yet another useful operator for status components. This operator, called 
restriction, collapses all terms the top function symbol of which is outside a given set. 
As we will outline below, restriction and intersection allow one to form a conditional 
for status comparisons. 

Definition 5.3 (Restriction, ~ S). Let  STAT -> be a status component and S ~ ~ a set o f  
function symbols. The  functional STAT -> ~S is defined by 

f (sl . . . . .  s~)(STAT >- rS)(>)(g(h, . . . ,  t,), i f  

1. f ,g(~S,  or 
2. f ,  g e S  and sSTATZ(>)t.  

Proposition 5.4. 

1. Restriction preserves status components. 
2. I f S T A T  >~ is strictly prepared for  the set S' then STA-[ ">~ ~S is strictly prepared 

for  the set { ( f , i ) l f  e S  /x ( f , i ) eS ' } .  

Proo f  Let  $TAT >- be a status component. To simplify the presentation, we abbreviate 
>o =aefSTAT>-(>) and > s  =dod STAT-> ['S)(>). 
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Let  > be a quasiorder. Then > o is reflexive and transitive by premise. W e  are 
going to prove that STAT ~> [S is reflexive and transitive as well. s >o s holds by 
reflexivity o f  >o. Then S > s S  obviously holds. To prove transitivity, let 
f (s 1 . . . . .  s~) > sg( ta . . . . .  t,) > sh(ul . . . . .  u;). Either f , g, h(~ S, in which case f (s 1 . . . . .  Sin) 
> sh(ut . . . .  , up) immediately follows. Or f ,  g, he  S and f ( s l , . . .  , sin) ~ og( t l , . . . ,  tn) ~ o 
h(u l , . . . ,  up) hold. In that case, f ( s  1 . . . .  , s~) > oh(u1 . . . .  , up) follows by transitivity o f  
> o, a n d f ( s l , . . . ,  s,,) >sh (Ul , . . . ,  Up) holds as well. So > s  is a quasiorder. This finishes 
the proof  that STAT >- [S preserves quasiorders. 

Subterm foundedness of  STAT -> r S follows immediately f rom subterm foundedness 
of  STAT ~. 

To show preparedness for  contexts, assume s > t. Case 1: f eS.  Then by prepared- 
ness of  STAT >-, we have f (  . . . .  s, . . .) > o f (. . . , t, . . .), and so f (  . . . .  s . . . .  ) > s f (. . . , t, . . .). 
Case 2: f (~S. Then f (  . . . .  s , . . .)  > s f ( .  . . ,  t . . . .  ) immediately by definition of  r. 

Observe that s >s  t is equivalent to: s and t have top symbols in S and s >o t. 
Decrease of  infinite derivations is now proved as follows. Suppose given an infinite 
derivation t I > s tz > s ' " .  This can only happen if  every t ~ has top function symbol in 
S and t 1 >o t2>  o"" holds. The claim follows by decrease of  infinite derivations of  
STAT ~>. 

I f  f e S  and (f ,  i)~S' then we have strict preparedness. For, let s > t hold. Because 
of  ( f , i )~S ' ,  by strict preparedness of  STAT ->, f (  . . . .  s , . . . ) > o f ( . . . ,  t , . . . )  holds; 
because o f  f ES this is equivalent to f ( . . . ,  s , . . . ) > s f ( . . . ,  t, . . .). This finishes the 
proof. 

5.5 A Proof  Method  

With the above mentioned tools available, we propose the following method to 
prove termination. 

1. Provide a monotonic interpretation (~,  > ~ , [ ] ) ,  i.e. a quasiordered set 
(@, >~), together with a Y-sor ted  family of > : m o n o t o n i c  functions 
[ f ]  : ~ari~y(f) ~ ~ .  

2. Design a number  of measures (g, > ~, ~b) (among which there may be constant 
functions, the interpretation itself, precedences, etc.); each ~b as a ~--sorted 
family ~::@~ri tY(: )~C of > : m o n o t o n i c  functions to a quasiordered set 
(C, > ~) where > g is wellfounded. 

> ~ > 3. Design a status component STAT ~ = ( ~  p .... (~:~:  STATT)I~ ~ where for each 
function symbol 3 f,  there is a status component  STAT~ = (STATe, l , . . .  , 
STAT~,,)~ r f  composed of status components STAT~,; which may be 
measures or selectors. The restriction operator  ) f  takes care that only terms 
are affected the top symbol of which is f; all other terms are equivalent. In 
effect the intersection of the restrictions forms a case analysis of status 
components dependent on the top function symbol f .  

4. Establish strict preparedness for contexts in all arguments; on demand by 
adding Pi as the last lexicographic component  of STAT~. This way STAT >~ 
becomes a status properly, virtually without any other change. 

5. Show la > [_ i r a  and la > gpo rcr for all (l--* r)e R and ground substitutions a. 

3 more generally, for every ~pre:equivalence class 
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One may even extend the proof of termination of R towards a proof of equational 
termination of the equational term rewriting system (R, E), by 

6. Show la ~ [_ fa  and la ~gpora for all (1 - r)~E and ground substitutions a. 

However ~opo is very weak, so this extension is not promising. 

6 Practice 

6.1 Examples 

Now let us demonstrate the improved general path order and the above mentioned 
proof method at a few small examples. For this purpose let the ordered sets 
(9, >~) =aa({0, 1}, =) and (g, >e) =da({ 0, 1}, >) be presupposed. 

Example 2. The following one-rule system of Dershowitz's [7] is classic for a termina- 
ting, not simply terminating rewrite system. 

f ( f ( x ) )  --* f (g ( f ( x ) ) )  

To prove its termination by the improved general path order let the interpretation [_] 
be given by 

[ f ] ( x ) = l ,  [g](x)=0,  

a measure ~ by 

and a precedence > prr by 

4 S ( x )  = x,  

f >vrecg" 

The improved general path order >~ gvo induced by the functional 

STAT>~ =def(~'p . . . .  '~r Pl)lex 

is able to prove termination. First, STAT -> is indeed a status: It  is composed of status 
components, and contains P l as a component whence it is strictly prepared for contexts. 
To prove R _~ >gpo n >[_] let a be a ground substitution and t =defXO-. We have to 
show f ( f ( t ) )  > [_]f(g(f(t))) and f ( f(t))  > gpof(g(f(t))). To prove the former, 

[ f ( f ( t ) ) ]  = [ f ] ( [ f ] ( [ t ] ) ) =  1 = E f ] ( [g] ( [ f l ( [ t ] ) ) )=  [f(g(f( t)))] .  

The proof o f f ( f  (t)) > gpof(g(f(t))) is given in a compact aentzen-style representa- 
tion. 

m 

~ >  

f ( f ( t ) )  >ovo f ( t )  

f ( f ( t ) )  >grog(f (t)) r  

f ( f ( t ) )  > gvof(g(f(t))) r162 ~"~ S~y(O)> j~g~r 

This schema is to say: By the subterm property of >svo, f ( f  ( t) ) >o;o f (t) holds. From 
this, f ( f ( t ) )  >grog(f (t)) follows by Case (1) of the definition of >ovo, due to f > ;recg" 
From that, f ( f ( t ) ) >  ovog(f(t)) by Case (1), due to f ~wec f  and f ( f ( t ) ) >  ~f(g(f(t))) .  
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The claim f ( f ( t ) )  > of(g(f(t))) is proven by the following derivation. 

~(f( f( t )))  = qSf([f]([t]))= q~f(1)= 1 > e  0 = (bf(o)= ~of([g]([f]([t]))) 

= c~(f(g(f(t)))). 

So f( f( t))>gpof(g(f( t))  ) and f(f( t))>~t_lf(g(f(t))  ) hold. This proves R~_ 
> gpo w >~t_ 1, and by Theorem 1 the proof of termination of R is finished. 

Example 3. Toyama's one-rule rewriting system [351 

f(a, b, x) ~ f (x ,  x, x) 

is known as terminating but not simply terminating. A termination proof by the 
improved general path order is as follows. Define an interpretation by 

[ a ] = O ,  [ b ] = l ,  [ f ]  (x, y, z) = l 

A useful measure function is 0 r defined by 

Of(x ,y ,z)=aaJx--  yl. 

With the status STAT >~ =da(  > ~, P~)zex, the rewrite rule is ordered by > apo m > t_]" 
Let a be a ground substitution and t =defxa. First, f(a, b, t) > t_]f(t, t, t), because 

[f(a, b, t)] = 1 = [f(t,  t, t)]. 

