
Handling the growth by
definition of mechanical languages*
by SAUL GORN
The Moore School of Electrical Engineering
University of Pennsylvania
Philadelphia, Pennsylvania

INTRODUCTION
It has for many years been my opinion that program
ming languages in particular, and mechanical lan
guages in general, exhibit many phenomena generally
thought to be characteristic of natural languages.

The concept of mechanical language, in my mind,
includes all sorts of notational and signalling systems,
whether one-dimensional or multi-dimensional, se
quential or simultaneous acting, continuous or dis
crete, descriptive or prescriptive; it is also supposed
to subsume a vast variety of recording media subjected
to a vast variety of sensing devices (including biolog
ical as well as physical), with a vast variety of per
manence characteristics, reaction times, storage
arrangements in space-time, retrieval devices,
coupling, coding, and translational processors.

Thus musical and choreographic notations are me
chanical languages, as are structural formulae nota
tions in chemistry, nucleotide chain diagram sche
matics in genetics, parsing tree and other phrase mark
ing systems in linguistics, and mechanical drawing,
wiring diagram, block diagram, production control
charts and organization chart systems in industry.
So are cataloguing, inventory and accounting systems,
whether used in industry, commerce, war, govern
ment, or religion. I would even include notations and
arrangement systems for monuments and their
contents.

*The Research behind this paper was made possible by the joint
support of the Army Research Office (DA-31-124-ARO(D)-98),
the National Science Foundation (NSF-GP-5661), and the Public
Health Service Research Grant (5 ROl GM-13,494-02) from the
National Institute of General Medical Sciences. It was presented
in a preliminary report at the Systems and Computer Science
Conference, University of Western Ontario, London, Ontario,
September 10 and 11, 1965, and the proofs of the theorems and
the presentation of the processors discussed here appear in the
Proceedings of that conference, under the title "Explicit Definitions
and Linguistic Dominoes."

The time scales and space scales therefore vary
from milli-microseconds to millenia, from microns to
light years; the adaptation of devices (from artifacts
to specially educated humans) working in different
time scales, different transfer rates, different reaction
times, with different signalling languages, and the
logic of their system assembly, even apart from adapt
ability in time, is part of the problem of the study of
mechanical languages.

The more successful a mechanical language (sys
tem) is in its ease of specification for many different
types of areas, and in its adaptability among different
kinds and levels of artifacts and humans (i.e. pro
cessors), the denser will be its usage for communi
cation among men, among machines, and between
men and machines. It will therefore tend to 'grow,'
to reach for 'universality' as a 'common language.'

An example of such a trend appears if one looks at
the history of mathematical notation. As long as very
few people operated with numbers (as abstracted
from things) the notations for numbers were primitive,
but stable; so stable that they lasted for millenia.
Only a specialized historian would have been able to
perceive their process of change. The urban revolution
increased their usage, and therefore their rate of
change; their stability was reduced from millenia,
to centuries, to decades. The arithmetic notation
expanded into the arabic number representation lan
guage, but the users could still deceive themselves into
crediting the changes to ingenious individuals rather
then recognizing them as part of a social phenomenon.
This continued even into the development of algebraic
notation and its growth into a notation for analytic
expression. But when the notation grew to include
symbolic logic and operations with sets, and the appli
cations spread through all the sciences and profes
sions, the contributions to the structure of the mechan-

213

Spring Joint Computer Conf., 1967

ical language became too numerous to be anything but
anonymous, and therefore social. Furthermore, the
logical operations became devices by which the lang-
guage itself could be examined; the human activity
became self-conscious, and the language became self=
referencing and capable of operating, in the same
fashion, many meta-syntactic levels (I have called
such, 'languages with unstratified control'). The
tendency is now for this mechanical language with
its descriptive precision and its ability to analyze so
much one-dimensional symbol manipulation to fuse
with programming languages with their prescriptive
precision and their ability to synthesize so much of
the processing of that same area of one-dimensional,
and even multi-dimensional symbol manipulation.

Thus, different mechanical languages may therefore
uviuGigo fusion as time goes on.

But a particularly successful language will also
tend to reflect the behavior of the human community
by undergoing fission by splitting into dialects, even
separate languages. This will surely happen if the
using community splits into groups which seldom
intercommunicate, and each of which restricts itself
to a favorite subsystem of expressions; this will first
be a jargon, then a dialect, then a separate language.
In programming, these jargons are favorite systems
of macro-instructions, introduced by the very macro-
definition facility which made the base language so
flexible and 'universal'.

In any event, we are now more and more concerned
with growing languages, extended machines, growing
machines, self-expandable languages, user-expandable
languages and the like. (See Cheatham,3 Carr,2

Otrand15 and Galler & Perlis.7)
How are we to control the growth?
If it is completely uncontrolled and is allowed to

'just grow', such a man-machine, multi-lingual and
multi-levelled processor and language system can
die either by choking on the sheer bulk of what it
swallows without rejecting or reforming, or it can die
by committing mitosis, giving birth to a number of
independent such subsystems with practically no
intercommunication among them.

