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INTRODUCTION 
It has for many years been my opinion that program
ming languages in particular, and mechanical lan
guages in general, exhibit many phenomena generally 
thought to be characteristic of natural languages. 

The concept of mechanical language, in my mind, 
includes all sorts of notational and signalling systems, 
whether one-dimensional or multi-dimensional, se
quential or simultaneous acting, continuous or dis
crete, descriptive or prescriptive; it is also supposed 
to subsume a vast variety of recording media subjected 
to a vast variety of sensing devices (including biolog
ical as well as physical), with a vast variety of per
manence characteristics, reaction times, storage 
arrangements in space-time, retrieval devices, 
coupling, coding, and translational processors. 

Thus musical and choreographic notations are me
chanical languages, as are structural formulae nota
tions in chemistry, nucleotide chain diagram sche
matics in genetics, parsing tree and other phrase mark
ing systems in linguistics, and mechanical drawing, 
wiring diagram, block diagram, production control 
charts and organization chart systems in industry. 
So are cataloguing, inventory and accounting systems, 
whether used in industry, commerce, war, govern
ment, or religion. I would even include notations and 
arrangement systems for monuments and their 
contents. 
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The time scales and space scales therefore vary 
from milli-microseconds to millenia, from microns to 
light years; the adaptation of devices (from artifacts 
to specially educated humans) working in different 
time scales, different transfer rates, different reaction 
times, with different signalling languages, and the 
logic of their system assembly, even apart from adapt
ability in time, is part of the problem of the study of 
mechanical languages. 

The more successful a mechanical language (sys
tem) is in its ease of specification for many different 
types of areas, and in its adaptability among different 
kinds and levels of artifacts and humans (i.e. pro
cessors), the denser will be its usage for communi
cation among men, among machines, and between 
men and machines. It will therefore tend to 'grow,' 
to reach for 'universality' as a 'common language.' 

An example of such a trend appears if one looks at 
the history of mathematical notation. As long as very 
few people operated with numbers (as abstracted 
from things) the notations for numbers were primitive, 
but stable; so stable that they lasted for millenia. 
Only a specialized historian would have been able to 
perceive their process of change. The urban revolution 
increased their usage, and therefore their rate of 
change; their stability was reduced from millenia, 
to centuries, to decades. The arithmetic notation 
expanded into the arabic number representation lan
guage, but the users could still deceive themselves into 
crediting the changes to ingenious individuals rather 
then recognizing them as part of a social phenomenon. 
This continued even into the development of algebraic 
notation and its growth into a notation for analytic 
expression. But when the notation grew to include 
symbolic logic and operations with sets, and the appli
cations spread through all the sciences and profes
sions, the contributions to the structure of the mechan-
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ical language became too numerous to be anything but 
anonymous, and therefore social. Furthermore, the 
logical operations became devices by which the lang-
guage itself could be examined; the human activity 
became self-conscious, and the language became self= 
referencing and capable of operating, in the same 
fashion, many meta-syntactic levels (I have called 
such, 'languages with unstratified control'). The 
tendency is now for this mechanical language with 
its descriptive precision and its ability to analyze so 
much one-dimensional symbol manipulation to fuse 
with programming languages with their prescriptive 
precision and their ability to synthesize so much of 
the processing of that same area of one-dimensional, 
and even multi-dimensional symbol manipulation. 

Thus, different mechanical languages may therefore 
uviuGigo fusion as time goes on. 

But a particularly successful language will also 
tend to reflect the behavior of the human community 
by undergoing fission by splitting into dialects, even 
separate languages. This will surely happen if the 
using community splits into groups which seldom 
intercommunicate, and each of which restricts itself 
to a favorite subsystem of expressions; this will first 
be a jargon, then a dialect, then a separate language. 
In programming, these jargons are favorite systems 
of macro-instructions, introduced by the very macro-
definition facility which made the base language so 
flexible and 'universal'. 

In any event, we are now more and more concerned 
with growing languages, extended machines, growing 
machines, self-expandable languages, user-expandable 
languages and the like. (See Cheatham,3 Carr,2 

Otrand15 and Galler & Perlis.7) 
How are we to control the growth? 
If it is completely uncontrolled and is allowed to 

'just grow', such a man-machine, multi-lingual and 
multi-levelled processor and language system can 
die either by choking on the sheer bulk of what it 
swallows without rejecting or reforming, or it can die 
by committing mitosis, giving birth to a number of 
independent such subsystems with practically no 
intercommunication among them. 

