
AAECC 7, 469-511 (1996)

AAECC
Applicable Algebra in
Engineering, Communication
and Computing
�9 Springer-Verlag 1996

An Improved General Path Order

A. Geser

Universitfit Passau, Lehrstuhl fiir Programmiersysteme, D-94030 Passau, Germany
Phone: +49 851 509 3094, E-maih g e s e r @ fro• u n i - p a s s a u , de

Received July 28, 1994; revised version July 7, 1995

Abstract. W e define a s t rong and versat i le t e rmina t ion order for te rm rewri t ing
systems, cal led the Improved General Path Order, which simplifies and s t rengthens
D e r s h o w i t z / H o o t ' s Genera l P a t h Order . W e demons t r a t e the power of the Im-
p roved Genera l P a t h O r d e r by proofs of t e rmina t ion of non- t r iv ia l examples ,
a m o n g them a medium-sca le te rm rewri t ing system tha t models a lift control .

Keywords: Term rewri t ing system, Termina t ion , Semant ic pa th order ing, Genera l
pa th order ing.

Contents

Introduction . 470
1.1 Pa th Orders . 471
1.2 Three I m p r o v e m e n t s to the Genera l P a t h Orde r 472

2 Pre l iminar ies . 473

Architecture and Constituents . 475
3.1 M o n o t o n i c In te rp re ta t ions . 476
3.2 Statuses . 476
3.3 The I m p r o v e d Genera l Pa th O r d e r . 478

4 Main Theorem . 479

A Toolbox for Status Components . 484
5.1 Measures . 484
5.2 C o m p o s i t i o n s of Sta tus C o m p o n e n t s . 485
5.3 Select ion of Argument s . 486
5.4 Res t r ic t ion . 487
5.5 A P r o o f M e t h o d . 488

470

6

7

A

A. Geser

Practice . 489
6.1 Examples . 489
6.2 Termination Pairs . 493

Improved? . 498

LIFT: A Medium-scale Example . 500
A.1 The Signature . 500
A.2 The Term Rewriting System LIFT . 501
A.3 What is its Proof of Termination Good for? . 503
A.4 Termination of LIFT is Difficult to Prove . 503
A.5 Construction of a Suitable Status Component . 504
A.6 Choosing an Interpretation . 505
A.7 How to Express "Progress" of the Lift . 506
A.8 Typing Issues . 509
A.9 Finish of the Proof . 510

1 Introduction

A term rewriting system R is called terminating if there is no infinite derivation

t - - + R t ' --'-~R t'~ - - * R " " " �9

Termination of term rewriting systems is the key to effective term rewriting. For
instance the following properties do not hold for an arbitrary rewrite system, but
hold for every finite, terminating term rewriting system R.

�9 Every term can safely be rewritten into a R-normal form, by an arbitrary
strategy.

�9 The reachability problem (given t, t', does t--*~t' hold?) is decidable.
�9 The principle of rewriting induction is valid, i.e. Noetherian inductionwith the

+ of the rewrite relation as inductive order. Newman's transitive closure ~R
proof of confluence by local confluence for terminating rewrite systems admits
a short presentation as a proof by rewriting induction [22]. Rewriting
induction is an elegant proof technique, encoded in the "proof by consistency"
method.

�9 If moreover R is confluent then the simple word problem is solvable, and
normal forms are unique. For the class of finite, terminating rewrite systems,
confluence is decidable by local confluence of critical pairs [29].

As is known, a rewrite system terminates if and only if, there is a termination
order for it, i.e. if there is a wellfounded order, closed under substitution and
contexts, that contains ("orders") each rule of the rewrite system. Termination
orders are an essential ingredient in the Knuth/Bendix completion procedure [29]
which tries to convert a given set of equations into a terminating, confluent rewrite
system.

Termination of rewrite systems is known to be undecidable [23,6]. So the
challenge is to design termination orders that are powerful enough for practical
application.

An Improved General Path Order 471

1.1 Path Orders

Besides the interpretation orders, the path orders are most widely used to prove
termination of term rewriting systems. The multiset path order [8] to begin with, uses
a precedence, i.e. a wellfounded quasiorder on function symbols, to split cases where
arguments are compared recursively or where collections of arguments are recur-
sively compared as multisets.

Collections of arguments may be compared recursively also in other ways, an
observation that has led to the notion of status mapping. A status is a functional
STAT > that maps a binary relation > on ground terms to a binary relation
STAT > (>) on ground terms, and satisfies a number of technical properties: It has to
preserve orders, be monotonic and continuous w.r.t, the subset relation, and satisfy

s >spot ~ f (. . . , s) STAT >(>spo)f(. . . . t). (1)

For instance lexicographic comparison of the tuples of arguments, permuted
according to the top function symbol, is a status. Thus Kamin/L6vy defined the
recursive path order (with status) [26].

If the subterms of a term are compared recursively, two equal subterms cannot
be distinguished. This restriction vanishes when subterms together with their
contexts are compared. Following this idea, the recursive decomposition order
[25, 32], the path of subterms order [34], and the KNS path order [27], have been
designed.

Independently, one may try to involve semantic arguments into the comparison.
The basic idea is that a strict subterm of a term t, i.e. a term syntactically smaller than
t, may though be semantically greater than t. For instance in a recursive definition of
the factorial function s one would like to employ the property n + 1 > n + 1 - 1
on natural numbers to compare fac (s (x))> f_ac(p(s(x))). The semantics is ex-
pressed by a model, i.e. a value-preserving congruence ~[I of R, closed under
substitution. Here a congruence is an equivalence closed under contexts; value-
preserving means R __ ~[_~. Such a congruence is typically defined by a homomor-
phic interpretation [_] of ground terms into a domain ~ of values.

Plaisted (as mentioned in [11]) defined the value-preserving path order to
compare two terms first by precedence and then lexicographically by a wellfounded
order on the interpretations of the arguments. Kamin/L6vy [26] extended this
non-recursive order towards an order where after the precedence and the compari-
son of the interpretations of arguments there may be still a recursive comparison of
the arguments according to a status map. This became known as the semantic path
order >~po. It was Kamin/Lbvy's great contribution to show that although >~po is
usually not closed under contexts, it is so when accompanied by a rewrite step, i.e. the
relation >~po c~ ~R is closed under contexts. To this end, they require the condition 1

S ~ R t ~ f (. . . . S) > ~ f (. . . , t , . . .) . (C)

Formally similar to the semantic path order, in the Knuth /Bendix order [29] two
terms are compared first by their weights (i.e. weighted sums of nonnegative
numbers assigned to each function symbol) then by the precedence, and then

1 Originally, "~,". An unknown reader of Kamin/L6vy's manuscript has remarked that it can be
relaxed to "> ~".

472 A. Geser

recursively their arguments in a lexicographic way. Lankford [30] replaced the
weights by strictly monotonic polynomials with positive integer coefficients; De-
rshowitz [8] defined an extended Knuth/Bendix order by allowing instead of weights
any monotonic interpretation that has the (weak) subterm property.

The 9eneral path order >gpo [10, 11] deserves its name for its ability to cover all
known path orders and all extensions of the Knuth/Bendix order. In contrast to the
semantic path order, the general path order has no fixed order of comparisons.
Rather, recursive comparisons, precedences, and semantic comparisons may be
mixed. Mimicking the Knuth/Bendix order, it may first use a monotonic interpreta-
tion that has the subterm property. This interpretation may be expressed also as
a tuple, lexicographically ordered, of monotonic interpretations, all except the last
one strictly monotonic, which have the strict subterm property.

This is the spot where we can offer three basic improvements which both simplify
the framework and strengthen the capabilities of the general path order. We call the
new order the improved 9eneral path order [20].

1.2 Three Improvements to the General Path Order

From Zantema's "semantic labelling" approach [37] two concepts are carried over:
Quasi-model and measure function.

Quasimodels

First, the requirement of model can be relaxed to that of a quasimodel. A quasimodel
is a quasiorder >f_l on ground terms, closed under contexts and substitution, such
that R___ >t_l" Again such a quasiorder is typically induced by a monotonic
interpretation [] to a quasi-ordered domain of values (9, >~).

Measure Functions

Second, Zantema introduces the notion of a labelling function. A labelling function is
a function rc that maps a ground term into a wellfounded, quasi-ordered set (6 ~, >8)
of labels. The top function symbol of a term t is now decorated with its label 7r(t), the
purpose being that a precedence can be tuned much finer on labelled function
symbols f~(t) than on symbols f that are not labelled. Most noticeable, labelling
functions are based on monotonic interpretations but need not be interpretations
themselves.

As semantic labelling and semantic path order are closely related, the formalism
of labelling function can be carried over to the semantic path order. Rather than
labellings we speak of measures here, and use the letter qS. The semantic comparison
is done by >~.

Like the interpretation functions, the measure functions have to be monotonic.
In effect, a measure ~b induces a quasiorder > ~ on ground terms that satisfies

s>~f_l t~ f (. . . . s , . . .)> , f (. . . . t). (2)

An Improved General Path Order 473

This requirement is in fact only a concretisation of the proof obligation (C), as can
easily be seen. Kamin/Lbvy's proof method so establishes that R is ordered by the
wellfounded order > spon > L_ ~ that is closed under contexts [19]. The semantic path
order may be treated technically as simple as other termination orders.

As a straightforward consequence, the extended Knuth/Bendix order is a special
case of the semantic path order (Theorem 5 in [19]) where proper quasimodels are
used. Dershowitz/Hoot's natural path order [11] is another special case of the
semantic path order, where the quasimodel is even a model and the status is empty.

At some examples we can demonstrate that the distinction between measure
functions and interpretation is an essential progress from Dershowitz/Hoot's
general path order. Monotonicity of the interpretation and of the measure functions
are natural conditions easy to satisfy; even trivial when >~ ~ is the equality on ~. This
relieves the designer from the hardest monotonicity proof obligations.

Preparedness for Contexts

We will define the improved general path order as a kind of simplified semantic path
order where the semantic comparison >~ is no longer a distinguished part of the
definition but instead some component of the status functional. However Condition
(1) is too restrictive to obtain >gpoC~ >[_] closed under contexts. And this is the
spot where we put the third essential change. We weaken Condition (1) to the
condition

s>opo t/x s > [_ l t ~ f (. . . . s)STAT>(>opo)f(. . . . t). (3)

This condition, which we call "(strict) preparedness for contexts", is natural with
regard to the proof of closure under contexts, and accordingly the proof gets rather
simple. Unlike (1) Condition (3) is weak enough to enable a number of measure
comparisons > ~1,'", > ~, that satisfy Condition (2) each, as components anywhere
in a status functional. Neither the semantic path order nor Dershowitz/Hoot's
general path order share this capability.

After the preliminaries (Sect. 2), we define the notions of interpretation, of status,
and of the improved general path order (Sect. 3) and prove a general abstract
theorem (Sect. 4). Thereafter we outline a toolbox of status components and give
a checklist for developers of improved general path orders (Sect 5). Next we
enumerate some small examples for illustration, including a'special application for
conditional term rewriting systems (Sect. 6). We conclude by an accurate compari-
son to Dershowitz/Hoot's general path order (Sect. 7). In Appendix A we demon-
strate that improved general path order can handle a realistic 41-rule term rewriting
system that formalizes a simple lift control [173.

2 Preliminaries

We assume that the reader is familiar with term rewriting, in particular with
termination orders. For surveys on term rewriting see [24, 2, 28, 13, 33]. For
notation see [12]. A comprehensive survey on termination of term rewriting systems
is [9].

474 A. Geser

Let ~ be any countable set, and let ~ _~ ~2 be a binary relation on ~ .
A ~ -de r iva t i on is a sequence of steps t I ~ t 2 - + . - - , that may be finite or infinite. If
there is no infinite--,-derivation then--, is said to terminate or to be terminating.

A binary relation on ~ is called an order if it is irreflexive and transitive, and
a quasiorder if it is reflexive and transitive. The reflexive, transitive closure of ~ will
be denoted by ~* . This relation is a quasiorder by definition. A quasiorder > defines
its strict part, > , an order, by s > t, ifs > t and t g: s, and its equivalence kernel, ~ , an
equivalence relation, by s ~ t, if s >~ t and t > s. We say that > strictly satisfies
a proper ty P if both > and > satisfy P. If > is an order that terminates, we prefer to
say that each > and > are wellfounded.

Let two disjoint sets ~ of funct ion symbols and X of variables be preassumed
together with a function a r i t y : ~ - - , N which assigns each function symbol its
fixed number of arguments. The set Y of terms upon ~ and W is defined to be the
smallest set containing X and satisfying

arity(f)=n and t 1 , t , ~ Y i m p l i e s (f , t l , . . . , t ,) ~ 3 -

Funct ion symbols f may also be seen as term construct ing functions f : J " ~ ~-- by
f (t I , t,) = (f, t l , . . . , t,), a fact that allows to replace the formal tuple nota t ion by
the more convenient nota t ion f (t l , . . . , t,). A ground term is a term that contains no
variable. NY- denotes the set of all g round terms.

A contex t c(_) is a term which contains the distinguished extra symbol _ of arity
0 exactly once. The symbol _ acts as a placeholder and may be replaced by any term.
So c(t) means c(_) where t replaces _.

A substitution a is a function a :Y- -* J - that satisfies f (t I t ,)~ = f (h a t ,a)
for every function symbol f E ~ . Applicat ion of a substitution is denoted by
postfixing the substitution. Because it is a homomorph i sm, o- is uniquely given by its
restriction to the mapping o-:~f-~Y-. A g round substitution is a substitution that
maps every variable to a g round term.

A binary relation, ~ ___ 3 -2, on terms is called closed under substitution, if
s ~ t~ sa - - - , ta holds for every substitution a, and for all terms s and t. The
relation ~ is called closed under contexts , if s ---, t ~ c (s) ~ c(t) holds for all terms s, t,
and contexts c () . For this it is sufficient to show s---, t ~ f (. . . , s,. . .) ~ f (. t , . . .)
for all terms s and t, for every function symbol f e ~ , and for every argument
posit ion i, 1 _< i < a r i t y (f) o f _ in f (. ,...). Here f (.) is a convenient
abbreviat ion for f (u 1 u~_ 1, - , ui + 1 , u,). It is unders tood that the posit ion i is
the same in f (. . . . s) and f (. . . . t,...).

Given two binary relations > 1, > 2, on the same set, their lexicographic combina-
tion, (> 1, >2)~x, is the binary relation > l U (~ l C ~ >2). It is known that lexi-
cographic combina t ion preserves reflexivity, transitivity, termination, and strict
closure under contexts and under substitution.

A quasiorder > on a set @ may be extended towards its multiset extension >,,,~t,
a quasiorder on multisets over ~ . A multiset is a collection of elements where unlike
in a set the multiplicity of each elements counts. We will not use multisets, but
assume each multiset represented uniquely by a sequence instead. It is unders tood
that two sequences s, t ~ ~ * satisfy s > m,u t if their corresponding multisets do. The
multiset extension >,~,~t~@* of a quasiorder > is so defined as the smallest
quasiorder on ~* , closed under permutat ion of elements and concatenat ion, that
satisfies (s 1) > muir(t1 tn) ifs 1 > ti holds for all i, and satisfies (Sl) ~> ,,,tt(t 1) ifs 1 >~ h ;
see [15].