Now for f(a, b, t) >gvof(t, t, t). Trivially f(a, b, t) >opot. The following derivation 
proves that f(a, b, t) > ~f(t, t, t). 

#)(f(a, b, t)) = ~br 1, I t])  = 1 > e 0  = qSf([t], [t], [ t])  = O(f(t, t, t)) 

Example 4. Huet/Oppen [24] gave a rewrite system known to be simply terminating, 
but not totally terminating. We extend it by a third rule such that the system is still 
simply terminating, not totally terminating. 

f(a) ~ f(b), 
g(b) ~g(a), 

f(x)-+g(x) 

Improved general path order proves its termination. Define an interpretation [ 1  by 

[a]  = 0, [b]  = [ f ] ( x )  = [g ] (x )  = 1 

Choose STAT ~> = a a ( > p  .... >~, Pl)ze, where the precedence >prec is given by 

f >precb; f >prong >pr~ca 

and the measure (~ is given by 

@f(x) = d e f l  - -  X, ~)g(.X) =defX. 

With these settings, f(a)>opof(b) holds. For, f(a)>opo b holds by the precedence 
f >w~b. And f(a) >4f(b)  by the derivation 

(a(f(a)) = q~f(O)= 1 >eO = q~r (a(f(b)). 
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This finishes the proof for the first rule. The second rule is done analogously. For the 
third rule, we have f >p,e~g which leaves to show f( t )  > gpo t. The latter is by the strict 
subterm property. 

E x a m p l e  5. The following is an extract (rules (9), (38), (39), resp.) of the L I F T  example 
in appendix A. 

g (b )~ f (b )  

f(a)--*g(a) 

b ~ a  

Despite its similarity to example 4 this system is totally terminating. Though 
the recursive path order cannot prove termination. 4 To prove termination by the 
improved general path order, we use the same interpretation [ ]  as in example 4, 
however for the ordered set (9,  > e)=da( { 0, 1}, > ) .  Let the precedence >p, ec be 
defined by 

f ~'~precg >prec b >prec a 

and the monotonic measure function 0 to (g, > e) = d a ( {  0, 1, 2, 3}, _>) by 

~f(x) =def 1, ~g(X)=def2X 

Then > gpo using status S T A T  >~ =def(~ p . . . .  P l, > 6)lex orders the three rules. More- 
over, each rule 1 ---, r satisfies l > t_ jr. 

H e r e  obse rve  t h a t  were  [b]  H e [ a ]  then f ( b ) ~ 4 f ( a )  as well as g(b)..~ r by 
monotonicity of ~)s and ~)~, respectively. But that would make any semantic compari- 
son useless. For this reason it is essential to order [b]  = 1 > e 0  = [ a ]  non-trivially 
whence x~-~ 1 - x  is no longer monotonic. 

E x a m p l e  6. The idea to the following example comes from Dershowitz's example 18 
[-9]. Dershowitz demonstrates that the recursive path order cannot prove termination 
but a lexicographic combination of recursive path orders can. We insert an f symbol on 
the right hand side of his second rule, by which we get a system where even 
a lexicographic combination ofrecursive path orders fails. 

g(f(x), y) --* f(h(x, y)) 

h(x, y) -* g(x, f (y) ) 

The same pattern occurs when logic programs are transformed to term re- 
writing systems in order to prove their termination [-1]. Unlike Arts/Zantema, 
here we need no interpretation, i.e. everything is interpreted equal. Thus in fact we deal 
with a "syntactic" path order. We choose as the status functional 

> '  P2)tex where the two precedences >~ p .... and > '  S TAT>~ ~-def(~p . . . .  Pl, ~p . . . . .  p,ec are 
defined by 

g ~p,ec h >precf and h>'p,ecg, 

respectively. Now let a be ground substitution and t ~defXO', U =-defyO'. With that the 

4 The polynomial interpretation order can: [a] = 2, [b] = 3, [ f ] (x)  = x + 5, [g](x) = 3x. 
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two rules are ordered as follows. 

.E:=- .~>- 4 >  

g(f(t),u) >gpot g(f(t),u) >opo u f( t)  >opo t 

g ( f  (t), u) > gpoh(t, u) 

g ( f  ( t), u) > opof (h( t, u) ) 

g ~ prec h 

g > precf 

m 

t ".gpo t f( t)  >opo t 
h(t, u) > opo g(t, f(u)) h -prec9 and h > precg 

Example7. The improved general path order is able to improve upon the 
Knuth/Bendix order, as we can demonstrate at example 17 of Dershowitz [9] extended 
by an additional rule for function symbol f .  

- -  - - X - + X  

- ( x  + y )  - - ,  - - - x *  - - - y  

- ( x * y ) ~ - - - - x  + - - - - y  

f ( -  x) ~ - -- - f (x)  

Choose (~, >2)  =d~Z( N, >). The interpretation counts the number of symbols " + "  
and " ,"  in a term. 

[ f ]  (x) = [ -- ] (x) = x, [ + ] ( x ) = [ * ] ( x ) = x + l  

Let the status functional be S T A T  ~> = def( >[_ ], > p . . . .  P l ,  P2)lex, where the precedence 
> is defined by prec 

f >prec - -  >prec -~ '~prec*" 

Note that the proof obligation l>  [_]r for every rewrite rule l-+ r is void because it 
already follows from l >opor, by the subterm property of > [_] (see also Lemma 7.3). 
Note also that an essential technical condition for the Knuth/Bendix order is not 
satisfied: that " - "  has to be the greatest symbol in the precedence. 

Example 8. Two weird functions, f and g, on the natural numbers are specified by the 
following rewrite rules [21]. 

x -- 0 ~ x f(O) --+ 0 9(0) ~ s(O) 
0 -- s ( y ) ~0  f(s(x)) ~s(x)  - g(f(x)) 9(s(x))~s(x) - f(g(x)) 

s ( x )  - s ( y )  - - ,  x - y 

We do not know the semantics o f f  and g, but it is fairly obvious that [ f ] (x)  <_ x and 
[g] (x) _< x + 1 hold provided that [ f ]  and [g] are total. We can profit from this 
knowledge by defining an interpretation [_] by 

[0] =aee0, [s](x) =dax  + 1, [ - ] ( x , y )  =defmax{x,y}, 
[ f ] (x)  =defX, [g](X) =aefX + 1 

to the natural numbers, naturally ordered. " - "  is interpreted as maximum because 
subtraction is not monotonic under >. Now l >~ ]_]r holds for every rewrite rule l-+ r. 
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To witness, 

[t  - 0]  = max{ [ t ] ,  0} = I-t], 

[ 0  - s(u)] = max{0,  [u ]  + 1} > 0 = [03, 

[s(t) - s(u)] = max{ [ t ]  + 1, [u]  + 1} > max{ [t] ,  [u]}  = [t  - u],  

[ f ( 0 ) ]  = 0 = [0] ,  

[f(s(t))] = [ t ]  + 1 = max{ [ t ]  + 1, [ t ]  + 1} = [ s ( t ) -  9(f(t))], 

[ g ( 0 ) ]  = 1 = [ s ( 0 ) ] ,  

[g(s(t))] = [ t ]  + 2 > max{ I t ]  + 1, I t ]  + 1} = [s(t) - f(g(t))]. 

Let us now choose S T A T  >~ =aef(~> I_1, >~p .... P l ,  Pz)tex as a status, where the preced- 
ence is given by 

f ~ pre~ g > prec - -  >" prec S ~,~ pree 0 

Then the induced general path order proves termination. The decisive inequalities are 

Is(t)]  = [ t ]  + 1 >  [ t ]  = [ f ( t ) ]  and 

[g(s(t))] = [ t ]  + 2 > [ t ]  + 1 = [f(g(x))]. 