However, a natural control of the growth of such 
a system will have to be the result of continuing and 
never-ending work by hundreds of people. Each one 
will have to be able to refocus his attention from the 
grandiose to the picayune when necessary, without 
losing sight of the big picture. It is impossible to say 
whether it is the big wheel or the tiny wheel in such a 
system which is really connected to the ground. The 
same remark applies to the people in it. 

Therefore, this paper will attempt only to suggest 
how such growth may be understood and controlled, 

while restricting itself to a very special category of 
mechanical languages with a very strong structure, 
and which grows by a very limited means called 
'explicit definition'. 

Categories and forms 
Let me illustrate the category of languages to which 

we are limiting our discussion by tracing one simple 
algebraic expression through a number of its lan
guages. We do this not merely to show how general 
our considerations are, by illustrating how big the 
category might be; we do it because the category is 
a fusion of many languages, rather than only a set, 
and those concepts and devices are to receive special 
attention which have a correspondent in each language 
of the category. 

Consider, then, how the simple algebraic expression 
'ab + b(c+d)', belonging to a one-dimensional language 
with which most of us are very familiar, transforms 
into seven other expressions. (See fig. 1). 

It is the comparison among corresponding expres
sions in different languages of the category which 
prompts us to make the following decisions: 

1. there is an alphabet of 'objects' which includes 
symbols like a,b,c,d,+, and something called 
'times', even though examples 1 and 3 have no 
separate symbol for it, and even though examples 
2", 4 and 8 represent it by X, where 5, 6 and 7 
use *. 

2. there is an alphabet of 'context signals', much 
more concerned with 'how' the expressions are 
to be read than with 'what' they contain, and 
consequently more variable among the languages 
of the category. Examples are parentheses, 
punctuation marks, connecting lines, and tabu
lation lines. These are 'control characters'. 

3. there is an 'addressing system'; only the object 
characters have addresses; control characters 
only help us to find these 'addresses', but are not 
themselves assigned addresses. The corres
ponding objects in the corresponding expressions 
have the 'same' addresses. 

We therefore say that we really have a category of 
'language functions', each applicable to many '(object) 
alphabets' to form the languages in the category. The 
control characters are really the marks belonging to 
the language functions, and often are replaced by, 
or replace, the scanning process. 

Thus we might call the 'common' alphabet used here 
*f = {a,b,c,d,+....}, the language functions ^Tt»d, 
F, ?, and •* to correspond to expressions 2,4,5,6,7, 
and 8. Thus the tree in 2 belongs to the language 
X*. If symbols from logic form an object alphabet 
a = (v> \ ~, 3 , =, P, q, r....}, then DpDqp might 
be an expression from the language s» m 
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Figure 1 — Corresponding 
languages of a 

The two-dimensional language functions seem to 
have some advantages in human communication 
(e.g. d and T in 2 and 4); those, like 4 and 8, which are 
explicit about the mapping from addresses to chara
cters, seem to have some advantages when we seek 
to establish a mathematical theory; those like <?d, 
&, and P in 5, 6, and 7 seem to have some advantages 
when it comes to designing efficient processors. For 
example P has an especially efficient 'scope analyzer' 
(see Gorn11). where ^d is more efficient for 'depth 
analysis'. 

The first restriction we make is therefore to such 
categories that corresponding expressions in the 
different languages all have the same 'parsing tree', 
and are therefore uniquely determined by systems of 
'addresses' called 'tree-domains' and the corres
ponding objects to be found there. Thus, whatever 
else we may find in the category, we can always 
depend on the representations in languages like those 
illustrated in 2,4 and 7 of fig. 1. 

The second restriction that we make is that the 
languages in the category be 'saturated' in the sense 
that 'any validly parsed expression' actually belongs 
to the system. We express this by demanding, first, 
that the system of language functions be applicable to 

expressions in eight 
category 

any and all 'simply-stratified alphabets'. This means 
that each character have a kind of 'order', called its 
'stratification number', much like the number of in
dependent variables possessed by a numerical 
function. The second demand made by the restriction 
is that any expression obtained from a tree by putting 
characters of stratification n at nodes of ramification 
n (i.e. of 'exiting' order n) is a valid expression in 
the system. 

This second restriction means that the prefix lan
guage form (type 7) is to be 'complete'. It is this lan
guage function which we have called the 'complete 
prefix language function'. (In Gorn/2 we show that it 
is also saturated in that the addition of one more word 
to its extent would cause it to cease being 'uniquely 
deconcatenable'. See also9.) Naturally all the other 
languages of the category have the corresponding 
kind of completeness. 

