Termination

2. Games

Readings

- Floyd, "Assigning Meaning to Programs"
- "Proving Termination with Multiset Orderings"

ASSIGNING MEANINGS TO PROGRAMS ${ }^{\text { }}$

Introduction. This paper attempts to provide an adequate basis for formal definitions of the meanings of programs in appropriately defined programming languages, in such a way that a rigorous standard is established for proofs about computer programs, including proofs of correctness, equivalence, and termination. The basis of our approach is the notion of an interpretation of a program: that is, an association of a proposition with each connection in the flow of control through a program, where the proposition is asserted to hold whenever that connection is taken. To prevent an interpretation from being chosen arbitrarily, a condition is imposed on each command of the program. This condition guarantees that whenever a command is reached by way of a connection whose associated proposition

Invariants

$$
\begin{aligned}
& r: \approx 1 \\
& u: \approx 1 \\
& \text { loop } v: \approx u \quad 1 \leq r \leq n \\
& \text { until } r \geq n \\
& s: \approx 1 \\
& \text { loop } u:=u+v \\
& s:=s+1 \quad 1 \leq s \leq r+1 \\
& \text { while } s \leq r \\
& \text { repeat } \\
& r: \approx r+1 \\
& \text { repeat }
\end{aligned}
$$

Double Induction

- Innerloop
- Outer loop

Ackermann's Function

$$
\begin{gathered}
a(0, n) \approx n+1 \\
a(m+1,0) \approx a(m, 1) \\
a(m+1, n+1) \approx a(m, a(m+1, n))
\end{gathered}
$$

Ackermann

- $a(4,4)=2 \uparrow 7-3$
- Computation is much longer
- Fact: $a(m, n)>m+n \geq m, n$

Double Induction

- Call by value termination
- Assume terminating for smaller m
- Assume terminating for same m and smaller n

BASIC A (m, n)

```
DIM s(tsize + 1)
\(\mathrm{DO}_{\mathrm{DO}}=1: \mathrm{s}(\mathrm{t})=\mathrm{m}\)
    \(c=c+1\)
    \(\mathrm{m}_{\mathrm{IF}}^{\mathrm{m}} \mathrm{m}=\mathrm{S}(\mathrm{t}): \mathrm{t}_{\text {THEN }}^{=}=\mathrm{t}-1\)
```



```
            \(t=t+1: s(t)=m-1\)
\(n=1\)
    ELSE
                \(t=t+1: s(t)=m-1\)
                \(t=t+1: s(t)=m\)
            \(\mathbf{n}=\mathbf{n}-1\)
    END
    IF \(t>d\) THEN
```



```
                PRINT "failure": END
            END IF
        END IF
LOOP UNTIL \(t=0\)
```

$\mathrm{A}=\mathbf{n}$
END FUNCTION

Orderings

\lrcorner Partíal ordering

_Irreflexive
-Transitive
_Asymmetric

Hasse Díagram

Orderings (Well-founded)

-Partial ordering
_Irreflexive
_Transitive
_Asymmetric
」Well-founded
-No infinite decreasing chains

Well-Founded Orderings

- $N,>$
- $Z^{-},<$
- Z, ???
- Finite trees, subtree
- $N \times N$, lexicographic
- Σ^{*}, subword
- \sum^{*}, lexicographic???

Couples

$$
(a, b)>\left(a^{\prime}, b^{\prime}\right)
$$

- Component-wise: $a>a^{\prime} \& b \geq b$ or $a \geq a^{\prime} \& b>b$ '
- Lexicographic: $a>a$ or $a \approx a^{\prime} \& b>b$ '
- Reverse lexicographic: $a>a^{\prime} \& b=b$ or $b>b$ '
- Pairs of pairs: $(1,0)>(0,(1,0))>\ldots$

Míxed Couples

If V and W are well-founded, then their pairs $V \times W$ are well-founded lexicographically.

