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ASSIGNING MEANINGS TO PROGRAMSl 

Introduction. This paper attempts to provide an adequate basis for 
formal definitions of the meanings of programs in appropriately defined 
programming languages, in such a way that a rigorous standard is established 
for proofs about computer programs, including proofs of correctness, 
equivalence, and termination. The basis of our approach is the notion of 
an interpretation of a program: that is, an association of a proposition 
with each connection in the flow of control through a program, where the 
proposition is asserted to hold whenever that connection is taken. To prevent 
an interpretation from being chosen arbitrarily, a condition is imposed on 
each command of the program. This condition guarantees that whenever 
a command is reached by way of a connection whose associated proposition 
is then true, it will be left (if at all) by a connection whose associated 
proposition will be true at that time. Then by induction on the number of 
commands executed, one sees that if a program is entered by a connection 
whose associated proposition is then true, it will be left (if at all) by a 
connection whose associated proposition will be true at that time. By this 
means, we may prove certain properties of programs, particularly properties 
of the form: "If the initial values of the program variables satisfy the 
relation Rit the final values on completion will satisfy the relation Rz." 
Proofs of termination are dealt with by showing that each step of a program 
decreases some entity which cannot decrease indefinitely. 

These modes of proof of correctness and termination are not original; 
they are based on ideas of Perlis and Gorn, and may have made their 
earliest appearance in an unpublished paper by Gorn. The establishment 
of formal standards for proofs about programs in languages which admit 
assignments, transfer of control, etc., and the proposal that the semantics 
of a programming language may be defined independently of all processors 
for that language, by establishing standards of rigor for proofs about 

1 This work was supported by the Advanced Projects Agency of the Office of 
the Secretary of Defense (SD-146). 
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Invariants
r := 1
u := 1
loop     v := u

until r≥n
s := 1
loop   u := u+v

s := s+1
while s≤r
repeat 

r := r+1
repeat

1≤r≤n

1≤s≤r+1



Double Induction

Inner loop

Outer loop



Ackermann’s Function

a(0,n) = n+1

a(m+1,0) = a(m,1)

a(m+1,n+1) = a(m,a(m+1,n))



Ackermann

 a(4,4) = 2↑7-3

 Computation is much longer

 Fact: a(m,n) > m+n ≥ m,n



Double Induction

Call by value termination

Assume terminating for smaller m

Assume terminating for same m and 
smaller n



Basic A(m,n)
DIM s(tsize + 1)

   t = 1: s(t) = m
   DO
      c = c + 1
      m = s(t): t = t - 1
      IF m = 0 THEN
         n = n + 1
      ELSEIF n = 0 THEN
         t = t + 1: s(t) = m - 1
         n = 1
      ELSE
         t = t + 1: s(t) = m - 1
         t = t + 1: s(t) = m
         n = n - 1
      END IF
      IF t > d THEN
         d = t
         IF d > tsize THEN
            PRINT "failure": END
         END IF
      END IF
   LOOP UNTIL t = 0

A = n
END FUNCTION



Orderings

nPartial ordering

nIrreflexive

nTransitive

nAsymmetric



Hasse Diagram



Orderings (Well-founded)

nPartial ordering

nIrreflexive

nTransitive

nAsymmetric

nWell-founded

nNo infinite decreasing chains



Well-Founded Orderings
N, >

Z-, <

Z, ???

Finite trees, subtree

NxN, lexicographic

∑*, subword

∑*, lexicographic ???



Couples

(a,b) > (a’,b’)

Component-wise: a>a’ & b≥b’ or a≥a’ & b>b’

Lexicographic: a>a’ or a=a’ & b>b’

Reverse lexicographic: a>a’ & b=b’ or b>b’

Pairs of pairs: (1,0) > (0,(1,0)) > ...



Mixed Couples

If V and W are well-founded, then their pairs 
VxW are well-founded lexicographically.