E x a m p l e  9. And finalIy an example where it pays to have measures different from the 
interpretations. Let x/y denote the integer quotient of natural numbers x, y, specified as 
follows. 

x - - O- +x  x<O-+false if(true, x,y)-- ,x  x /O~O 

O - s ( y ) ~ x  0 < s ( y ) ~ t r u e  i f ( f a l s e ,  x , y ) ~ y  O/y~O 
s(x)  - s (y ) - - ,  x - y s (x)  < s(y)  ~ x < y s (x ) / s (y )  ~ • f ( x  < y,  o, s ( ( x  - y ) / s ( y ) ) )  

The last rule of this rewrite system has a self-embedding derivation. The re-occurren- 
ces of the slices of the left hand side are underlined. 

s ( x ) / s ( s ( x ) ) - ~ ,  i f ( x  < s(x) ,  O, s(  (x  - s (x )  ) / s ( s ( x ) )  )) 

The improved general path order with the following settings proves termination. 
Natural interpretation to ~ = N ordered by equality; precedence / > prec i f ,  <, S > prec 
t r u e ,  f a l s e ,  0; status $ T A T  ~> = ( > p  .... > , ,  P l ,  P2); measure 4)'(x,y) = x to ~ = N 
ordered by >_. The decisive inequation is 

O(s(t)/s(u)) : Is(t)] : [ t ]  + 1 > I t ]  - [u]  : I t  - u] = ~b((t - u)/s(u)). 

This quite naive design solves the following conflicting goals: Whereas [ / ]  is bound 
to be integer  division in order to have [_] a (quasi-)model, 0 / should express that the 
first p a r a m e t e r  decreases semantically. > r_ 1 m a y  no t  compare s(t) and t; otherwise our 
chosen interpretations for " - "  and "/" were not monotonic. But > 4) mus t  compare s(t) 
and t so as to help order the last rule. 

6.2 Termination Pairs 

The orders  >opo and  > opo c~ > E_~ c o r r e s p o n d  to each o the r  in a r emarkab l e  way.  
>opo has the  sub te rm p r o p e r t y  whereas  >opoC~ >r_~ is closed unde r  contexts .  
Precisely such a pair of orders  is needed in the f r a m e w o r k  of  conditional rewriting. 
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To have the rewrite relation ~R of a conditional rewrite system R computable, 
one needs to show that for each application of a conditional rewrite rule 

p=~l ~ r  

the recursive descent into the premise p as well as the successful application of the 
rule decreases the term. To simplify the presentation, we consider the premise to be 
a term. A rule is enabled if its premise is reducible to the term t r u e .  

Wirth/Gramlich defined the notion of termination pair. 

Definition 6.1 ([36]). A termination pair is a pair (> sub, > mon) of orders, closed under 
substitution, such that 

1. >mon ~ >sub, 
2. > s,b is wellfounded, 
3. >sub has the subterm property, 
4. >,no, is closed under contexts. 

A rule p ~ l ~  r is called aligned with the termination pair (>s,b, >zo.), if/>s,bP 
and la >mo, ra for all substitutions a such that p o - ~ t r u e .  Dershowitz/Okada/ 
Sivakumar's notion of decreasing conditional rewrite system [16] is related: 
p ~ l ~ r  is called decreasing if there is a wellfounded order >~,b, closed under 
substitution, such that l>~,bp and --*e-~ >~,b. Obviously a decreasing system is 
aligned with the termination pair (>~,b, ~ ) .  

Theorem 2 ([36]). I f  (> ~,b, > too,) is a termination pair, and every rule of a system R of 
conditional rewrite rules is aligned with it, then every term has effectively an R-normal 
form. 

If >,,on is a simplification order then >~o, and >~,b coincide. The case where 
>,non is not a simplification order has not yet been investigated. The following 
example, due to Dershowitz/Okada/Sivakumar, needs such a pair. 

Example 10 ([16]). 
b ---, true (7) 

f ( b ) ~  f(a) (8) 

b ~ a-+ true (9) 

Rule (9) requires a >s,b b and Rule (8) requires f(b)>mo, f(a) to hold. Were 
a >,,o,b then by closure under contexts f(a) >,,o,f(b), a contradiction. So >too, and 
>s,b must differ. 

Theorem 3. The conditional rewriting system of example (i0) is aligned with some 
termination pair (> gt, o, > gpo n > ~_ 1)" 

Proof We choose (~, ~ )  =dee(g, ~>e) =aef({ 0, 1}, _>). The interpretation, [ ] ,  is 
given by 

[b] : 1, [a] = [ t r u e ]  = [f ] (x)  = 0. 

The general path order > gpo is induced by the status $TAT~>( > ) = def( ~> p .... > ~, Pl)lex, 
with the precedence, > p .... given by 

f >prec a >prec b >pree t~yue 

and the measure, ~, by ~I(x) = x. We have to satisfy the following proof obligations. 



An Improved General Path Order 495 

1. [ f ]  and (a y are monotonic: Trivial. 
2. f(b) >[ if(a): [ f (b)]  = 0 : I f (a ) ] .  
3. f (b )> o,of(a): By the precedence f >p,eca, f (b )> gpo a holds. Next, f ~ p , ~ f  

and f(b) > ~ f(a) by 

(~(f(b)) : q~I(1): 1 > e 0  = q~I(0) : (o(f(a)). 

4. b >~[_] t rue"  [b] = 1 >~0  = [ t r u e ] .  
5. b >apotrue: By precedence. 
6. a ~>[_]true: [a] : 0 : [true]. 
7. a > opotrUe: By precedence. 
8. a > gpob: By precedence. 

Note that for Case (4) actually b >[_]true was essential. For, if b~[_]a then 
f(b) ~ ~ f(a) by monotonicity, which fails to handle Rule (8). This finishes the proof. 

7 Improved? 

We claim that Dershowitz/Hoot 's  general path order is an instance of our improved 
general path order. This statement can be put precisely and the proof  is instructive. 

Theorem 4. Every valid termination proof by Dershowitz/Hoot' s general path order 
where the functional 

�9 does not use proper multisets nor ranked multisets of arguments, and 
�9 contains selections for each argument position, 

is a valid termination proof by improved general path order. 

With some technical effort the multiset cases probably can be added as well. 
Furthermore the second requirement is weak: Argument selectors may be added on 
demand. The proof  of the theorem will use the following two standard results from 
universal algebra. 

Lemma7.1 .  I f  li=def(~i, ~ ? [ - - ] i )  is a monotonic ~-interpretation for every 
1 <_ i <_ k, then their product 

defined by 

I=I,  x . . .  x _/k = d e f ( ~ ,  ~ ,  [~), 

= ~ o ~  x ... x ~ ,  

d >~d'4:>dofd I > ~ d '  I A ... A dk >>,~fl'k, 

[ f ] ( d  1, d") 1 ,, 1 ,, . . . .  = def([f] ~(d~ . . . . .  d~ ) . . . . .  [f]k(dk . . . . .  d k )) 

is a monotonic ~,~-interpretation. Here d i denotes the i-th component of the k-tuple d. 

Lemma7.2 .  I f  Ii=def(~i, ~ , [  ]i) is a monotonic ~-~-interpretation for every 
i <_ i <_ k, strictly monotonic if i # k, then their lexicographic product 

I = I  1 x i~ - . ,  xz~f lk=da(~,  ~ , [ - - ] ) ,  
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defined by 

~@ =da~@t x -.- x ~@k, 

d >,~d'.~dad 1 > ~ d '  1 v 
dl ~~,d'x A (d2 >~d~ v 

t d2 ~~d2/x (..- 
> , ,x dk ~~dk)"') ,  

[ f ] ( d l , . . .  d" d 1 1 ,, , ) = a e f ( [ f ] l (  1, ' ,d] ' ) ,  . . . . . .  [ f ]k (dk , . . . ,  d~ )) 

is a monotonic ~-interpretat ion.  Here d i denotes the i-th component o f  the k-tuple d. 

The subte rm proper ty  is useful to get rid of the obl igat ion to prove  l ~> [_lr as the 
following l emma  shows. 

Lemma 7.3 ([19]). I f  > [_ ~ has the subterm property and STAT >~ = ( > ~, STAT ~)lex 
has as f irst  component a quasiorder > ~ ~_ ~>[_1, then >gpo ~- >~[_]. 

Proo f  Let  s, t e (~J- and let s >gpo t. To prove s > [ ] t we employ induction on s ordered 
by ~>. For S~gpot  we distinguish cases along the definition of~opo .  Case (1): 
s STAT~>(>opo)t and s >opoti for  all i. By  the architecture of  STAT ~> chosen, s >~ t 
follows immediately. So s >[_l t  by premise. Case (2): si>opot for  some i. Then 
s > [ _ ] si > [_ ] t holds by the subterm property of  > [_ ], and the inductive hypothesis for  
si, respectively. By  transitivity o f  >[ l the claim follows. 

