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Consider the following program(Turing’s program): 

r=1,u=1 

while r≤n : 

  v=u 

  s=1 

  while s≤r: 

   u=u+v 

   s=s+1 

  r=r+1 

 

 

 

Note: Recall that termination of this program can be shown by 

induction on both outer and inner loop 



Defined as followed, for non-negative integers: 

a(0,n)=n+1 

a(m,0)=a(m-1,1) 

a(m,n)=a(m-1,a(m,n-1)) 
Ackerman function is increasing rapidly, for example: 

 



 We shall prove that ackerman function terminates , using 
double induction.  

Base case: termination of a(0,n): for all            a(0,n)=(n+1). 
Step:  Assume some             and assume that a(m,n) is 

terminating for all           , we’ll prove that a(m+1,n) is 
terminating as well. 

 We will do this by inner induction on n.  
    If n=0, then we have a(m+1,0)=a(m,1) which is terminating 

by the hypothesis.  
    Assume n=n'+1, then we have a(m+1,n)=a(m,a(m+1,n')).  
    By the inner induction hypothesis, a(m+1,n') is terminating 

with some value x, thus a(m,a(m+1,n'))= 
 a(m,x), which terminates by outer induction hypothesis. 
 



A(m,n): 

 Init-stack(s) 

 push(m,s) 

 while not_empty(s)  

  m=pop(s) 

  if m=0  

   n=n+1 

  else 

   if n=0  

    n=1 

    push(m-1,s) 

   else 

    n=n-1 

    push(m-1,s) 

    push(m,s) 

Return n 
  

 

 

 

We will prove termination of 
this implementation later 
today , using multiset orderings 



 Definition: We will say that a binary relation, R, is a 
partial order over a set A, if R has the following 
properties: 

 

 R is irreflexive 

 

 R is asymmetric  

 

 R is transitive 

  



    Let A be a set and R be a binary relation over it, 
    If R is partial-order over A, and there is no infinite 

descending chain of elements in A (descending in the 
meaning of the relation R), we will say that (A,R) is well-
founded. 

 
Examples: 
(N, >)       :    if k is the first element in the descending chain,          

        then the chain contains at most k elements.   
(Z-, <) 
(Finite Trees , sub tree) 
(NxN, lexicographic)      -will be defined in the next slide 



There are few ways to compare between tuples of 
elements: 

                                              

 

-Lexicographic: (a,b)>(a’,b’) if and only if 

 

-Component-wise: (a,b)>(a’,b’) if and only if 

 

-Reverse Lexicographic: (a,b)>(a’,b’) if and only if 

 

 



 If v and w are well-founded, then their pairs VxW are 
well-founded lexicographically. 

 

Proof: 

Assume by contradiction that VxW are not well-founded 
lexicographically, then there exists an infinite chain 

  

Hence, either V or W has an infinite descending chain of 
elements, making it not well-founded, contradiction. 

 



In the next slides we will prove termination of programs 
using well-founded orderings.  

But how? 

The idea is to find a well-founded set and a termination 
function, that maps the value of the program variables into 
that set, such that the value of the termination function is 
repeatedly decreased throughout the computation. Since, 
by the definition of the set, the value cannot decrease 
indefinitely the program must terminate.  

 

Program Well-founded Set 



a(0,n)=n+1 

a(m,0)=a(m-1,1) 

a(m,n)=a(m-1,a(m,n-1)) 
 

Termination proof: 

We will use the pair (m,n) from the definition above, 
with lexicographic ordering. Both m and n are natural 
numbers, therefore                      ,which is well-
founded. With each phase of the function, the 
lexicographic value of the tuple decreases 
termination is guaranteed. 



We will choose (n-r,r-s) as our pair, 
with lexicographic ordering. 

With every iteration of the inner 
loop , s is incremented, until s=r, 
hence r-s decreases(while n-r is 
static), so the couple value will 
decrease. 

With every iteration of the outer 
loop, r is incremented, until n=r, 
hence n-r decreases(in this case, 
we don’t care that r-s increased, 
since the pair is ordered 
lexicographic), therefore the 
couple value will decrease 

Hence, the program will terminate. 

 

r=1,u=1 

while r≤n : 

  v=u 

  s=1 

  while s≤r: 

   u=u+v 

   s=s+1 

  r=r+1 

 

Recall Turing’s program from the beginning of the lecture 
 





 Input: a series of marbles, colored red, white and blue, 
placed side by side in no particular order: 

 

 

 

 Output: the marbles sorted according to the Dutch 
flag(more or less ): 



White,Red  Red,White 
Blue,Red  Red,Blue 
Blue,White  White,Blue 
 

The above rules may be applied in any order and to any pair of 
marbles matching a left-hand side of a rule. 