The only reason we make such a point of this second 
restriction (It is unduly harsh; in ordinary algebraic 
notation, for example, we do not demand that the 
expression '(a=b) + (c=d)' be meaningful.) is that we 
need it as a guide in our third restriction. We will 
allow our category to 'grow' by 'explicitly defining' 
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Figure 2 —Prefix Ian; 

new characters in the object alphabet. Our third 
restriction limits the form of these explicit definitions 
by demanding that the extended language category 
be also complete. Let us see what this requires. 

Suppose 'd' is the newly defined object character. 
It will have to possess, by our first restriction, a fixed 
stratification number, say n. If, then, au a2, ..., «n 

designate any good expressions of & st by our second 
restriction 9 4 must also contain a good expression 
of the form ida1a2...an\ Thus, the explicit definition 
must have the 'form' (3t = (B2, where the 'definien-

df 
dum' j8/ must have the 'simple form' da1a2...ati> 

and the 'definiens' /32 must not contain the character 
'd' explicitly (no recursion), and must be an obvious 
syntactic function of the syntactic variables aj,...,an 

No 

Append (L^) 

to T 
guage; leii-io-ngnt scan 

for all languages of the category. By the 'principle 
of syntactic invariance' (see Gorn10), the <*i must be 
variables representing any good expressions through
out the category, because they are appropriate 
'scopes' and the completeness of the category means 
that all good 'scopes' are 'good words' and vice versa. 

We must therefore be able to define and recognize 
forms as well as expressions. This is easily done with
out too much work by introducing an alphabei of 
'scope variables': stv = {at a2,...} having no charac
ters in common with a, and each character of which 
has stratification zero. If J' = d U yv , then# ^ is a 
form language, representing a whole category of form 
languages in which 'tree forms' can be generated, 
recognized, and compared. 
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For example, we have the following definition 
throughout the category of languages of tree patterns: 

Definition: The form /3, is said to be 'of the form 
/80\ and jg0 is called 'an initial pattern of /V (we write 
/30 *= A), if there is a complete independent set of 

scopes a-j, ..., crn of fa, where n is the number of end-
points of (30, such that, if a{ = a, in /30, then o-j = crj? 

and such that /3X = /30 (<r-»ax,...,crn-»a:n). We can 
also write: /3x=+/30cri...crn. 

i f think of the variables in * v as also referring 
to some unspecified addressing system for the con
trol of storage of expressions, then this definition is 
effective; figure 2 presents the design of the processor 
called a 'tree pattern recognizer'. 

A number of other notations might be mentioned 
as being convenient both in the theory and in the 
construction of processors: 

a. 'Ca/3/ to mean 'the character at (tree) address a 
in tree (form) j8/. 

b. 'Sa/V to mean 'the scope at (tree) address a 
in tree (form) /V-

c. 'D/3/ to mean 'the domain of (tree) addresses 
in tree (form) £,'. 

d. If a2 and a3 are tree addresses, then at = a2-a3 

can be read as 'the tree address of relative 
address a3 with respect to address a2\ and 2^ 
is a 'tree-predecessor' of ax: 2^ =£ a2. Similarly, if 
Ax and A2 are two sets of tree-addresses, Ax-A2 

will be the set of tree-addresses of relative 
address some A2 with respect to some A ;̂ it is 
to be interpreted as the null set A if either Ax or 
A2 is null. 

e. We can also permit the scope-operator 'S' to 
refer to tree-domains as well as to trees. Thus, 
if D is a tree domain and ax G D, then there is a 
tree domain Dx such that SajD = ax • D^ also, 
Sax • a2 D = at • Sa2D1. This notation sets up a 
primitive address computation facility (in fact 
a semi-group with unit '*' meaning root-address) 
for tracing and identifying the effects in ex
pressions of growth by definition in the cate
gory. 

f. 'an occurrence of the character c G A in ft' will 
mean 'an address a such that c = C a /3', and the 
set of such occurrences can be written 'C_1 c /8'. 
Thus 'a G C"1 c j8' means 'a is an occurrence of 
c in £'. 