P r o o f ( o f  Theorem 4). Let  w.l.o.g, a finite or infinite ground term rewriting system R be 
given, together with a proof  o f  termination by Dershowitz/Hoot '  s general path order 
obeying the mentioned restrictions. In other words, there is 0 <_ i < k <_ n; for  each 
1 <_ j <_ k there are interpretations I j  = (~j, > ~j, l i f t  such that 

1. I 1 , . . .  , I i_ 1 are strictly monotonic and satisfy the strict subterm property, 
2. I~ is monotonic and satisfies the strict subterm property, and 
3. I i + l , . . . , I  k are value-preserving congruences, i.e. l ~ [ _ l f  and f is ~[_lj- 

monotonic for  every f ,  i + 1 <_ j N k; 

there is a functional 

STAT>~ = d a ( > [ _ ] , ,  . . . .  > [_1,, STAT>+ 1 , - " ,  STAT~) 

such that each of  STAT~+ 1 . . . . .  STAT > is either 

1. a precedence, or 
2. an argument at a specified position, or 
3. a quasiorder >[_]j induced by one o f  the interpretations Ij, i + 1 <_ j <_ k; 

and R ~_ > gpo where > gpo is the general path order induced by STAT ~>. 
First we claim that I i~ ~ = d~f I1 x z~ "" x le~I i is a quasimodel for  R. I f  i = 0 then this 

is the trivial model; so assume i > O. Given that I j is monotonic, i f  j ~ i even strictly, we 
obtain that Il~ ~ is a monotonic interpretation by Lemma 7.2. By construction the 
quasiorder on terms induced by the interpretation I~e ~ admits the representation 

>[_~,~x =,~ef(>~_J,," "', >[_OZex 

whence by the subterm property of  each I j, 1 ~ j < i, also I l e  x has the subterm property. 
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So in fac t  w.l.o.g, i = 1 may be assumed. The property R co_ > E l,e~ follows f rom 
R ~_ >g,o by Lemma 7.3. So Ire ~ is a quasimodelfor R. 

Second we state that for  every i + 1 <_ j < k the interpretation ~ = acr(~j, ~ ,  [_]j) 
derived f rom I j is a quasimodel of  R. This follows immediately f rom the premises put on 
Ij. 

N o w  by Lemma 7.1 the product I = deflzex X Iii+ 1 X "'" X i- k is a monotonic interpre- 
tation as well. I t  is even a quasimodel of  R as every component is. So we may use I as the 
interpretation underlying our improved general path order. 

Wi th  that, STAT >~ turns out to be a status component: As  proven in Subsect. 5.2 
pointwise lexicographic combination preserves status components and each precedence 
and each selector o f  an argument at a specified position are status components. Each 
~ r 1 nally, 1 _ " < k, can be expressed a s s  quasiorder > r induced by a measure (oj 
on 1. To  this end define O j : N 3 - ~ j  by 

. . . .  d 1 d" 1 , ~ f ( d  1 , d") = d a ( [ f ]  ( . . . . .  ) ) j = [ f ] j ( d j , . . . , d j )  

where dj selects the j - th  component from d. I t  is obvious that > ~ = >r 1. Observe 
that the monotonicity conditions are satisfied. (For i +  1 <_ j<_ k, the property 
~ t J ~ >r I is employed.) Therefore the functional STAT ~> is a status component. 

By the premise that STAT ~ contains every argument position, it is strictly prepared 
for  contexts, so 8TAT e is a status. Theorem 1 is applicable. Hence R is a terminating 
rewrite system, by improved general path order. This finishes the proof. 

According to Theorem 4 the improved general path order can do all termination 
proofs Dershowitz/Hoot's general path order can do except where multiset selec- 
tors are used - with at most the same effort. And Dershowitz/Hoot's general path 
order covers an impressive list of competitors [11]: Recursive path order, extended 
Knuth/Bendix order, polynomial path order, semantic path order, natural path 
order; virtually every path and Knuth/Bendix order scheme. Improved general path 
order still adds a little to this. 

�9 Example 9 and our L~-F~2 case study (see the conclusion to Appendix A) need 
a measure (g, > e, q~) that cannot serve as interpretation (9, > ~, [_]), neither 
can its equivalence kernel (~, He, 4)). Dershowitz/Hoot's general path order 
does not support this. 

�9 To model the semantic path order, Dershowitz/Hoot's approach requires 
Kamin/L6vy's Condition (C) is an essential extra condition. The improved 
general path order takes care of this condition itself and so includes the 
semantic path order properly. 

�9 The improved general path order can handle the case of Knuth/Bendix order 
even when symbols of weight 0 are not maximal in precedence (Example 7), 
and the case of polynomial path order where the polynomials are monotonic, 
but not strictly monotonic. In these cases the order > L_J no longer has the 
strict subterm property or is strictly monotonic, respectively. 

Concluding Remarks 

We have introduced the improved general path order, an extension both of the 
general path order of Dershowitz/Hoot and of the semantic path order of 
Kamin/L6vy. These orders are suitable to prove termination of a rewriting system 
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whenever the termination proof needs semantic arguments. We introduced the 
order in an abstract form, based on a monotonic interpretation [_] and a status 
S-I'AT >-. Under weak premises then >gpo c~ > ~_~ is a termination order (Theorem 1) 
and the pair (>opo, > 0po c~ > E-1) is a termination pair. A termination pair is useful to 
prove computability of normal forms for a conditional term rewriting system. 

Statuses can be composed pointwise lexicographically from components such as 
measures and argument selectors. Cases of statuses dependent on the top function 
symbol may be formed using a restriction operator and joined by pointwise intersec- 
tion. For technical reasons we have not included selectors of multisets of arguments; 
however it seems possible to do. The constructions we have introduced should 
suffice to treat most of the practical problems. We have summarized the typical 
procedure as a design guideline for the user. Several small examples demonstrate 
power, versatility and ease of use of the improved general path order. In the 
appendix we report on a realistic, medium-size application where we encounter 
some of the typical features. 

By Theorem 4 we have given a precise account to what extent our method covers 
Dershowitz/Hoot's version. Our method can completely dispose of the technical 
conditions that the tuple of status components has to start with a number of 
interpretations which are strictly monotonic and satisfy the strict subterm property. 
This is due to three changes: a more liberal condition (preparedness for  contexts) on 
the parameter S T A Y  >- of the order; the conceptual separation of the interpretation, 
[ ] ,  from measures, ~b; and the relaxation from models to quasimodels. Though by 
Lemma 7.3 the subterm property may be technically useful to get rid of a proof 
obligation. 

A particularly important application of termination is in the Knuth/Bendix 
completion procedure. The Knuth/Bendix procedure can be turned into one that 
does not stop with failure (unfailing Knuth/Bendix procedure, UKB, [3]) provided 
that it uses a termination quasiorder > that can be extended to a total one on 
ground terms. This restricts the results to totally terminating rewrite systems 
however, which is unsatisfactory. A simple observation shows that the requirement 
of totality can be weakened. The procedure obviously satisfies s~--,~Et for every 
critical pair (s, t). To order all ground instances of(s, t) then, it is sufficient if > is total 
on ~-+*~-equivalence classes of ground terms, i.e. it orders those pairs (s, t) of ground 
terms where s+-~*~t. It is therefore sufficient that the order > satisfies the following 
property. 

Definition 7.1. ~> ___ ~'-2 is called semantically total, if for all ground terms s+-+*uet, 
either s >~ t or t > s holds. 

Semantic totality is certainly weaker than totality on all ground terms. An open 
question is whether this makes a difference. If ~E_1 is a model of R wE then 
a quasiorder is semantically total if it is total on ~ E_s-eq uivalence classes of ground 
terms. I conjecture that improved general path orders which are based on models 
can be made total on ~ t  l-equivalence classes. This narrows a conjecture of 
Rusinowitch (Problem 85 in 1-14]). 

Conjecture 1. Let  ~ _ ~  be a congruence on terms, closed under substitution. Every 
improved general path quasiorder ~ gpo based on ~ L_1 can be extended to a improved 
general path quasiorder > 'g,o based on ~ E_ ~ which is total on ..~ E s-eq uivalence classes 
o f  ground terms. 
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A LIFT: A Medium-Scale Example 

In o rde r  to demons t r a t e  the descr ipt ive power  and the line of reasoning  of the 
i m p r o v e d  general  pa th  order ,  we will per form a realistic, medium-sca le  p r o o f  of 
t e rmina t ion  of  the term rewri t ing system L I FT. The  example  rewri te  systems models  
a toy  lift control ,  one of the favouri te  examples  in the area  of fo rmal iza t ion  of 
d i s t r ibu ted  systems [5]. The rewri te  system is, a p a r t  f rom m i n o r  changes,  the same 
as Fraus ' s  [17]. Unusual ly ,  the rewri te  rules do  not  express an equa t iona l  theory  bu t  
a state t rans i t ion  relat ion.  

