Termination

Tgl:)ing

Grades

® 10% -~ Participation & exerclises

® 90% ~ term paper

e Alonzo Church (190%-1995)

® nvented lambda calculus

(1952)

® {irst Programming-
{

.anguage f’CSGBFChCF

(sans computers)

® Turing’s advisor

A SET OF POSTULATES FOR THE FOUNDATION
OF LOGIC.!

By Avroxzo (OHURCH.”

1. Introduction. In this paper we present a set of postulates for the
foundation of formal logie, in which we avoid use of the free, or real,
variable, and in which we infroduce a certain restriction on the law of
excluded middle as a means of avoiding the paradoxes connected with the
mathematies of the transfinite.

free and bound variables

In consequence of this abstract character of the system which we are
about to formulate, it is not admissible, in proving theorems of the system,
o make use of the meaning of any of the symbols, although in the appli-
cation which 1s intended the symbols do acquire meanings., The initial
set of postulates must of themselves define the system as a formal struc-
ture, and in developing this formal structure reference to the proposed
application must be held irrelevant. There may, indeed, be other appli-
cations of the system than its use as a logic,

sgmbols dO Nnot l’IaVC PFC‘-COI"ICCiVCCl

meanings

In consequence of this abstract character of the system which we are
about to formulate, it is not admissible, in proving theorems of the system,
o make use of the meaning of any of the symbols, although in the appli-
cation which is intended the symbols do acquire meanings. The initial
set of postulates must of themselves define the system as a formal struc-

' % " . K 1) “y 1 5 : - : aanl)) @) "0 _Yn » - -9 £ N e A » a wla 4
. " A !‘—-r _,-l‘__ s\l*, Al oy) 1231y Yo SRR B < ALY £ pF LN g 1ol N L) -

o . .,'

% application must be held irrelevant. There may, indeed, be other appli-#
% cations of the system than its use as a logic, 3

L3

L e TVE A i~ Lg% - el = [t | .S . :

ng]Z)OIS ClO Nnot l’IaVC PFC‘-COI"ICCEVCCI

meanings

Proof terms, well-formed objects

An oceurrence of a variable X in a given formula s ealled an oceurrence
of X as a bound variable in the given formula if it is an occurrence of X
in a part of the formula of the form AX[M]; that is, if there 1s a formula M
such that Zx[M] oceurs in the given formula and the oeceurrence of X in
question is an ocemrrence in Zx |M]. All other occurrences of a variable
in a formula are called occwrrences as a free rariable.

A formula is said to be well-formed if 1t 1s a variable, or if 1t 1s one

| ambda Calculus

o E\/ergthing s a function

® For example, Ax.x is the identit
P Y

(™ ,
runction

o 7\9.}\><.>< 's a constant function, always

returni ng, ideﬂtitg

| ambda Terms

® Constants C; Variables X

® | =constant| variable la lication |
PP

abstraction

® | ..=C | X] (LL) | AX.L

Positions

® Dcweg decimal system
® Number children, left to right

® Pathto Position gives “address”

Free Occurrences

Constants C; Variables X
L.=C | X] (LL) | AX.L
F.(c)=0 F (x) ={e}
F.(st) = 0.F,(s) ulL.F,(t)

F.(Ax.s) = {}
. ()\9 s) =1.F (s)

| ambda Calculus

® B_rule: Ax.s)t = s[x~t]

° Replace (all free) xin s with t

Substitution

® x[x~t] =t

* ylx-t] = y

® c[xmt] =c

® (su) [xmt] = s[x-t] ulx-t]
® (Ax.s)[x~t] = Ax.s

® (\y.s) [xmt] = Ay. s[xmt]

Beta lmmortalitg

® Ax.X(X) AX.X(x) = Ax.x (%) Ax.x(x)

Completeness

o .’fiverg recursive function can be

simulated 59 a pure lambda expression.

® Church numerals rePresent the

naturals.

® Termination is undecidable.