However, a natural control of the growth of such
a system will have to be the result of continuing and
never-ending work by hundreds of people. Each one
will have to be able to refocus his attention from the
grandiose to the picayune when necessary, without
losing sight of the big picture. It is impossible to say
whether it is the big wheel or the tiny wheel in such a
system which is really connected to the ground. The
same remark applies to the people in it.

Therefore, this paper will attempt only to suggest
how such growth may be understood and controlled,

while restricting itself to a very special category of
mechanical languages with a very strong structure,
and which grows by a very limited means called
'explicit definition'.

Categories and forms
Let me illustrate the category of languages to which

we are limiting our discussion by tracing one simple
algebraic expression through a number of its lan
guages. We do this not merely to show how general
our considerations are, by illustrating how big the
category might be; we do it because the category is
a fusion of many languages, rather than only a set,
and those concepts and devices are to receive special
attention which have a correspondent in each language
of the category.

Consider, then, how the simple algebraic expression
'ab + b(c+d)', belonging to a one-dimensional language
with which most of us are very familiar, transforms
into seven other expressions. (See fig. 1).

It is the comparison among corresponding expres
sions in different languages of the category which
prompts us to make the following decisions:

1. there is an alphabet of 'objects' which includes
symbols like a,b,c,d,+, and something called
'times', even though examples 1 and 3 have no
separate symbol for it, and even though examples
2", 4 and 8 represent it by X, where 5, 6 and 7
use *.

2. there is an alphabet of 'context signals', much
more concerned with 'how' the expressions are
to be read than with 'what' they contain, and
consequently more variable among the languages
of the category. Examples are parentheses,
punctuation marks, connecting lines, and tabu
lation lines. These are 'control characters'.

3. there is an 'addressing system'; only the object
characters have addresses; control characters
only help us to find these 'addresses', but are not
themselves assigned addresses. The corres
ponding objects in the corresponding expressions
have the 'same' addresses.

We therefore say that we really have a category of
'language functions', each applicable to many '(object)
alphabets' to form the languages in the category. The
control characters are really the marks belonging to
the language functions, and often are replaced by,
or replace, the scanning process.

Thus we might call the 'common' alphabet used here
*f = {a,b,c,d,+....}, the language functions ^Tt»d,
F, ?, and •* to correspond to expressions 2,4,5,6,7,
and 8. Thus the tree in 2 belongs to the language
X*. If symbols from logic form an object alphabet
a = (v> \ ~, 3 , =, P, q, r....}, then DpDqp might
be an expression from the language s» m

Handling The Growth By Definition Of Mechanical Language* 215

1. - ab + b(c + d)

lef t - to-r ight ;precedence to multiplication

2 . -

0 / X I

X X

0 / \ i 0 / X I

b b

0 / X I

Tree form

3 . - (d + cb) + (ba)

r ight- to- lef t ; precedence to +

4. -

add re s s

*

0

1

0 0

0 1

1 0

11

1 10

1 1 1

charac te r

+

X

X

a

b

b

+

c

d

Function tabulation

5. - + * * a b b + c d (Depth)

6 . - + (* (a , b) , * (b , + { c , d))) (Functional)

7. + * a b * b + c d (P r e f i x)

8. * , + ; 0 , x ; l , X ; 0 0 , a ; 0 1 , b ; 1 0 , b ; l l , + ; 1 1 0 , c ; l l l , d . (Address mapping)

Figure 1 — Corresponding
languages of a

The two-dimensional language functions seem to
have some advantages in human communication
(e.g. d and T in 2 and 4); those, like 4 and 8, which are
explicit about the mapping from addresses to chara
cters, seem to have some advantages when we seek
to establish a mathematical theory; those like <?d,
&, and P in 5, 6, and 7 seem to have some advantages
when it comes to designing efficient processors. For
example P has an especially efficient 'scope analyzer'
(see Gorn11). where ^d is more efficient for 'depth
analysis'.

The first restriction we make is therefore to such
categories that corresponding expressions in the
different languages all have the same 'parsing tree',
and are therefore uniquely determined by systems of
'addresses' called 'tree-domains' and the corres
ponding objects to be found there. Thus, whatever
else we may find in the category, we can always
depend on the representations in languages like those
illustrated in 2,4 and 7 of fig. 1.

The second restriction that we make is that the
languages in the category be 'saturated' in the sense
that 'any validly parsed expression' actually belongs
to the system. We express this by demanding, first,
that the system of language functions be applicable to

expressions in eight
category

any and all 'simply-stratified alphabets'. This means
that each character have a kind of 'order', called its
'stratification number', much like the number of in
dependent variables possessed by a numerical
function. The second demand made by the restriction
is that any expression obtained from a tree by putting
characters of stratification n at nodes of ramification
n (i.e. of 'exiting' order n) is a valid expression in
the system.