The  lift con t ro l  is in formal ly  specified as follows. Imag ine  a bu i ld ing  having three 
floors. A lift cabin  moves  up and  down between these floors, and  somet imes  stops at  
a floor. At  each floor, there is a bu t t on  to call the lift cabin,  and  a l ight to indicate  tha t  
the bu t ton  has been pressed,  but  the cabin  has no t  visi ted the f loor since. The task  of 
the lift con t ro l  is to indicate  by  the bu t t on  lights tha t  a request  has been recognized,  
and  to send the lift cabin  to a f loor and  open the cabin  d o o r  there at  least  once after 
its bu t t on  has been pressed. 

The  lift con t ro l  is mode l l ed  by  a s imply typed  rewri te  system. We do not  mode l  
infinite behaviour .  F i r s t  we give the signature,  i.e. the types and typed  funct ion 
symbols ,  of the lift control .  

A.1 The Signature 

Let  there be the type Bool of Boolean  values, with nu l la ry  funct ions ("constants")  
t r u e ,  f a l s e ,  and  a b ina ry  funct ion or. W e  will use Booleans  to indicate  states of  
l ights ( t  r u e  means  "on",  and  f a 1 s e means  "off"), as well as states of  bu t tons  (then 
t r u e  means  "pressed",  and  f a l s e  means  "no t  pressed").  
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Histories of inputs to the lift are modelled by the type Input, with a constant 
e m p t y  for "no input", and a function symbol 

newbuttons :Bool 3 x Input-+ Input 

where newbut t ons(il, i2, i3, i) tells which buttons are pressed at the moment, il for 
the basement button, i2, for the first floor button, and i3 for the second floor button. 
What happens after, is recorded in i. 

The modelling of simultaneously pressed buttons is realistic for the following 
reasons. For  the lift, requests come in packages. This is so because input must be 
buffered as long as the lift is busy. Each time the lift has finished a step, and is aware 
of further input, several buttons may have been pressed in the meantime. It does not 
matter how many times buttons have been pressed, or in which order. So the input 
relevant to the lift control is the set of buttons pressed, encoded in the triple (il, i2, i3) 
of truth values. 

The floors where the lift may be are modelled as constants of type F l o o r ,  

B, BF, F, FS, S:Floor 

with B for basement, F for first floor, and S for second floor, and the intermediate 
locations, BF, between basement and first floor, and FS, between first and second 
floor. The latter two are necessary to model the situation when the lift is during 
a move from one (proper) floor to another. 

The door of the lift cabin can be o p e n  or c l o s e d .  These are constants of type 
Door.  The lift can move up, down, or it can s t o p .  These are constants of type Move. 

Lift states are objects of type S t a t e .  There are constants c o r r e c t ,  
i n c o r r e c t ,  for correct and incorrect termination of the lift, respectively. Here 
correct termination means that the lift has successfully treated each request. 
Incorrect termination means that the lift has become unreliable and is for safety 
reasons set out of order. As long as the lift has not yet terminated, it switches between 
two modes: Working (busy),  and waiting for input ( i d l e ) .  Both are modelled as 
function symbols of type 

Floor x Door x Move x Bool 3 x Input -~State 

where the first argument denotes the floor where the lift currently is, the second, 
whether the door is open or closed, the third, how the lift is moving. The three 
Boolean arguments indicate the state of the floor lights: Whether the light is on for 
the basement, the first floor, the second floor, respectively. The last argument tells 
which pressed button triples the lift still has to face. A function symbol 
s t a r t  : I n p u t  -+ S t a t e  gives an initialized lift. 

A.2 7he Term Rewriting System LIFT 

The 41 term rewriting rules in Table 1 form a rewrite system which we will call LIFT. 
The variables in these rules range as follows. 

fl : F l o o r ,  d: Door,  re:Move, i: I n p u t ,  b, bl, b2, b3, il, i2, i3 :Bool  

The lift starts at the first floor with its door closed. All lights are put offand the lift 
does not move (1). The lift behaves incorrectly if it stops between floors (2), (3), or 
moves while the door is open (4), (5). The lift finishes correctly as soon as the cabin 



502 

Tablel. The rewrite system LIFT 
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start (i) -+busy (F, closed, stop, false, false, false, i) (: 
busy (BF, d, stop, bl, b2, b3, i) -+incorrect (~ 
busy (FS, d, stop, bl, b2, b3, i) -+incorrect (~ 
busy (B, open, up, bl, b2, b3, i) -+incorrect (< 
busy (B, open, down, bl, b2, b3, i) -+incorrect ([ 
busy (B, closed, stop, false, false, false, empty) -+correct (( 
busy (F, closed, stop, false, false, false, empty) -+correct (< 
busy (S, closed, stop, false, false, false, empty) -+correct (& 
busy (B, closed, stop, false, false, false, newbuttons (ii, i2, i3, i))-+ (c 
idle (B, closed, stop, false, false, false, newbuttons (ii, i2, i3, i) ) 
busy (F, closed, stop, false, false, false, newbuttons (ii, i2, i3, i) )-+ (i( 
idle (F, closed, stop, false, false, false, newbuttons (ii, i2, i3, i) ) 
busy (S, closed, stop, false, false, false, newbuttons (ii, i2, i3, i))-+ (11 

idle (S, closed, stop, false, false, false, newbuttons (ii, i2, 13, i) ) 
busy (B, open, stop, false, b2, b3, i)-+idle(B, closed, stop, false, b2, b3, i) (i~ 
busy (F, open, stop, bl, false, b3, i)-+idle(F, closed, stop, bl, false, b3, i) (12 
busy (S, open, stop, bl, b2, false, i)-+idle(S, closed, stop, bl, b2, false,i) (14 
busy (B, d, stop, true, b2, b3, i) -+idle(B, open, stop, false, b2, b3, i) (i• 
busy (F, d, stop, bl, true, b3, i) -+idle(F, open, stop, bl, false, b3, i) (IE 
busy (S, d, stop, bl, b2, true, i) -+idle(S, open, stop, bl, b2, false, i) (IT 
busy (B, closed, down, bl, b2, b3, i) -+idle(B, closed, stop, bl, b2, b3, i) (i~ 
busy (S, closed, up, bl, b2, b3, i) -+idle(S, closed, stop, bl, b2, b3, i) (i~ 
busy (B, closed, up, true, b2, b3, i) -+idle(B, closed, stop, true, b2, b3, i) (2C 
busy (F, closed, up, bl, true, b3, i)-+idle(F, closed, stop, bl, true, b3, i) (21 
busy (F, closed, down, bl, true, b3, i) -+idle(F, closed, stop, bl, true, b3, i) (22 
busy (S, closed, down, bl, b2, true, i) -+idle(S, closed, stop, bl, b2, true, i) (23 
busy (B, closed, up, false, b2, b3, i)-+idle(BF, closed, up, false, b2, b3, i) (24 
busy (F, closed, up, bl, false, b3, i)-+idle(FS, closed, up, bl, false, b3, i) (25 
busy (F, closed, down, bl, false, b3, i) -~idle(BF, closed, down, bl, false, b3, i) (26 
busy (S, closed, down, bl, b2, false, i)-+idle (FS, closed, down, bl, b2, 

false, i) {27 
busy (BF, closed, up,bl, b2, b3, i) -+idle(F, closed, up, bl, b2, b3, i) (28 
busy (BF, closed, down,bl, b2, b3, i) -+idle(B, closed, down, bl, b2, b3, i) (29 
busy (FS, closed, up,bl, b2, b3, i) -~idle(S, closed, up, bl, b2, b3, i) (30 
busy (FS, closed, down,bl, b2, b3, i) -+idle(F, closed, down, bl, b2, b3, i) (31 
busy (B, closed, stop, false, true, b3, i)-+idle(B, closed, up, false, true, 

b3, i) (32 
busy (B, closed, stop, false, false, true, i) -+idle(B, closed, up, 

false, false, true, i) (33 
busy (F, closed, stop, true, false, b3, i) -+idle(F, closed, down, true, 

