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Introduction

Many different inductive methods have been used to
prove properties of programs. Well-known methods in-
clude, for example, recursion induction, structural in-
duction, inductive assertions, computational induction,
truncation induction, and fixedpoint induction. Our in-
tention in this paper is to introduce these methods to
as wide a class of readers as possible, illustrating their
power as practical techniques for proving properties
of recursive programs.

In Section I we give the theoretical background
necessary to understand the fixedpoint approach to
recursive programs (essentially following Scott, 1970
[16]), as well as the practical computational approach.
We emphasize that while existing inductive methods
prove properties of the “least fixedpoint function’ of a
recursive program, in practice this function may differ
from the function computed by some common computa-
tion rules. We briefly suggest “fixedpoint” computation
rules which assure that the computed function is iden-
tical to the least fixedpoint. A brief informal exposition
of the fixedpoint theory was given by Manna and
Vuillemin, 1972 [8].

In Section II we examine computational induction
methods, i.e. methods in which the induction is based
on the steps of the computation. We first present the
extremely simple induction method introduced by Scott
(deBakker and Scott, 1969 [3]). Examples are presented
which introduce various applications of the method.
We also discuss another computational induction
method, truncation induction (Morris, 1971 [14]). A
related method, called fixedpoint induction, is described
in Park, 1969 [15].

We describe the structural induction method and its
application for proving properties of programs in Sec-
tion III. This method was suggested explicitly by Bur-
stall, 1969 [1], although it was often used previously,
for example by McCarthy and Painter, 1967 [9], for
proving the correctness of a compiler and by Floyd,
1967 [4] for proving termination of flowchart programs.
Our intention in this section is to emphasize, by means of
appropriately chosen examples, that the choice of a
suitable partial ordering on the data structure and of a
suitable induction hypothesis leads to simple and clear
inductive proofs.

Although it can be shown that computational in-
duction and structural induction are essentially equiva-
lent, there are practical reasons for keeping both of them
in mind. Computational induction is- best suited for
proving the correctness and equivalence of programs,
and because of its simplicity it is particularly convenient
for machine implementation (Milner, 1972 [10, 11]). On
the other hand, termination of programs is usually more
convenient to show by structural induction.

We concentrate on these two methods because they
form a natural basis for future automatic program
verifiers. In particular, all other known verification tech-
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niques can be justified rather directly by application of
these methods. Grief, 1972 [5], discussed briefly the
power of the different methods.

I. Recursive Programs

In this section, we introduce the fixedpoint theory
of partial functions and show its relation to recursive
programs and their computations.

Partial Functions

We wish to consider partial functions from a domain
D, into a range D, i.e. functions which may be unde-
fined for some arguments. For example, the quotient
function x/y, mapping R X R (pairs of real numbers)
into R, is usually considered to have no value if y = 0.
Partial functions arise naturally in connection with com-
putation, as a computing process may give results for
some arguments and run indefinitely for others. Par-
tial predicates are of course a special case, since a par-
tial predicate is a partial function mapping a domain
D, into {true,false}.

In developing a theory for handling partial func-
tions it is convenient to introduce the special element w
to represent the value undefined. We let D™ denote
D U {w}, assuming w ¢ D by convention; when D is
the Cartesian product 4; X -+ X 4,, we let DT be
A" X -+ X A,%. Any partial function f mapping D, =
A1 X -+ X A,into D, may then be considered as a total
function mapping D, into D,": if f is undefined for
{(d,...,dn,) € Dy, welet f(dv, ..., d,) beow.

Since we shall consider compositions of partial func-
tions, we may need to compute functions with some
arguments being undefined. Thus we must extend every
function mapping D, into D," to a function mapping
D" into D,"; such extensions are discussed in the next
section.

The Ordering < on the Domain

To define appropriate extensions of partial func-
tions from D; into D, to total functions from D;" into
D,", we first introduce the pariial ordering' C on every
extended domain D", The partial ordering  is intended
to correspond to the notion “is less defined than or
equal to,” and accordingly we define it by letting w C d
and d C dfor alld ¢ D". Note that distinct elements of
D are unrelated by C: for distinct ¢ and b in D, neither
a € b nor b C g holds. If D is the Cartesian product
AT X% A, we define {ay,...,a,) S {by,...,b,)
when a; € b; foreachi, 1 < i < n.

Example 1. If D = {a, b}, then D™ = {a, b, »} and
(DX D)* = {{w,0),(w,a),{a,), . . . ,{a, b),(b, @), (b, b)}.