An Improved General Path Order 475

A quasiorder > which is closed under contexts, by symmetry entails that its
equivalence kernel ~ is closed under contexts: s ~ t ~ f (. . . . s,.. .) ~ f (. . . . t).
Such an equivalence is also called a congruence. Be aware that there exist quasior-
ders who are closed under contexts, but not strictly. Recall that this means that their
strict part, > , is not closed under contexts. For this reason lexicographic combina-
tion does not preserve closure under contexts, unless strict. To witness, let
a > 1 b, i f (a) ~ 1 if(b), and i f(b) > z i f(a) for all n > 1. Then, a > b, but f (b) > f(a).
The same holds for closure under substitutions.

A term rewritin 9 system R (rewrite system for short) is any (usually finite) binary
relation on terms. Its elements are written l ~ r, and are also called (rewrite) rules.
The R-rewrite relation --*R --- 3-2 is defined as the closure of R under contexts and
under substitution. It is well-known that the rewrite step (given R, t, wanted some t'
such that t ~R t' holds) is computable. R is called a terminatin9 rewrite system, if its
rewrite relation-,Rterminates. An equational rewrite system is a pair (R,E) of
rewrite systems where E is symmetric. The elements of E are written l - r, and are
also called equations. R is called E-terminating, if ~ * --+R ~ * terminates.

A termination quasiorder > is a wellfounded quasiorder on terms which is
strictly closed under contexts and under substitution. A termination quasiorder is
the basis to prove (equational) termination of a rewrite system: R is E-terminating, if
and only if, there is some termination quasiorder > such that both R _~ > and
E_~ ~ hold. I.e. one has to prove l > r for all rules (l ~ r) e R and l ~ r for all
equations (1 -- r)e E.

Termination quasiorders are useful even if E is empty, as the strictorder may
profit from the equivalence kernel.

Example 1. Let f and 9 have multiset status. Then

f (9(x, y), f (y, y)) > rvof (9(Y, x), y)

follows from

(9(x, y), f (y, y)) > rv l,(9(Y, x), y).

To show this, 9(x, y) ~vog(Y, x) is essential. One arrives at the same conclusion when
f instead has lexicographic status "left-to-right".

A term s is said to be a superterm of a term t, formally s_~ t, or equivalently, t is
a subterm of s, (t_~ s), ifs is of the form c(t) for some context c. The superterm relation
is a quasiorder. A binary relation on terms ~ _~ c> is also said to have the subterm
property. A quasiorder > that has the subterm property and is closed under contexts
is called a simplification quasiorder 2. Each simplification quasiorder by definition
extends the relation ~ * , the converse of the embeddin9 relation. By Kruskal 's tree
theorem, every simplification quasiorder is wellfounded if F is finite.

A rewrite system that terminates by a simplification order is called simply
terminating. If it terminates by a termination order that is total on ground terms,
then it is called totally terminating.

3 Architecture and Constituents

We are going to define an enhanced version >ovo of Dershowitz/Hoot 's general path
order which we will call the improved general path order. The order is given as the

476 A. Geser

strict part > opo = aef > gpo\ < gpo of a quasiorder > gpo. We will establish the quasior-
der >gpo on the set of ground terms, and lift it to a quasiorder on terms with
variables that is strictly closed under substitution.

For the quasiorder >gpo on ground terms we will give a recursive definition
scheme which is based on a scheme parameter, STAT ~>. The functional

STAT z: ~(~-2) _, ~(~-2)

maps each binary relation > _c ~ - -2 on ground terms towards a binary relation
STAT>~(>) _c N j 2 on ground terms. The functional 8TAT >~ is there to express how
two terms may be compared, given the results of comparisons of any pair of their
proper subterms. We call $TAT ~> a status if it satisfies certain essential conditions for
this job. To admit semantic comparisons as well, one has to provide a monotonic
interpretation, [_], together with the status. Unlike in the semantic path order,
semantic comparisons will not be an extra ingredient but part of the functional. For
the time being this is the most general way to express the path order idea.

3.1 Monotonic Interpretations

It is well-known how to establish a quasiorder which is closed under contexts. Let
a set 9 be given, provided with a quasiorder > ~, and a homomorphism

which assigns to each ground term t its interpretation It]. The homomorphism [J is
conveniently given by a ~--sorted family of functions I f] : 9 ari:y(y) ~ 9 , via

If(s1 sm)] =def [f] ([S l] [Sm]).

The homomorphism [_] induces a quasiorder, > t 1 _c j-2, on terms, defined by

s > t_ 1 t ~*'def [Sa] > ~ [to-] for all ground substitutions o-.

If each of the I f] is >~-monotonic (in every argument), then >t_l is closed
under contexts. In this case, (9, >~, [_]) is also called a monotonic interpreta-
tion. A monotonic interpretation that satisfies R _ >t_l is called a quasimodel of
R [37].

It means no restriction to require > ~ antisymmetric since 9 can be partitioned
into ~-equ iva lence classes without any change for the termination proof. If
>~ = = is the equality on 9 then monotonicity follows immediately from the
homomorphism property. In this case a quasimodel is called a model.

3.2 Statuses

In order to ensure that >0po satisfies the properties of termination and quasiorder,
the functional STAT >~ should essentially preserve these properties. Kamin/L4vy
[26] gave a list of conditions for STAT ~> to satisfy. Lescanne [31] coined the notion
of status for a functional that satisfies these conditions.

2 quasi-simplification ordering in [9].

An Improved General Path Order 477

In contras t to Kamin /L6vy , we set up the not ion of status for quasiorders. Fo r
convenience we will write S T A Y > (>) for the strict part , and S T A T - (>) for the
equivalence kernel, of the relat ion STAT~>(>).

Definition3.1 (Status component, STAT ->, [26], [19]). Let >[_]c_NJ-2 be
a quasiorder on ground terms, closed under contexts. A functional

STAY .>: ~3(~#Y -2) --, ~ 3 (~ -2)

is called a status component , i f it satisfies the following conditions:

�9 STAT -> preserves quasiorders,
�9 STAT -> is subterm-founded, i .e.for every pair s, t, o f ground terms, and every

binary relation > on ground terms,

s STAT-> (>) t <=> s STAT-> (> ') t

where >' is defined by

St ~ ttt <=~def St ~ t t A (St, t') <mull(S, t).

�9 STAT -> is prepared for contexts: For every quasiorder > on ground terms,

S > t A S > [l t ~ f (. . . . s , . . .)STAT~>(>) f (. . . . t)

�9 STAT ~> decreases infinite derivations, i.e. for every infinite derivation

t 1 S T A T > (>) t 2 STAT>(>~) . . .

where >~ is a quasiorder on ground terms, there is an infinite derivation
u 1 > u a > ... such that t i ~ u I holds for some index j.

Definition 3.2 (Status). A status component STAT ~> is called a status, i f it moreover
satisfies strict preparedness for contexts.

s > t/x s > [_lt ~ f (. . . . s , . . .) STAT > (>) f (. . . . t) (*)

We have put an extra definition to distinguish components of a status, which are
assembled to form a status, f rom the status itself, i.e. their final assembly that is used
as the basis to form the improved general pa th order instance. In view of composi -
tionality, it is reasonable not to require a status c o m p o n e n t to satisfy (*), the strict
pa r t of preparedness for contexts. This is in agreement with Der showi t z /Hoo t ' s
policy. But where they compare two terms by their multisets of subterms to get an
order that is closed under contexts, we stick to the terms themselves which is
technically easier. To obta in closure under contexts, we then have to require that the
final status is strictly p repared for contexts. Fo r this purpose we retain where
a c o m p o n e n t is a l ready strictly prepared.

Definition 3.3 (Strictly prepared for (f, i)). L e t ~ [_] ~- ~ ~-'-2 be a quasiorder, closed
under contexts, and STAT -> : ~(,(~--2) __> ~ (~ f 2) be a status component. Then STAT >-
is called strictly p repared for the pair (f, i) , / f

s > t / x s > [_] t ~ f (. . . . s) S T A T > (>) f (. . . . t)

holds, where f e Y and i denotes the position o f__ within f (. , . . .). l f S is a set o f
pairs (f , i), then STAT >~ is called strictly p repared for S, i f it is strictly prepared for each
element o f S.

478 A. Geser

Now if S T A T >~ is a status component which is strictly prepared for every pair
(f, i), f E ~ - , 1 _< i _< a r 2 t y (f) , then STAT >~ satisfies (.), i.e. is a status.

The following property is useful for reasoning in proofs below.

Lemma 3.1. I f STAT > is subterm-founded, then for all terms s, t, and binary relations
> on terms,

sSTAT>(>~)t<=>sSTAT>(>')t and

s STAT~(~>) t <=> s STAT~(~> ') t,

where >' is defined by

s' > ' t ' ~ d e f s ' > t' /, (s',t')<mu~,(s,t).

Proof Expand the definition of >' and use the property (s, t) =,,,l~(t, s).

3.3 The Improved General Path Order

Now we are prepared to express >gpo as unique fixed point of a recursive scheme
with the status component STAT ~> as scheme parameter.

Definition3.4 (Improved general path order, >gpo, [10,11]). For each subterm-
founded functional STAT >~ : ~3(NY 2) ~ ~(NJ-:) , its induced improved general path
quasiorder >0po -- N y 2 is defined as follows.

s >gpo t, i f s = f (s 1 Sin), t = g(t 1 t,), and
> > 1. Vi. s > opoti and s STAT~(~gpo) t, or

2. 3i. s i ~opo t.

Well-definedness of >gpo follows from subterm foundedness of STAT ~>. To this
end one shows that s >,~gpo t has a defined truth value by induction on pairs (s, t) of
ground terms, ordered by the multiset extension, ~>m,~t, of the subterm order.

Kamin/L~vy put the condition that STAT ~> is monotonic and continuous w.r.t.
_ . Continuity means informally that for each comparison s STAT~>(>)t, only
a finite number of pairs s' > t' need to be examined. Instead of monotonicity and
continuity we require a condition that we call subterm-foundedness. Subterm
foundedness is a harder condition than continuity since it restricts the set of term
pairs not only to a finite set, but even to a finite set of smaller terms.

Even so we consider subterm-foundedness an interesting alternative to mono-
tonicity and continuity, for the following reasons.

�9 Subterm-foundedness allows for structural induction to prove properties of
> whereas with continuity instead one has to employ computational ~gpo ,
induction.

�9 With subterm-foundedness given, any expression s >gpot yields a unique,
defined, truth value; we need not care about undefinedness. Technically
convenient, >gpo as the strict part of >0po is a well-defined notion.

�9 With terminating algorithms for >[_1 and STAT >~ given, the recursive
definition of >opo on ground terms turns into a terminating algorithm.

�9 All statuses in use satisfy subterm-foundedness. On demand, subterm-
foundedness can still be relaxed, replacing in its definition ~ by any well-
founded quasiorder which has the subterm property.

An Improved General Path Order 479

The improved general path quasiorder is lifted to terms that may contain
variables by

S ~ gpo t "r

�9 Sa >gpot(7 for all ground substitutions a, or
�9 sa ~opo ta for all ground substitutions a.

The relation defined thus is strictly closed under substitution.

4 Main Theorem

The improved general path order satisfies the following central theorem.

Theorem 1. I f > ~ 1 c_ j - 2 is a quasiorder on terms, closed under contexts and under
substitution, and STAT~> : ~ (N J 2) --* ~3(NJ 2) a status, then

1. >gpo is a wellfounded quasiorder that has the strict subterm property, and
2. (>gpoC~ >r l)w(~0po ~ ~[1) is a termination quasiorder.

The lifting of both > 0,o and (>gpo c~ > E_ 1) u (~0po c~ HE_ 1) from ground terms to
terms that may contain variables is by construction strictly closed under substitu-
tion. Furthermore it preserves quasiorder, termination, the strict subterm property,
and strict closure under contexts, We may therefore resort to the case of ground
terms.

Let throughout this section > ~_1 - Ny-2 be a quasiorder, closed under contexts,
and STAT~> : ~(NY -2) ~ ~3(~f3 -2) be a status. For the proof of Part (1) of Theorem 1,
we need two simple technical properties. See also Dershowitz/Hoot [10].

Lemma 4.1. s ~opotc> t ~ s >opo t holds for all s, t, t' eN~- .

Proof W e only need to consider the special case

s >gpog(tl t,) ~ s >gpoti

f rom which the claim follows by a simple structural induction on t.
Let t = g(t~ , t,). W e prove the claim by induction on pairs (s, t), ordered by the

multiset extension ~',,,~t o f the subterm relation. Let s >opo t, and 1 < i < n. I f Case (1)
of the d@nition o f >gpo has been used then immediately s > opotl. Else Case (2) must
have been used, so s = f (sl, . . . , s,,) and sj > opot holds for some 1 <_ j <_ m. By inductive
hypothesis for (s j, t) we get sj > gpoti, so by Case (2) of the definition o f >opo, it follows
s >ovoti. To show " > " , assume t~ >opos. By inductive hypothesis for (t~, s), we get
t i >gpoSj, a contradiction to sj >gpoti . S o t i ~apo s, hence s >apot i .

Lemma 4.2. s E> s' > gvo t ~ s > opo t holds for all s, s', t ~ ~f ~--.

Proo f W e only need to consider the special case

Sl ~gpo t = f (s 1 Sin) >gpo t

f rom which the claim follows by structural induction on s.
Let s = f (s 1 s~), and si>ovot for some 1 <i<_m. Using Case (2) of the

definition o f >~gpo, we get s>~gpot. To show " > " , assume t >~gpos. By Lemma 4.1,
t >gpoS~ holds, a contradiction to the premise s i ~gpo t. So s >apo t.

480 A. Geser

Lemma 4.3. >~gpo is reflexive.

P r o o f W e prove s >~opo s by induction on s, ordered by E>. L e t s = f (s l , . . . , sin). By
inductive hypothesis , s i >~ ovo si whence s > opo si by L e m m a 4.2. B y ref lexiv i ty o f >~E_],
we get s i >~ t_~si. Preparedness f o r con tex t s o f STAT >- yields s STAT>-(>~gpo) s. T h e
claim fo l lows by Case (1) o f the definit ion o f >~opo.

By Lemma 4.1, the strict subterm proper ty follows from reflexivity of ~>ovo.
Moreover, it follows immediately that >opo is irreflexive.

To prove transitivity, we need two technical lemmas about the multiset exten-
sion of the subterm order.

Lemma 4.4. For all terms s, s', t, t', u, and u', i f

V x ~ { s ' , t ' , u ' } 3 y ~ { s , t , u } ' x ~ y (4)

then one o f the fo l lowing holds.

(s',t',u')~_m.~,(s,t,u) or (5)

?r ,r ' , r" . (s ' , t ' ,u ') =m,u(r ,r ' , r") /x r ~ r' (6)

Claim (6) intuitively says that two of the components of (s', t', u') are ordered by
, i.e. s' ~ t' or s' <~ u' or t' ~ s' or t' ~_ u' or u' ~ s' or u' _~ t' holds. The case of

a proper subterm may occur as the example (s', t', u') = (f (x) , y, x), (s, t, u) = (f (x) , y, z)
shows. Here s' ~ s, t' ~ t, u' <z s whence the premise of Lemma 4.4 holds. Claim (5)
does not hold since x :~ z. On the other hand u'<~ s' so Claim (6) applies.