It is now possible to recognize internal patterns as 
well as initial patterns in trees: j80 is an internal pattern 
of /82 occurring at the tree address a if /30 ^ S a /32; 
in this case we also write a G C'1^^, and speak of 
'an occurrence of the form (S0 within /32\ If fio is deeper 
than zero, i.e. is more than just one object character 

at the root, then we say that the form /3j 'dominates' 
the form (32 with the intermediary /30 whenever /3„ 
s a scope of 0i and the initial pattern of /32, but 
fi0, pt and /32 are not all the same; if we replace that 
occurrence of p0 in fit by fi2, the result J8X(J82 -* p0) 
if a eC/Bofr, is a '/S^-domino'. 

We now have the apparatus by which we can specify 
an 'explicit definition', and trace its effect by means of 
a primitive kind of computation with tree addresses. 

EXPLICIT DEFINITIONS AND TREE MAPS 
We have now fixed upon an appropriate definition 

of 'explicit definition' for our categories of mechanical 
languages. It is one in which: 

a. The definiendum is a simple form, i.e. either of 
depth zero (hence only the single new character), 
or of depth one with only distinct variables at the end-
points, 

b. the definiens is an arbitrary form <pd, at least as 
deep as the definiendum (hence # a), not containing 
d explicitly, but each variable of which does occur 
again in the definiendum. 

Ordinarily explicit definitions are introduced in 
order to say in less space something one will want to 
repeat fairly often. In other words, a very common 
motive for an explicit definition is the desire to have a 
large family of abbreviations; each definition provides 
an infinite set of abbreviations, all of the same form. 
(Thus each definition is like an 'optional linguistic 
transformation'.) Because the size of a tree can be 
measured both in depth and in breadth, two of the 
simplest types of explicit definition are the pure depth 
reducer, and the pure breadth reducer: 

An explicit definition, d«x... an = <pA, is a 'pure 
df 

depth reducer' if those end-points of <pA which are 
variable are, reading from left to right, in t> or 3 form, 
exactly au a2,... ,an, and at least one variable has 
depth greater than one. If n = 0, so that d = <p6 where 

df 

no end-point of <pd is variable, we do not call it a depth 
reducer, no matter how deep <pd may be. An example 

of a pure depth reducer is data2= cajcc0a2. 
df 

An explicit definition is a 'pure breadth reducer' 
if the depth of every variable in <pd is one, and those 
end-points of <pA which are variable are, reading from 
left to right, in P or J form and ignoring repetitions, 
exactly auau..., an, and at least one variable occurs 
more than once. The same interpretation is made if 
n = 0 as before; no matter how broad <pd may be, it is 
not a breadth reducer. An example of a pure breadth 
reducer is daxa2 = caiCC0c0CoC0Q!2ai. 

More generally, if tpA is the definiens of an explicit 
definition, let Adi = C~la{ipA (the occurrences, possibly 
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Figure 3 — An explicit definition 

null, of a, in <p6), and Ad0=D<pd — U Adi (the 'interior' 

of <pd); let nij be the number of addresses in Adi, 
which we could call the 'breadth' or 'multiplicity' of 
a,, and let dj be the maximum depth of ax in Adi. Then 
the definition does some breadth reduction if m ^ l 
for at least one i, and it does some depth reduction 
if d- > 1 for at least one i. 

If m, = 0 for some i =s n, the stratification of d, then 
the definition is allowing arbitrary scopes to be in
troduced, and we say that the definition is a 'scope-
expander'. An example of a 'pure scope-expander', 
i.e. one in which neither depth or breadth reduction 
occurs, is da7a2 = ca2, or data2 = cc0. 

df df 

Finally, an explicit definition may be introduced 
neither to expand scopes, nor to reduce depths or 
breadths, but simply to permute scopes. In a pure 
permuter' n^ = I and dx — 1 for i = 1, • • • , n. Thus 
da1a2 = caaCCoCoCott! is a pure permuter. 

df 

Most definitions we might envision would be mix
tures of these types, and for each such mixture we 
might imagine each type of effect to be introduced by 
a separate 'ideal definition', thereby 'factoring' the 
definition into a sequence of pure types. For example, 

the explicit definition daja2 = cc^ca^ might be en
visioned as the result of 

1. a pure depth reducer d1a1a2a3 = ca1ca2a3, 
df 

2. a pure breadth reducer d2aia2
 = dia1a2«i» 

df 

3. a pure permuter data2 = d2a2«i-
df 

Figure 3 illustrates this definition. 
We can now be precise about the meaning of such 