1 A partial ordering is a binary relation which is reflexive
((Ya)la € dl), antisymmetric ((Va,b)la CTbAbCa=ais
identical to b}), and transitive ((Va,b,c)la C b N b Cc =
a C c]). As usual, we write a C b if a C b and a is not identical
to b, a € b if a C b does not hold, etc.
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The partial orderings on D and (D X D) are de-
scribed in the diagrams below, where each connecting
line indicates that the lower element is less defined than
the upper element. (Lines implied by transitivity or
reflexivity are not shown.) 0

a b (a,a) /(a,b) (b,a) (b,b)
N/ <
w (a,w) (w,a) (w,b} (b,w)
—
= {w,w)
pt (D x Dt = p* x D*

Monotonic Functions

Any function f computed by a program has the
property that whenever the input x is less defined than
the input y, the output f(x) is less defined than f(y).
We therefore require that the extended function f from
D,"into D," be monotonic, i.e.

x C yimplies f(x) C f(y) forall x,y & Dy.

We let (D" — D,") denote the set of all monotonic
functions from D," into D,".

If £ has only one argument, monotonicity requires
f(w) to be w, with one exception: the constant function
f(x) = cforall x € D" is always monotonic. In the fol-
lowing we denote such a constant function just by c. If f
has many arguments, i.e. D; = Ay X --- X A, , it may
have many different monotonic extensions. A particu-
larly important extension of any function is called the
natural extension, defined by letting f(d1, ..., d.) be w
whenever at least one of the d; is w. This corresponds in-
tuitively to the functions computed by programs which
must know all their inputs before beginning execution
(i.e. ALGOL “call by value”).

Example 2.

(a) The identity function, mapping any x in D" into
itself, is obviously monotonic.

(b) The quotient function, mapping {x, y) into x/y,
extended to a total function by letting x/0 be w for any
x in R, becomes monotonic by the natural extension: let
x/wand w/y be w for any x and yin R'.

(¢) The equality predicate mapping D X D into {true,
false} can be extended in the following particularly
interesting ways:

(i) The natural extension (weak equality), denoted

by =, yields the value @ whenever at least one of its

arguments is », The weak equality predicate is of
course monotonic.

(ii) Another extension (strong equality), denoted by

=, yields the value true when both arguments are w

and false when exactly one argument is w; in other

words, x = yif and only if x € y and y € x. The
strong equality predicate is nof a monotonic mapping

from D' X D% into {true,(false}™, since (w, d) C

(d, d)but (o = d) & (d = d) (i.e. false & true) for

d¢ D.

(d) The if-then-else function, mapping {true,false}
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X D X Dinto D, is defined for any a, b € D by letting

if true then a else b = «,
if false then a else b = b.

It can be extended to a monotonic function mapping
{true,false}™ X D" X D" into D* by letting, for any
a, b e DY,

if true then « else w = «,

if false then w else b = b,
if w then a else b = «.

Note that this is not the natural extension of if-then-
else. O

We shall assume all the functions of our examples to
be naturally extended, except for the constant functions
and the if-then-else function.

Composition of Functions
An important operation on functions is composition,
which allows functions to be defined in terms of sim-
pler functions. If f is a function from D, to D, and ga
function from D, into D;", then the composition of f
and g is the function from D;* into Ds;* defined by
g(f(x)) for every x in D;". It is easy to show that, if f
and g are monotonic functions, so is their composition.
Example 3.
(a) The function f, given by

f(x) = if x = O then 1 else x,

is defined by composition of the weak equality predi-
cate, the constant functions 0 and 1, the identity
function, and the if-then-else function. Since all these
functions are monotonic, f is monotonic.

(b) The function f, given by

fx) = if x = w thenOelse 1,
defined using the nonmonotonic predicate =, is not
monotonic, since f(w) = 0 and f(0) = 1 (ie. w € 0,

but f(w) €/(0)). O

Finally, we discuss an important corollary which
follows from properties of monotonic functions. Con-
sider functions f; and f, given by

filx) = g(f p(x) then /i, (x) else i (x)), and
S2(x) = if p(x) then g(/n(x)) else g(/n(x)),

where p, g, i1, and h, are monotonic. Then both f; and
/+» are monotonic, since each is defined by a composition
of monotonic functions. There is an interesting relation
between these two functions:

(i) fo(x) S fi(x) for any x;
(ii) if g(w) = w, then fo(x) = f1(x) for any x.