P r o o f Le t (4) hold. Case 1: Even V x ~ { s ' , t ' , u ' } 3 y E { s , t , u } . x < a y holds. T h e n (5)
holds, as can easily be checked. Case 2: Case 1 does not apply, whence
3 x E { s ' , t ' , u ' } 3 y e (s , t , u } . x = y . W.l.o.g. let s' = s hold, Case 2.1: 3 x ~ { t ' , u ' } ' x ~ s,
then (6) holds with the set t ings r = x, r' = s'. Case 2.2: Case 2.1 does not apply, whence
V x ~ { t ' , u ' } 3 y ~ { t , u } . x ~ y. Case 2.2.1: I f even V x ~ { t ' , u ' } ~ y e { t , u } . x < z y, then (5)
holds. Case 2.2.2: I f Case 2.2.1 does not apply then 3x ~ {t', u'} 3 y e { t, u} " x = y, W.l.o.g.
let t' = t. I f now u' ~ t, then (6) holds with the set t ings r = u', r' = t. Otherwise u' ~ u
whence (5) must hold.

Lemma 4.5. For all terms s, s', t, t', u, and u', i f (s', u')<~ ,,,tt(s, u) and (s', t', u') =,,ult(s, t, u)
then t ~ s or t ~ u holds.

! t ~ ! ! ! P r o o f L e t (s , u) ~,it(s, u) and (s , t , u) =,, , i t(s, t, u). Obviously t' must be one o f s, t, u,
o therwise (s', t', u') = m,lt(s, t, u) would not hold. Case 1: t' = t then (s', u') =,,,it(s, u),
a contradict ion to (s', u ') ~ m, zt(S, U). Case 2: t' = s. T h e n (t, u) =m,lt(S', U')<~ re,it(S, U),
whence t-~ s. Case 3: t' = u. T h e n (s, t) =,,,it (s', u ')<~ m, tt(s, u), whence t-~ u.

We remark that it should be possible to extend these two lemmas towards tuples
of arbitrary but fixed length, and to multiset extensions of any quasiorder.

The proof of transitivity is fairly hard, but keep in mind that it does not require
the status to be monotonic.

Lemma 4.6. ~'~gpo is transitive.

P r o o f W e claim that f o r all terms s, t, and u, s >gpo t >ovo u implies s >ovo u. T h e p roo f
is done by induction on triples (s, t, u), ordered by the mult iset order c> m,m I f s ~ t, then
s >gpo u fo l lows f r o m L e m m a 4.2. I f t ~ u, then s >ovo u fo l lows f r o m L e m m a 4.1. I f

An Improved General Path Order 481

s~_ u then s >~gpo u follows by the subterm property o f >gpo. I f s<~ t or t .~ u, then we
use Lemma 4.1 to get a contradiction to irreflexivity o f >opo" I f u-~ s then we use
Lemma 4.1 to obtain a contradiction to the premise s >,% opo t. This settles the case where
(at least) two of s, t, u are in the subterm relation. Henceforth we may exclude that case.

Let s = f (s 1 sin), t = g(t 1 t,), u = h(ul , . . . , up). W e distinguish cases along
the definition of >ovo for s >~ opo t and t >~ ovo u, respectively. Case 1: s i ~ opo t holds for
some I <_ i < m. Then s i >gpo u by inductive hypothesis for the triple (s i, t, u), so s >gpo u
by Case (2) of the definition of > gpo. Case 2: s STAT~>(> gpo) t, s > gpo t i for all 1 <_ i <_ n,
and t i ~ gpo u for some 1 <_ i <i n. Then s >opo u by inductive hypothesis for the triple
(S, ti, U). Case 3: s STAT>q>gpo)tSTAT>q>opo)U, s>ovo% for all 1 <_i<_n, and
t >ovoUj for all 1 < j < p. From s >opo t >gpoUj by inductive hypothesis for the triple
(s, t, uj) we get s >~gpoUj. To show " > " , assume u i >gvo s. Then u i >gvo t by inductive
hypothesis for (ui, s, t), a contradiction to t > gpoUi. So s > gpoUi holds.

The remainder o f this proof is devoted to the proof o f sSTAT>q>ovo)U. For
convenience, let fin(s, t) denote the set o f pairs o f ground terms smaller than the pair
(s, t),

~n(s, t) =.o, {(s', t ') l (s ' , t ') < m.,,(s, t)},

a notation that allows us to reformulate subtermfoundedness as

s STAT~>(~>) t ~ s STAT~(~> ~q fin(s, t)) t.

Let moreover

F i n = def fin(s, t) W ~_n(t, u) u fin(s, u).

Now consider the relation

~ t =def(~ gpo (') F i n) * ,

which is a quasiorder by definition. We claim that

s' > , u' ~ s' > . . o U ' (*)

holds for all (s', u') ~ Y in . Provided that (*) holds, we can finish the proof o f transitivity
by the following derivation.

s STAT>q >opo) t STAT>q >gpo) u
< = ~ s S T A T ~ (> o p o ~ f i n (s , t)) t S T A T ~ (> o p o C ~ f i n (t , u)) u (subt. found.)

<=>sSTAT~>(>, c~ f i n (s , t)) t S T A T ~ > (> , c~ f i n (t , u)) u (*)

,r s STAT~>(>, ) t STAT>q >,) u (subt. found.)

~ s S T A T Z (> , )u (qu. ord. pres.)

s STAT>~(>t ~ f in(s, u)) u (sub t. found.)

4> s STAT>q > .po c~ f in(s, u)) u (*)

s STAT>q >gpo) u (subt. found.)

Finally we have only left to prove the claim (*). This is the most complicated part o f
the proof. " ~ " is by definition. For " ~ " , let a derivation

S' = r 0 ~.~gpo rl ~opo " ' " ~-~Opo rk = t'

be given where (r i, r i + ~) e F i n for each 0 <_ i < k. By induction on k, we prove r ~ > 9po rk.
I f k = 0 or k = 1 then the claim holds trivially. So let k > 2.

First we handle the case where two terms in the given derivation are in the subterm
relation. To this end let 0 <_ i < j <_ k and r i ~ r j or r i ~ r j. Case 1: r i~" r j for i r O.

482 A. Geser

T h e n r i - 1 > o rJ using Lemma 4 2 Furthermore, due to (r i- 1, r j) < m,lt (r i - 1, r i) e F J_n, gp . . �9 .
the property (P - l , r 0 e F i n is maintained. So the inductive hypothesis o f (*) for
k - j + i applies to the derivation

r~ >,~gpo "'" ~gpo r i - 1 ~gporJ ~ g p o " * ~gpo rk

and yields the claim. Case 2: r~_ r j for i = 0 holds. Then (r j, rk)~_ m,~t(r ~ r k) e F i n by
premise, and so (r;, r k) e F in . Hence by inductive hypothesis o f (*) for k - j applied to
the derivation

rJ >opo"" >gpo rk

we get r j ~gpo rk, f r o m which the claim r ~ ~gpo rk is obtained by Lemma 4.2. Case 3:
rL< r j holds Then r j - 1 > g o r j ~ r~, so r j - 1 > o r~ by Lemma 4 1 On the other hand,

�9 . �9 . . ~ p . . g P �9 .

(r j - 1, r ') ~ mult(r J - 1, rO ' so (r ~- 1, r ~) e Fin. Hence the inductive hypothesis o f (*)for the
derivation

r i > �9 gpo " * ~gpo rj 1

applies and yields r i >gpo rj 1, a contradiction. So henceforth we may assume that no
pair of terms in the given derivation is in the subterm relation.

N e x t we claim that there is an index 0 < j < k such that r ~ >gpo rj ~ gpo rk. C a s e 1:
There is an index 0 < j < k such that both (r~ and (rJ, r k) e F i n . Since the
derivations

r 0 ~ . . . > J and r j ~ . . . >gpo rk ~gpo ~gpo r ~gpo

are each strictly shorter than k, r ~ ~2po rj ~opo rk holds by inductive hypothesis o f (*).
Case 2: For every 0 < j < k either (r u, r j) or (r j, r k) is no t in F i n . Since each r ~ r j, r k is
a subterm of one of s, t, u, this can happen only i f one of r ~ r k is element o f (s, t, u). The
other must then be a subterm of another element of (s, t, u) to satisfy (r ~ rk)ff F i n . But
then r j must be the remaining third term o f the multiset (s, t, u). This means that r j is the
same for all j in question�9 As we may rely on the absence of duplicates, we may conclude
that k = 2 holds, and the claim follows immediately.

By definition of > t we know that each r ~ r j, r k is a subterm o f one of s, t, u.
Applying Lemma 4.4 to (r ~ r j, rk), we have (r ~ r j, r k]<l "S t, U). By Lemma 4.5, the J - - mult~ ,
comparison even is strict. So the inductive hypothesis o f our transitivity claim applies to
this triple, and we may infer r ~ ~gpo rk.

This flnishes the proof o f (*).

Lemma 4.7. > opo terminates.

Proof. Termination is proven by "minimal counterexample" [26, 10]. Assume that
there is an infinite derivation t 1 ~gpo t2 ~ g p o " ' " Given a nonempty set o f infinite
derivations one can approximate a minimal infinite derivation in the following sense:
For all i e N , every derivation that starts with tl >gpo''" >gpo ti-1 ~gpott, satisfies
t '@ t i. The infinite sequence is approximated by successively constructing finite
prefixes t 1 > gpo"" > gpo ti. The prefix is trivial for i = 0 and is prolonged from i to i + 1
by choosing t ~+1 minimal w.r.t. ~_ among all infinite derivations that start with
t 1 i > opo"" >spo t . We are going to demonstrate by a case analysis on the structure of
> opo that the existence of such a minimal counterexample leads to a contradiction, so

that the set o f infinite derivations must be empty, and so that > gpo terminates.

An Improved General Path Order 483

Case 1: Some step t i >gvot i+1 in the given derivation is due to Case (2) o f the
definit ion o f ~ gpo, say t i > t i + 1 Then the infinite derivation 3 ~ gpo

t l ~ gpo "'" ~ gpo t i - 1 ~ gpot~ ~ gpoti + 2 ~ gpo' '"

is smaller at i than the given one, a contradic t ion to the assumpt ion that the given
derivation was minimal. Case 2: Case (1) o f the definit ion o f >~ gpo is used at each step.
W e have thus an infinite derivation

tl STAT >(>gvo) t2 STAT >(~>gvo).--.

T h e f a c t that the func t iona l STAT z decreases infinite derivations, gives us an infinite
derivation u 1 > gvo u2 > gvo"" where f o r some j >_ 1, tic> u 1 holds. Th is is suff icient to
cons truc t the infinite derivation

t l > gpo"" > gpo t j - 1 > gpo u l > gpo u2 > gpo""

which is smaller at j than the given infinite derivation. Th is again is a contradic t ion to
the assumpt ion that the given derivation is minimal.

Summarizing, >,,o is reflexive (Lemma 4.3), transitive (Lemma 4.6), wellfounded
(Lemma 4.7), and has the strict subterm property (remark below Lemma 4.3). This
finishes the proof of Part (1) of Theorem 1.

For Part (2), quasiorder and termination follow immediately from Part (1).
Notice that to maintain termination from >ovo, the problematic part ~ovo c~ > ~ 1
had to be cut off >opoC~ >t_J" We still have to prove that (>gpo n >t_a)w
(~gpo c~ ~ t_l) is strictly closed under contexts. The proof is similar to the one in [-19]
for a variant of the semantic path order. It is surprisingly simple.

Lemma 4.8. (>opo c~ > t_l) ~ (~gpo ~ ~ t - 7) is s tr ic t ly closed under contex ts .

P r o o f T h e p r o o f is done by showing that >gpoC~ > t _ l and >opo ~ >t_~ are closed
under contex ts .

T o show that > gpo n > t_l is closed under con tex t s let s > opot and s > t_l t where
s, t ~ f# ~--. Since > t _ l is closed under contex ts , f (. . . , s) ~ t I f (. . . . t, . . .) holds. Th i s
leaves to show f (. . . , s) >opo f (. . . , t, . . .). W e do it using Case (1) o f the definit ion o f
>

gpo"

1. W e have f (. . . . s) >,po s >~opo t, by the s tr ic t sub term proper ty o f >~po.
Trans i t i v i t y o f ~ gpo yields f (. . . , s , . . .) > o~o t.

2. f (u 1 u i - 1, s, ui + 1 Un) > ~poUj f o r all j r i holds by the s tr ict sub term
proper ty o f >gvo.

3. f (. . . . s) S T A T ~ (> o p o) f (. . . , t ) fo l lows f r o m the premises s > o ; o t
and s > I it by the f a c t that the s ta tus component STAT ~> is prepared f o r
contex ts .

L ikewise , s>gpot and s ~ t i t implies f (. . . . s)>apof(. . . . t). T o show that
f (. . . . s)STAT>(~>gpo)f(. . . . t), one uses the f a c t that STAT z is s tr ic t ly pre-
pared f o r contex ts .

Th i s f in ishes the p r o o f that >~gpo n >~I I and >gpoc~ >~t_l are closed under
contex ts . Together , (> gpo ~ >~ I_]) u (~opo c~ ~ t_ 1) is s tr ic t ly closed under contex ts .

So (> 0po c~ > t 1) w (~ gpo c~ ~ t_l) is a termination quasiorder, and the proof of(2)
is finished.

484 A. Geser

5 A Toolbox for Status Components

Which forms of status components are available, is a decisive question for the
strength of the improved general path order. Among the various ways to define
status components, we pick a few which we consider the most important. We are
going to introduce measures as constant status components; lexicographic composi-
tion of status components; intersection of status components; the selection of an
argument at a specified position; and restriction to a set of function symbols.
Dershowitz/Hoot [11] have investigated multisets of specified arguments, and
multisets of arguments of a specified rank w.r.t. >0po.

5.1 Measures

A particular status component is one where there is no reference to its parameter at
all: Constant status components. Measure comparisons > e form such status
components. Let g be a set, ordered by the wellfounded quasiorder > ~. A measure is
then expressed by a function

that resorts to the arguments of a term only via their interpretation. Such a func-
tion is conveniently given by a Y-sor ted family of functions ~bZ:~a-~i~Y(I)~g, by
defining

r Sin)) =def ~bf ([s l] [Sm])

The induced quasiorder, > , _~ y-2, on terms, defined by

S ~ 4 t <=>clef (~(S) ~ g ~b(t) for all ground substitutions a

is a wellfounded quasiorder, as can easily be verified. If every ~b ~ is > j m o n o t o n i c ,
more precisely if

d > ~ d ' ~ ~ (. . . . d) >eq~(. . . . d',...),

then >~, satisfies the condition

s > r] t ~ f (. . . . s) > , f (. . . , t , . . .) .

By the following result, >~ e is then a constant status component.

Proposition 5.1. Let ~ ~ ~_ ~ 9 -2 be a wellfounded quasiorder such that

s > [] t ~ f (. . . . s)>e~f(. . . . t) (2)

holds for every function symbol f e J~, and every position i o f s in f (. . . . s). Then the
constant mapping STAT~>:~3(aEJ 2) ~ ~[~(~-'~2), defined by STAT~>(~) =aef > e for
every binary relation ~ on terms, is a status component.

Proof As STAT>-(~) does not depend on ~ , subterm foundedness is trivial. All other
required properties of STAT -> (quasiorder, termination, (2)) are given.

