
Termination
2. Games

Readings

Floyd, “Assigning Meaning to Programs”

“Proving Termination with Multiset
Orderings”

Robert W. Floyd

ASSIGNING MEANINGS TO PROGRAMSl

Introduction. This paper attempts to provide an adequate basis for
formal definitions of the meanings of programs in appropriately defined
programming languages, in such a way that a rigorous standard is established
for proofs about computer programs, including proofs of correctness,
equivalence, and termination. The basis of our approach is the notion of
an interpretation of a program: that is, an association of a proposition
with each connection in the flow of control through a program, where the
proposition is asserted to hold whenever that connection is taken. To prevent
an interpretation from being chosen arbitrarily, a condition is imposed on
each command of the program. This condition guarantees that whenever
a command is reached by way of a connection whose associated proposition
is then true, it will be left (if at all) by a connection whose associated
proposition will be true at that time. Then by induction on the number of
commands executed, one sees that if a program is entered by a connection
whose associated proposition is then true, it will be left (if at all) by a
connection whose associated proposition will be true at that time. By this
means, we may prove certain properties of programs, particularly properties
of the form: "If the initial values of the program variables satisfy the
relation Rit the final values on completion will satisfy the relation Rz."
Proofs of termination are dealt with by showing that each step of a program
decreases some entity which cannot decrease indefinitely.

These modes of proof of correctness and termination are not original;
they are based on ideas of Perlis and Gorn, and may have made their
earliest appearance in an unpublished paper by Gorn. The establishment
of formal standards for proofs about programs in languages which admit
assignments, transfer of control, etc., and the proposal that the semantics
of a programming language may be defined independently of all processors
for that language, by establishing standards of rigor for proofs about

1 This work was supported by the Advanced Projects Agency of the Office of
the Secretary of Defense (SD-146).

19

Invariants
r := 1
u := 1
loop v := u

until r≥n
s := 1
loop u := u+v

s := s+1
while s≤r
repeat

r := r+1
repeat

1≤r≤n

1≤s≤r+1

Double Induction

Inner loop

Outer loop

Ackermann’s Function

a(0,n) = n+1

a(m+1,0) = a(m,1)

a(m+1,n+1) = a(m,a(m+1,n))

Ackermann

 a(4,4) = 2↑7-3

 Computation is much longer

 Fact: a(m,n) > m+n ≥ m,n

Double Induction

Call by value termination

Assume terminating for smaller m

Assume terminating for same m and
smaller n

Basic A(m,n)
DIM s(tsize + 1)

 t = 1: s(t) = m
 DO
 c = c + 1
 m = s(t): t = t - 1
 IF m = 0 THEN
 n = n + 1
 ELSEIF n = 0 THEN
 t = t + 1: s(t) = m - 1
 n = 1
 ELSE
 t = t + 1: s(t) = m - 1
 t = t + 1: s(t) = m
 n = n - 1
 END IF
 IF t > d THEN
 d = t
 IF d > tsize THEN
 PRINT "failure": END
 END IF
 END IF
 LOOP UNTIL t = 0

A = n
END FUNCTION

Orderings

nPartial ordering

nIrreflexive

nTransitive

nAsymmetric

Hasse Diagram

Orderings (Well-founded)

nPartial ordering

nIrreflexive

nTransitive

nAsymmetric

nWell-founded

nNo infinite decreasing chains

Well-Founded Orderings
N, >

Z-, <

Z, ???

Finite trees, subtree

NxN, lexicographic

∑*, subword

∑*, lexicographic ???

Couples

(a,b) > (a’,b’)

Component-wise: a>a’ & b≥b’ or a≥a’ & b>b’

Lexicographic: a>a’ or a=a’ & b>b’

Reverse lexicographic: a>a’ & b=b’ or b>b’

Pairs of pairs: (1,0) > (0,(1,0)) > ...

Mixed Couples

If V and W are well-founded, then their pairs
VxW are well-founded lexicographically.