Ackermann

Termination of recursion

Induction on (m,n)



Turing’s Program
r := 1
u := 1
loop     v := u

until r≥n
s := 1
loop   u := u+v

s := s+1
while s≤r
repeat 

r := r+1
repeat

(n-r,r-s)
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Dutch National Flag



Dutch National Flag



Flag Problem



Dutch National Flag



Dutch National Flag



Dutch National Flag



Dutch National Flag
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Dutch National Flag



Dutch National Flag
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Dutch National Flag



Dutch National Flag



Basic A(m,n)
DIM s(tsize + 1)

   t = 1: s(t) = m
   DO
      c = c + 1
      m = s(t): t = t - 1
      IF m = 0 THEN
         n = n + 1
      ELSEIF n = 0 THEN
         t = t + 1: s(t) = m - 1
         n = 1
      ELSE
         t = t + 1: s(t) = m - 1
         t = t + 1: s(t) = m
         n = n - 1
      END IF
      IF t > d THEN
         d = t
         IF d > tsize THEN
            PRINT "failure": END
         END IF
      END IF
   LOOP UNTIL t = 0

A = n
END FUNCTION

s(1:tsize) 
lexicographically



Sequences

(a,b,c,...) > (a’,b’,c’,d’,...)

Lex is bad : 10 > 010 > 0010 > ...

Length-lex: 0010 > 010 > 001 > 10 > 01



Unbounded Sequences

Sorted-lex: 221 > 211110000 > 2111000000 > ...

Sorted-lex: ∞∞21 > ∞88880 > 9998888000 > ...



Sorted Sequences
s11 ≥ s12 ≥ s13 ≥ ... ≥ s1j ≥ ...

s21 ≥ s22 ≥ s23 ≥ ... ≥ s2j ≥ ...

etc. ...

Let j be first unstable column, changing at i

s_1,1 = s_i,1 ≥ s_i,j > s_i+1,j 

Consider rest: s[i+1..∞,j..∞] and continue

Gives infinite descending sequence of elements



Harder A(m,n)
 t := 1

   s[t] := m
   loop
      c := c + 1
      m := s[t]
      t := t - 1
      if m = 0 
      then
         n := n + 1
      elseif n = 0 
      then
         t := t + 1
         s[t] := m - 1
         n := 1
      else
         t := t + 2
         s[t-1] := m - 1
         s[t] := m
         n := n - 1
      until t = 0

s can grow and grow

(sorted) lex doesn’t work



Harder A(m,n)
 t := 1

   s[t] := m
   loop
      c := c + 1
      m := s[t]
      t := t - 1
      if m = 0 
      then
         n := n + 1
      elseif n = 0 
      then
         t := t + 1
         s[t] := m - 1
         n := 1
      else
         t := t + 2
         s[t-1] := m - 1
         s[t] := m
         n := n - 1
      until t = 0

{ 
∑ 3

Ns[j]+
N
n

N:=a(m,n)



Well-Orderings

a b c ...

a b c ... ∞

a b c ... 0 1 2 ...

a0 a1 a2 ... b0 b1 b2 ... c0 c1 c2 ... ...

000 001 002 ... 010 011 ... 020 ... 100 
101 ...



Chocolate Bar

Yumm (click here)

http://www.cut-the-knot.org/proofs/chocolad.shtml
http://www.cut-the-knot.org/proofs/chocolad.shtml










Before & After

n ↝ ⎣n/2⎦ , ⎡n/2⎤    (n>1)



Before & After

1 ↝

n ↝ ⎣n/2⎦ , ⎡n/2⎤    (n>1)              



Before & After

1 ↝

n ↝ 1 , n-1    (n>1)



Before & After

1 ↝

n ↝   i , n-i    (n>1, i>0)



Before & After

m ↝

n ↝ n-1 , n-1    (n>1, i>0)



Proof by Cases

A[x]

-----------------

A[true], A[false]



Before & After

1 ↝

n ↝ i , j    (0<i,j<n)



Before & After

1 ↝

n ↝ i , j , k    (0<i,j,k<n)



Before & After

1 ↝

n ↝ n1 , n2 , ..., nk    (0<ni<n)