It is safe to assume that the set of strict preparedness of STAT >- is empty. Of
course, it may be convenient to reason ad-hoc in favour of a non-empty set of strict
preparedness.

An Improved General Path Order 485

We stipulate that > [_] and >~ need not coincide. Indeed they may be induced
by different functions, [_] ~ ~b. Therefore > e, and so > t_], need not be wellfounded,
and ~b need not be a homomorphism. This gives the freedom to choose >~ as strong
as wanted, without having to strengthen > t_] at the same time. To underline this
distinction, we will call [_] an interpretation, as opposed to each q5 which we will call
a measure. Kamin/L6vy [26] seem to have recognized the potential of this distinc-
tion, but there was no method to exploit it until Zantema [37] expressed the concept
formally by the notion of labelling function 7r in his "semantic labelling" approach.

The following special forms of measure functions are worth mentioning. Con-
stant functions ~b are measure functions. The interpretation [j itself may be used
as a measure function. The function that takes the top function symbol,
~bY(dl d,) = f , to be compared by a precedence, i.e. a wellfounded quasiorder on
function symbols, ~-~prec ~ ~2 , defines a measure: Choose g = J~, with >e = >p
and qSY(dl d,) = f. In that case, the underlying interpretation is irrelevant.

5.2 Compositions o f Status Components

In the previous section, we encountered probably the most important form of status
component, measures. Next we show that pointwise lexicographic combination
preserves status components.

Definition 5.1 (Pointwise lexicographic combination of status components). The
pointwise lexicographic combination of status components STAT~,STAT2, is

a functional S T A T f 2 = (S T A T f , STAT2)te x defined by

STAT~2 (>) ~> > = aef (STAT, (>), S T A T i ~ (>))lex
for each binary relation > on terms.

Proposition 5.2.

1. Pointwise lexicographic combination preserves status components.
2. I f STATf, STATf are strictly prepared for the sets S 1, $2, respectively, then

(STATf, STAT2)le = is strictly prepared for the set S 1 • S 2.

Part 2 of the claim demonstrates what the notion of set of strict preparedness is
useful for.

Proof For (1), let STATf and STAT~ be status components, and let STAT~2 =
(STATf, STATf)te = be their lexicographic combination. To simplify the presentation

> >

we will use the abbreviations > 1 =aefSTAT?(>), >2 =aefSTAT~(~>), >~ 12 =aef
STATf2(>) = (> 1, > 2)~ex, > 1 =aofSTATf(>') , > 2 =aefSTAT2(>) and >' - ~ 1 2 - - d e f > , > , > '
STATr2(>) = (~ 1, ~ 2)~e=.

I f > is a quasiorder then so are >1 and > a. Since >12 is a lexicographic
combination of quasiorders, it is a quasiorder as well: From s > i s and s > 2s, by
symmetry s ~ l s and s ~ 2s follows which is s ~12s by definition of STAT ~>. Hence
> 12 is reflexive. To show that > 12 is transitive, assume s > 12 t ~ 12 u. By definition of
STATf2, s > 1 t > ~ u holds, and so s > i u. Case 1: s > 1 u. Then s > 12u by definition of
STATI2. Case 2: s ~ ~ u. Then s ~ 1 t ~ i u, and s > 2 t > 2 u according to the definition of
STATf2. So s > 2u whence s > 12u. So > ~2 is transitive. Hence we have shown that
STATf2 preserves quasiorders.

486 A. Geser

Define > ' by

S t > ' t ' "~::>def S' > t' A (S t, t')'<:l mult(S, t).

Then subterm-foundedness is shown by the fo l lowing derivation.

s > 1 2 t

r (defn. STAT12)
e~>s >'l t v s ~'1 t /x s >'at (subt. found, o f STAT~, STAT~; L emma 3.1)

> ' (defn. STAT >) <=> S ~ 1 2 t

To show that $TATf2 is prepared for contexts , let s > t and s > [_ i t hold. B y
preparedness o f STATf and STAT~, we get f (. . . , s ) > i f (. . . . t , . . .) as well as

f (. . . . s , . . .) > 2 f (. . . . t), so f (. . . . s) > l z f (. . . . t), by definition o f lexi-
cographic combination.

For the p roo f o f decrease o f infinite derivations, assume the infinite derivation
tx >12 t2 >12"'" be given. Case 1:>2 occurs infinitely often in this derivation. Then
there is a subsequence t kl > 1 tk~ >1"'" wi th 1 = k 1 < k 2 < By decrease o f STATf,
there is a derivation u 1 > u 2 > ... such that tJ~> u ~ holds for some index j . Case 2: > 1
occurs only f in i te ly often. Then there is a subsequence t N > 2 tN+l >2"" , and by
decrease o f STAT 2, again a derivation u I > u 2 > ... with tJv-u 1 for some index j .

For (2), let (f , i) e S I u S 2 , s > t, s >[_]t . From preparedness for contexts , we
already got f (. . . , s, . . .) >12 f (. . . , t, . . .). W e have to show f (. . . . s) > la f (. . . , t).
I f f (. . . . s) > 1 f (. . . . t) holds, then we are finished. Otherwise f (. . . . s) ~ 1
f (. . . . t) and (f , i) e S 2, so f (. . . , s) > 2 f (. . . , t, . . .). The claim fo l lows by definition
o f lexicographic combination.

In a similar way, pointwise intersection (STAT >- (>) = def STAT ~ (>) c~ STAT~ (>))
can be shown to preserve status components. The set of strict preparedness is again
the union of the sets of strict preparedness of the components. Pointwise intersec-
tion, as opposed to pointwise lexicographic combination, is interesting for auto-
matic tools where it is advantageous to delay the decision whether STAT 1 or
STAT~ should receive more weight in the comparison.

5.3 Selection o f Arguments

Third we are going to show that comparison of an argument at a specified posit ion is
a status component. It may depend on the top function symbol which argument
position is meant. This is expressed by a function ~.

Definition 5.2 (Selection of an argument, P~). A n (argument) selector is a func t ion
~: ~ ~ N \{0}. I t induces a funct ional P~ defined by

f (s l , . . . , sin) P~(>)g (q , . . . , t,), i f

1. n (f) > m and n(g) > n, or
2. re(f) < m and ~(g) < n and s~(f) > t~(g).

The case analysis is needed because n(f) > m may happen, e.g. i f f has arity 0. In
this case s~(f) is undefined, and Case (1) is necessary to maintain reflexivity of > ~. We
will use Pl where ie N to abbreviate the selector P~ where ~(f) = i holds for every
f e ~ .

An Improved General Path Order 487

Proposition 5.3.

1. P~ is a status component for every n.
2. P,: is strictly prepared for the set {(f, n(f))l f G ~ A n (f) <_ a r i t y (f) } .

Proof To simplify the presentation, we use the abbreviation > ~ =def Pn(~>).
Let > be a quasiorder. I f re(f) < a r i t y (f) then s=(i) > s~(y) by reflexivity o f >. So

f (sa, . . . , sin) > = f (s: , S,n) by definition of > ~. Hence > ~ is reflexive. To show that it
is transitive, let f (s : Sin) > € t,) >=h(u 1 up) be given. I f n (f) > m,
n(g) > n, and n(h) > p then clearly f (s : , . . . , sin) >~h(u 1 up). Else n (f) < m,
n(g) <_ n, and n(h) < p, together with s=u-) > t=(o) >~ us(h) hold. By transitivity o f > then
s=(i) > U~(h), SO f (s l , . . . , S,,) > ,h (u : up). Hence >~ is transitive. This finishes the
proof that P~ preserves quasiorders.

The subterm foundedness property o f P= follows f rom the fac t that s~(y) and t~(o) are
proper subterms of s and t, respectively.

Preparedness for contexts: Assume s > t. To show f (. . . . s) > ~ f (. . . . t), we
distinguish cases. Let the argument position o f s in f (. . . , s , . . .) be i. Case 1: i = n(f).
Then the claim is equivalent to the premise s > t, by definition of P~. Moreover we
observe strict preparedness in this case: I f s > t then f (. . . . s, . . .) > , f (. . . , t, . . .). Case 2:
i # n(f) . Then by definition of P~ the claim is true if n (f) > arity(f); and equivalent
to u~u.) = u~(f) otherwise.

To prove decrease o f infinite derivations, let the infinite derivation t ~ > ~ t 2 > r ; ' ' " be
given where each term t i is o f the form {q t i i J ~ 1 t~ ty (/)) . By definition of >~ ~, this is
equivalent to the derivation : 2 t~(y b > t.(y~) > --- where obviously t~(/) ~ is a proper subterm
o f t 1.

Lexicographic status, for instance, can now be modelled as a pointwise lexi-
cographic combination of selectors of arguments.

5.4 Restriction

There is yet another useful operator for status components. This operator, called
restriction, collapses all terms the top function symbol of which is outside a given set.
As we will outline below, restriction and intersection allow one to form a conditional
for status comparisons.

Definition 5.3 (Restriction, ~ S). Let STAT -> be a status component and S ~ ~ a set o f
function symbols. The functional STAT -> ~S is defined by

f (sl s~)(STAT >- rS)(>)(g(h, . . . , t,), i f

1. f ,g(~S, or
2. f , g e S and sSTATZ(>)t.

Proposition 5.4.

1. Restriction preserves status components.
2. I f S T A T >~ is strictly prepared for the set S' then STA-[">~ ~S is strictly prepared

for the set { (f , i) l f e S /x (f , i) eS ' } .

Proo f Let $TAT >- be a status component. To simplify the presentation, we abbreviate
>o =aefSTAT>-(>) and > s =dod STAT-> ['S)(>).

488 A. Geser

Let > be a quasiorder. Then > o is reflexive and transitive by premise. W e are
going to prove that STAT ~> [S is reflexive and transitive as well. s >o s holds by
reflexivity o f >o. Then S > s S obviously holds. To prove transitivity, let
f (s 1 s~) > sg(ta t,) > sh(ul u;). Either f , g, h(~ S, in which case f (s 1 Sin)
> sh(ut , up) immediately follows. Or f , g, he S and f (s l , . . . , sin) ~ og(t l , . . . , tn) ~ o
h(u l , . . . , up) hold. In that case, f (s 1 , s~) > oh(u1 , up) follows by transitivity o f
> o, a n d f (s l , . . . , s,,) >sh (Ul , . . . , Up) holds as well. So > s is a quasiorder. This finishes
the proof that STAT >- [S preserves quasiorders.

Subterm foundedness of STAT -> r S follows immediately f rom subterm foundedness
of STAT ~.

To show preparedness for contexts, assume s > t. Case 1: f eS. Then by prepared-
ness of STAT >-, we have f (. . . . s, . . .) > o f (. . . , t, . . .), and so f (. . . . s) > s f (. . . , t, . . .).
Case 2: f (~S. Then f (. . . . s , . . .) > s f (. . . , t) immediately by definition of r.

Observe that s >s t is equivalent to: s and t have top symbols in S and s >o t.
Decrease of infinite derivations is now proved as follows. Suppose given an infinite
derivation t I > s tz > s ' " . This can only happen if every t ~ has top function symbol in
S and t 1 >o t2> o"" holds. The claim follows by decrease of infinite derivations of
STAT ~>.

I f f e S and (f , i)~S' then we have strict preparedness. For, let s > t hold. Because
of (f , i)~S ' , by strict preparedness of STAT ->, f (. . . . s , . . .) > o f (. . . , t , . . .) holds;
because o f f ES this is equivalent to f (. . . , s , . . .) > s f (. . . , t, . . .). This finishes the
proof.

5.5 A Proof Method

With the above mentioned tools available, we propose the following method to
prove termination.

1. Provide a monotonic interpretation (~, > ~ , []) , i.e. a quasiordered set
(@, >~), together with a Y-sor ted family of > : m o n o t o n i c functions
[f] : ~ari~y(f) ~ ~ .

2. Design a number of measures (g, > ~, ~b) (among which there may be constant
functions, the interpretation itself, precedences, etc.); each ~b as a ~--sorted
family ~::@~ri tY(:)~C of > : m o n o t o n i c functions to a quasiordered set
(C, > ~) where > g is wellfounded.

> ~ > 3. Design a status component STAT ~ = (~ p (~:~: STATT)I~ ~ where for each
function symbol 3 f, there is a status component STAT~ = (STATe, l , . . . ,
STAT~,,)~ r f composed of status components STAT~,; which may be
measures or selectors. The restriction operator) f takes care that only terms
are affected the top symbol of which is f; all other terms are equivalent. In
effect the intersection of the restrictions forms a case analysis of status
components dependent on the top function symbol f .

4. Establish strict preparedness for contexts in all arguments; on demand by
adding Pi as the last lexicographic component of STAT~. This way STAT >~
becomes a status properly, virtually without any other change.

5. Show la > [_ i r a and la > gpo rcr for all (l--* r)e R and ground substitutions a.

3 more generally, for every ~pre:equivalence class

An Improved General Path Order 489

One may even extend the proof of termination of R towards a proof of equational
termination of the equational term rewriting system (R, E), by

6. Show la ~ [_ fa and la ~gpora for all (1 - r)~E and ground substitutions a.

However ~opo is very weak, so this extension is not promising.

6 Practice

6.1 Examples

Now let us demonstrate the improved general path order and the above mentioned
proof method at a few small examples. For this purpose let the ordered sets
(9, >~) =aa({0, 1}, =) and (g, >e) =da({ 0, 1}, >) be presupposed.

Example 2. The following one-rule system of Dershowitz's [7] is classic for a termina-
ting, not simply terminating rewrite system.

f (f (x)) --* f (g (f (x)))

To prove its termination by the improved general path order let the interpretation [_]
be given by

[f] (x) = l , [g](x)=0,

a measure ~ by

and a precedence > prr by

4 S (x) = x,

f >vrecg"

The improved general path order >~ gvo induced by the functional

STAT>~ =def(~'p '~r Pl)lex

is able to prove termination. First, STAT -> is indeed a status: It is composed of status
components, and contains P l as a component whence it is strictly prepared for contexts.
To prove R _~ >gpo n >[_] let a be a ground substitution and t =defXO-. We have to
show f (f (t)) > [_]f(g(f(t))) and f (f(t)) > gpof(g(f(t))). To prove the former,

[f (f (t))] = [f] ([f] ([t])) = 1 = E f] ([g] ([f l ([t])))= [f(g(f(t)))] .

The proof o f f (f (t)) > gpof(g(f(t))) is given in a compact aentzen-style representa-
tion.

m

~ >

f (f (t)) >ovo f (t)

f (f (t)) >grog(f (t)) r

f (f (t)) > gvof(g(f(t))) r162 ~"~ S~y(O)> j~g~r

This schema is to say: By the subterm property of >svo, f (f (t)) >o;o f (t) holds. From
this, f (f (t)) >grog(f (t)) follows by Case (1) of the definition of >ovo, due to f > ;recg"
From that, f (f (t)) > ovog(f(t)) by Case (1), due to f ~wec f and f (f (t)) > ~f(g(f(t))) .

490 A. Geser

The claim f (f (t)) > of(g(f(t))) is proven by the following derivation.

~(f(f(t))) = qSf([f]([t]))= q~f(1)= 1 > e 0 = (bf(o)= ~of([g]([f]([t])))

= c~(f(g(f(t)))).