expressions as: 
a. The elimination of an occurrence of d in a form 

/82: if a EC"Jd/32, and the scopes o-4 = Sa-i/32, and \pj 
is the form obtained from <pd by replacing each a, by 
o-s (in other words, ̂  is the application of the definiens 
form to the scopes of the occurrence of d in /32), i.e. 
ipi = <Pa(<7i ~* «/> — »f̂ n ~*• «n)> then the replacement of 
the scope at a of /32 by i//7 yields an expression p, = 
A?(»/>i —*• Sa) which is said to be obtained from /32 by 

the elimination of d at a; we also write 

)32 -f/3„ and jS^Eaaf t , 
and call fix an immediate d-descendent of /32, thereby 
beginning the definition of a partial ordering relation 
among expressions: j82 > fBv 

d 

b. The introduction of d in a form fi, at an occur
rence of <pA: if aeC-Vdfr, so that <pd ^ ' Safl,, i.e. <pd 
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is an internal pattern in ft, then there is a complete 
independent set of scopes ax,..., <xn, occurring with 
the repetitions corresponding to the a{ in <pd, at ad
dresses in ft whose relative addresses with respect to 
a equal the address of the end-points «} in <pd; let ft 
will say that ft is obtained from ft by introduction of 

d at a; we also write ft ^* ft and ft = Idaft; ft is an 
a 

immediate d-nredecessor of ft and ft ̂  ft. 
d 

Clearly Ida and Ed a are inverse operators. 

c. In general, ft ^ ft and ft f fa, if either fa = fa 
or there is a chain of d-eliminations fa = ft i 

> Ed Ed JL 
di a2 an_7 

In this case we say that fa is a d-predecessor of ft, 
& is a d-descenderxt of fa, and & is obtained from 
fa by d-reduction. Figure 4 presents the design of a 
recognizer of fa ^ ft. 

d 

d. fa is d-equivalent to ft, and we write ft = ft 
d 

if the chain of operations, as in c, may contain any 
combination of d-introductions and d-eliminations. 

It is easy to see that ^ is a partial-ordering, and = 
d d 

is an equivalence relation. We will designate the set 
of all d-descendents of ft by L(ft), and the d-equiv-
alence class of ft by E(ft). 

If fa ^ fa, there might be many elimination chains 
d 

leading from ft to ft; in spite of this, for each char
acter occurrence in ft, there is only one occurrence 
in ft 'responsible for it'. This is shown by exhibiting 
a uniquely determined mapping from ft into ft. 

Figure 3 has already shown this in the critical case 
where ft0 = <pd and fa0 = da, ... an, here CAd0 ft0 

-» d = C*ft0, and CAdift0 -» *i = Ci-lft . This is the 
•generating d-map', gd(*;a), which performs a linguistic 
transformation from ft0 into ft0, where each of these 
expressions can also be looked upon as mappings, 
called trees, from tree-domains into the object alpha
bet; these linguistic transformations are therefore 
representable as composite mappings fulfilling a com
mutative condition: 

(Caft0-^gd(*;a)) c ft0=ft0*gd(*;a), 
a relation we might choose to represent by the sym
bolism ft0

 E fto g* or even by the diagram extending 
the type used by algebraic topologists: 

PlO 

gd ( C a g 1 0 -» gd (*;a) ) 

D 8 0 .*- a 

b 1 ^ Y e s 
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Figure 4 — Recognizer for the relation j82 s* J8J 
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We can extend such mappings from occurrences 
of d and <pd in /820 and (310 alone by first defining the 
address map: 

a if a; *£ a 
f a, if a G a, • Ad0 

g a f o ^ H a , -i-1 • a" if a eaj-Ad i • a" 

and then considering composites of such address 
maps, f, which we call d-maps. 

The design of the recognizer of the relation /32 

3= /37, shown in figure 4, depends upon the: 

Theorem: The following conditions are equivalent: 
1. ftGLO,), 
2. 0, 2= /3„ 

d 

3. There is a d-map of /3, into (S2, 
4. There is a unique d-map of /3* into /32. 
The generalized d-map can therefore be symbolized 

by j6; ~ j82 ° f, or by the diagram: 

f 
D . 

h 

D. 

Ps 

0 0 
and the composition of d-maps can be reflected in 
such notation as: 

D . 

A ~ i83o(f2of1), or 

- D. D . 