This second restriction means that the prefix lan
guage form (type 7) is to be 'complete'. It is this lan
guage function which we have called the 'complete
prefix language function'. (In Gorn/2 we show that it
is also saturated in that the addition of one more word
to its extent would cause it to cease being 'uniquely
deconcatenable'. See also9.) Naturally all the other
languages of the category have the corresponding
kind of completeness.

The only reason we make such a point of this second
restriction (It is unduly harsh; in ordinary algebraic
notation, for example, we do not demand that the
expression '(a=b) + (c=d)' be meaningful.) is that we
need it as a guide in our third restriction. We will
allow our category to 'grow' by 'explicitly defining'

216 Spring Joint Computer Conf., 1967

az ~ + c i (^ i) * • '(^n)

Y e s

c*2 - R 8

Clea r

l i s t T

* 2 = cp r

a + 1 (L , R) m e a n s
shift double
r e g i s t e r one
c h a r a c t e r left. '

No
^ *- ev0 - e r r o r
long 2

Yes
sho r t

R x =cp No

Yes

R._ = cp
No

a + M L ^ R ^

a + M L 2 , R 2)

Yes
L l = L 2 ?

No L ^ O v ?

No Y e s

a ' (L 5 , R J
2 ' 2J

No

T

Yes

No

L 2 = <L1>

Shift one
scope f rom
R 2 to L g

Yes

S (R g) ~* L g

e r r o r

cy2 shor t

(L x) € T ?

i nd i r ec t a d d r e s s i n g th rough L^

L 2 - (L x)

Figure 2 —Prefix Ian;

new characters in the object alphabet. Our third
restriction limits the form of these explicit definitions
by demanding that the extended language category
be also complete. Let us see what this requires.

Suppose 'd' is the newly defined object character.
It will have to possess, by our first restriction, a fixed
stratification number, say n. If, then, au a2, ..., «n

designate any good expressions of & st by our second
restriction 9 4 must also contain a good expression
of the form ida1a2...an\ Thus, the explicit definition
must have the 'form' (3t = (B2, where the 'definien-

df
dum' j8/ must have the 'simple form' da1a2...ati>

and the 'definiens' /32 must not contain the character
'd' explicitly (no recursion), and must be an obvious
syntactic function of the syntactic variables aj,...,an

No

Append (L^)

to T
guage; leii-io-ngnt scan

for all languages of the category. By the 'principle
of syntactic invariance' (see Gorn10), the <*i must be
variables representing any good expressions through
out the category, because they are appropriate
'scopes' and the completeness of the category means
that all good 'scopes' are 'good words' and vice versa.

We must therefore be able to define and recognize
forms as well as expressions. This is easily done with
out too much work by introducing an alphabei of
'scope variables': stv = {at a2,...} having no charac
ters in common with a, and each character of which
has stratification zero. If J' = d U yv , then# ^ is a
form language, representing a whole category of form
languages in which 'tree forms' can be generated,
recognized, and compared.

Handling The Growth By Definition Of Mechanical Language* 217

For example, we have the following definition
throughout the category of languages of tree patterns:

Definition: The form /3, is said to be 'of the form
/80\ and jg0 is called 'an initial pattern of /V (we write
/30 *= A), if there is a complete independent set of

scopes a-j, ..., crn of fa, where n is the number of end-
points of (30, such that, if a{ = a, in /30, then o-j = crj?

and such that /3X = /30 (<r-»ax,...,crn-»a:n). We can
also write: /3x=+/30cri...crn.

i f think of the variables in * v as also referring
to some unspecified addressing system for the con
trol of storage of expressions, then this definition is
effective; figure 2 presents the design of the processor
called a 'tree pattern recognizer'.

A number of other notations might be mentioned
as being convenient both in the theory and in the
construction of processors:

a. 'Ca/3/ to mean 'the character at (tree) address a
in tree (form) j8/.

b. 'Sa/V to mean 'the scope at (tree) address a
in tree (form) /V-

c. 'D/3/ to mean 'the domain of (tree) addresses
in tree (form) £,'.

d. If a2 and a3 are tree addresses, then at = a2-a3

can be read as 'the tree address of relative
address a3 with respect to address a2\ and 2^
is a 'tree-predecessor' of ax: 2^ =£ a2. Similarly, if
Ax and A2 are two sets of tree-addresses, Ax-A2

will be the set of tree-addresses of relative
address some A2 with respect to some A ;̂ it is
to be interpreted as the null set A if either Ax or
A2 is null.

e. We can also permit the scope-operator 'S' to
refer to tree-domains as well as to trees. Thus,
if D is a tree domain and ax G D, then there is a
tree domain Dx such that SajD = ax • D^ also,
Sax • a2 D = at • Sa2D1. This notation sets up a
primitive address computation facility (in fact
a semi-group with unit '*' meaning root-address)
for tracing and identifying the effects in ex
pressions of growth by definition in the cate
gory.

f. 'an occurrence of the character c G A in ft' will
mean 'an address a such that c = C a /3', and the
set of such occurrences can be written 'C_1 c /8'.
Thus 'a G C"1 c j8' means 'a is an occurrence of
c in £'.