Ackermann

- Termination of recursion
- Induction on (m,n)

Turing's Program

$$
\begin{array}{ll}
r: \approx 1 & \\
u: \approx 1 & \\
\text { loop } & v: \approx u \\
& \text { until } r \geq n \\
& s: \approx 1 \\
& \text { loop } u: \approx u+v \\
& \\
& \\
& \text { while } s \leq s \leq r \\
& \text { repeat } \\
& \\
& r: \approx r+1 \\
& \text { repeat }
\end{array}
$$

$$
(n-r, r-s)
$$

Dutch National Flag

Dutch National Flag

Flag Problem

Dutch National Flag

Dutch National Flag

Dutch National Flag

Dutch National Flag

Dutch National Flag

Dutch National Flag

Dutch National Flag

Dutch National Flag

Dutch National Flag

Dutch National Flag

Dutch National Flag

Dutch National Flag

Dutch National Flag

Dutch National Flag

Dutch National Flag $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$ I 00000

BASIC A(m,n)

```
DIM s(tsize + 1)
\(\mathrm{DO}_{\mathrm{DO}}=1: s(t)=m\)
    \(c=c+1\)
    \(\mathrm{m}_{\mathrm{IF}}^{\mathrm{m}} \mathrm{m}=\mathrm{S}(\mathrm{t}): \mathrm{t}_{\text {THEN }}^{=}=\mathrm{t}-1\)
    \(\mathbf{n}=\mathbf{n}+1\)
    ELSEIF \(n=0\) THEN
        \(t=t+1: s(t)=m-1\)
\(n=1\)
    ELSE
        \(t=t+1: s(t)=m-1\)
\(t=t+1: s(t)=m\)
        \(\mathbf{n}=\mathbf{n}-\mathbf{1}\)
    END IF
    IF \(t>d\) THEN
        \({ }_{I F}=d^{t}>\) tsize THEN
                PRINT "failure": END
        END IF
    END IF
LOOP UNTIL \(t=0\)
```

S(1:TSIZE)
LEXICOGRAPHICALLY
$\mathrm{A}=\mathrm{n}$
END FUNCTION

Sequences

$(a, b, c, \ldots)>\left(a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}, \ldots\right)$

- Lex is bad : $10>010>0010>\ldots$
- Length-lex: $0010>010>001>10>01$

Unbounded Sequences

- Sorted-lex: $221>211110000>2111000000>\ldots$
- Sorted-lex: $\infty \infty 21>\infty 88880>9998888000>\ldots$

Sorted Sequences

- $s 11 \geq s 12 \geq s 13 \geq \ldots \geq s 1 j \geq \ldots$
- $s 21 \geq s 22 \geq s 23 \geq \ldots \geq s 2 j \geq \ldots$
- etc. ...
- Let j be first unstable column, changing at
- $s_{-} 1,1$ _s_i, $1 \geq s_{-} i, j>s_{-} i+1, j$
- Consider rest: $s[i+1 . . \infty, j . . \infty]$ and continue
- Gives infinite descending sequence of elements

HARDER A (m, n)

```
t := 1
s[t] := m
loop
C := c+1
m:=s[t]
if m}=\mp@subsup{\mathbf{m}}{}{\prime
    then
    n := n + 1
    elseif n = 0
    then
        t := t + 1
    else
        t:= t + 2
        s[t-1]:=m - 1
        S[t] := m
        until:= n = 0
```

 \(\mathrm{s}_{\mathrm{n}}^{\mathrm{s}[\mathrm{t}]} \mathrm{i}_{\mathrm{i}}=\mathrm{m}-1 \quad\) (SORTED) LEX DOESN'T WORK

HARDER A (m, n)

```
\(t:=1\)
s[t] := m
loop
\(c:=c+1\)
\(m:=s[t]\)
\(t i f=t=1\)
then
    \(n:=n+1\)
    elseif \(n=0\)
    then
        \(t:=t+1\)
        \(\mathrm{s}[\mathrm{t}]\)
n
\(\mathbf{i}=\mathrm{i}\)
    else
        \(t:=t+2\)
        \(s[t-1]:=m-1\)
        \(\mathrm{s}[\mathrm{t}] \quad:=\mathrm{m}\)
        until \(t=\frac{n}{=}\)
```


Well-Orderings

- abc...
- $a b c \ldots \infty$
- abc...012...
- aO al a2 ... bo bibz ... co cl c2
- $000001002 \ldots 010011 \ldots 020 \ldots 100$ $101 \ldots$

Chocolate Bar

- Yumm (click here)

$4 \mathrm{C}=\frac{1}{8}$

Before \& After

- $n \rightarrow\lfloor n / 2\rfloor,\lceil n / 2\rceil \quad(n>1)$

Before \& After

- $1 \rightarrow$
- $n \rightarrow\lfloor n / 2\rfloor,\lceil n / 2\rceil \quad(n>1)$