So f(f(t))>gpof(g(f(t))) and f(f(t))>~t_lf(g(f(t))) hold. This proves R~_
> gpo w >~t_ 1, and by Theorem 1 the proof of termination of R is finished.

Example 3. Toyama's one-rule rewriting system [351

f(a, b, x) ~ f (x , x, x)

is known as terminating but not simply terminating. A termination proof by the
improved general path order is as follows. Define an interpretation by

[a] = O , [b] = l , [f] (x, y, z) = l

A useful measure function is 0 r defined by

Of(x ,y ,z)=aaJx-- yl.

With the status STAT >~ =da(> ~, P~)zex, the rewrite rule is ordered by > apo m > t_]"
Let a be a ground substitution and t =defxa. First, f(a, b, t) > t_]f(t, t, t), because

[f(a, b, t)] = 1 = [f(t, t, t)].

Now for f(a, b, t) >gvof(t, t, t). Trivially f(a, b, t) >opot. The following derivation
proves that f(a, b, t) > ~f(t, t, t).

#)(f(a, b, t)) = ~br 1, I t]) = 1 > e 0 = qSf([t], [t], [t]) = O(f(t, t, t))

Example 4. Huet/Oppen [24] gave a rewrite system known to be simply terminating,
but not totally terminating. We extend it by a third rule such that the system is still
simply terminating, not totally terminating.

f(a) ~ f(b),
g(b) ~g(a),

f(x)-+g(x)

Improved general path order proves its termination. Define an interpretation [1 by

[a] = 0, [b] = [f] (x) = [g] (x) = 1

Choose STAT ~> = a a (> p >~, Pl)ze, where the precedence >prec is given by

f >precb; f >prong >pr~ca

and the measure (~ is given by

@f(x) = d e f l - - X, ~)g(.X) =defX.

With these settings, f(a)>opof(b) holds. For, f(a)>opo b holds by the precedence
f >w~b. And f(a) >4f(b) by the derivation

(a(f(a)) = q~f(O)= 1 >eO = q~r (a(f(b)).

An Improved General Path Order 491

This finishes the proof for the first rule. The second rule is done analogously. For the
third rule, we have f >p,e~g which leaves to show f(t) > gpo t. The latter is by the strict
subterm property.

E x a m p l e 5. The following is an extract (rules (9), (38), (39), resp.) of the L I F T example
in appendix A.

g (b)~ f (b)

f(a)--*g(a)

b ~ a

Despite its similarity to example 4 this system is totally terminating. Though
the recursive path order cannot prove termination. 4 To prove termination by the
improved general path order, we use the same interpretation [] as in example 4,
however for the ordered set (9, > e)=da({ 0, 1}, >) . Let the precedence >p, ec be
defined by

f ~'~precg >prec b >prec a

and the monotonic measure function 0 to (g, > e) = d a ({ 0, 1, 2, 3}, _>) by

~f(x) =def 1, ~g(X)=def2X

Then > gpo using status S T A T >~ =def(~ p P l, > 6)lex orders the three rules. More-
over, each rule 1 ---, r satisfies l > t_ jr.

H e r e obse rve t h a t were [b] H e [a] then f (b) ~ 4 f (a) as well as g(b)..~ r by
monotonicity of ~)s and ~)~, respectively. But that would make any semantic compari-
son useless. For this reason it is essential to order [b] = 1 > e 0 = [a] non-trivially
whence x~-~ 1 - x is no longer monotonic.

E x a m p l e 6. The idea to the following example comes from Dershowitz's example 18
[-9]. Dershowitz demonstrates that the recursive path order cannot prove termination
but a lexicographic combination of recursive path orders can. We insert an f symbol on
the right hand side of his second rule, by which we get a system where even
a lexicographic combination ofrecursive path orders fails.

g(f(x), y) --* f(h(x, y))

h(x, y) -* g(x, f (y))

The same pattern occurs when logic programs are transformed to term re-
writing systems in order to prove their termination [-1]. Unlike Arts/Zantema,
here we need no interpretation, i.e. everything is interpreted equal. Thus in fact we deal
with a "syntactic" path order. We choose as the status functional

> ' P2)tex where the two precedences >~ p and > ' S TAT>~ ~-def(~p Pl, ~p p,ec are
defined by

g ~p,ec h >precf and h>'p,ecg,

respectively. Now let a be ground substitution and t ~defXO', U =-defyO'. With that the

4 The polynomial interpretation order can: [a] = 2, [b] = 3, [f] (x) = x + 5, [g](x) = 3x.

492 A. Geser

two rules are ordered as follows.

.E:=- .~>- 4 >

g(f(t),u) >gpot g(f(t),u) >opo u f(t) >opo t

g (f (t), u) > gpoh(t, u)

g (f (t), u) > opof (h(t, u))

g ~ prec h

g > precf

m

t ".gpo t f(t) >opo t
h(t, u) > opo g(t, f(u)) h -prec9 and h > precg

Example7. The improved general path order is able to improve upon the
Knuth/Bendix order, as we can demonstrate at example 17 of Dershowitz [9] extended
by an additional rule for function symbol f .

- - - - X - + X

- (x + y) - - , - - - x * - - - y

- (x * y) ~ - - - - x + - - - - y

f (- x) ~ - -- - f (x)

Choose (~, >2) =d~Z(N, >). The interpretation counts the number of symbols " + "
and " ," in a term.

[f] (x) = [--] (x) = x, [+] (x) = [*] (x) = x + l

Let the status functional be S T A T ~> = def(>[_], > p P l , P2)lex, where the precedence
> is defined by prec

f >prec - - >prec -~ '~prec*"

Note that the proof obligation l> [_]r for every rewrite rule l-+ r is void because it
already follows from l >opor, by the subterm property of > [_] (see also Lemma 7.3).
Note also that an essential technical condition for the Knuth/Bendix order is not
satisfied: that " - " has to be the greatest symbol in the precedence.

Example 8. Two weird functions, f and g, on the natural numbers are specified by the
following rewrite rules [21].

x -- 0 ~ x f(O) --+ 0 9(0) ~ s(O)
0 -- s (y) ~0 f(s(x)) ~s(x) - g(f(x)) 9(s(x))~s(x) - f(g(x))

s (x) - s (y) - - , x - y

We do not know the semantics o f f and g, but it is fairly obvious that [f] (x) <_ x and
[g] (x) _< x + 1 hold provided that [f] and [g] are total. We can profit from this
knowledge by defining an interpretation [_] by

[0] =aee0, [s](x) =dax + 1, [-] (x , y) =defmax{x,y},
[f] (x) =defX, [g](X) =aefX + 1

to the natural numbers, naturally ordered. " - " is interpreted as maximum because
subtraction is not monotonic under >. Now l >~]_]r holds for every rewrite rule l-+ r.

An Improved General Path Order 493

To witness,

[t - 0] = max{ [t] , 0} = I-t],

[0 - s(u)] = max{0, [u] + 1} > 0 = [03,

[s(t) - s(u)] = max{ [t] + 1, [u] + 1} > max{ [t] , [u]} = [t - u],

[f (0)] = 0 = [0] ,

[f(s(t))] = [t] + 1 = max{ [t] + 1, [t] + 1} = [s (t) - 9(f(t))],

[g (0)] = 1 = [s (0)] ,

[g(s(t))] = [t] + 2 > max{ I t] + 1, I t] + 1} = [s(t) - f(g(t))].

Let us now choose S T A T >~ =aef(~> I_1, >~p P l , Pz)tex as a status, where the preced-
ence is given by

f ~ pre~ g > prec - - >" prec S ~,~ pree 0

Then the induced general path order proves termination. The decisive inequalities are

Is(t)] = [t] + 1 > [t] = [f (t)] and

[g(s(t))] = [t] + 2 > [t] + 1 = [f(g(x))].

E x a m p l e 9. And finalIy an example where it pays to have measures different from the
interpretations. Let x/y denote the integer quotient of natural numbers x, y, specified as
follows.

x - - O- +x x<O-+false if(true, x,y)-- ,x x /O~O

O - s (y) ~ x 0 < s (y) ~ t r u e i f (f a l s e , x , y) ~ y O/y~O
s(x) - s (y) - - , x - y s (x) < s(y) ~ x < y s (x) / s (y) ~ • f (x < y, o, s ((x - y) / s (y)))

The last rule of this rewrite system has a self-embedding derivation. The re-occurren-
ces of the slices of the left hand side are underlined.

s (x) / s (s (x)) - ~ , i f (x < s(x) , O, s((x - s (x)) / s (s (x))))

The improved general path order with the following settings proves termination.
Natural interpretation to ~ = N ordered by equality; precedence / > prec i f , <, S > prec
t r u e , f a l s e , 0; status $ T A T ~> = (> p > , , P l , P2); measure 4)'(x,y) = x to ~ = N
ordered by >_. The decisive inequation is

O(s(t)/s(u)) : Is(t)] : [t] + 1 > I t] - [u] : I t - u] = ~b((t - u)/s(u)).

This quite naive design solves the following conflicting goals: Whereas [/] is bound
to be integer division in order to have [_] a (quasi-)model, 0 / should express that the
first p a r a m e t e r decreases semantically. > r_ 1 m a y no t compare s(t) and t; otherwise our
chosen interpretations for " - " and "/" were not monotonic. But > 4) mus t compare s(t)
and t so as to help order the last rule.

6.2 Termination Pairs

The orders >opo and > opo c~ > E_~ c o r r e s p o n d to each o the r in a r emarkab l e way.
>opo has the sub te rm p r o p e r t y whereas >opoC~ >r_~ is closed unde r contexts .
Precisely such a pair of orders is needed in the f r a m e w o r k of conditional rewriting.

494 A. Geser

To have the rewrite relation ~R of a conditional rewrite system R computable,
one needs to show that for each application of a conditional rewrite rule

p=~l ~ r

the recursive descent into the premise p as well as the successful application of the
rule decreases the term. To simplify the presentation, we consider the premise to be
a term. A rule is enabled if its premise is reducible to the term t r u e .

Wirth/Gramlich defined the notion of termination pair.

Definition 6.1 ([36]). A termination pair is a pair (> sub, > mon) of orders, closed under
substitution, such that

1. >mon ~ >sub,
2. > s,b is wellfounded,
3. >sub has the subterm property,
4. >,no, is closed under contexts.

A rule p ~ l ~ r is called aligned with the termination pair (>s,b, >zo.), if/>s,bP
and la >mo, ra for all substitutions a such that p o - ~ t r u e . Dershowitz/Okada/
Sivakumar's notion of decreasing conditional rewrite system [16] is related:
p ~ l ~ r is called decreasing if there is a wellfounded order >~,b, closed under
substitution, such that l>~,bp and --*e-~ >~,b. Obviously a decreasing system is
aligned with the termination pair (>~,b, ~) .

Theorem 2 ([36]). I f (> ~,b, > too,) is a termination pair, and every rule of a system R of
conditional rewrite rules is aligned with it, then every term has effectively an R-normal
form.

If >,,on is a simplification order then >~o, and >~,b coincide. The case where
>,non is not a simplification order has not yet been investigated. The following
example, due to Dershowitz/Okada/Sivakumar, needs such a pair.

Example 10 ([16]).
b ---, true (7)

f (b) ~ f(a) (8)

b ~ a-+ true (9)

Rule (9) requires a >s,b b and Rule (8) requires f(b)>mo, f(a) to hold. Were
a >,,o,b then by closure under contexts f(a) >,,o,f(b), a contradiction. So >too, and
>s,b must differ.

Theorem 3. The conditional rewriting system of example (i0) is aligned with some
termination pair (> gt, o, > gpo n > ~_ 1)"

Proof We choose (~, ~) =dee(g, ~>e) =aef({ 0, 1}, _>). The interpretation, [] , is
given by

[b] : 1, [a] = [t r u e] = [f] (x) = 0.

The general path order > gpo is induced by the status $TAT~>(>) = def(~> p > ~, Pl)lex,
with the precedence, > p given by

f >prec a >prec b >pree t~yue

and the measure, ~, by ~I(x) = x. We have to satisfy the following proof obligations.

An Improved General Path Order 495

1. [f] and (a y are monotonic: Trivial.
2. f(b) >[if(a): [f (b)] = 0 : I f (a)] .
3. f (b)> o,of(a): By the precedence f >p,eca, f (b)> gpo a holds. Next, f ~ p , ~ f

and f(b) > ~ f(a) by

(~(f(b)) : q~I(1): 1 > e 0 = q~I(0) : (o(f(a)).

4. b >~[_] t rue" [b] = 1 >~0 = [t r u e] .
5. b >apotrue: By precedence.
6. a ~>[_]true: [a] : 0 : [true].
7. a > opotrUe: By precedence.
8. a > gpob: By precedence.

Note that for Case (4) actually b >[_]true was essential. For, if b~[_]a then
f(b) ~ ~ f(a) by monotonicity, which fails to handle Rule (8). This finishes the proof.

7 Improved?

We claim that Dershowitz/Hoot 's general path order is an instance of our improved
general path order. This statement can be put precisely and the proof is instructive.

Theorem 4. Every valid termination proof by Dershowitz/Hoot' s general path order
where the functional

�9 does not use proper multisets nor ranked multisets of arguments, and
�9 contains selections for each argument position,

is a valid termination proof by improved general path order.

With some technical effort the multiset cases probably can be added as well.
Furthermore the second requirement is weak: Argument selectors may be added on
demand. The proof of the theorem will use the following two standard results from
universal algebra.

Lemma7.1 . I f li=def(~i, ~ ? [- -] i) is a monotonic ~-interpretation for every
1 <_ i <_ k, then their product

defined by

I=I, x . . . x _/k = d e f (~ , ~ , [~),

= ~ o ~ x ... x ~ ,

d >~d'4:>dofd I > ~ d ' I A ... A dk >>,~fl'k,

[f] (d 1, d") 1 ,, 1 ,, = def([f] ~(d~ d~) [f]k(dk d k))

is a monotonic ~,~-interpretation. Here d i denotes the i-th component of the k-tuple d.

Lemma7.2 . I f Ii=def(~i, ~ , []i) is a monotonic ~-~-interpretation for every
i <_ i <_ k, strictly monotonic if i # k, then their lexicographic product

I = I 1 x i~ - . , xz~f lk=da(~, ~ , [- -]) ,

496 A. Geser

defined by

~@ =da~@t x -.- x ~@k,

d >,~d'.~dad 1 > ~ d ' 1 v
dl ~~,d'x A (d2 >~d~ v

t d2 ~~d2/x (..-
> , ,x dk ~~dk)"') ,

[f] (d l , . . . d" d 1 1 ,, ,) = a e f ([f] l (1, ' ,d] ') , [f]k (dk , . . . , d~))

is a monotonic ~-interpretat ion. Here d i denotes the i-th component o f the k-tuple d.

The subte rm proper ty is useful to get rid of the obl igat ion to prove l ~> [_lr as the
following l emma shows.

Lemma 7.3 ([19]). I f > [_ ~ has the subterm property and STAT >~ = (> ~, STAT ~)lex
has as f irst component a quasiorder > ~ ~_ ~>[_1, then >gpo ~- >~[_].