It is now possible to recognize internal patterns as
well as initial patterns in trees: j80 is an internal pattern
of /82 occurring at the tree address a if /30 ^ S a /32;
in this case we also write a G C'1^^, and speak of
'an occurrence of the form (S0 within /32\ If fio is deeper
than zero, i.e. is more than just one object character

at the root, then we say that the form /3j 'dominates'
the form (32 with the intermediary /30 whenever /3„
s a scope of 0i and the initial pattern of /32, but
fi0, pt and /32 are not all the same; if we replace that
occurrence of p0 in fit by fi2, the result J8X(J82 -* p0)
if a eC/Bofr, is a '/S^-domino'.

We now have the apparatus by which we can specify
an 'explicit definition', and trace its effect by means of
a primitive kind of computation with tree addresses.

EXPLICIT DEFINITIONS AND TREE MAPS
We have now fixed upon an appropriate definition

of 'explicit definition' for our categories of mechanical
languages. It is one in which:

a. The definiendum is a simple form, i.e. either of
depth zero (hence only the single new character),
or of depth one with only distinct variables at the end-
points,

b. the definiens is an arbitrary form <pd, at least as
deep as the definiendum (hence # a), not containing
d explicitly, but each variable of which does occur
again in the definiendum.

Ordinarily explicit definitions are introduced in
order to say in less space something one will want to
repeat fairly often. In other words, a very common
motive for an explicit definition is the desire to have a
large family of abbreviations; each definition provides
an infinite set of abbreviations, all of the same form.
(Thus each definition is like an 'optional linguistic
transformation'.) Because the size of a tree can be
measured both in depth and in breadth, two of the
simplest types of explicit definition are the pure depth
reducer, and the pure breadth reducer:

An explicit definition, d«x... an = <pA, is a 'pure
df

depth reducer' if those end-points of <pA which are
variable are, reading from left to right, in t> or 3 form,
exactly au a2,... ,an, and at least one variable has
depth greater than one. If n = 0, so that d = <p6 where

df

no end-point of <pd is variable, we do not call it a depth
reducer, no matter how deep <pd may be. An example

of a pure depth reducer is data2= cajcc0a2.
df

An explicit definition is a 'pure breadth reducer'
if the depth of every variable in <pd is one, and those
end-points of <pA which are variable are, reading from
left to right, in P or J form and ignoring repetitions,
exactly auau..., an, and at least one variable occurs
more than once. The same interpretation is made if
n = 0 as before; no matter how broad <pd may be, it is
not a breadth reducer. An example of a pure breadth
reducer is daxa2 = caiCC0c0CoC0Q!2ai.

More generally, if tpA is the definiens of an explicit
definition, let Adi = C~la{ipA (the occurrences, possibly

218 Spring Joint Computer Conf., 1967

d al aV. j j C aZ C °>1 ° 2

De finic ndum

add re s s

>',•

0

1

charac te r

d

« i

°fe

D e

add re s s

*
0

1

10

11

fi mens

charac te r

c

az

c

Figure 3 — An explicit definition

null, of a, in <p6), and Ad0=D<pd — U Adi (the 'interior'

of <pd); let nij be the number of addresses in Adi,
which we could call the 'breadth' or 'multiplicity' of
a,, and let dj be the maximum depth of ax in Adi. Then
the definition does some breadth reduction if m ^ l
for at least one i, and it does some depth reduction
if d- > 1 for at least one i.

If m, = 0 for some i =s n, the stratification of d, then
the definition is allowing arbitrary scopes to be in
troduced, and we say that the definition is a 'scope-
expander'. An example of a 'pure scope-expander',
i.e. one in which neither depth or breadth reduction
occurs, is da7a2 = ca2, or data2 = cc0.

df df

Finally, an explicit definition may be introduced
neither to expand scopes, nor to reduce depths or
breadths, but simply to permute scopes. In a pure
permuter' n^ = I and dx — 1 for i = 1, • • • , n. Thus
da1a2 = caaCCoCoCott! is a pure permuter.

df

Most definitions we might envision would be mix
tures of these types, and for each such mixture we
might imagine each type of effect to be introduced by
a separate 'ideal definition', thereby 'factoring' the
definition into a sequence of pure types. For example,

the explicit definition daja2 = cc^ca^ might be en
visioned as the result of

1. a pure depth reducer d1a1a2a3 = ca1ca2a3,
df

2. a pure breadth reducer d2aia2
 = dia1a2«i»

df

3. a pure permuter data2 = d2a2«i-
df

Figure 3 illustrates this definition.
We can now be precise about the meaning of such

expressions as:
a. The elimination of an occurrence of d in a form

/82: if a EC"Jd/32, and the scopes o-4 = Sa-i/32, and \pj
is the form obtained from <pd by replacing each a, by
o-s (in other words, ̂ is the application of the definiens
form to the scopes of the occurrence of d in /32), i.e.
ipi = <Pa(<7i ~* «/> — »f̂ n ~*• «n)> then the replacement of
the scope at a of /32 by i//7 yields an expression p, =
A?(»/>i —*• Sa) which is said to be obtained from /32 by

the elimination of d at a; we also write

)32 -f/3„ and jS^Eaaf t ,
and call fix an immediate d-descendent of /32, thereby
beginning the definition of a partial ordering relation
among expressions: j82 > fBv

d

b. The introduction of d in a form fi, at an occur
rence of <pA: if aeC-Vdfr, so that <pd ^ ' Safl,, i.e. <pd