Ackermann

Termination of recursion

Induction on (m,n)

Turing’s Program
r := 1
u := 1
loop v := u

until r≥n
s := 1
loop u := u+v

s := s+1
while s≤r
repeat

r := r+1
repeat

(n-r,r-s)

18

Dutch National Flag

Dutch National Flag

Flag Problem

Dutch National Flag

Dutch National Flag

Dutch National Flag

Dutch National Flag

Dutch National Flag

Dutch National Flag

Dutch National Flag

Dutch National Flag

Dutch National Flag

Dutch National Flag

Dutch National Flag

Dutch National Flag

Dutch National Flag

Dutch National Flag

Dutch National Flag

Basic A(m,n)
DIM s(tsize + 1)

 t = 1: s(t) = m
 DO
 c = c + 1
 m = s(t): t = t - 1
 IF m = 0 THEN
 n = n + 1
 ELSEIF n = 0 THEN
 t = t + 1: s(t) = m - 1
 n = 1
 ELSE
 t = t + 1: s(t) = m - 1
 t = t + 1: s(t) = m
 n = n - 1
 END IF
 IF t > d THEN
 d = t
 IF d > tsize THEN
 PRINT "failure": END
 END IF
 END IF
 LOOP UNTIL t = 0

A = n
END FUNCTION

s(1:tsize)
lexicographically

Sequences

(a,b,c,...) > (a’,b’,c’,d’,...)

Lex is bad : 10 > 010 > 0010 > ...

Length-lex: 0010 > 010 > 001 > 10 > 01

Unbounded Sequences

Sorted-lex: 221 > 211110000 > 2111000000 > ...

Sorted-lex: ∞∞21 > ∞88880 > 9998888000 > ...

Sorted Sequences
s11 ≥ s12 ≥ s13 ≥ ... ≥ s1j ≥ ...

s21 ≥ s22 ≥ s23 ≥ ... ≥ s2j ≥ ...

etc. ...

Let j be first unstable column, changing at i

s_1,1 = s_i,1 ≥ s_i,j > s_i+1,j

Consider rest: s[i+1..∞,j..∞] and continue

Gives infinite descending sequence of elements

Harder A(m,n)
 t := 1

 s[t] := m
 loop
 c := c + 1
 m := s[t]
 t := t - 1
 if m = 0
 then
 n := n + 1
 elseif n = 0
 then
 t := t + 1
 s[t] := m - 1
 n := 1
 else
 t := t + 2
 s[t-1] := m - 1
 s[t] := m
 n := n - 1
 until t = 0

s can grow and grow

(sorted) lex doesn’t work

Harder A(m,n)
 t := 1

 s[t] := m
 loop
 c := c + 1
 m := s[t]
 t := t - 1
 if m = 0
 then
 n := n + 1
 elseif n = 0
 then
 t := t + 1
 s[t] := m - 1
 n := 1
 else
 t := t + 2
 s[t-1] := m - 1
 s[t] := m
 n := n - 1
 until t = 0

{
∑ 3

Ns[j]+
N
n

N:=a(m,n)

Well-Orderings

a b c ...

a b c ... ∞

a b c ... 0 1 2 ...

a0 a1 a2 ... b0 b1 b2 ... c0 c1 c2

000 001 002 ... 010 011 ... 020 ... 100
101 ...

Chocolate Bar

Yumm (click here)

http://www.cut-the-knot.org/proofs/chocolad.shtml
http://www.cut-the-knot.org/proofs/chocolad.shtml

Before & After

n ↝ ⎣n/2⎦ , ⎡n/2⎤ (n>1)

Before & After

1 ↝

n ↝ ⎣n/2⎦ , ⎡n/2⎤ (n>1)

Before & After

1 ↝

n ↝ 1 , n-1 (n>1)

Before & After

1 ↝

n ↝ i , n-i (n>1, i>0)

Before & After

m ↝

n ↝ n-1 , n-1 (n>1, i>0)

Proof by Cases

A[x]

A[true], A[false]

Before & After

1 ↝

n ↝ i , j (0<i,j<n)

Before & After

1 ↝

n ↝ i , j , k (0<i,j,k<n)

Before & After

1 ↝

n ↝ n1 , n2 , ..., nk (0<ni<n)

A tree is finite (has finitely many
edges)

 if and only if

all nodes have finite degree

and

all branches (simple paths) have

Konig’s Lemma

Billiards

Smullyan’s Billiards

Multiset (Bag) Ordering

>

>

Multiset (Bag) Ordering

>

>
Well-founded

by
König’s Lemma

Harder A(m,n)
 t := 1

 s[t] := m
 loop
 c := c + 1
 m := s[t]
 t := t - 1
 if m = 0
 then
 n := n + 1
 elseif n = 0
 then
 t := t + 1
 s[t] := m - 1
 n := 1
 else
 t := t + 2
 s[t-1] := m - 1
 s[t] := m
 n := n - 1
 until t = 0