Pi 

t 
a 

- P: 

a 
If, furthermore, the explicit definition is not a scope 

expander, and /32 3= /3,, the uniquely determined map-
d 

ping from /37 into f32 is a mapping 'onto'. 
In any case, such mappings f are uniquely deter-

minded by addresses only; i.e. by a computation which 
given any a £ D;=D/3,, yields f(a)E D2=D/32-

Actually, an even stronger statement can be made; 
these address maps are even independent of the parti
cular trees. Eda is a functor applicable to any tree 
/32 for which Ca/82 = d, and it is possible to compute 
gd(a;b) for any address without knowing anything 
else about (3} beyond the fact that a EC'Vd/3/- We 
can therefore talk, within the context of a fixed ex
plicit definition, of 'the elimination functor <a> ' . 

Furthermore, Eda,Eda2 will be applicable, as a 

functor, to an infinite number of expressions, if to 
any at all; first of all, if it is applicable to /3, then 
Ca2/3 = d; secondly we must have d = Ca/Eda2/3. If 
we let: 

Adf={ai1,aj2,-..,aimj/, 
where mj is the multiplicity of ah such an occur
rence of d at address ax is a priori impossible only if 
gdCagjajEAdo; in other words it is possible only if 
ax ^ a2 => ( ?;• ijXaj s* a2 • au). Let the relation 
i s* a2 among addresses mean just this, so that our 
condition reads: aj 5= a2 => aj 3= a2. This, then, is pre
cisely the condition under which the 'elimination 
functor <a l 5a2>' exists; it is applicable to any one of 
the infinite number of expressions (3 with an occur
rence of d at a2 and also at g^a^aO. We could sim-
ilarlv validate and identify the 'elimination functor 

F = <a,, ••• , an> = Ed a x ' - E ^ ' and restrict our 
selves to a primitive address computation as in Figure 
5. d"iff

2 Tr CQf2CBi°E 

<*> {*. o} = {103 
gd(*;a) I <*> {». 1} = {0, 11} 

< 1 1 1 , 0 , * > { * . 1 ,11} = < 1 1 1 , 0 > { < * > { * , 1} U < * > { * , 1- 1} } 

= < 1 1 1 , 0 > { {0 , 11} U f 0, 11} • 1} 

= < ! 1 ! > 0 > { 0 , 1 1 ,01 , 111] 

= <111> { < 0 > { 0 , 0 1 } U < 0 > {0 , 11, 111} } 

= <111> { 0 • <*> { * , 1 ] U { 1 1 , 1 1 1 } } 

= <111> { 0 • f 0 , 1 1 } U { 1 1 , 1 1 1 } } 

= <111> { 0 0 , 0 1 1 , 11, 111} 

= <111> { 1 1 1 , 0 0 , 0 1 1 , 11} 

= { 0 0 , 0 1 1 . 1 1 } 

Figure 5 —An address computation for d-elimination 
The problem solved by the computation in figure 5 

could be stated as follows: If we explicitly define d by 
means of daj«2 = ca2ca,a2, then we would like to 
know what 'traces' are left from original occurrences 
at {*,1,11} in any word to which the following elimi
nation functor is applicable; d is eliminated at *, 
then at 0, and then at 111. According to the compu
tation, the only traces will be at addresses 00, 011, 
and 11. In particular, if d's occurred originally only 
at *, 1, and 11, they would not be completely elimi
nated; there would still be occurrences of d at 00, 
011, and 11. 

A study of Figure 5 reveals that the address compu
tation is driven to a conclusion by an algorithm which 
applies the following rules: 

Rule 1: <*> {*} = 
Rule 2: If i < s(d) (the stratification of d), then for 

every address a < > {*,! - a} = AdI • a 
={a,-, • a,...,a^ , a}. 
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"M;/0 

d c / i ° 2 Ti c c^c r ' ' i r ' ' r 

{0, ]; / .] 

<1> 

{A;* ,0 , 1,11] 

Figure 6—The Hasse 

The address set is interpreted to be null if the multi
plicity, nii, is zero, i.e. if the definition is scope ex
panding at i. 

Rule 3: IPGA^ then <a> {a • A,} = 
{a • <*> A;} • 

Rule 4: If a^b,then<a>{a,b}={b}. 
Rule 5: (the first commutation rule) If a and b are 

independent addresses (i.e. neither preceding the 
other), then <a,b> = <b,a>. 

Rule 6: (the second commutation rule) If m, # 
0 (i.e. if the definition is not scope expanding at i), 
then <a,a-i-a'> = <a-a«-a',... ,a-mt-a-,a>. if the 
multiplicity is zero, mr=0, then we can only say 
<a,a-i-a'> C <a> (the functor <a> has in its 
domain any expression with an occurrence of d at a; 
the functor <a,a-i-a'> is more restricted because 
it also requires an occurrence at a-i-a'). 