false, b3, i) (34 
busy (F, closed, stop, false, false, true, i) -+idle(F, closed, up, false, 

false, true, i) (35 
busy (S, closed, stop, bl, true, false, i) -~idle(S, closed, down, bl, 

true, false, i) (36 
busy (S, closed, stop, true, false, false, i)-+idle(S, closed, down, 

true, false, false, i) (37 
idle(B, d, m, bl, b2, b3, empty) -+busy(f/, d, m, bl, b2, b3, empty) (38 
idle (kT, d, m, bl, b2, b3, newbuttons(il, i2, i3, i) ) -+ (39 
busy(B, d, m, or(bl, ii), or(b2, i2), or(b3, i3),i) 
or(true, b) -+true (40 
or(false, b) -+b (41 
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stands at some floor with the door closed, and no more requests are pending (6), (7), 
(8). If the cabin stands at some floor with the door  closed, and no lights are on, then 
the lift waits until new buttons are pressed (9), (10), (11). If the stopped lift is not 
requested at its current floor, it closes the door (12), (13), (14), else it opens the door  (it 
might be open already) and clears the request (15), (16), (17). The lift does not try to 
go beyond the basement or the second floor (18), (19). Otherwise the lift stops as soon 
as it comes around a requested floor (20) . . . . .  (23). At floors that are not requested 
(24) . . . .  , (27) and between floors (28),..., (31) the lift keeps on moving. A stopped lift 
with closed door  and no request at the current floor starts going to satisfy some 
request at another floor (32) . . . .  , (37). After each step the lift is looking for new input. 
If there is no more input it continues working (38), else it consumes the new input. If 
a button il, i2, or i3 is pressed then the corresponding light bl, b2, b3 is set on (39). 
This is achieved by the or connective (40), (41). 

A.3 What is its Proof of  Termination Good for? 

Termination of LIFT entails the validity of the principle of rewriting induction for 
LIFT. By rewriting induction Fraus [17] formally proved the claim 

LIFT R Vi: I n p u t  " s t a r t ( i )  : c o r r e c t .  

The proof was supported by the semi-automatic inductive prover TIP [18]. As 
LIFT has only trivial critical pairs it is confluent. Confluence entails that the normal 
forms c o r r e c t  and i n c o r r e c t  are semantically distinct, by which from Fraus's 
result the safety property follows that the lift never breaks. 

LIFT ~ 3i: Input' start(i) : incorrect 

So termination of LIFT is essential for the validity of a mechanically proven safety 
property. 

A.4 Termination of LIFT is Difficult to Prove 

We now show that none of the straightforward proof methods is able to prove that 
LIFT terminates. More precisely, we show that no termination order which is total 
on ground terms, can order LIFT. 

Theorem 5. LIFT is not totally terminating. 

Proof Let > be a termination quasiorder such that LIFT _ > holds. Assume t3 > BF. 
Then one gets the derivation 

busy(13, closed, down, false, b2, b3, empty) 
~> busy (BF, closed, down, false, b2,b3, empty) (> cl. u. cont.) 
>idle(B, closed, down, false, b2, b3, empty) (--~(29)_____>) 
>busy(B, closed, down, false, b2, b3, empty) (-*(38)_~>) 

which contradicts transitivity and reflexivity of >. In the same way, using Rule (24) 
instead of  (29), one can show that BF > B leads to a contradiction. So > cannot be total 
on ground terms as it cannot order the two constants BF, B in either orientation. 
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Every precedence based order, and every interpretation to a totally ordered set 
can only prove total termination. For this reason, all these orders, in particular the 
path and decomposition orders with status, the Knuth/Bendix order, and the 
polynomial and elementary interpretation orders fail to prove LIFT terminating. 

A.5 Construction o f  a Suitable Status Component 

In order to prove termination of LIFT we are going to construct an interpretation, 
[_], and a status, STAT>% such that the induced general path order, >gvo, and the 
induced quasiorder >t_] satisfy l>gpor as well as l>[_]r  for each rewrite rule 
(l---~ r) ~ LIFT. 

First we fix the architecture and the syntactic components of the functional 
STAT z. According our proof method introduced in Subsection 5.5 we have to put 
a pointwise lexicographic combination, where the first component compares top 
symbols according to their precedence, and the second component is a status 
component dependent on the top function symbol. 

STAT>- = a~f ( >~ p .... S T A T ~ = ~  c~ STAT~u~y n STAT~.~b.tton~ c~ STATo>- ),e= 

STAT~r~ =aef Pt ~start 
STAT~usy :aef (PT, P4, Ps, P6, PI, >4' PI, P3, > ~)~ex ~{busy, idle} 

STATr>ewbutto~s :aef (P4, PI, PI, P3)l~ ~newbuttons 
S T A T ~  = aef (P 1, Pl)z.x I o r  

As the precedence we choose 
start >preeF, closed, stop, false 
start >precbusy ~precidle >p~eccorrect, incorrect 
true >prec false 
open >p~e~Closed 

Below we give a motivation for this choice. I think it is possible to automate 
construction of all components but >4. 

1. Rules (1) . . . . .  (8) are easily ordered by the precedence. The or-rules (40), (41) 
and ordered by the strict subterm property of > opo. 

2. For the precedence, b u s y  ~p~ec i d l e  is a good choice. Not to order b u s y  
and i d l e  in the precedence would anyway block the comparison. To order 
i d i e > prec b u s y  instead would order rules (9), (10), and (11) in their reversed 
direction, and to order b u s y  >p~e~ i d l e  would do the same with rule (38). 
As rules (9), (10), and (11) and (38) do not change their argument tuple from 
the left to the right hand side we may delay ordering these rules until 
the last component of the status. There a measure ~/, will order them 
(Lemma A.6). 

3. The last argument of b u s y  (and of i d l e ) ,  i, either remains unchanged, or 
decreases by the strict subterm property of >gpo along a rule application. So 
we may take as first component in the tuple of status components, the selector 
P7 that selects the 7th argument, to be compared recursively by >0vo- This 
orders Rule (39). 

4. Next observe that in the remaining rules, each button state either remains 
unchanged, or changes from t r u e  to f a l s e .  This change becomes a 
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Rule >'~prec P7 P4 Ps P6 P2 >~ ~ P1 Pa ~> ~ Comments  

(1) . . . . .  (8) > 
(9), (10), (11) ~ 
(12), (13), (14) 
(15) 
(16) 
(17) 
(18) ..... (37) 
(38) ~ 
(39) ~ 
(40) > 
(41) 

> 

> 

> 

> Lemma A.6 
open >prec closed 
true >prec false 
true >prec false 
true >p,ec false 
Lemma A.5 

> Lemma A.6 

by ~ _~ ~> opo 

Legend: The table summarizes the justification of l STAT > (>opo) r for every rule l ~  r of LIFT. 
Each rule l ~ r is represented by a row, and each component  of STAT ~> by a column. The symbols " >  " 
and " ~  " denote the result of comparison of the component  

decrease as soon as t r u e  >p,ec f a 2 s e  is added to the precedence and the 
arguments 4, 5, and 6 are selected in the status component. This handles rules 
(15), (16), and (17). 

5. In the same way, adding o p e n  >p,ec c l o s e d  to the precedence, and putting 
P2 as next component of the status component, one gets rid of the rules (12), 
(13), and (14). 

6. The rules (18) . . . . .  (37) are difficult to order. A semantic component is 
necessary. We are going to construct the measure r to satisfy l >r  for these 
(Lemma A.5). 

7. The selectors Pl,  P3 are added to ensure that STAT ~> is strictly prepared for 
the positions 1 and 3 of busy and idle each. 

Summarizing, we have argued why every rule is ordered by the improved general 
path order. Table 2 gives an overview. Under the proviso that an interpretation [_] 
and two measures r 0 will be defined suitably, the following statements can be 
made. 

L e m m a  A.1. S T A T  >~ is a status. 

Proof Particularly, STAT >~ is strictly prepared for every argument position i of every 
function symbol f .  Check that the corresponding argument selector Pi occurs in the 
tuple restricted by ~ { f , . . . }. For instance, STAT ~> is strictly prepared for ( i d l  e ,  1) 
because Pl occurs as last but 2nd component in STAT~usy. 