Proo f Let s, t e (~J- and let s >gpo t. To prove s > [] t we employ induction on s ordered
by ~>. For S~gpot we distinguish cases along the definition of~opo . Case (1):
s STAT~>(>opo)t and s >opoti for all i. By the architecture of STAT ~> chosen, s >~ t
follows immediately. So s >[_l t by premise. Case (2): si>opot for some i. Then
s > [_] si > [_] t holds by the subterm property of > [_], and the inductive hypothesis for
si, respectively. By transitivity o f >[l the claim follows.

P r o o f (o f Theorem 4). Let w.l.o.g, a finite or infinite ground term rewriting system R be
given, together with a proof o f termination by Dershowitz/Hoot ' s general path order
obeying the mentioned restrictions. In other words, there is 0 <_ i < k <_ n; for each
1 <_ j <_ k there are interpretations I j = (~j, > ~j, l i f t such that

1. I 1 , . . . , I i_ 1 are strictly monotonic and satisfy the strict subterm property,
2. I~ is monotonic and satisfies the strict subterm property, and
3. I i + l , . . . , I k are value-preserving congruences, i.e. l ~ [_ l f and f is ~[_lj-

monotonic for every f , i + 1 <_ j N k;

there is a functional

STAT>~ = d a (> [_] , , > [_1,, STAT>+ 1 , - " , STAT~)

such that each of STAT~+ 1 STAT > is either

1. a precedence, or
2. an argument at a specified position, or
3. a quasiorder >[_]j induced by one o f the interpretations Ij, i + 1 <_ j <_ k;

and R ~_ > gpo where > gpo is the general path order induced by STAT ~>.
First we claim that I i~ ~ = d~f I1 x z~ "" x le~I i is a quasimodel for R. I f i = 0 then this

is the trivial model; so assume i > O. Given that I j is monotonic, i f j ~ i even strictly, we
obtain that Il~ ~ is a monotonic interpretation by Lemma 7.2. By construction the
quasiorder on terms induced by the interpretation I~e ~ admits the representation

>[_~,~x =,~ef(>~_J,," "', >[_OZex

whence by the subterm property of each I j, 1 ~ j < i, also I l e x has the subterm property.

An Improved General Path Order 497

So in fac t w.l.o.g, i = 1 may be assumed. The property R co_ > E l,e~ follows f rom
R ~_ >g,o by Lemma 7.3. So Ire ~ is a quasimodelfor R.

Second we state that for every i + 1 <_ j < k the interpretation ~ = acr(~j, ~ , [_]j)
derived f rom I j is a quasimodel of R. This follows immediately f rom the premises put on
Ij.

N o w by Lemma 7.1 the product I = deflzex X Iii+ 1 X "'" X i- k is a monotonic interpre-
tation as well. I t is even a quasimodel of R as every component is. So we may use I as the
interpretation underlying our improved general path order.

Wi th that, STAT >~ turns out to be a status component: As proven in Subsect. 5.2
pointwise lexicographic combination preserves status components and each precedence
and each selector o f an argument at a specified position are status components. Each
~ r 1 nally, 1 _ " < k, can be expressed a s s quasiorder > r induced by a measure (oj
on 1. To this end define O j : N 3 - ~ j by

. . . . d 1 d" 1 , ~ f (d 1 , d") = d a ([f] (.)) j = [f] j (d j , . . . , d j)

where dj selects the j - th component from d. I t is obvious that > ~ = >r 1. Observe
that the monotonicity conditions are satisfied. (For i + 1 <_ j<_ k, the property
~ t J ~ >r I is employed.) Therefore the functional STAT ~> is a status component.

By the premise that STAT ~ contains every argument position, it is strictly prepared
for contexts, so 8TAT e is a status. Theorem 1 is applicable. Hence R is a terminating
rewrite system, by improved general path order. This finishes the proof.

According to Theorem 4 the improved general path order can do all termination
proofs Dershowitz/Hoot's general path order can do except where multiset selec-
tors are used - with at most the same effort. And Dershowitz/Hoot's general path
order covers an impressive list of competitors [11]: Recursive path order, extended
Knuth/Bendix order, polynomial path order, semantic path order, natural path
order; virtually every path and Knuth/Bendix order scheme. Improved general path
order still adds a little to this.

�9 Example 9 and our L~-F~2 case study (see the conclusion to Appendix A) need
a measure (g, > e, q~) that cannot serve as interpretation (9, > ~, [_]), neither
can its equivalence kernel (~, He, 4)). Dershowitz/Hoot's general path order
does not support this.

�9 To model the semantic path order, Dershowitz/Hoot's approach requires
Kamin/L6vy's Condition (C) is an essential extra condition. The improved
general path order takes care of this condition itself and so includes the
semantic path order properly.

�9 The improved general path order can handle the case of Knuth/Bendix order
even when symbols of weight 0 are not maximal in precedence (Example 7),
and the case of polynomial path order where the polynomials are monotonic,
but not strictly monotonic. In these cases the order > L_J no longer has the
strict subterm property or is strictly monotonic, respectively.

Concluding Remarks

We have introduced the improved general path order, an extension both of the
general path order of Dershowitz/Hoot and of the semantic path order of
Kamin/L6vy. These orders are suitable to prove termination of a rewriting system

498 A. Geser

whenever the termination proof needs semantic arguments. We introduced the
order in an abstract form, based on a monotonic interpretation [_] and a status
S-I'AT >-. Under weak premises then >gpo c~ > ~_~ is a termination order (Theorem 1)
and the pair (>opo, > 0po c~ > E-1) is a termination pair. A termination pair is useful to
prove computability of normal forms for a conditional term rewriting system.

Statuses can be composed pointwise lexicographically from components such as
measures and argument selectors. Cases of statuses dependent on the top function
symbol may be formed using a restriction operator and joined by pointwise intersec-
tion. For technical reasons we have not included selectors of multisets of arguments;
however it seems possible to do. The constructions we have introduced should
suffice to treat most of the practical problems. We have summarized the typical
procedure as a design guideline for the user. Several small examples demonstrate
power, versatility and ease of use of the improved general path order. In the
appendix we report on a realistic, medium-size application where we encounter
some of the typical features.

By Theorem 4 we have given a precise account to what extent our method covers
Dershowitz/Hoot's version. Our method can completely dispose of the technical
conditions that the tuple of status components has to start with a number of
interpretations which are strictly monotonic and satisfy the strict subterm property.
This is due to three changes: a more liberal condition (preparedness for contexts) on
the parameter S T A Y >- of the order; the conceptual separation of the interpretation,
[] , from measures, ~b; and the relaxation from models to quasimodels. Though by
Lemma 7.3 the subterm property may be technically useful to get rid of a proof
obligation.

A particularly important application of termination is in the Knuth/Bendix
completion procedure. The Knuth/Bendix procedure can be turned into one that
does not stop with failure (unfailing Knuth/Bendix procedure, UKB, [3]) provided
that it uses a termination quasiorder > that can be extended to a total one on
ground terms. This restricts the results to totally terminating rewrite systems
however, which is unsatisfactory. A simple observation shows that the requirement
of totality can be weakened. The procedure obviously satisfies s~--,~Et for every
critical pair (s, t). To order all ground instances of(s, t) then, it is sufficient if > is total
on ~-+*~-equivalence classes of ground terms, i.e. it orders those pairs (s, t) of ground
terms where s+-~*~t. It is therefore sufficient that the order > satisfies the following
property.

Definition 7.1. ~> ___ ~'-2 is called semantically total, if for all ground terms s+-+*uet,
either s >~ t or t > s holds.

Semantic totality is certainly weaker than totality on all ground terms. An open
question is whether this makes a difference. If ~E_1 is a model of R wE then
a quasiorder is semantically total if it is total on ~ E_s-eq uivalence classes of ground
terms. I conjecture that improved general path orders which are based on models
can be made total on ~ t l-equivalence classes. This narrows a conjecture of
Rusinowitch (Problem 85 in 1-14]).

Conjecture 1. Let ~ _ ~ be a congruence on terms, closed under substitution. Every
improved general path quasiorder ~ gpo based on ~ L_1 can be extended to a improved
general path quasiorder > 'g,o based on ~ E_ ~ which is total on ..~ E s-eq uivalence classes
o f ground terms.

An Improved General Path Order 499

Acknowledgements. I am grateful to Ulrich Fraus for explaining me his lift rewrite system. I also
wish to thank Nachum Dershowitz for a number of discussions about the general path order, and
Joachim Steinbach for pointing to interesting examples. Last but not least I am indebted to an
anonymous referee for a number of suggestions to improve the presentation.

References

1. Arts, T., Zantema, H.: Termination of logic programs via labelled term rewriting systems. Technical
Report UU-CS-1994-20, Universiteit Utrecht, The Netherlands, 1994

2. Avenhaus, J., Madlener, K.: Term rewriting and equational reasoning. In: Banerji, R. B. (ed) Formal
Techniques in Artificial Intelligence: A Source-Book. Elsevier Science Publishers, North-Hofland,
1990

3. Bachmair, L., Dershowitz, N., Plaisted, D.A.: Completion without failure. In: Ait-Kaci, H., Nivat, M.
(eds) Resolution of Equations in Algebraic Structures 2: Rewriting Techniques, pages 1-30. Aca-
demic Press, 1989

4. Bellegarde, F., Lescanne, P.: Termination by completion. AAECC 1, 79-96 (1990)
5. Broy, M.: An example for the design of distributed systems in a formal setting: The lift problem.

Technical Report MIP-8804, Universit/it Passau, Germany, 1988
6. Dauchet, M.: Simulation of Turing machines by a regular rule. Theoret. Comput. Sci., 103, 409-420

(1992)
7. Dershowitz, N.: A note on simplification orderings. Inform. Process. Lett. 9, 212-215, 1979
8. Dershowitz, N.: Orderings for term rewriting systems. Theoret. Comput. Sci. 17(3), 279-301 (March

1982)
9. Dershowitz, N.: Termination of rewriting. J. Symb. Comput. 3(1-2), 69-115, Feb./April 1987.

Corrigendum: 4 (3), 409-410, Dec. 1987
I0. Dershowitz, N., Hoot, C.: Topics in termination. In: Kirchner, C. (ed), 5th Int. Conf. Rewriting

Techniques and Applications, pp. 198-212. LNCS vol. 690, Berlin, Heidelberg, New York: Springer
1993

11. Dershowitz, N., Hoot, C.: Natural termination. Theoret. Comput. Sci. 142 (2), 179-207, 1995
12. Dershowitz, N., Jouannaud, J.-P.: Notations for rewriting. Bulletin of the EATCS, 43, 162 172,

(1991)
13. Dershowitz, N., Jouannaud, J.-P.: Rewrite systems. In: van Leeuwen, J. (ed.) Handbook of Theoreti-

cal Computer Science, volume B (Formal Models and Semantics), pp. 243-320. Elsevier - The MIT
Press, 1991

14. Dershowitz, N., Jouannaud, J.-P., Klop, J. W.: Problems in rewriting III. In: Hsiang, J. (ed), 6th Int.
Con[Rewriting Techniques and Applications. pp. 457-471. LNCS vol. 914, Berlin, Heidelberg, New
York: Springer 1995

15. Dershowitz, N., Manna, Z.: Proving termination with multiset orderings. Communications of the
ACM, 22(8), 465-476 (1979)

16. Dershowitz, N., Okada, M., Sivakumar, G.: Canonical conditional rewrite systems. In 9th Int. Conf.
Automated Deduction, pp 538-549. LNCS vol. 310, Berlin, Heidelberg, New York: Springer 1988

17. Fraus, U.: Verifying the specification of a technical software system by induction. Research report
FORWISS, Universit~it Passau, Germany, 1992

18. Fraus, U., Inductive theorem proving for algebraic specifications-TIP system user's manual.
Technical Report MIP-9401, Universit~it Passau, Germany, Feb. 1994

19. Geser, A.: On a monotonic semantic path ordering. Technical Report 92-13, Ulmer Informatik-
Berichte, UniversitM Ulm, Germany, 1992

20. Geser, A.: An improved general path order. Technical Report MIP-9407, Universit~it Passau,
Germany, June 1994

21. Hofstadter, D. R.: G6del, Escher, Bach: An eternal golden braid. Basic Books, New York, 1979
22. Huet, G.: Confluent reductions: abstract properties and applications to term rewriting systems.

J Assoc. Comput. Maeh. 27, 797 821 (1980)
23. Huet, G., Lankford, D.: On the uniform halting problem for term rewriting systems. Technical Report

283, INRIA, Rocquencourt, FR, Mar. 1978
24. Huet, G., Oppen, D. C.: Equations and rewrite rules-a survey. In: Book, R. (ed) Formal Languages:

Perspectives and Open Problems, pp 349-405. Academic Press, 1980
25. Jouannaud, J.-P., Lescanne, P., Reinig, F.: Recursive decomposition ordering. In: BjCrner, D. (ed),

Formal description of programming concepts 2, pp 331-348. North-Holland, 1982
26. Kamin, S., L~vy, J.-J.: Attempts for generalizing the recursive path orderings. Manuscript; copy

available at Dept. of Computer Science, Univ. of Illinois at Urbana-Champaign, Feb. 1980

500 A. Geser

27. Kapur, D., Narendran, P., Sivakumar, G.: A path ordering for proving termination of term rewriting
system. In: 10th Colloquium on Trees in Algebra and Programming, pp 173-185. LNCS vol. 185,
Berlin, Heidelberg, New York: Springer 1985

28. Klop, J. W.: Term rewrite systems. In: Abramsky, S., Gabbay, D. M., Maibaum, T. (eds), Handbook of
Logic in Computer Science, volume II, pp 1-116. Clarendon Press, Oxford, UK, 1992

29. Knnth, D. E., Bendix, P. B.: Simple word problems in universal algebras. In: Leech, J. (ed),
Computational Problems in Abstract Algebra, pp 263 297. Pergamon Press, 1970

30. Lankford, D. S.: On proving term rewriting systems are noetherian. Technical Report MTP-3,
Louisiana Technical University, Math. Dept., Ruston, LA, 1979

31. Lescanne, P.: Uniform termination of term rewriting systems: Recursive decomposition ordering
with status. In: Courcelle, B. (ed), 6th Colloquium on Trees in Algebra and Programming, pp
181-194, Bordeaux, France, Mar. 1984

32. Lescanne, P.: On the recursive decomposition ordering with lexicographic status and other related
orderings. J. Automated Reasoning, 6, 39-49 (1990)

33. Plaisted, D. A.: Term rewriting systems: In: Gabbay, D. M., Hogger, C. J., Robinson, J. A.(eds),
Handbook of Logic in Artificial Intelligence and Logic Programming, volume 4, Chap. 2. Clarendon
Press, Oxford, UK, 1993

34. Rusin•witch,M.:Path•fsubterms•rderingandrecursivedec•mp•siti•n•rderingrevisited.J. Symb.
Comput., 3(1-2), 117-131 (1987)

35. Toyama, Y.: Counterexamples to termination for the direct sum of term rewriting systems. Inform.
Process. Lett. 25, 141-143 (1987)

36. Wirth, C.-P., Gramlich, B.: A constructor-based inductive validity in positive/negative-conditional
equational specifications. J. Symb. Comput. 11, 1994

37. Zantema, H.: Termination of term rewriting by semantic labelling. Fundamenta Informaticae 24,
89-105 (1995)

A LIFT: A Medium-Scale Example

In o rde r to demons t r a t e the descr ipt ive power and the line of reasoning of the
i m p r o v e d general pa th order , we will per form a realistic, medium-sca le p r o o f of
t e rmina t ion of the term rewri t ing system L I FT. The example rewri te systems models
a toy lift control , one of the favouri te examples in the area of fo rmal iza t ion of
d i s t r ibu ted systems [5]. The rewri te system is, a p a r t f rom m i n o r changes, the same
as Fraus ' s [17]. Unusual ly , the rewri te rules do not express an equa t iona l theory bu t
a state t rans i t ion relat ion.