The first rule, for example, states that if anywhere in the series 
there is a pair of marbles, the left one white and the right one 
red, then they should exchange places. 

Clearly, if no rule can be applied, the marbles are in the desired 
order. 

The only thing we need to assert is that the above program 
terminates. 



We will show termination of this program using a well-founded ordering. 

We will use the binary relation between colors, defined as: 

Blue>White>Red. 

First, note that this relation is exactly the opposite of the desired order, in order to 
guarantee that our program value decreases with each phase. 

Clearly, the above relation is well-founded. 

Assume we have n marbles, we will map them to an n-tuple of colors, for example, 
the following order from the previous slide:  

 

 

Will be mapped to the tuple (B,R,W,W,R,B,R), 

 

Note that, for any rule of the program we apply, the tuple value will decrease 
lexicographically.  

Since the tuple can’t decrease indefinitely, termination is guaranteed. 



 For a given partially-ordered set (S,>), where S is a set of 
elements, and “>” is a relation on S, we denote by M(S) the set of 
all finite multisets with elements taken from the set S. (note that 
unlike a regular set, a multiset may contain the same element 
more than once). 

 For a partially-ordered set (S,>), we will define a multiset 
ordering >>, on M(S), defined as follows: 

 M>>M’ if and only if there exists                    , where  
 

 In other words, we will say that M>>M’ if and only if  M’ can be 
achieved from M by the removal of at least one element, and 
replacing them by a finite number of elements- each of which is 
smaller than one of the elements that were removed. 

   



 Example: Assume S=N, with the regular binary relation 
“<“ 

Then , the following holds: 

 {0,1,2,3,4}<<{5} 

 {5}<<{5,5} 

 {2,3,4}<<{1,2,3,4} 

 {5,6,7}<<{1,3,8} 



 

Konig’s Lemma:  If G is connected graph, with infinite many of 
vertices, such that every vertex has a finite degree (degree of a 
vertex is defined to be the number of edges to other vertices), 
then G contains an infinite long simple path. 

 

Proof: We will show that there exists an infinite sequence of 
vertices,                        such that: 

-      is the root node 

-          is a child of  

-each          has infinitely many descendants 

It will follow that                      Is such a simple path of infinite 
length. 

 

 



Choose some       arbitrary, by definition it has a finite number of children. 

Suppose that all of these children had a finite number of descendants, 
then that would mean that       had a finite number of descendants, 
making G finite. 

Hence , there exists some     , such that      is a child of      , and       has 
infinite many descendants. 

We’ll continue in the same fashion from       , creating an infinite long 
path. 

 

One of these  has an infinite many 
of descendants 

… 



 Theorem : The Multiset ordering (M(S),>>) over (S,>) 
is well-founded if and only if (S,>) is well-founded. 

Proof: 

Assume (S,>) is not well-founded, we will show that 
(M(S),>>) is not well-founded by showing an infinite 
decreasing chain. 

Since (S,>) is not well-founded, there exists an infinite 
long decreasing sequence of elements:  

The sequence                                     forms an infinite 
descending sequence of elements in M(S), therefore 
(M(S),>>) is not well-founded. 

 



Assume that (S,>) is well-founded. And let                      , 
such that x is a new element (meaning          ), and: 

                    ,clearly, (S’,>) is well-founded.  

Suppose by contradiction that (M(S),>>) is not well-founded, 
therefore there exists an infinite descending sequence 

 

    We will construct the following tree:  

     Each node in the tree is labeled with some element of S’, at each stage of 
the construction , the set of all leaf nodes in the tree forms a multiset in 
M(S’). Begin with a some root node, and define his children to be all of the 
elements in M1 (for example, assume M1={6,7,8}), after the first step our 
tree will be: 

     

6 7 8 



 Since                  ,then for every element ‘u’ in       , which is not in       , there 
exists an element  ‘v’ in       such that v>u, we will set u as the child of v.  

In addition, grow a child  x (the new added element) from each element v, that 
grew a new child, u.  

Note: If there are no new elements in        (which are not in       ) , then that means 
that we simply “deleted” some elements from        in order to get       , then 
simply grow a child x from each deleted element. 

For example, if       ={6,7,8} as before, and       ={2,5,5,6,7} than our tree may look 
like: 

7 8 6 

2 5 x 5 6 x 7 x 



We’ll repeat this process with       ,        and so on… 

Clearly, the number of children (degree) of each node is finite. 