Before \& After

- $1 \rightarrow$
- $n \rightarrow 1, n-1 \quad(n>1)$

Before \& After

- $1 \rightarrow$
- $n \rightarrow i, n-i \quad(n>1, i>0)$

Before \& After

- $\mathrm{m} \rightarrow$
- $n \rightarrow n-1, n-1 \quad(n>1, i>0)$

Proof by Cases

A[x]

A[true], A[false]

Before \& After

- $1 \rightarrow$
- $n \rightarrow i, j \quad(O<i, j<n)$

Before \& After

- $1 \rightarrow$
- $n \rightarrow i, j, k \quad(O<i, j, k<n)$

Before \& After

- $1 \rightarrow$
- $n \rightarrow n 1, n 2, \ldots, n k \quad(O<n i<n)$

Koníg's Lemma

A TREE IS FINITE (HAS FINITELY MANY EDGES)

```
IF AND ONLY IF
```

- ALL NODES HAVE FINITE DEGREE

AND

- ALL BRANCHES (SIMPLE PATHS) HAVE

Billiards

Smullyan's Billiards

Multiset (Bag) Ordering

Multiset (Bag) Ordering

Well-founded by
König's Lemma

HARDER A (m, n)

```
\(t:=1\)
s[t] := m
loop
\(\mathrm{C}:=c+1\)
\(m:=s[t]\)
\(\mathrm{t}:=\mathrm{t}=1\)
    then
    \(n:=n+1\)
    elseif \(\mathbf{n}=0\)
    then
        \(t:=t+1\)
        \(\mathrm{s}[\mathrm{t}]\)
\(\mathrm{n}:=\mathrm{i}=\mathrm{m}-1\)
    else
        \(t:=t+2\)
        \(s[t-1]:=m-1\)
        \(\mathrm{S}[\mathrm{t}] \quad:=\mathrm{m}\)
        until \(t=\mathbf{n}^{\mathbf{n}}\)
```

BAG OF PAIRS ($\mathrm{S}[\mathrm{I}], \infty$) $\quad \mathrm{I}<\mathrm{T}$ (S[T],N)

Nested Matryoshka Dolls

Nested Bags

Nested Ordering

Nested Ordering

Goodstein 4

$4,26,41,60,83,109,139,173,211,253,299,348$, $401,458,519,584,653,726,803,884,969,1058$, $1151,1222,1295,1370,1447,1526,1607,1690,1775$, $1862,1951,2042,2135,2230,2327,2426,2527$, $2630,2735,2842,2951,3062,3175,3290,3407, \ldots$, $11115,11327, \ldots, 40492,40895, \ldots, 154349$, 162129585780031489,162129586585337855 , $3 \cdot 2^{402653210}-1, \ldots \ldots \ldots \ldots \ldots \ldots \ldots . ., 2,1,0$

Goodsteín 19

- $19,7625597484990, ~ \sim 1.3 \times 10^{154}, \ldots$

Goodstein Step

- Increment base \& decrement number
- $4: 2^{2}$
- $26: 3^{3}-1 \approx 27-1=26 \approx 3^{2}+3^{2}+3+3+2$
- $41: 4^{2}+4^{2}+4+4+1$

Goodstein Step

- Base is a bag (and the whole thing is in a bag)
- 2^{2} is \{\{\{\}\}\}
- $3^{2}+3^{2}+3+3+2$ is $\{\{2\},\{2\},\{ \},\{ \}, 2\}$
- $4^{2}+4^{2}+4+4+1$ is $\{\{2\},\{2\},\{ \},\{ \}, 1\}$

Hydra

$000000 \times \times 0 \times 0 \times 0$

Hercules' Second Labor $00000000000<0$

Each time Hercules bashed one of Hydra's heads, Iolaus held a torch to the headless neck.

After destroying eight mortal heads, Hercules chopped off the ninth, immortal head, which he buried at the side of the road from Lerna to Elaeus, and covered with a heavy rock.

Hydra vs. Hercules

Hydra vs. Hercules

Hydra vs. Hercules

Hercules > Hydra

Hercules > Hydra

Hercules > Hydra

\{\{of\{ooo\}o\} \{oo\{oo\}\} \{ofoooo\}o\} \{oo\}\} >

Hercules Defeats Hydra

- Cannot be proved in Peano Arithmetic [Paris \& Kirby]
- Requíres induction up to ε_{0}
- Natural numbers do not suffice
- Sophisticated variants require more powerful systems [Friedman]

Amoebae

Amoebae