Church Numerals

® o A\ x4 (x)

Church Numerals

®T ® AX,Y.X

® [~ ® MYy
f(cab) ®Aab.cl@b
® O ® \f x.x

® N+t o M xf(n(Fx)
®n-- ® hard

® =0 ® n(A.FT)

E
ra
gogue Nume
Sgna

® AX,Y.X
y 3 b.c(a,a
H HY e Ac,a,
¢ hc(c,a,a o
. ® A\x.x(F;n)
® N++ ‘ n(ﬁ)
®)~ ~

®n(T)
® n=0

Scheme

o (((lambda (x 9) (9 %)) (lambda @) 2)
(lambda @) (z2))) 5)

e (((ambda () (z2)) (lambda) 2)) 5)
e (((Jambda (2) 2) lambda @) 2)) 5)
¢ ((lambda @) 2) 5)

* >

Inner vs. QOuter

® Scheme uses innermost

® Haske“ uses outermost

Recursor

® v .= (Ax. O\g.x(g (gD) (Xg.x(g (g))))
o V(b): recursive function with boclg b

¢ ﬁxpoi nt: Y(b) =b v (b))

o WO Am n.iF(n=0,m,F(m,n--))+)))) 3,4

Currging

M.y Alxyl instead of Ax, y.Alx,yl

+is the fDiﬂarg addition function

+(3) adds % to any number

+(®) (4) evaluates to 7

Arithmetic (Rosser)

‘Yo ® A Ax.x

® H++ o M Ax.n(P)

® mtn @A Ax.m®P ((h(D)) X))
® mn e M.m(n®)

® n \M-.n(m) (P

A-calculus and first-order rewriting led to two important families of
programming languages:

e« v. » functional programming languages: Lisp
- “"“ (1958), ML (1972), Haskell (1990), OCaml
\ 3 N (1996), F+# (2005), ...

(> rewriting-based languages: OBJ (1976), Elan
\,__.-“‘ (1994), Maude (1996), ...

Simple T9P65

Base types B (e.g. Nat)

Arrow types [e.g. Nat = (Nat = Bool)]

.’iaclﬂ constant/ variable has a tg[oe
Tgpe (AX:0.5:T) =0T

Tgpe (s:0—-TtHo) =T

Tgping Rules

[

z: A |‘ T A

[,z:AFu:D I [Fs:A-DB Art: A :
FF,\.r.u:Aan [Alst:B '

Tgpecl | ambda Calculus

¢ B~FU|C: O\X:O‘. S:T)t:()' -> S[X:O' Ht:O‘]:T

Tgpecl Beta Mortalitg

@ Ax:.0—T.(X:0=Tx:0):(0—=T)—>T

Termination

® Tur ng gave first proomC

® Tait’s ProcnC
® |nduction on term structure

® |nduction on tHPC structure

Termination of 3-reduction alone?

in the simply-typed A-calculus:

> — 3 can be proved terminating by a direct induction on the type
of the substituted variable (Sanchis 1967, van Daalen 1980)
does not extend to rewriting where the type of substituted variables
can increase, e.g. f(cx) — x with x: A= B

computability has been introduced for proving termination of
B-reduction in typed A-calculi (Tait, 1967) (Girard, 1970)

> every type T is mapped to a set [T] of computable terms
> every term t: T is proved to be computable, i.e. t € [T]

Predicates

® Slt]:tis “terminating” (no infinite Paths}
® Clt]:tis “computable” (typecl terminating)

® NIlt]:tis “normalizing” (has a normal form)

Facts

¢ Slt] &t=>u=5]lul
¢ Slt]l &t> u=5lul

® {Vu.t=>u=5S[u]l=5[t]

Desiderata

1. Clt] = S[t]
2.Cls]l &s=>t= Clt]

5 Clx] Clc]

4 Vi{ulv) > t=Clt]}=Cluv)]

5. Clul e vwi{Clvl = CluWl}

Computability predicates

there are different definitions of computability (Tait Sat, Girard
Red, Parigot SatInd, Girard Bil) but Girard's definition Red is
better suited for handling arbitrary rewriting

let Red be the set of P such that:

> termination: P C SN(—3)
> stability by reduction: —3(P) C P
» if t is neutral and —(t) C P thent e P

neutral = not head-reducible after application (Axu is not neutral)