L e m m a  A.2. LIFT _~ >opo- 

A.6 Choosing an Interpretation 

The lift achieves a progress when it approaches its target. On this account the 
interpretation has to give enough information to determine this progress. Such 
information may be button states, movements, and floors. Values for inputs will be 
needed to define measure 0 later. 
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We partition the data domain 9 into carrier sets 9s, indexed by types s, and an 
extra element 1 to denote the value of ill-typed, undefined, or irrelevant terms. 

9 ~- def 9Floor ~- 9Door -}- 91nput -~- 9Move -~- 9Bool -}- 9State -~ { J- } 

We require that I t]  e@s + {_1_} if t is a well-typed ground term of type s. As the types 
Door  and S t a t e  are irrelevant for the interpretations, we may define 
9Door = ~state = ~ "  For  the sake of simplicity, we identity elements of 9 with 
function symbols, so we obtain 

~Floor =clef{ m' BF, F, FS, S}, 

9Move =def{Up, StOp, down}, 
~Bool =aef{ true, false}, 

9~pu t =a~f{empty, newbuttons}. 

Accordingly we choose the interpretation 

[c] =aofc for every constant c except o p e n  and c l o s e d ,  
[open] =clef[Closed] =aef • 
[newbut tonal (il, i2, i3, i) =aef newbut tons, 
[s  t a r t ]  (i) =a~f [busy ]  (fl, d, m, bl, b2, b3, i) :a~f [ i d l e ]  (fl, d, m, bl, b2, b3, i) : a~f • 

true, if y = true, 
[o r ] (y ,x )  =def~X, if y = f a l s e ,  

•  else. 

For  simplicity we choose > ~ - a~f = ,  the equality on 9 .  Thus, > E_J is trivially closed 
under contexts, for [_] is a homomorphism.  Now every rule (1 ~ r) e L l FT except the 
or-rules  satisfies [/~] = 1 : [ro-] for every ground substitution o-. By the natural 
interpretation for o r ,  the two remaining rules (40) and (41) satisfy [la] = 
t r u e  = [ r o ]  and [ b ]  = [ba] = [ra], respectively. So we have L I F T  _~ ~ [_]. 

Lemma A.3. (9,  = ,  [_]) is a model of LIFT.  

A.7 How to Express "Progress" of the Lift 

We are going to develop a measure ~b that yields the "job effort", i.e. some number  
that decreases when a step is undertaken to complete the current job. 

A good starting point is to think about  the rules as an "operational semantics" of 
the lift: Each rule expresses a step the lift may do. The task of the lift is to solve 
requests. Each step has to mirror some progress towards solution of one of the 
requests pending. Intuitively, the lift turns towards a nearest floor (there may be 
more than one) whose button is lit, moves to this floor, and stops. If the nearest light 
is upstairs, then the lift must change from stop or down to up, and then pass the 
floors upstairs. If  it is downstairs, then the lift must change its movement  from s t o p  
or up  to down, and then pass the floors downstairs. Thus the lift gets nearer to the 
completion of its next job. Fraus [ 17] constructed ad-hoc a "job completion order" 
to formalize this idea, but did not succeed in proving that the job completion order 
terminates. 

Let ~bs be the constant 0 function, unless f ~ { b u s y ,  i d l e } .  Now let us develop 
~b busy =qSidlt In order to calculate with distances, we use a function #: 
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~Move j- ~Floor ---)" ~'~ to assign numeric values to movements and to floors. 

# u p = l ,  # s t o p = 0  # d o w n : - - 1  

# B = 0 ,  # B F = I ,  # F = 2 ,  # F S : 3 ,  # S = 4  

If any button is lit, i.e. if(bl, b2,b3) # ( f a l s e ,  f a l s e ,  f a l s e )  holds, then the lift 
should consider one of the requested floors as its next target. Otherwise, as we will 
argue below, the lift pretends as if it had a set of"virtual" targets. Anticipating this 
exceptional case, the set of targets to the lift is given by the function 

target s: 93ooi x ~Move -* ~(~Floor) 

defined by 

t a r g e t  s(bl, b2, b3, m) = def 

{B}, ifm = down a n d b l  = b 2 = b 3  = f a l s e ,  

{B, S} i f m = s t o p a n d b l = b 2 = b 3 = f a l s e ,  

{s}, i f m = u p a n d b l = b 2 = b 3 = f a l s e ,  
{Blbl = t r u e }  u {Fib2---- t r u e }  to {s[b3 = t r u e } ,  else. 

We may expect that the lift has a certain notion of distance to tell which floor it 
prefers. The lift should turn and then move towards some preferred floor in the 
target set. Next we are going to define such a distance. 

Assume given the ordinary case (bl,b2,b3) # ( f a l s e ,  f a l s e ,  f a l s e )  for the 
moment. Let ft denote the floor where the lift cabin is, and f l ' 6 t a r g e t s ( b l , b 2 ,  
b3, m) some target floor where the lift may try to go next. The lift gets nearer to this 
target if it decreases the distance to it. Naively the distance between floors is given by 
the expression I#fl - #fl '  I. This is o.k. if the lift has stopped. However a view at rules 
(24) . . . . .  (31) shows that a moving lift obeys quite a different metric. 

Example 11. We would like to validate the inequation 

busy (BF, closed, up, true, false, false, i) 

~>~ idle(F, closed, up, true, false, false, i) 

for Rule (28). According to our intuition only the basement can be the target of the lift. 
Strangely the lift does not turn downwards but continues moving up, although it thereby 
increases the naive distance l# BF -- # B[ = 1 < 2 = [# F -- # B I. Finally arrived at the 
second floor, the lift will of course turn down and will then go back to visit the basement 
floor. 

As the rules impressively show, when the lift moves it always prefers to keep 
moving. A distance measure that decreases at each step of this travel essentially has 
to express the length of the travel. For  this purpose it must consider floors in the 
back of the lift more distant than any in front. This leads to a move-dependent 
function 

dist : 92Floor X ~Move ---~ {0 , . . . ,  7}, 

defined by 

l # f l - # s l + l # s - # f l ' l ,  if re=up and # f l ' < # f l ,  
dist(fl, fl',m)=aef I#fl--#BI + I # B - # f l ' l ,  if m =  down and # f l < # f l ' ,  

{#fl - #fl'l, else. 
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(bl, b2, b3) 
m fl 

000 001 010 011 100 101 110 111 

B 1 14 8 8 1 1 1 1 
BF 3 17 11 11 3 3 3 3 

down F 6 20 1 1 6 6 1 1 
FS 9 23 3 3 9 9 3 3 
S 12 1 6 1 12 1 6 1 
B 0 13 7 7 0 0 0 0 
B? 4 10 4 4 4 4 4 4 

s top  r 7 7 0 0 7 7 0 0 
FS 4 4 4 4 10 4 4 4 
S 0 0 7 0 13 0 7 0 
B 12 12 6 6 1 1 1 1 
BF 9 9 3 3 23 9 3 3 

up FI 6 6 l i 2 0 6 i i 

Ps 3 3 11 3 17 3 11 3 
s 1 1 8 1 14 1 8 1 

Legend: Table of values of 

min {3*dist (fl, fl',m) + or ient  (fl, fl',m)lff etargets(bl ,  b2, b3,m) } 

listed for all well-typed fl, m, and triples (bl, b2, b3). Triples are abbreviated as three-character strings 
where 0 = f a l s e ,  1 = t rue .  For example, 001 stands for ( f a l s e ,  f a l s e ,  true). 

N o w  indeed the dis tance to the neares t  f loor  in the n o n e m p t y  ta rge t  set decreases for 
all rules (24) . . . .  , (31) and  all t r iples (bl, b2,b3) # ( f a l s e ,  f a l s e ,  f a l s e ) .  

F o r  the rules which handle  a s topp ing  (18) , . . . ,  (23) and  s tar t ing (32) . . . . .  (37) of 
the lift, the lights and  the f loor do  not  change. F o r  these rules by defini t ion the 
d is tance  remains  unchanged.  I t  is the change of movement tha t  decreases.  If  the 
express ion #f l  - # f l '  is posit ive,  then the lift is loca ted  above  its target ,  and  it has to 
go down.  If  the express ion is negative,  then the lift is below, and  it has to tu rn  
upwards .  In  the case of zero, it has reached the ta rge t  floor, and  it should  stop. Now,  
consider  the express ion s i g n ( # f l  - #f l ' )  + # m  where m denotes  the m o v e m e n t  of 
the lift, and  s i g n  is the funct ion tha t  re turns  1 for a posi t ive a rgument ,  0 for zero, 
and  - 1 otherwise.  The  bet ter  the lift is or ien ted  towards  its target ,  the less is the 
abso lu te  value of this expression.  W e  model ,  therefore,  a funct ion 

2 o r i e n t ' ~ H o o r  X ~Hove-~ {0, 1,2}, 

defined by 

o r i e n t ( f l ,  fl', m) =defl s i g n ( # f l  --  #f t ' )  + # m  I. 