Bag of pairs
(s[i],∞) i<t
(s[t],n)

Nested Matryoshka Dolls

Nested Bags

Nested Ordering

>

>

Nested Ordering

>

>

Goodstein 4

4, 26, 41, 60, 83, 109, 139, 173, 211, 253, 299, 348,
401, 458, 519, 584, 653, 726, 803, 884, 969, 1058,
1151, 1222, 1295, 1370, 1447, 1526, 1607, 1690, 1775,
1862, 1951, 2042, 2135, 2230, 2327, 2426, 2527,
2630, 2735, 2842, 2951, 3062, 3175, 3290, 3407,...,
11115, 11327,..., 40492,40895,..., 154349,

162129585780031489, 162129586585337855,
3⋅2 402653210−1,, 2, 1, 0

Goodstein 19

19, 7625597484990, ~1.3x10154, ...

Goodstein Step

Increment base & decrement number

4 : 22

26 : 33 -1 = 27-1 = 26 = 32 + 32 + 3 + 3 + 2

41 : 42 + 42 + 4 + 4 + 1

Goodstein Step

Base is a bag (and the whole thing is in a bag)

22 is {{{}}}

32 + 32 + 3 + 3 + 2 is {{2},{2},{},{},2}

42 + 42 + 4 + 4 + 1 is {{2},{2},{},{},1}

Hydra

Hercules’ Second Labor

	 Each time Hercules bashed one of Hydra's heads,
Iolaus held a torch to the headless neck.

 After destroying eight mortal heads, Hercules
chopped off the ninth, immortal head, which he
buried at the side of the road from Lerna to Elaeus,
and covered with a heavy rock.

Hydra vs. Hercules

Hydra vs. Hercules

Hydra vs. Hercules

Hercules > Hydra

>

Hercules > Hydra

>

Hercules > Hydra

>

{{o{{ooo}o} {oo{oo}} {o{oooo}o} {oo}} >
{{o{{ooo}o} {o{oo}} {o{oo}} {o{oo}} {o{oooo}o} {oo}}

83

Hercules Defeats Hydra

• Cannot be proved in Peano Arithmetic
[Paris & Kirby]

• Requires induction up to ε0

Natural numbers do not suffice

Sophisticated variants require more
powerful systems [Friedman]

Amoebae

A.2 Multisets 179

root

!!!!!!!!!!!!!!!

"""""""""""""""""

s1 s1

##
##

##
##

#

$$
$$

$$
$$

s2

s′1 . . . s′k s2

deleted

Figure A.2: Labelled tree for M3 ≺# M2 ≺# M1

of a sequence of such steps (a ‘life’) of an amoebae colony is given in Figure A.3.
Prove that a colony of amoebae has only a finite life.

amoeba colony

...

life of amoeba colony

Figure A.3: Amoebae

Next, we extend the capabilities of amoebae by allowing them to reproduce.
Two amoebae which can touch each other may reproduce, thereby sharing their
outer membrane, and making arbitrarily many copies of their sons (as suggested
in Figure A.4). In particular, an amoeba is allowed to multiply its sons and retain
its outer membrane, while ‘eating’ another amoeba. Show that even together with
this second rule of activity, each colony must eventually terminate.

Amoebae

A.2 Multisets 179

root

!!!!!!!!!!!!!!!

"""""""""""""""""

s1 s1

##
##

##
##

#

$$
$$

$$
$$

s2

s′1 . . . s′k s2

deleted

Figure A.2: Labelled tree for M3 ≺# M2 ≺# M1

of a sequence of such steps (a ‘life’) of an amoebae colony is given in Figure A.3.
Prove that a colony of amoebae has only a finite life.

amoeba colony

...

life of amoeba colony

Figure A.3: Amoebae

Next, we extend the capabilities of amoebae by allowing them to reproduce.
Two amoebae which can touch each other may reproduce, thereby sharing their
outer membrane, and making arbitrarily many copies of their sons (as suggested
in Figure A.4). In particular, an amoeba is allowed to multiply its sons and retain
its outer membrane, while ‘eating’ another amoeba. Show that even together with
this second rule of activity, each colony must eventually terminate.

180 Mathematical background

fusion

fusion

Figure A.4: Fusion of two amoebae