Since at least one node is added to the tree for each multiset             
(x) and there are infinite         , the tree is infinite.  

But by Konig’s Infinity Lemma, an infinite tree (with a finite 
number of children – degree, for each node), must have an 
infinite path.  

Therefore our tree contains an infinite long simple path. 

 But notice that any path in the tree is decreasing (the value of the 
nodes) There exists an infinite decreasing chain of elements in 
S’ , which is a contradiction, since S’ is well-founded. 

Hence, (M(S),>>) is indeed well-founded. 



Let’s recall the Ackerman function computation using a stack: 

A(m,n): 

 Init-stack(s) 

 push(m,s) 

 while not_empty(s)  

  m=pop(s) 

  if m=0  

   n=n+1 

  else 

   if n=0  

    n=1 

    push(m-1,s) 

   else 

    n=n-1 

    push(m-1,s) 

    push(m,s) 

Return n 

 

 



We will use a multiset of tuples                               , which are 
compared lexicographically. 

We will have an amount of tuples, that is corresponding to 
the amount of elements in the stack at that time, for 
example, if the stack is                 , where      is the top of the 
stack ,then our tuple-multiset will be: 

                                    ,note that these tuples are well-founded, 
since any “     “ can only descend to a natural number. 

We will show that for each phase of the loop, the multiset 
value is decreasing, that will guarantee termination. 

 

 



We’ll look at some iteration of the loop:  

First, we pop some element m, thus, we 
remove the element (m,n)  from the 
multiset. Assume                                   is 
the multiset, before the loop iteration. 

If we use the first “if” branch, then 
afterwards, our multiset will be                  
, since we “popped” m from the stack, 
meaning removing (m,n) from the 
multiset (and pushing nothing in 
return). Since                               ,our 
multiset decreased. 

If we use the second “if” branch, then 
afterwards, our multiset will be                            
which is of course <                              ,   
since (m,0)>(m-1,1). 

If we use the third “if” branch, then 
afterwards, our multiset will be 

                                                     ,and it is 
smaller  than                                       
,since both (m,n)>(m,n-1) and  

                                      . 

A(m,n): 

 Init-stack(s) 

 push(m,s) 

 while not_empty(s)  

  m=pop(s) 

  if m=0  

   n=n+1 

   

 

  else 

   if n=0  

    n=1 

    push(m-1,s) 

   else 

    n=n-1 

    push(m-1,s) 

    push(m,s) 

         Return n 

 

In any case, our multiset decreased 



 We now turn to consider nested multisets, by which we 
mean that the elements of the multisets may belong to 
some base set S, or may be multisets of elements of S, or 
may be multisets containing both elements of S, and 
multisets of elements of S, and so on… for Example: 

{ {1,1}, {{0},1,2}, 0} is a nested multiset. 

Formally, a nested multiset over S is either an element of S, or 
else it is a finite multiset of nested multisets over S. 

 We denote by M*(S) the set of nested multisets over S. 



Now, we shall define a nested multiset ordering >>*, on 
M*(S), it is a recursive version of the standard multiset 
ordering. 

We will say that M >>* M’ if one of the following holds: 

-                , and M>M’ by the regular relation “>” over S. 

-                        – meaning that any multiset is greater 
than any element of the base set. 

-                  , and                            where                       , 
and the following holds:                              , and  

 



 Examples: 

 {{1,1},{{0},1,2},0} >>* {{1,0,0},5,{{0},1,2}, 0}, since {1,1} 
>>*5,0,{1,0,0} 

 {{1,1},{{0},1,2},0} >*> {{{ },1,2},{5,5,2},5} , since   {{0},1,2} 
>>* {{ },1,2} and of course {{0},1,2} >>* {5,5,2}, 5. 

 Let            denote the set of all nested multisets of 
“depth” i. In other words,                 ,and             
contains the multisets whose elements are taken from  



Property: 

For two nested multisets, M and M’, if the depth of M is greater than the 
depth of M’, then M >>* M’ 

 Proof: 

We will prove this property by induction on the depth of M. It clearly 
holds for depth 0. 

For the inductive step, assume that nested multisets of depth i are greater 
than nested multisets of depth less than i, we must show that nested 
multiset M of depth i+1, is greater than any nested multiset M’ of 
depth<i+1 . 

If the depth of M’ is 0,                          , so M>>*M’ is by definition. 