Handling The Growth By Definition Of Mechanical Language 219

is an internal pattern in ft, then there is a complete
independent set of scopes ax,..., <xn, occurring with
the repetitions corresponding to the a{ in <pd, at ad
dresses in ft whose relative addresses with respect to
a equal the address of the end-points «} in <pd; let ft
will say that ft is obtained from ft by introduction of

d at a; we also write ft ^* ft and ft = Idaft; ft is an
a

immediate d-nredecessor of ft and ft ̂ ft.
d

Clearly Ida and Ed a are inverse operators.

c. In general, ft ^ ft and ft f fa, if either fa = fa
or there is a chain of d-eliminations fa = ft i

> Ed Ed JL
di a2 an_7

In this case we say that fa is a d-predecessor of ft,
& is a d-descenderxt of fa, and & is obtained from
fa by d-reduction. Figure 4 presents the design of a
recognizer of fa ^ ft.

d

d. fa is d-equivalent to ft, and we write ft = ft
d

if the chain of operations, as in c, may contain any
combination of d-introductions and d-eliminations.

It is easy to see that ^ is a partial-ordering, and =
d d

is an equivalence relation. We will designate the set
of all d-descendents of ft by L(ft), and the d-equiv-
alence class of ft by E(ft).

If fa ^ fa, there might be many elimination chains
d

leading from ft to ft; in spite of this, for each char
acter occurrence in ft, there is only one occurrence
in ft 'responsible for it'. This is shown by exhibiting
a uniquely determined mapping from ft into ft.

Figure 3 has already shown this in the critical case
where ft0 = <pd and fa0 = da, ... an, here CAd0 ft0

-» d = C*ft0, and CAdift0 -» *i = Ci-lft . This is the
•generating d-map', gd(*;a), which performs a linguistic
transformation from ft0 into ft0, where each of these
expressions can also be looked upon as mappings,
called trees, from tree-domains into the object alpha
bet; these linguistic transformations are therefore
representable as composite mappings fulfilling a com
mutative condition:

(Caft0-^gd(*;a)) c ft0=ft0*gd(*;a),
a relation we might choose to represent by the sym
bolism ft0

 E fto g* or even by the diagram extending
the type used by algebraic topologists:

PlO

gd (C a g 1 0 -» gd (*;a))

D 8 0 .*- a

b 1 ^ Y e s
R„ = cp?

s(d) - n

Pi " R x
P2 - R

£

<P= - T 0

Y e s

Rx = cp?

Yes"
L, = L„?

N o
d ?

Y e s
Y e

R3 =cp'

N o

cp - L 3

o + i (L 3 , R 3)

L , £ n ?

Yes

L ^ r L =

N o

L„L, - L„

(indirect address
for T)

cp - L2

T 0 - R 3

Y e s
i > n?

N o

N o

1 - i

Does R £ have a
next scope?

next scope -* Ti
Remainder -* Rj

Yerf
i + 1 - i

N o

(Designed by M. Roberts)

Figure 4 — Recognizer for the relation j82 s* J8J

220 Spring Joint Computer Conf., 1967

We can extend such mappings from occurrences
of d and <pd in /820 and (310 alone by first defining the
address map:

a if a; *£ a
f a, if a G a, • Ad0

g a f o ^ H a , -i-1 • a" if a eaj-Ad i • a"

and then considering composites of such address
maps, f, which we call d-maps.

The design of the recognizer of the relation /32

3= /37, shown in figure 4, depends upon the:

Theorem: The following conditions are equivalent:
1. ftGLO,),
2. 0, 2= /3„

d

3. There is a d-map of /3, into (S2,
4. There is a unique d-map of /3* into /32.
The generalized d-map can therefore be symbolized

by j6; ~ j82 ° f, or by the diagram:

f
D .

h

D.

Ps

0 0
and the composition of d-maps can be reflected in
such notation as:

D .

A ~ i83o(f2of1), or

- D. D .

Pi

t
a

- P:

a
If, furthermore, the explicit definition is not a scope

expander, and /32 3= /3,, the uniquely determined map-
d

ping from /37 into f32 is a mapping 'onto'.
In any case, such mappings f are uniquely deter-

minded by addresses only; i.e. by a computation which
given any a £ D;=D/3,, yields f(a)E D2=D/32-

Actually, an even stronger statement can be made;
these address maps are even independent of the parti
cular trees. Eda is a functor applicable to any tree
/32 for which Ca/82 = d, and it is possible to compute
gd(a;b) for any address without knowing anything
else about (3} beyond the fact that a EC'Vd/3/- We
can therefore talk, within the context of a fixed ex
plicit definition, of 'the elimination functor <a> ' .