We shall use the second result often in later proofs. The
above properties generalize to any n-ary (n > 1) mono-
tonic function g. For example, if g(w, y) = w for all
(w, y) € D,", then

g(if p(x) then M(x) else hi(x), hsi(x)) =
if p(x) then g(M(x), hs(x)) else g(hz(x), hs(x)).
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The Ordering C on Functions

Let fand g be two monotonic functions mapping D"
into D,". We say that f C g, read “fis less defined than
or equal to g,” if f(x) € g(x) for any x € D;"; this
relation is indeed a partial ordering on (D,;% — D,%).
We say that f = g, read “fis equal to g,” if f(x) = g(x)
for each x € Dyt (thatis, f= giff fC gand g C f).
We denote by € the function which is always undefined:
Q(x) is w for any x € D,*. Note that @ C ffor any func-
tion f of (Df — D73).

Infinite increasing sequences f; C /i € £ C --- of
functions in (Dy" — D,") are called chains. It can be
shown that any chain has a unigue limit function in
(D" — D,"), denoted by lim, { f;}, which has the charac-
teristic properties that f; < lim, {f;} for every 7, and for
any function g such that f; € g for every /, we have
lim; {fi} € g.

Example 4. Consider the sequence of monotonic
functions fy, f1, /3. . . over the natural numbers defined by

fi(x) = (if x < i then x! else w).

This sequence is a chain, as f; C fiy; for every 7; lim; {fi}
is the factorial function. O

Continuous Functionals

We now consider a function » mapping the set of
functions (D" — D,") into itself, called a functional;
that is, 7 takes any monotonic function f as its argument
and yields a monotonic function 7[f] as its value. As in
the case of functions, it is natural to restrict ourselves
to monotonic functionals, i.e. 7 such that f & g implies
7[f] € rlg] for all fand g in (D," — D,"). For our
purposes, however, we consider only functionals satisfy-
ing a stronger property, called continuity. A functional
7 is said to be continuous if for any chain of functions

LEAELE ...

we have

Afl C Al SR C -

and
rllim; { fi}] = lim; {7[£:]}.

Every continuous functional is clearly monotonic.
We usually specify a functional » by composition of
known monotonic functions and the function variable
F, denoted by 7[F](x); when Fis replaced by any known
monotonic function f, the composition rules determine
a monotonic function r[f](x). It can easily be shown that
any functional defined by composition of monotonic
Sunctions and the function variable F is continuous.
Example 5.
(a) The functional over the integers defined by

7lF)(x) = if x = O then 1 else F(x + 1)

is constructed by composition of monotonic functions
(if-then-else, addition, weak equality, and the constant
functions 0 and 1) and the function variable F; it is
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therefore continuous. Given any monotonic function
f over the integers, 7[f] is another monotonic function
over the integers:
if f(x) = w, then 7[f] (x) = if x = 0 then | else w;
if f(x) = x — 1, then 7[f] (x) = if x = O then ] else x.
(b) The functional
(N* — N™) defined by

7lF}(x) = if Ux{F(x) = x] then F(x) else w

over the natural numbers

is monotonic but not continuous; if we consider the
chain f; € fi & --- where fi(x) = if x < i then
x else w, r[f;] = @ for any i so that lim; {7[fi]} =
Q, whereas 7[lim, {fi}] is the identity function. O

Fixedpoints

Let 7 be a functional mapping (D;" — D,") into
itself. We say that a function f is a fixedpoint of = if
f = r{f]; i.e. r maps the function f back into itself. We
say that fis a least fixedpoint of 7 if fis a fixedpoint of =
and f C g for any other fixedpoint g of 7. An important
fundamental result is that any continuous v mapping
(D" — D,%) into itself has a unique least fixedpoint f, in
(D;Y — D,"). We can compute f; as the limit of the
chain r’[] C 7'[2) € 7'[Q] C - - (where 7'[2] = Q and
1) = 7[+'[Q]]), as follows from Kleene’s first re-
cursion theorem [6].

Example 6. All the functionals in the following
examples are defined by composition of monotonic
functions and the function variable F and are therefore
continuous by construction and have unique least
fixedpoints.

(a) The functional = over (N* — N™) given by

7[F)(x) = if x = O then 1 else F(x + 1)

has as fixedpoints the functions (for each n € N*)
fu(x) =if x = 0 then 1 else n.

The least fixedpoint is

fr(x) = if x = O then 1 else w.

(b) The only (and therefore least) fixedpoint of the
functional 7 over the integers given by

7[F](x) = if x > 100 then x — 10 else F(F(x + 11)),

is

fr(x) = if x > 100 then x — 10 else 91.