The lift con t ro l is in formal ly specified as follows. Imag ine a bu i ld ing having three
floors. A lift cabin moves up and down between these floors, and somet imes stops at
a floor. At each floor, there is a bu t t on to call the lift cabin, and a l ight to indicate tha t
the bu t ton has been pressed, but the cabin has no t visi ted the f loor since. The task of
the lift con t ro l is to indicate by the bu t t on lights tha t a request has been recognized,
and to send the lift cabin to a f loor and open the cabin d o o r there at least once after
its bu t t on has been pressed.

The lift con t ro l is mode l l ed by a s imply typed rewri te system. We do not mode l
infinite behaviour . F i r s t we give the signature, i.e. the types and typed funct ion
symbols , of the lift control .

A.1 The Signature

Let there be the type Bool of Boolean values, with nu l la ry funct ions ("constants")
t r u e , f a l s e , and a b ina ry funct ion or. W e will use Booleans to indicate states of
l ights (t r u e means "on", and f a 1 s e means "off"), as well as states of bu t tons (then
t r u e means "pressed", and f a l s e means "no t pressed").

An Improved General Path Order 501

Histories of inputs to the lift are modelled by the type Input, with a constant
e m p t y for "no input", and a function symbol

newbuttons :Bool 3 x Input-+ Input

where newbut t ons(il, i2, i3, i) tells which buttons are pressed at the moment, il for
the basement button, i2, for the first floor button, and i3 for the second floor button.
What happens after, is recorded in i.

The modelling of simultaneously pressed buttons is realistic for the following
reasons. For the lift, requests come in packages. This is so because input must be
buffered as long as the lift is busy. Each time the lift has finished a step, and is aware
of further input, several buttons may have been pressed in the meantime. It does not
matter how many times buttons have been pressed, or in which order. So the input
relevant to the lift control is the set of buttons pressed, encoded in the triple (il, i2, i3)
of truth values.

The floors where the lift may be are modelled as constants of type F l o o r ,

B, BF, F, FS, S:Floor

with B for basement, F for first floor, and S for second floor, and the intermediate
locations, BF, between basement and first floor, and FS, between first and second
floor. The latter two are necessary to model the situation when the lift is during
a move from one (proper) floor to another.

The door of the lift cabin can be o p e n or c l o s e d . These are constants of type
Door. The lift can move up, down, or it can s t o p . These are constants of type Move.

Lift states are objects of type S t a t e . There are constants c o r r e c t ,
i n c o r r e c t , for correct and incorrect termination of the lift, respectively. Here
correct termination means that the lift has successfully treated each request.
Incorrect termination means that the lift has become unreliable and is for safety
reasons set out of order. As long as the lift has not yet terminated, it switches between
two modes: Working (busy), and waiting for input (i d l e) . Both are modelled as
function symbols of type

Floor x Door x Move x Bool 3 x Input -~State

where the first argument denotes the floor where the lift currently is, the second,
whether the door is open or closed, the third, how the lift is moving. The three
Boolean arguments indicate the state of the floor lights: Whether the light is on for
the basement, the first floor, the second floor, respectively. The last argument tells
which pressed button triples the lift still has to face. A function symbol
s t a r t : I n p u t -+ S t a t e gives an initialized lift.

A.2 7he Term Rewriting System LIFT

The 41 term rewriting rules in Table 1 form a rewrite system which we will call LIFT.
The variables in these rules range as follows.

fl : F l o o r , d: Door, re:Move, i: I n p u t , b, bl, b2, b3, il, i2, i3 :Bool

The lift starts at the first floor with its door closed. All lights are put offand the lift
does not move (1). The lift behaves incorrectly if it stops between floors (2), (3), or
moves while the door is open (4), (5). The lift finishes correctly as soon as the cabin

502

Tablel. The rewrite system LIFT

A. Geser

start (i) -+busy (F, closed, stop, false, false, false, i) (:
busy (BF, d, stop, bl, b2, b3, i) -+incorrect (~
busy (FS, d, stop, bl, b2, b3, i) -+incorrect (~
busy (B, open, up, bl, b2, b3, i) -+incorrect (<
busy (B, open, down, bl, b2, b3, i) -+incorrect ([
busy (B, closed, stop, false, false, false, empty) -+correct ((
busy (F, closed, stop, false, false, false, empty) -+correct (<
busy (S, closed, stop, false, false, false, empty) -+correct (&
busy (B, closed, stop, false, false, false, newbuttons (ii, i2, i3, i))-+ (c
idle (B, closed, stop, false, false, false, newbuttons (ii, i2, i3, i))
busy (F, closed, stop, false, false, false, newbuttons (ii, i2, i3, i))-+ (i(
idle (F, closed, stop, false, false, false, newbuttons (ii, i2, i3, i))
busy (S, closed, stop, false, false, false, newbuttons (ii, i2, i3, i))-+ (11

idle (S, closed, stop, false, false, false, newbuttons (ii, i2, 13, i))
busy (B, open, stop, false, b2, b3, i)-+idle(B, closed, stop, false, b2, b3, i) (i~
busy (F, open, stop, bl, false, b3, i)-+idle(F, closed, stop, bl, false, b3, i) (12
busy (S, open, stop, bl, b2, false, i)-+idle(S, closed, stop, bl, b2, false,i) (14
busy (B, d, stop, true, b2, b3, i) -+idle(B, open, stop, false, b2, b3, i) (i•
busy (F, d, stop, bl, true, b3, i) -+idle(F, open, stop, bl, false, b3, i) (IE
busy (S, d, stop, bl, b2, true, i) -+idle(S, open, stop, bl, b2, false, i) (IT
busy (B, closed, down, bl, b2, b3, i) -+idle(B, closed, stop, bl, b2, b3, i) (i~
busy (S, closed, up, bl, b2, b3, i) -+idle(S, closed, stop, bl, b2, b3, i) (i~
busy (B, closed, up, true, b2, b3, i) -+idle(B, closed, stop, true, b2, b3, i) (2C
busy (F, closed, up, bl, true, b3, i)-+idle(F, closed, stop, bl, true, b3, i) (21
busy (F, closed, down, bl, true, b3, i) -+idle(F, closed, stop, bl, true, b3, i) (22
busy (S, closed, down, bl, b2, true, i) -+idle(S, closed, stop, bl, b2, true, i) (23
busy (B, closed, up, false, b2, b3, i)-+idle(BF, closed, up, false, b2, b3, i) (24
busy (F, closed, up, bl, false, b3, i)-+idle(FS, closed, up, bl, false, b3, i) (25
busy (F, closed, down, bl, false, b3, i) -~idle(BF, closed, down, bl, false, b3, i) (26
busy (S, closed, down, bl, b2, false, i)-+idle (FS, closed, down, bl, b2,

false, i) {27
busy (BF, closed, up,bl, b2, b3, i) -+idle(F, closed, up, bl, b2, b3, i) (28
busy (BF, closed, down,bl, b2, b3, i) -+idle(B, closed, down, bl, b2, b3, i) (29
busy (FS, closed, up,bl, b2, b3, i) -~idle(S, closed, up, bl, b2, b3, i) (30
busy (FS, closed, down,bl, b2, b3, i) -+idle(F, closed, down, bl, b2, b3, i) (31
busy (B, closed, stop, false, true, b3, i)-+idle(B, closed, up, false, true,

b3, i) (32
busy (B, closed, stop, false, false, true, i) -+idle(B, closed, up,

false, false, true, i) (33
busy (F, closed, stop, true, false, b3, i) -+idle(F, closed, down, true,

false, b3, i) (34
busy (F, closed, stop, false, false, true, i) -+idle(F, closed, up, false,

false, true, i) (35
busy (S, closed, stop, bl, true, false, i) -~idle(S, closed, down, bl,

true, false, i) (36
busy (S, closed, stop, true, false, false, i)-+idle(S, closed, down,

true, false, false, i) (37
idle(B, d, m, bl, b2, b3, empty) -+busy(f/, d, m, bl, b2, b3, empty) (38
idle (kT, d, m, bl, b2, b3, newbuttons(il, i2, i3, i)) -+ (39
busy(B, d, m, or(bl, ii), or(b2, i2), or(b3, i3),i)
or(true, b) -+true (40
or(false, b) -+b (41

An Improved General Path Order 503

stands at some floor with the door closed, and no more requests are pending (6), (7),
(8). If the cabin stands at some floor with the door closed, and no lights are on, then
the lift waits until new buttons are pressed (9), (10), (11). If the stopped lift is not
requested at its current floor, it closes the door (12), (13), (14), else it opens the door (it
might be open already) and clears the request (15), (16), (17). The lift does not try to
go beyond the basement or the second floor (18), (19). Otherwise the lift stops as soon
as it comes around a requested floor (20) (23). At floors that are not requested
(24) , (27) and between floors (28),..., (31) the lift keeps on moving. A stopped lift
with closed door and no request at the current floor starts going to satisfy some
request at another floor (32) , (37). After each step the lift is looking for new input.
If there is no more input it continues working (38), else it consumes the new input. If
a button il, i2, or i3 is pressed then the corresponding light bl, b2, b3 is set on (39).
This is achieved by the or connective (40), (41).

A.3 What is its Proof of Termination Good for?

Termination of LIFT entails the validity of the principle of rewriting induction for
LIFT. By rewriting induction Fraus [17] formally proved the claim

LIFT R Vi: I n p u t " s t a r t (i) : c o r r e c t .

The proof was supported by the semi-automatic inductive prover TIP [18]. As
LIFT has only trivial critical pairs it is confluent. Confluence entails that the normal
forms c o r r e c t and i n c o r r e c t are semantically distinct, by which from Fraus's
result the safety property follows that the lift never breaks.

LIFT ~ 3i: Input' start(i) : incorrect

So termination of LIFT is essential for the validity of a mechanically proven safety
property.

A.4 Termination of LIFT is Difficult to Prove

We now show that none of the straightforward proof methods is able to prove that
LIFT terminates. More precisely, we show that no termination order which is total
on ground terms, can order LIFT.

Theorem 5. LIFT is not totally terminating.

Proof Let > be a termination quasiorder such that LIFT _ > holds. Assume t3 > BF.
Then one gets the derivation

busy(13, closed, down, false, b2, b3, empty)
~> busy (BF, closed, down, false, b2,b3, empty) (> cl. u. cont.)
>idle(B, closed, down, false, b2, b3, empty) (--~(29)_____>)
>busy(B, closed, down, false, b2, b3, empty) (-*(38)_~>)

which contradicts transitivity and reflexivity of >. In the same way, using Rule (24)
instead of (29), one can show that BF > B leads to a contradiction. So > cannot be total
on ground terms as it cannot order the two constants BF, B in either orientation.

504 A. Geser

Every precedence based order, and every interpretation to a totally ordered set
can only prove total termination. For this reason, all these orders, in particular the
path and decomposition orders with status, the Knuth/Bendix order, and the
polynomial and elementary interpretation orders fail to prove LIFT terminating.

A.5 Construction o f a Suitable Status Component

In order to prove termination of LIFT we are going to construct an interpretation,
[_], and a status, STAT>% such that the induced general path order, >gvo, and the
induced quasiorder >t_] satisfy l>gpor as well as l>[_]r for each rewrite rule
(l---~ r) ~ LIFT.

First we fix the architecture and the syntactic components of the functional
STAT z. According our proof method introduced in Subsection 5.5 we have to put
a pointwise lexicographic combination, where the first component compares top
symbols according to their precedence, and the second component is a status
component dependent on the top function symbol.

STAT>- = a~f (>~ p S T A T ~ = ~ c~ STAT~u~y n STAT~.~b.tton~ c~ STATo>-),e=

STAT~r~ =aef Pt ~start
STAT~usy :aef (PT, P4, Ps, P6, PI, >4' PI, P3, > ~)~ex ~{busy, idle}

STATr>ewbutto~s :aef (P4, PI, PI, P3)l~ ~newbuttons
S T A T ~ = aef (P 1, Pl)z.x I o r

As the precedence we choose
start >preeF, closed, stop, false
start >precbusy ~precidle >p~eccorrect, incorrect
true >prec false
open >p~e~Closed

Below we give a motivation for this choice. I think it is possible to automate
construction of all components but >4.

1. Rules (1) (8) are easily ordered by the precedence. The or-rules (40), (41)
and ordered by the strict subterm property of > opo.

2. For the precedence, b u s y ~p~ec i d l e is a good choice. Not to order b u s y
and i d l e in the precedence would anyway block the comparison. To order
i d i e > prec b u s y instead would order rules (9), (10), and (11) in their reversed
direction, and to order b u s y >p~e~ i d l e would do the same with rule (38).
As rules (9), (10), and (11) and (38) do not change their argument tuple from
the left to the right hand side we may delay ordering these rules until
the last component of the status. There a measure ~/, will order them
(Lemma A.6).

3. The last argument of b u s y (and of i d l e) , i, either remains unchanged, or
decreases by the strict subterm property of >gpo along a rule application. So
we may take as first component in the tuple of status components, the selector
P7 that selects the 7th argument, to be compared recursively by >0vo- This
orders Rule (39).

4. Next observe that in the remaining rules, each button state either remains
unchanged, or changes from t r u e to f a l s e . This change becomes a

An Improved General Path Order

Table 2, Overview of the Status Compar ison

505

Rule >'~prec P7 P4 Ps P6 P2 >~ ~ P1 Pa ~> ~ Comments

(1) (8) >
(9), (10), (11) ~
(12), (13), (14)
(15)
(16)
(17)
(18) (37)
(38) ~
(39) ~
(40) >
(41)

>

>

>

> Lemma A.6
open >prec closed
true >prec false
true >prec false
true >p,ec false
Lemma A.5

> Lemma A.6

by ~ _~ ~> opo

Legend: The table summarizes the justification of l STAT > (>opo) r for every rule l ~ r of LIFT.
Each rule l ~ r is represented by a row, and each component of STAT ~> by a column. The symbols " > "
and " ~ " denote the result of comparison of the component

decrease as soon as t r u e >p,ec f a 2 s e is added to the precedence and the
arguments 4, 5, and 6 are selected in the status component. This handles rules
(15), (16), and (17).

5. In the same way, adding o p e n >p,ec c l o s e d to the precedence, and putting
P2 as next component of the status component, one gets rid of the rules (12),
(13), and (14).

6. The rules (18) (37) are difficult to order. A semantic component is
necessary. We are going to construct the measure r to satisfy l >r for these
(Lemma A.5).

7. The selectors Pl, P3 are added to ensure that STAT ~> is strictly prepared for
the positions 1 and 3 of busy and idle each.

Summarizing, we have argued why every rule is ordered by the improved general
path order. Table 2 gives an overview. Under the proviso that an interpretation [_]
and two measures r 0 will be defined suitably, the following statements can be
made.

L e m m a A.1. S T A T >~ is a status.