Furthermore, Eda,Eda2 will be applicable, as a

functor, to an infinite number of expressions, if to
any at all; first of all, if it is applicable to /3, then
Ca2/3 = d; secondly we must have d = Ca/Eda2/3. If
we let:

Adf={ai1,aj2,-..,aimj/,
where mj is the multiplicity of ah such an occur
rence of d at address ax is a priori impossible only if
gdCagjajEAdo; in other words it is possible only if
ax ^ a2 => (?;• ijXaj s* a2 • au). Let the relation
i s* a2 among addresses mean just this, so that our
condition reads: aj 5= a2 => aj 3= a2. This, then, is pre
cisely the condition under which the 'elimination
functor <a l 5a2>' exists; it is applicable to any one of
the infinite number of expressions (3 with an occur
rence of d at a2 and also at g^a^aO. We could sim-
ilarlv validate and identify the 'elimination functor

F = <a,, ••• , an> = Ed a x ' - E ^ ' and restrict our
selves to a primitive address computation as in Figure
5. d"iff

2 Tr CQf2CBi°E

<*> {*. o} = {103
gd(*;a) I <*> {». 1} = {0, 11}

< 1 1 1 , 0 , * > { * . 1 ,11} = < 1 1 1 , 0 > { < * > { * , 1} U < * > { * , 1- 1} }

= < 1 1 1 , 0 > { {0 , 11} U f 0, 11} • 1}

= < ! 1 ! > 0 > { 0 , 1 1 ,01 , 111]

= <111> { < 0 > { 0 , 0 1 } U < 0 > {0 , 11, 111} }

= <111> { 0 • <*> { * , 1] U { 1 1 , 1 1 1 } }

= <111> { 0 • f 0 , 1 1 } U { 1 1 , 1 1 1 } }

= <111> { 0 0 , 0 1 1 , 11, 111}

= <111> { 1 1 1 , 0 0 , 0 1 1 , 11}

= { 0 0 , 0 1 1 . 1 1 }

Figure 5 —An address computation for d-elimination
The problem solved by the computation in figure 5

could be stated as follows: If we explicitly define d by
means of daj«2 = ca2ca,a2, then we would like to
know what 'traces' are left from original occurrences
at {*,1,11} in any word to which the following elimi
nation functor is applicable; d is eliminated at *,
then at 0, and then at 111. According to the compu
tation, the only traces will be at addresses 00, 011,
and 11. In particular, if d's occurred originally only
at *, 1, and 11, they would not be completely elimi
nated; there would still be occurrences of d at 00,
011, and 11.

A study of Figure 5 reveals that the address compu
tation is driven to a conclusion by an algorithm which
applies the following rules:

Rule 1: <*> {*} =
Rule 2: If i < s(d) (the stratification of d), then for

every address a < > {*,! - a} = AdI • a
={a,-, • a,...,a^ , a}.

Handling The Growth By Definition Of Mechanical Language 221

"M;/0

d c / i ° 2 Ti c c^c r ' ' i r ' ' r

{0,]; / .]

<1>

{A;* ,0 , 1,11]

Figure 6—The Hasse

The address set is interpreted to be null if the multi
plicity, nii, is zero, i.e. if the definition is scope ex
panding at i.

Rule 3: IPGA^ then <a> {a • A,} =
{a • <*> A;} •

Rule 4: If a^b,then<a>{a,b}={b}.
Rule 5: (the first commutation rule) If a and b are

independent addresses (i.e. neither preceding the
other), then <a,b> = <b,a>.

Rule 6: (the second commutation rule) If m, #
0 (i.e. if the definition is not scope expanding at i),
then <a,a-i-a'> = <a-a«-a',... ,a-mt-a-,a>. if the
multiplicity is zero, mr=0, then we can only say
<a,a-i-a'> C <a> (the functor <a> has in its
domain any expression with an occurrence of d at a;
the functor <a,a-i-a'> is more restricted because
it also requires an occurrence at a-i-a').

Rule 7: (the distribution rule) If the d-elimination
functor F is applicable to the address sets A, and A2,
then it is applicable to A2 U A2 and

F(A7 U A2) = FA, UFA2.
Suppose we now represent the distribution of oc

currences of d and <pd in an expression /3 by another
expression of the form {C-7d/3;CVdj3}. Then, for the
definition of figure 3, the expressions in pa: dca2

aj d a2 a2, c d a 2 a , d a , c a 2 at, and ae = c c a , c « 2 a !

diagram of E (a0)

c c a2 ax c ax c a2 at, will be represented by {*,1; A},
{o,l;A}, and {A;*,0,1,11} respectively. Moreover
these three expssions all belong to E(a0), consisting
of eight expressions in a partial ordering whose Hasse
diagram appears in Figure 6.