(¢) The functional 7 over the integers defined by

7[Fl(x1, x2) = if x; = x, then x, + 1
else F(x, F(x; — 1, x2 + 1))

has as fixedpoints the functions

f(x;, ,\‘z) = if.x1 = X2 then x; + 1 else x; + 1,
g(x1, xp) = if x; > x, then x; + 1 else x, — 1, and
h(xi, x2) = if (x1 > x2) A (x; — x2 even) then x; 4 1 else «,

the latter being the least fixedpoint f; (Morris, 1968
[13]). Note that f'(x;, x») = x, + lis not a fixedpoint,
since 7[f'](x1, w) = o while f (x;,0) = x, + 1. O
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We consider a functional = over (Dt — Dyh)», ie.
7 maps n-tuples of functions from (D;* — Dy*) into
n-tuples of functions from (D — D,*). Such a func-
tional is given by coordinate functionals 7y, ... , 7., 80
that T[F1, ,F"] iS <T1[F1, ,Fn], e ,T,L{F1, ceey
F,]). v is continuous iff each 7 is continuous. A continu-
ous functional 7 over (D, — Dy*)* has a unique least
fixedpoint f; = (fr,, ..., f-.); thatis
@) fo, = 1ilfor, ..y frl foralli, 1 < i < n
(b) for any fixedpoint g = (g1,..., &) of 7, ie.
g =rlg,...,glforali(l <i<n),f Cg for
alli (1 <1< n).

Example 7. Consider the functional 7[F,F;] =
(rnlFi, F), lFy, F]) over (N* — N¥)? where:

nfFy, F2)(x) = if x = Othen l else /i (x — 1) + F2(x — 1)
n[F, F](x) = if x = 0 then 0 else Fx(x + 1).

For any n € N*, the pair (g.., /.) defined by

gnx)=ifx =0V x=1thenlelse (x — 1) n-+1
fn(x) = if x = O then O else n

is a fixedpoint of r, since g, = 7i[gs,hs] and h, =
72[gn,ha] (and therefore (gn,h.) = 7[gn,h.]). The least
fixedpoint is the pair:

(ifx =0V x =1thenlelsew, ifx = OthenOelsew). O

Recursive Programs

So far, we have been concerned only with functions
considered abstractly, as purely mathematical objects.
For example, we thought of the factorial function as a
certain mapping between arguments and values, with-
out considering how the mapping is specified. To con-
tinue our discussion we must introduce at this point a
“programming language” for specifying functions. A
function will be specified by a piece of code in the
syntax of the language and then will be executed ac-
cording to computation rules given by the semantics of
the language.

In the rest of this paper we use for illustration a
particularly simple language, chosen because of its
similarities to familiar languages such as ALGOL or
Lisp. Although our programming language is very
simple, it is powerful enough to express any “partial
recursive” function, hence by Church’s thesis any
“computable” function (see Minsky, 1967 [12]). A
program in our language, called a recursive definition
or recursive program, is of the form

F(x) &= 1[F](x)

where 7[F|(x) is an expression representing composi-
tion of known monotonic functions and predicates and
the function variable F, applied to the individual vari-
able x.” For example, the following is a program for

2 We shall purposely be vague in our definitions in this sec-
tion to avoid introducing the notions of schemata and interpreta-
tions. For a formal approach, see Manna and Pnueli, 1970 [7] or
Cadiou, 1972 [2].
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computing the factorial function:
F(x) < if x = O then 1 else x-F(x—1).
This program resembles the ALGOL declaration

integer procedure f(x);
f:=if x = 0 then 1 else x*f(x—1);

and the Lisp definition

DEFINE ((
(FF (LAMBDA (X)(COND ((ZEROP X) 1)
(T (TIMES X (FF (SUB1 X)))))))).

Of course our programs are meaningless until we
describe the semantics of our language, i.e. how to
compute the function defined by a program. The next
step is therefore to give computation rules for executing
programs. Our aim is to characterize the rules such that
for every program F(x) < 7[F](x) the computed func-
tion will be exactly the least fixedpoint f; .

Computation Sequence

Let F(x) < 7[F](x) be a program over some domain
D*.For a given input value d € D* (for x), the program
is executed by constructing a sequence of terms
to, b, t, ..., called a computation sequence for d, as
follows:
(1) The first term ¢, is F(d).
(2) For each i, i > 0, the term #;+; is obtained from ¢,
in two steps: first (a) substitution: some occurrences
(see below) of F(e) in ¢ are replaced by 7[F](e)
simultaneously, where e may be any subexpression;
and then (b) simplification: known functions and
predicates are replaced by their values, whenever pos-
sible, until no further simplifications can be made.
(3) The sequence is finite and 7, is the final term in the
sequence if and only if no further substitution or sim-
plification can be applied to ¢, (thatis, when ¢, is an
element of DV).