A tree is finite (has finitely many 
edges) 

                      if and only if                                              

all nodes have finite degree 

and 

all branches (simple paths) have 

Konig’s Lemma



Billiards



Smullyan’s Billiards



Multiset (Bag) Ordering

>

>



Multiset (Bag) Ordering

>

>
Well-founded

by
König’s Lemma



Harder A(m,n)
 t := 1

   s[t] := m
   loop
      c := c + 1
      m := s[t]
      t := t - 1
      if m = 0 
      then
         n := n + 1
      elseif n = 0 
      then
         t := t + 1
         s[t] := m - 1
         n := 1
      else
         t := t + 2
         s[t-1] := m - 1
         s[t] := m
         n := n - 1
      until t = 0

Bag of pairs
(s[i],∞)   i<t
(s[t],n)     



Nested Matryoshka Dolls



Nested Bags



Nested Ordering

>

>



Nested Ordering

>

>



Goodstein 4

4, 26, 41, 60, 83, 109, 139, 173, 211, 253, 299, 348, 
401, 458, 519, 584, 653, 726, 803, 884, 969, 1058, 
1151, 1222, 1295, 1370, 1447, 1526, 1607, 1690, 1775, 
1862, 1951, 2042, 2135, 2230, 2327, 2426, 2527, 
2630, 2735, 2842, 2951, 3062, 3175, 3290, 3407,..., 
11115, 11327,..., 40492,40895,..., 154349, 

162129585780031489, 162129586585337855,         
3⋅2 402653210−1, ......................, 2, 1, 0



Goodstein 19

19, 7625597484990, ~1.3x10154, ...



Goodstein Step

Increment base & decrement number

4 : 22

26 : 33 -1 = 27-1 = 26 = 32 + 32 + 3 + 3 + 2

41 : 42 + 42 + 4 + 4 + 1



Goodstein Step

Base is a bag (and the whole thing is in a bag)

22 is {{{}}}

32 + 32 + 3 + 3 + 2 is {{2},{2},{},{},2}

42 + 42 + 4 + 4 + 1 is {{2},{2},{},{},1}



Hydra





Hercules’ Second Labor



	 Each time Hercules bashed one of Hydra's heads, 
Iolaus held a torch to the headless neck. 

    After destroying eight mortal heads, Hercules 
chopped off the ninth, immortal head, which he 
buried at the side of the road from Lerna to Elaeus, 
and covered with a heavy rock. 





Hydra vs. Hercules



Hydra vs. Hercules



Hydra vs. Hercules



Hercules > Hydra

>



Hercules > Hydra

>



Hercules > Hydra

>

{{o{{ooo}o} {oo{oo}} {o{oooo}o} {oo}} >         
{{o{{ooo}o} {o{oo}} {o{oo}} {o{oo}} {o{oooo}o} {oo}}
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Hercules Defeats Hydra

• Cannot be proved in Peano Arithmetic 
[Paris & Kirby]

• Requires induction up to ε0

Natural numbers do not suffice

Sophisticated variants require more 
powerful systems [Friedman]







Amoebae

A.2 Multisets 179

root

!!!!!!!!!!!!!!!

"""""""""""""""""

s1 s1

##
##

##
##

#

$$
$$

$$
$$

s2

s′1 . . . s′k s2

deleted

Figure A.2: Labelled tree for M3 ≺# M2 ≺# M1

of a sequence of such steps (a ‘life’) of an amoebae colony is given in Figure A.3.
Prove that a colony of amoebae has only a finite life.

amoeba colony

...

life of amoeba colony

Figure A.3: Amoebae

Next, we extend the capabilities of amoebae by allowing them to reproduce.
Two amoebae which can touch each other may reproduce, thereby sharing their
outer membrane, and making arbitrarily many copies of their sons (as suggested
in Figure A.4). In particular, an amoeba is allowed to multiply its sons and retain
its outer membrane, while ‘eating’ another amoeba. Show that even together with
this second rule of activity, each colony must eventually terminate.
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Next, we extend the capabilities of amoebae by allowing them to reproduce.
Two amoebae which can touch each other may reproduce, thereby sharing their
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180 Mathematical background

fusion

fusion

Figure A.4: Fusion of two amoebae