1. If j8? and (32 are forms over the extended alphabet
and j3i ^)8, then there exists another form /80 such
that fd

up0 and j82dJ80.
This is a very special case of the Church-Rosser

theorem, which deals with the very general extension
of formal systems by definitions. See, for example,
Curry & Feys.6

2. Every expression /37 over the extended alphabet
determines a unique expression /80 over the original
alphabet such that /3i 3= (30.

In other words, every equivalence class of expres
sions contains one and only one expression over the
original alphabet, its unique 'normal form'.

3. For every expression /3, L(j8) is a lattice. Figure 6
shows that this need not be true of E(fi).

4. E(/3) can only be infinite if the definition is scope
expanding.

5. E(/3) can only fail to be a lattice if <pd is self-
dominating, and j8 contains a <pd<pd -domino.

For example, this is the case in figure 6 because the
occurrence of <pd at 1 in a0 dominates the occurrence

222 Spring Joint Computer Conf., 1967

do'1ck'2

d l Q , l Q 2 Q ' 3

d 2 o^ or2

da1a2.

df

IF
df

H

cor2co'1Qr2

CQ ,
1 CQ? 2 Q'3

d 1 Q ' 1 C k ' „ Q ' 1

d 2° '2 Q ' l

Figure 7 - T h e Hasse diagram of E (a0) when d is factored

on to study the effects of sets of definitions; the
factorization into 'pure' types illustrated this. One
could relax the 'completeness' condition we were
using in our categories of languages, and consider
various kinds of incomplete categories. One could
relax the restrictions implied in our use of the word
'explicit' to permit definitions by cases, or sup
pression of variables, or even recursion. The fact that
there is such a theorem as the Church-Rosser theorem
means that some kind of light should emerge.

However, it seems to me that even our simple ex
ample has taught us some unexpected things.

First of all, the processing we have been discussing
can occur at meta-language level as well as at object-
language level.

For example, in Church's axiomatic system for the
propositional calculus the first axiom is

Al :\-a1D(a2Dal).

at 11 and is.dominated by the occurrence at *.
6. A partial ordering is called modular if, when

ever jS2 ^ Pi, any two complete chains between y32

and & have the same length. Figure 6 is not modular
because one complete chain between {*,1;A} and
{A;*,0,1,11} is of length two and the other two are of
length three. This happens because the definition is
a breadth reducer, C'o^d ={0,11}, and C"Vd«o2
{*,0,11}.

7. If we factored this definition into a pure depth
reducer, a pure breadth reducer, and a pure permuter,
as mentioned before, we separate their several effects
into three phases of extension, as one can observe by
studying Figure 7.

CONCLUSION
One could extend the very special theory of this paper
in a number of directions. For example, one could go

Handling The Growth By Definition Of Mechanical Language 223

The Name At belongs to the meta-language just
as the punctuation, parentheses, and '[—: do. We
can give At several important types of interpretation
in the meta-language, all of which we would like to
use in the same system (see Gorn.9 For example:

1. Aj is an address in an addressing system for the
storage of axioms and theorems.

2. Aj is an instruction representing an operation on
two expressions; A1&1a2 will produce Da2"Da1 a2

in trie language &•& oi a category. ± nis semantic cac t i
carries with it all the syntactic effects of the explicit
definition of figure 6 with Aj for d and D for c. In
particular, the syntactic relation

A j D a2a1A1a2a1 = D Aj^ajAjaj D a2at

would also have the semantic consequence that both
expression's specify methods of deriving a0 =DDaj
DazajDDa^jDajDa^!. We also know, because of
the AjA/ -domino in a0, that there can be no expres
sion in the g>® from which both can be derived.

This means that much of the processing needed
in theorem proving is not essentially different, in
spite of the shift in level of interpretation, from the
processing at object level.

Moreover the introduction of explicitly defined
symbols, as in Daja2 ~fi V—aja;,, and the introduction
of systems of names of axioms and theorems are not
only similar to each other but also play the same role
in the meta-language as the introduction of new names
of instructions, or of macro-instructions in a pro
gramming language. All these new symbols can also
be interpreted as names of linguistic transformations
on the object language, and therefore as operators in
a meta-language over the object language.