Therefore assume the depth of M’ is k, where 0<k<i+1, then each element 
in M’ is of depth < i . M, on the other hand, is of depth i+1, therefore 
must contain an element, x, of depth i, by the induction hypothesis, x, 
is greater than every element in M’, it follows that M>>*M’. 

 

 

 



Theorem: The nested multiset ordering (M*(S),>>*) 
over (S,>) is well-founded , if and only if (S,>) is well-
founded. 

Proof: 

Assume (S,>) is not well-founded, then there exists an 
infinite chain of descending elements in S,  

    This exact sequence is also an infinite descending 
sequence of elements in M*(S) with >>*, therefore 
(M*(S),>>*) is not-well founded. 



If there exists an infinite descending chain                                    ,and           
depth is k, then all               are of depth ≤k (by the property we proved) 

Therefore ,there exists some  0<i≤k such that there is an infinite 
descending chain of M’s in depth i, therefore if we prove that           is 
well-founded, for all i, it follow that M*(S) is well founded. 

Hence, we shall prove prove that            is well-founded by induction on i.  

   If i=0, then                                , which is well-founded. 

    Therefore, assume that                          is well-founded, for every j<i. 
Note that every element of            ,is a member of the union                    

                                    ,by the induction hypothesis, each of these              is 
well founded under >>*, therefore, their union is also well-founded 
under >>*.  

    Since the ordering >>* on two nested elements in             is exactly the 
standard multiset ordering (that we showed before) over the above 
union, and since a multiset ordering is well-founded if the ordering on 
the elements is (proof in slide 24) , it follows that              is also well-
founded under >>*. 



 
The Goodstein sequence (named after Reuben Goodstein) , 

G(m), of a natural number m, is a sequence of natural 
numbers. 

The first element in the sequence G(m) is m itself. 
To get the next element in the sequence, write m in 

hereditary base 2 notation, change all the 2’s to 3’s, and 
then subtract 1 from the result. To get the third element of 
G(m), write the second element in hereditary base 3 
notation, change all 3’s to 4’s, and subtract 1 again.  

Continue in this fashion to get the complete sequence, once 
element 0 is reached, the sequence terminates. 

  



Let’s look at G(3): 

Value Hereditary 
Notation 

Base #Element 

3 2 1 

3 3 2 

3            4 3 

2 5 4 

1 6 5 

0 7 6 

01 22 

101 3133 

01 4*314 

00 5*215*3 

000 666*2 

170 



G(4): 
4,26,41,60,83,109,139,173….1058,1151,1222,1295….3407,1111
5,11327…,40492,40985,…,154349,162129585780031489,16
2129586585337855,                       …,2,1,0 

 

Claim: Every Goodstein sequence eventually terminates 
at 0 (Reuben Goodstein himself proved it at 1944). 

We will prove it using nested multisets. 



Consider the following Nested Multiset bag for each element in the 
sequence: 

First, we will define a set, who contains the following elements: 

For each number in the sequence, write it in the corresponding 
hereditary base, as a sum of powers (just as we did). 

We’ll show how to map every element of the sum to an element in 
the above set:  

Assume the current base is k, and look at some element in the sum:                    

          ,this element maps to m sets, each containing the element l 
(note that the power l, may also be an element with base k, in 
this case , the element will be mapped to a nested multiset). 

 

Don’t Worry, an example is on the way ! 

 

 

 



Consider our first element is 19, which is  

The multiset for this element, will be : { {{{1}}},{1}, 1 } 
 {{{1}}} =        , why? 
        , “opens” a set with k in it 
But k is           , then a new set is opened 
With       in it, then a new set is opened 
With 1 in it , hence {{{1}}} is the corresponding bag! 
{1}=     , since     , is as defined, a set with 1 ,meaning {1}. 
In the case of the simple “1”, it is simply mapped to 1. 



Corresponding 
Nested 
multiset 

Value Hereditary 
Notation 

Base #Element 

{{1},{}} 3 2 1 

{{1}} 3 3 2 

{{},{},{}} 3            4 3 

{{},{}} 2 5 4 

{{}} 1 6 5 

{} 0 7 6 

01 22 

101 3133 

01 4*314 

00 5*215*3 

000 666*2 

170 

Let’s look back at G(3) , with the corresponding nested multiset to each 
element: 



Note that, if we wouldn’t subtract 1 at each phase, then 
for all elements in some sequence, their nested 
multiset would be exactly the same!  

But since we decrement 1 at each phase, the nested 
multiset will decrease. 

Hence, the sequence will terminate (with {}=0). 