As can be checked,  the rules (18) . . . . .  (23), and  (32) , . . . ,  (37), decrease the express ion 
o r i e n t ( f l ,  fl', m) for the nearest  f loor  fl'. In  total ,  the pa i r  

( d i s  t(fl,  fl', m), o r i e n t ( f l ,  i f ,  m)) 
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lexocographical ly  decreases for some nearest  floor fl', for all rules (18), . . . ,  (37), and 
triples (b l ,b2 ,b3)r  f a l s e ,  f a l s e )  of  bu t ton  lights. In order  to work  
with g = N and > ~ = > ,  the pairs are replaced by the o rder - i somorphic  expression 

3 * d i s t ( f l ,  fl', rn) + o r i e n t ( f l ,  fl', m). 

N o w  let us consider the exceptional  case bl  = b2 = b3 = f a l s e .  This case can 
happen  for the rules (18), (19), and (24) . . . .  ,(31). Al though the lift is requested 
nowhere,  it does still move,  and this way undergoes  some rewrite steps. We claim 
that  these can be only finitely many.  To  explain the s trange behav ior  of  the lift, we 
assume a "vir tual"  target,  B if the lift moves  down or stops, and S if it moves  up or 
stops. So we adop t  the same measure  as above,  but  select o ther  fl'. 

All this expertise abou t  lifts can be coded in the measure  r p rovided  that  
all its a rguments  are well-typed, i.e. fl E ~m . . . .  d ~ ~D . . . .  m ~ ~M . . . .  b 1, b2, b3 e ~Boo~ 
hold. 

4)busy(fl, d, m, bl ,  b2, b3,/) =aef 

(~2dle(ft, d, m, bl ,  b2, b3, i) = a a  

m i n { 3 , d i s t ( f l ,  fl',m) + orient( f l ,  fl',m)lfl' e t a r g e t s ( b l ,  b2, b3,m) } 

Call a subst i tut ion a : f ~ Y  well-typed if [ f l a ] e~F~  . . . .  [ma]e~M . . . .  and 
[b l a ] ,  [b2a] ,  [b3a]  ~Boo~ hold. Then  we have the following result. 

L e m m a  A.4. For every well-typed ground substitution o - : f  ~ N J ' ,  and every rewrite 
rule 

b u s y ( / l ,  �9 �9 �9 17)~ i d l e ( r  1 . . . .  , r7) 

in (18) . . . .  , (37) of L I F T ,  the value of 4) strictly decreases: 

C b u s y ( [ l l ~ ]  . . . . .  [17G]) >,4)id~e(Er~] . . . .  , [rT~]) 

Proof.  This can easily be checked for each triple ([b la], [b2a] ,  [b3o-])e ~ooz ,  using 
Table 3. 

A.8 Typing Issues 

To this point,  we pre tended as if terms were always well-typed. In fact one must  be 
aware  of  ill-typed terms as well, because te rminat ion  is claimed for every rewrite 
derivation,  not  only for well-typed ones. And ill-typed subst i tut ions m a y  int roduce 
ill-typed values. While this is no p rob lem for the syntactic components ,  the measure  
function defined above  is not  aware  of  ill-typed substitutions. 

Example  12. Let the ground substitution a:~Y--~ fY~-- be given where 
[b2a] : c o r r e c t ,  [b3a]  : up,  [ia] : s t o p  hold. Obviously, a is not well-typed. 
Now consider the proof obligation for Rule (24). 

cbusy(B, closed, up, false, correct, up, stop) 

>~ 4)idle(BF, closed, up, false, correct, up, stop) 

The definition of r bu~y above is not prepared to handle this case: The crucial expression 
targets(false, correct, up, up) turns out meaningless. 
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How can q5 b~sy be extended for all-typed arguments? There is surprisingly a very 
simple answer. We only have to assume, for each domain ~ ,  a >~-monotonic 
coercion function s ( _ : : ~ ) : ~ - - , ~  such that ( d : : ~ ) = d  holds whenever d e ~ .  
Before the measure is applied, every object is mapped to the desired domain. Thus 
the case of ill-typed arguments is reduced to the case of well-typed ones. We need not 
even mention which coercion functions we actually use. 

Definition A.1 (The measnre function (bb~Y). Let 
~bb~y, ~bidle : ~ 7 ~  g are defined by 

where 

@% ~>~)=d~f(N, >). Then 

qSbusy(dl . . . .  , dr) =aef 

qSial~(dl . . . . .  d7) =def  

min{3* d i  st(fl, fl', m) + e r i e n t ( f l ,  if, m)lfl'e t a r g e t  s(bl, b2, b3, m)}, 

Example 12 
( c o r r e c t  ::~Bool ) = f a l s e  and (up::@BooJ = t r u e .  Then 
r = 12 > 9 = r 

By Lemma A.4, the following is immediate. 

Lemma A.5. 1 > r holds for every rewrite rule l ~ r in (18) . . . . .  (37). 

fl = (d l  ::~Floor), m = (d3::~Move), 

bl=(d4::~Bool), b2=(ds::~BooJ, b3=(d6::~Bool). 

(Continued). Suppose we choose the coercion mappings such that 
we have 

A.9 Finish of  the Proof 

To order the remaining four rules (9), (10), (11), and (38), we define a measure 
function O by 

0, if (d7::@znpu,)= e m p t y  
@bu~v(dl . . . .  ,d7) =dee 1, else 

1, if (d7::~nput)= e m p t y  
~tidle(dl, '",  dT) :def 0, else 

As codomain for O we may take 1 > 0. The induced quasiorder > o then satisfies the 
following. 

Lemma A.6. l >or holds for every rewrite rule l-~ r in (9), (10), (11), and (38). 

Now all obligations for the termination proof of LIFT are solved. 

Theorem 6. LIFT is a terminating term rewriting system. 

Proof. We have proven that LIFT _ >0poC~ >t-I (by Lemma A.2 and Lemma A.3, 
resp.), that (~, = ,  [ ] )  is a monotonic interpretation (by Lemma A.3), and that STAT >~ 
is a status for > t-I (by Lemma A.1). By Theorem 1, the claim follows. 

s If >~ is wellfounded then such a coercion function always exists. Define (d::9~) : d' where d' is 
the smallest element in 9s for which d >~d'. 
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Conclusion of the Case Study 

We have introduced Ulrich Fraus's term rewriting system LIFT, consisting of 41 
rewrite rules, modelling a simple lift control. We have proved that L IFT  is 
a terminating rewrite system, and thus demonstrated the improved general path 
order introduced in the main part. L I FT is not totally terminating, so no precedence 
based order or interpretation to a totally ordered domain is able to order LIFT.  

Although we have no evidence that our ~>opo is strictly more powerful than 
Dershowitz/Hoot 's  or Kamin/L6vy's orders, we feel that they are not able to support  
our proof  idea. Kamin/L6vy's  semantic path order fails because a semantic compari-  
son, > r is needed after the recursive call for the 7th argument. Dershowitz/Hoot 's  
general path order fails because neither > r nor ~r can be a quasimodel of LIFT.  To 
witness, Rule (39) satisfies l~r for the ground substitution a defined by 
b l a  = b2~ = b3a = i l~ = i2a = f a l s e ,  i3~ = t r u e ,  f la  = B, m~r = down, as we 
have r = 1 <~14 = r 

We leave it open as a challenge to order L IFT  by any other known termination 
proof  method for non-total termination, like e.g. transformation order [4] or 
semantic labelling [-37]. Semantic labelling, followed by a recursive path order with 
status, lacks the same weakness as the semantic path order. 

The ability to prove termination for term rewriting systems is of basic import-  
ance if one is interested in program verification based on rewriting methods. 
Termination is the access key to confluence and to automated inductive proofs of 
equalities. By these in turn one can prove safety conditions of distributed systems. 
The LIFT case study shows that, and how, it can be done. 