This means that there is a second effect from our
study. A number of seemingly different problem areas
in information science, logic, and linguistics become
identified:

a. The growth of a mechanical language by the ex
plicit defining of new characters: it can be controlled
if we have the definitional forms recorded, and use
such processors as form recognizers, recognizers of
the relation 5= no matter what the 'd', reducers to
normal form independent of d and <pd, equivalence
recognizers, etc. Each of these processors will per
mit one to vary the alphabets, the forms, and the de
finitions, of which there will be very many. But of the
basic processors there will be only a handful, and they
will be applicable at many levels as well as to many
alphabets and many definitions. The system should
also contain a number of the translators among the
language functions of the category.

b. A number of problems in artificial intelligence:
imagine that a language is specified for which a recog
nizer is either unknown or impossible; we want a

'heuristic' recognizer which will 'often' determine
whether an expression belongs to the language by
attempting to solve the problem of setting up a
derivation for it. If the processor is halted before this
happens, the recognition is left undecided. The investi
gations of Newell, Shaw and Simon, such as the logic
theorist,13 and the general problem solver14 can be
formulated this way, because the set of all 'true' ex
pressions can be considered a language just as easily
as the set of all expressions. This is because the
axioms can be considered as ad hoc syntactic genera
tors of good expressions, and such 'transformation
rules' as modus ponens, substitution, etc. can be con
sidered as derivation rules in a generative grammar.

The heuristic program recognizes patterns of
applicability of these transformation rules in order to
set up the 'subgoals'. The availability of our standard
form recognizers, as efficient processors rather than
heuristic ones, makes the main heuristics more effi
cient. See Boyer,1 and Chroust.4

c. The extension of formal systems by definition:
one considers the 'derivation rules' of the formal
system to be the 'transformation rules of the language',
in the sense of Carnap, just as described in b. This is
why the material in the first four chapters in Curry

& Feys,6 leading up to the Church-Rosser theorem for
general formal systems had its counterpart in our
simplified and much more highly structured lang
uages.

d. We handled an explicit definition as though it
were an addition to the grammar of the language which
permitted certain simple linguistic transformations
to be performed. Our classification into depth reducers
breadth reducers, etc. is a very primitive classi
fication very much in the spirit of the much more com
plicated 'linguistic transformations' in the sense of
Chomsky and Harris. Can we not consider that any
one who defines a new expression in a language is
causing the language itself to change; is he not really
changing the grammar of the language, and not merely
adding new expressions?

e. Suppose we have two programming languages,
such as, for example, the assembly languages of two
different binary general purpose machines of the von
Neumann type. We can consider that each instruction
of either language is defined in terms of a common
'micro-language' of bit-manipulations. Some of these
definitions are recursive, but many can be made ex
plicit. Among the difficulties of machine-to-machine
translation is the fact that many instructions, like
'ADD' , do not really have the same definition in the
different machines.

The same problem arises if a community of users,
beginning with a common language, have the freedom

224 Spring Joint Computer Conf., 1967

of introducing macro-definitions independently of
one another. Sub-communities with common problems
will develop different sub-languages by different
systems of macro-definitions, and if these different
sub-communitities do not remain in constant com
munication, their distinct 'dialects' will, in effect,
grow into distinct languages, and the translations,
even with only explicitly defined macro-instructions,
will be come difficult because of what, in this paper,
is called the domino effect among definitions.

The non-lattice effect we remarked on for defini
tions related by dominance we can now interpret as
a danger of loss of communication; when the pro
cessors we have discussed are not available, the
different sub-communities will not even know when
they are saying the same things.

REFERENCES

1 M CHRISTINE BOYER
A tree structure machine for proving theorems
Moore School Master's Thesis August 1964

2 JOHN WCARR III
The growing machine
to be submitted to a computer publication

3 T E CHEATHAM
The introduction of definitional facilities into
higher level programming languages
AFIPS Conference Proceedings Vol 29
Fall Joint Computer Conference 1966

4 GERHARDCHROUST
A heuristic derivation seeker for uniform prefix languages
Moore School Master's Thesis August 1965

5 A CHURCH
Introduction to mathematical logic

Vol I Princeton 1956
6 H B CURRY R FEYS

Combinatory logic
Vol I North Holland 1958

7 B A G A L L E R A J P E R L I S
A proposal for definitions in ALGOL
to appear in Communications of ACM

8 S A U L G O R N
Common Programming Language Task
Rep AD 236-997 July 1959 and
Rep AD 248-110 June 30 1960 U S Army
Signal Res and Develop Labs Fort Monmouth
N J Contract No DA-36-039-SC-75047

9 IBID
The treatment of ambiguity and paradox in mechanical
languages
Am Math Soc Proc Symposia in Pure Mathematics
Vol V (1962) Recursive function theory
Apr 1961

10 IBID
Mechanical pragmatics: a time motion study of a miniature
mechanical linguistic system
No 12 Vol 5 December 1962 pp 576 589

11 IBID
Language naming languages in prefix form
Formal language description languages for
computer programming
North Holland 1966 pp 249-265

12 IBID
An axiomatic approach to prefix languages
Proceedings of the symposium at the international computa
tion centre
Symbolic languages in data processing
Gordon and Breach 1962

13 A NEWELL J C SHAW H A SIMON
Emperical explorations of the Logic theory machine: a
case study in heuristics
Proceedings of the western joint computer conference
1957 pp 218-230

14 IBID
Report on a general problem-solving program
Information processing
UNESCO Paris 1959 pp 256-264

15 T J O S T R A N D
An expanding computer operating system
Moore School Master's Thesis December 1966