Rule 7: (the distribution rule) If the d-elimination 
functor F is applicable to the address sets A, and A2, 
then it is applicable to A2 U A2 and 

F(A7 U A2) = FA, UFA2. 
Suppose we now represent the distribution of oc

currences of d and <pd in an expression /3 by another 
expression of the form {C-7d/3;CVdj3}. Then, for the 
definition of figure 3, the expressions in pa: dca2 

aj d a2 a2, c d a 2 a , d a , c a 2 at, and ae = c c a , c « 2 a ! 

diagram of E (a0) 

c c a2 ax c ax c a2 at, will be represented by {*,1; A}, 
{o,l;A}, and {A;*,0,1,11} respectively. Moreover 
these three expssions all belong to E(a0), consisting 
of eight expressions in a partial ordering whose Hasse 
diagram appears in Figure 6. 

1. If j8? and (32 are forms over the extended alphabet 
and j3i ^ )8, then there exists another form /80 such 
that fd

up0 and j82dJ80. 
This is a very special case of the Church-Rosser 

theorem, which deals with the very general extension 
of formal systems by definitions. See, for example, 
Curry & Feys.6 

2. Every expression /37 over the extended alphabet 
determines a unique expression /80 over the original 
alphabet such that /3i 3= (30. 

In other words, every equivalence class of expres
sions contains one and only one expression over the 
original alphabet, its unique 'normal form'. 

3. For every expression /3, L(j8) is a lattice. Figure 6 
shows that this need not be true of E(fi). 

4. E(/3) can only be infinite if the definition is scope 
expanding. 

5. E(/3) can only fail to be a lattice if <pd is self-
dominating, and j8 contains a <pd<pd -domino. 

For example, this is the case in figure 6 because the 
occurrence of <pd at 1 in a0 dominates the occurrence 
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do'1ck'2 

d l Q , l Q 2 Q ' 3 

d 2 o^ or2 

da1a2. 

df 

IF 
df 

H 

cor2co'1Qr2 

CQ ,
1 CQ? 2 Q'3 

d 1 Q ' 1 C k ' „ Q ' 1 

d 2° '2 Q ' l 

Figure 7 - T h e Hasse diagram of E (a0) when d is factored 

on to study the effects of sets of definitions; the 
factorization into 'pure' types illustrated this. One 
could relax the 'completeness' condition we were 
using in our categories of languages, and consider 
various kinds of incomplete categories. One could 
relax the restrictions implied in our use of the word 
'explicit' to permit definitions by cases, or sup
pression of variables, or even recursion. The fact that 
there is such a theorem as the Church-Rosser theorem 
means that some kind of light should emerge. 

However, it seems to me that even our simple ex
ample has taught us some unexpected things. 

First of all, the processing we have been discussing 
can occur at meta-language level as well as at object-
language level. 

For example, in Church's axiomatic system for the 
propositional calculus the first axiom is 

Al :\-a1D(a2Dal). 

at 11 and is.dominated by the occurrence at *. 
6. A partial ordering is called modular if, when

ever jS2 ^ Pi, any two complete chains between y32 

and & have the same length. Figure 6 is not modular 
because one complete chain between {*,1;A} and 
{A;*,0,1,11} is of length two and the other two are of 
length three. This happens because the definition is 
a breadth reducer, C'o^d ={0,11}, and C"Vd«o2 
{*,0,11}. 

7. If we factored this definition into a pure depth 
reducer, a pure breadth reducer, and a pure permuter, 
as mentioned before, we separate their several effects 
into three phases of extension, as one can observe by 
studying Figure 7. 

CONCLUSION 
One could extend the very special theory of this paper 
in a number of directions. For example, one could go 
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The Name At belongs to the meta-language just 
as the punctuation, parentheses, and '[ —: do. We 
can give At several important types of interpretation 
in the meta-language, all of which we would like to 
use in the same system (see Gorn.9 For example: 

1. Aj is an address in an addressing system for the 
storage of axioms and theorems. 

2. Aj is an instruction representing an operation on 
two expressions; A1&1a2 will produce Da2"Da1 a2 

in trie language &•& oi a category. ± nis semantic cac t i 
carries with it all the syntactic effects of the explicit 
definition of figure 6 with Aj for d and D for c. In 
particular, the syntactic relation 

A j D a2a1A1a2a1 = D Aj^ajAjaj D a2at 

would also have the semantic consequence that both 
expression's specify methods of deriving a0 =DDaj 
DazajDDa^jDajDa^!. We also know, because of 
the AjA/ -domino in a0, that there can be no expres
sion in the g>® from which both can be derived. 