Proof Particularly, STAT >~ is strictly prepared for every argument position i of every
function symbol f . Check that the corresponding argument selector Pi occurs in the
tuple restricted by ~ { f , . . . }. For instance, STAT ~> is strictly prepared for (i d l e , 1)
because Pl occurs as last but 2nd component in STAT~usy.

L e m m a A.2. LIFT _~ >opo-

A.6 Choosing an Interpretation

The lift achieves a progress when it approaches its target. On this account the
interpretation has to give enough information to determine this progress. Such
information may be button states, movements, and floors. Values for inputs will be
needed to define measure 0 later.

506 A. Geser

We partition the data domain 9 into carrier sets 9s, indexed by types s, and an
extra element 1 to denote the value of ill-typed, undefined, or irrelevant terms.

9 ~- def 9Floor ~- 9Door -}- 91nput -~- 9Move -~- 9Bool -}- 9State -~ { J- }

We require that I t] e@s + {_1_} if t is a well-typed ground term of type s. As the types
Door and S t a t e are irrelevant for the interpretations, we may define
9Door = ~state = ~ " For the sake of simplicity, we identity elements of 9 with
function symbols, so we obtain

~Floor =clef{ m' BF, F, FS, S},

9Move =def{Up, StOp, down},
~Bool =aef{ true, false},

9~pu t =a~f{empty, newbuttons}.

Accordingly we choose the interpretation

[c] =aofc for every constant c except o p e n and c l o s e d ,
[open] =clef[Closed] =aef •
[newbut tonal (il, i2, i3, i) =aef newbut tons,
[s t a r t] (i) =a~f [busy] (fl, d, m, bl, b2, b3, i) :a~f [i d l e] (fl, d, m, bl, b2, b3, i) : a~f •

true, if y = true,
[o r] (y ,x) =def~X, if y = f a l s e ,

• else.

For simplicity we choose > ~ - a~f = , the equality on 9 . Thus, > E_J is trivially closed
under contexts, for [_] is a homomorphism. Now every rule (1 ~ r) e L l FT except the
or-rules satisfies [/~] = 1 : [ro-] for every ground substitution o-. By the natural
interpretation for o r , the two remaining rules (40) and (41) satisfy [la] =
t r u e = [r o] and [b] = [ba] = [ra], respectively. So we have L I F T _~ ~ [_].

Lemma A.3. (9, = , [_]) is a model of LIFT.

A.7 How to Express "Progress" of the Lift

We are going to develop a measure ~b that yields the "job effort", i.e. some number
that decreases when a step is undertaken to complete the current job.

A good starting point is to think about the rules as an "operational semantics" of
the lift: Each rule expresses a step the lift may do. The task of the lift is to solve
requests. Each step has to mirror some progress towards solution of one of the
requests pending. Intuitively, the lift turns towards a nearest floor (there may be
more than one) whose button is lit, moves to this floor, and stops. If the nearest light
is upstairs, then the lift must change from stop or down to up, and then pass the
floors upstairs. If it is downstairs, then the lift must change its movement from s t o p
or up to down, and then pass the floors downstairs. Thus the lift gets nearer to the
completion of its next job. Fraus [17] constructed ad-hoc a "job completion order"
to formalize this idea, but did not succeed in proving that the job completion order
terminates.

Let ~bs be the constant 0 function, unless f ~ { b u s y , i d l e } . Now let us develop
~b busy =qSidlt In order to calculate with distances, we use a function #:

An Improved General Path Order 507

~Move j- ~Floor ---)" ~'~ to assign numeric values to movements and to floors.

u p = l , # s t o p = 0 # d o w n : - - 1

B = 0 , # B F = I , # F = 2 , # F S : 3 , # S = 4

If any button is lit, i.e. if(bl, b2,b3) # (f a l s e , f a l s e , f a l s e) holds, then the lift
should consider one of the requested floors as its next target. Otherwise, as we will
argue below, the lift pretends as if it had a set of"virtual" targets. Anticipating this
exceptional case, the set of targets to the lift is given by the function

target s: 93ooi x ~Move -* ~(~Floor)

defined by

t a r g e t s(bl, b2, b3, m) = def

{B}, ifm = down a n d b l = b 2 = b 3 = f a l s e ,

{B, S} i f m = s t o p a n d b l = b 2 = b 3 = f a l s e ,

{s}, i f m = u p a n d b l = b 2 = b 3 = f a l s e ,
{Blbl = t r u e } u {Fib2---- t r u e } to {s[b3 = t r u e } , else.

We may expect that the lift has a certain notion of distance to tell which floor it
prefers. The lift should turn and then move towards some preferred floor in the
target set. Next we are going to define such a distance.

Assume given the ordinary case (bl,b2,b3) # (f a l s e , f a l s e , f a l s e) for the
moment. Let ft denote the floor where the lift cabin is, and f l ' 6 t a r g e t s (b l , b 2 ,
b3, m) some target floor where the lift may try to go next. The lift gets nearer to this
target if it decreases the distance to it. Naively the distance between floors is given by
the expression I#fl - #fl ' I. This is o.k. if the lift has stopped. However a view at rules
(24) (31) shows that a moving lift obeys quite a different metric.

Example 11. We would like to validate the inequation

busy (BF, closed, up, true, false, false, i)

~>~ idle(F, closed, up, true, false, false, i)

for Rule (28). According to our intuition only the basement can be the target of the lift.
Strangely the lift does not turn downwards but continues moving up, although it thereby
increases the naive distance l# BF -- # B[= 1 < 2 = [# F -- # B I. Finally arrived at the
second floor, the lift will of course turn down and will then go back to visit the basement
floor.

As the rules impressively show, when the lift moves it always prefers to keep
moving. A distance measure that decreases at each step of this travel essentially has
to express the length of the travel. For this purpose it must consider floors in the
back of the lift more distant than any in front. This leads to a move-dependent
function

dist : 92Floor X ~Move ---~ {0 , . . . , 7},

defined by

l # f l - # s l + l # s - # f l ' l , if re=up and # f l ' < # f l ,
dist(fl, fl',m)=aef I#fl--#BI + I # B - # f l ' l , if m = down and # f l < # f l ' ,

{#fl - #fl'l, else.

508

Table 3. Table of Measure Values

A. Geser

(bl, b2, b3)
m fl

000 001 010 011 100 101 110 111

B 1 14 8 8 1 1 1 1
BF 3 17 11 11 3 3 3 3

down F 6 20 1 1 6 6 1 1
FS 9 23 3 3 9 9 3 3
S 12 1 6 1 12 1 6 1
B 0 13 7 7 0 0 0 0
B? 4 10 4 4 4 4 4 4

s top r 7 7 0 0 7 7 0 0
FS 4 4 4 4 10 4 4 4
S 0 0 7 0 13 0 7 0
B 12 12 6 6 1 1 1 1
BF 9 9 3 3 23 9 3 3

up FI 6 6 l i 2 0 6 i i

Ps 3 3 11 3 17 3 11 3
s 1 1 8 1 14 1 8 1

Legend: Table of values of

min {3*dist (fl, fl',m) + or ient (fl, fl',m)lff etargets(bl , b2, b3,m) }

listed for all well-typed fl, m, and triples (bl, b2, b3). Triples are abbreviated as three-character strings
where 0 = f a l s e , 1 = t rue . For example, 001 stands for (f a l s e , f a l s e , true).

N o w indeed the dis tance to the neares t f loor in the n o n e m p t y ta rge t set decreases for
all rules (24) , (31) and all t r iples (bl, b2,b3) # (f a l s e , f a l s e , f a l s e) .

F o r the rules which handle a s topp ing (18) , . . . , (23) and s tar t ing (32) (37) of
the lift, the lights and the f loor do not change. F o r these rules by defini t ion the
d is tance remains unchanged. I t is the change of movement tha t decreases. If the
express ion #f l - # f l ' is posit ive, then the lift is loca ted above its target , and it has to
go down. If the express ion is negative, then the lift is below, and it has to tu rn
upwards . In the case of zero, it has reached the ta rge t floor, and it should stop. Now,
consider the express ion s i g n (# f l - #f l ') + # m where m denotes the m o v e m e n t of
the lift, and s i g n is the funct ion tha t re turns 1 for a posi t ive a rgument , 0 for zero,
and - 1 otherwise. The bet ter the lift is or ien ted towards its target , the less is the
abso lu te value of this expression. W e model , therefore, a funct ion

2 o r i e n t ' ~ H o o r X ~Hove-~ {0, 1,2},

defined by

o r i e n t (f l , fl', m) =defl s i g n (# f l -- #f t ') + # m I.

As can be checked, the rules (18) (23), and (32) , . . . , (37), decrease the express ion
o r i e n t (f l , fl', m) for the nearest f loor fl'. In total , the pa i r

(d i s t(fl, fl', m), o r i e n t (f l , i f , m))

An Improved General Path Order 509

lexocographical ly decreases for some nearest floor fl', for all rules (18), . . . , (37), and
triples (b l ,b2 ,b3)r f a l s e , f a l s e) of bu t ton lights. In order to work
with g = N and > ~ = > , the pairs are replaced by the o rder - i somorphic expression

3 * d i s t (f l , fl', rn) + o r i e n t (f l , fl', m).

N o w let us consider the exceptional case bl = b2 = b3 = f a l s e . This case can
happen for the rules (18), (19), and (24) ,(31). Al though the lift is requested
nowhere, it does still move, and this way undergoes some rewrite steps. We claim
that these can be only finitely many. To explain the s trange behav ior of the lift, we
assume a "vir tual" target, B if the lift moves down or stops, and S if it moves up or
stops. So we adop t the same measure as above, but select o ther fl'.

All this expertise abou t lifts can be coded in the measure r p rovided that
all its a rguments are well-typed, i.e. fl E ~m d ~ ~D m ~ ~M b 1, b2, b3 e ~Boo~
hold.

4)busy(fl, d, m, bl , b2, b3,/) =aef

(~2dle(ft, d, m, bl , b2, b3, i) = a a

m i n { 3 , d i s t (f l , fl',m) + orient(f l , fl',m)lfl' e t a r g e t s (b l , b2, b3,m) }

Call a subst i tut ion a : f ~ Y well-typed if [f l a] e~F~ [ma]e~M and
[b l a] , [b2a] , [b3a] ~Boo~ hold. Then we have the following result.

L e m m a A.4. For every well-typed ground substitution o - : f ~ N J ' , and every rewrite
rule

b u s y (/ l , �9 �9 �9 17)~ i d l e (r 1 , r7)

in (18) , (37) of L I F T , the value of 4) strictly decreases:

C b u s y ([l l ~] [17G]) >,4)id~e(Er~] , [rT~])

Proof. This can easily be checked for each triple ([b la], [b2a] , [b3o-])e ~ooz , using
Table 3.

A.8 Typing Issues

To this point, we pre tended as if terms were always well-typed. In fact one must be
aware of ill-typed terms as well, because te rminat ion is claimed for every rewrite
derivation, not only for well-typed ones. And ill-typed subst i tut ions m a y int roduce
ill-typed values. While this is no p rob lem for the syntactic components , the measure
function defined above is not aware of ill-typed substitutions.

Example 12. Let the ground substitution a:~Y--~ fY~-- be given where
[b2a] : c o r r e c t , [b3a] : up, [ia] : s t o p hold. Obviously, a is not well-typed.
Now consider the proof obligation for Rule (24).

cbusy(B, closed, up, false, correct, up, stop)

>~ 4)idle(BF, closed, up, false, correct, up, stop)

The definition of r bu~y above is not prepared to handle this case: The crucial expression
targets(false, correct, up, up) turns out meaningless.

510 A. Geser

How can q5 b~sy be extended for all-typed arguments? There is surprisingly a very
simple answer. We only have to assume, for each domain ~ , a >~-monotonic
coercion function s (_ : : ~) : ~ - - , ~ such that (d : : ~) = d holds whenever d e ~ .
Before the measure is applied, every object is mapped to the desired domain. Thus
the case of ill-typed arguments is reduced to the case of well-typed ones. We need not
even mention which coercion functions we actually use.

Definition A.1 (The measnre function (bb~Y). Let
~bb~y, ~bidle : ~ 7 ~ g are defined by

where

@% ~>~)=d~f(N, >). Then

qSbusy(dl , dr) =aef

qSial~(dl d7) =def

min{3* d i st(fl, fl', m) + e r i e n t (f l , if, m)lfl'e t a r g e t s(bl, b2, b3, m)},

Example 12
(c o r r e c t ::~Bool) = f a l s e and (up::@BooJ = t r u e . Then
r = 12 > 9 = r

By Lemma A.4, the following is immediate.

Lemma A.5. 1 > r holds for every rewrite rule l ~ r in (18) (37).

fl = (d l ::~Floor), m = (d3::~Move),

bl=(d4::~Bool), b2=(ds::~BooJ, b3=(d6::~Bool).

(Continued). Suppose we choose the coercion mappings such that
we have

A.9 Finish of the Proof

To order the remaining four rules (9), (10), (11), and (38), we define a measure
function O by

0, if (d7::@znpu,)= e m p t y
@bu~v(dl ,d7) =dee 1, else

1, if (d7::~nput)= e m p t y
~tidle(dl, '", dT) :def 0, else

As codomain for O we may take 1 > 0. The induced quasiorder > o then satisfies the
following.

Lemma A.6. l >or holds for every rewrite rule l-~ r in (9), (10), (11), and (38).

Now all obligations for the termination proof of LIFT are solved.

Theorem 6. LIFT is a terminating term rewriting system.

Proof. We have proven that LIFT _ >0poC~ >t-I (by Lemma A.2 and Lemma A.3,
resp.), that (~, = , []) is a monotonic interpretation (by Lemma A.3), and that STAT >~
is a status for > t-I (by Lemma A.1). By Theorem 1, the claim follows.

s If >~ is wellfounded then such a coercion function always exists. Define (d::9~) : d' where d' is
the smallest element in 9s for which d >~d'.

An Improved General Path Order 511

Conclusion of the Case Study

We have introduced Ulrich Fraus's term rewriting system LIFT, consisting of 41
rewrite rules, modelling a simple lift control. We have proved that L IFT is
a terminating rewrite system, and thus demonstrated the improved general path
order introduced in the main part. L I FT is not totally terminating, so no precedence
based order or interpretation to a totally ordered domain is able to order LIFT.

Although we have no evidence that our ~>opo is strictly more powerful than
Dershowitz/Hoot 's or Kamin/L6vy's orders, we feel that they are not able to support
our proof idea. Kamin/L6vy's semantic path order fails because a semantic compari-
son, > r is needed after the recursive call for the 7th argument. Dershowitz/Hoot 's
general path order fails because neither > r nor ~r can be a quasimodel of LIFT. To
witness, Rule (39) satisfies l~r for the ground substitution a defined by
b l a = b2~ = b3a = i l~ = i2a = f a l s e , i3~ = t r u e , f la = B, m~r = down, as we
have r = 1 <~14 = r

We leave it open as a challenge to order L IFT by any other known termination
proof method for non-total termination, like e.g. transformation order [4] or
semantic labelling [-37]. Semantic labelling, followed by a recursive path order with
status, lacks the same weakness as the semantic path order.

The ability to prove termination for term rewriting systems is of basic import-
ance if one is interested in program verification based on rewriting methods.
Termination is the access key to confluence and to automated inductive proofs of
equalities. By these in turn one can prove safety conditions of distributed systems.
The LIFT case study shows that, and how, it can be done.