This means that much of the processing needed 
in theorem proving is not essentially different, in 
spite of the shift in level of interpretation, from the 
processing at object level. 

Moreover the introduction of explicitly defined 
symbols, as in Daja2 ~fi V—aja;,, and the introduction 
of systems of names of axioms and theorems are not 
only similar to each other but also play the same role 
in the meta-language as the introduction of new names 
of instructions, or of macro-instructions in a pro
gramming language. All these new symbols can also 
be interpreted as names of linguistic transformations 
on the object language, and therefore as operators in 
a meta-language over the object language. 

This means that there is a second effect from our 
study. A number of seemingly different problem areas 
in information science, logic, and linguistics become 
identified: 

a. The growth of a mechanical language by the ex
plicit defining of new characters: it can be controlled 
if we have the definitional forms recorded, and use 
such processors as form recognizers, recognizers of 
the relation 5= no matter what the 'd', reducers to 
normal form independent of d and <pd, equivalence 
recognizers, etc. Each of these processors will per
mit one to vary the alphabets, the forms, and the de
finitions, of which there will be very many. But of the 
basic processors there will be only a handful, and they 
will be applicable at many levels as well as to many 
alphabets and many definitions. The system should 
also contain a number of the translators among the 
language functions of the category. 

b. A number of problems in artificial intelligence: 
imagine that a language is specified for which a recog
nizer is either unknown or impossible; we want a 

'heuristic' recognizer which will 'often' determine 
whether an expression belongs to the language by 
attempting to solve the problem of setting up a 
derivation for it. If the processor is halted before this 
happens, the recognition is left undecided. The investi
gations of Newell, Shaw and Simon, such as the logic 
theorist,13 and the general problem solver14 can be 
formulated this way, because the set of all 'true' ex
pressions can be considered a language just as easily 
as the set of all expressions. This is because the 
axioms can be considered as ad hoc syntactic genera
tors of good expressions, and such 'transformation 
rules' as modus ponens, substitution, etc. can be con
sidered as derivation rules in a generative grammar. 

The heuristic program recognizes patterns of 
applicability of these transformation rules in order to 
set up the 'subgoals'. The availability of our standard 
form recognizers, as efficient processors rather than 
heuristic ones, makes the main heuristics more effi
cient. See Boyer,1 and Chroust.4 

c. The extension of formal systems by definition: 
one considers the 'derivation rules' of the formal 
system to be the 'transformation rules of the language', 
in the sense of Carnap, just as described in b. This is 
why the material in the first four chapters in Curry 

& Feys,6 leading up to the Church-Rosser theorem for 
general formal systems had its counterpart in our 
simplified and much more highly structured lang
uages. 

d. We handled an explicit definition as though it 
were an addition to the grammar of the language which 
permitted certain simple linguistic transformations 
to be performed. Our classification into depth reducers 
breadth reducers, etc. is a very primitive classi
fication very much in the spirit of the much more com
plicated 'linguistic transformations' in the sense of 
Chomsky and Harris. Can we not consider that any
one who defines a new expression in a language is 
causing the language itself to change; is he not really 
changing the grammar of the language, and not merely 
adding new expressions? 

e. Suppose we have two programming languages, 
such as, for example, the assembly languages of two 
different binary general purpose machines of the von 
Neumann type. We can consider that each instruction 
of either language is defined in terms of a common 
'micro-language' of bit-manipulations. Some of these 
definitions are recursive, but many can be made ex
plicit. Among the difficulties of machine-to-machine 
translation is the fact that many instructions, like 
'ADD' , do not really have the same definition in the 
different machines. 

The same problem arises if a community of users, 
beginning with a common language, have the freedom 
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of introducing macro-definitions independently of 
one another. Sub-communities with common problems 
will develop different sub-languages by different 
systems of macro-definitions, and if these different 
sub-communitities do not remain in constant com
munication, their distinct 'dialects' will, in effect, 
grow into distinct languages, and the translations, 
even with only explicitly defined macro-instructions, 
will be come difficult because of what, in this paper, 
is called the domino effect among definitions. 

The non-lattice effect we remarked on for defini
tions related by dominance we can now interpret as 
a danger of loss of communication; when the pro
cessors we have discussed are not available, the 
different sub-communities will not even know when 
they are saying the same things. 
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