Computation Rules

A computation rule C tells us which occurrences of
F(e) should be replaced by #[F](e) in each substitution
step. For a given computation rule C, the program
defines a partial function f, mapping D" into D' as
follows: If for input d € D" the computation sequence
for d is finite, we say that f.(d) = ¢. ; if the computa-
tion sequence for d is infinite, we say that f¢(d) = w.

The following are examples of typical computation
rules: (1) full computation rule: Replace all occurrences
of F simultaneously. We denote the computed function
by frr. (2) leftmost-innermost(“‘call by value”) rule:
Replace only the leftmost-innermost occurrence of F
(that is, the leftmost occurrence of F with all argu-
ments free of F’s). We denote the computed function
by fi:. This is the rule which corresponds to the usual
stack implementation of recursion for languages like
LISP or ALGOL where a procedure evaluates al/ its argu-
ments before execution. (3) leftmost-outermost (“call
by name”) rule: Replace only the leftmost-outermost
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occurrence of F. We denote the computed function

by fro -
Example 8. We consider the recursive program for
the “91-function’ over the integers:

F(x) «if x > 100 then x — 10 else F(F(x--11)).

We illustrate the computation secquences for x = 99
using the three rules.
(a) Using the full rule:

tois F(99)
if 99 > 100 then 99 — 10
else F(F(99+411))
nis F(F(110))
if [if 110 > 100 then 110 — 10
else F(F(110+11))] > 100
then [if 110 > 100 then 110 — 10
else F(F(110+11))] — 10
else F(F([if 110 > 100
then 110 — 10
else F(F(110+411))]+11)) [substitution]
1. is F(F(111)) [simplification]
if [if 111 > 100 then 111 — 10
else F(F(1114-11))] > 100
then [if 111 > 100 then 111 — 10
else F(F(1114-11))] — 10
else F(F(fif 111 > 100
then 111 — 10
else F(F(111+4+11))]411))

[substitution]
[simplification]

[substitution]
t3 is 91.

In short, omitting simplifications and underlining the
occurrences of F used for substitution: F(99) —
F(F(110)) — F(F(111)) — 91. Thus, fr.(99) = 91.
(b) Using the leftmost-innermost rule:

£(99) — F(E(110)) — E(100) — F(E(111)) — E(101) — 91.

Thus, f1.: (99) = 91.
(¢) Using the leftmost-outermost rule:

F(99) — E(F(110))
— if F(110) > 100 then F(110) — 10
else F(F(F(110)+11))
— F(F(F(110)+11)) — - -
— if F(110) + 11 > 100 then F(110) — 9
else F(F(F(110)422))—10
— F(110) — 9 — 91.

Thus, f1.0(99) = 91. 0O

An important property of f. should be mentioned at
this point (Cadiou, 1972 [2]): For any computation rule
C, the computed function f¢ is less defined than the least
fixedpoint, ie. fo € f., but they are not necessarily
equal.

A program may consist in general of a system of
recursive definitions of the form

FE&x)<snlF,..., Fl(x)
F(x) <=nlf, ..., F]X)
\Fa(®) = ralfas ., F(R),

where each 7; is an expression representing a composi-
tion of known monotonic functions and predicates and
the function variables Fy, F.,...,F, applied to the
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individual variables £ = (x;, ..., x). The generaliza-
tion of the computation rules to systems of recursive
definitions is straightforward; the computed function
fo of the system can be described as (&, f&, ..., &),
where each f&” is computed as described above. The
results of this section still hold for systems of recursive

definitions.

Fixpoint Computation

All of the methods for proving properties of pro-
grams described in the rest of this paper are based on
the assumption that the computed function is equal to
the least fixedpoint. We are therefore interested only
in the computation rules that yield the least fixedpoint.
We call such computation rules fixedpoint computation
rules.

Let ofF', ..., F', F", ..., F*l(d) denote any term
a in the computation sequence for 4 under some compu-
tation rule C, where we use superscripts to distinguish
the individual occurrences of F in «. Suppose that we
choose for substitution the occurrences F, ..., F* (for
some i, 1 < i < k) of Fin a. We say that this is a safe
substitution if:

(el 0 L ) = e

Intuitively, the substitution is safe if the values of
F*™' ..., F* are not relevant: as long as F, . . ., F* are
not known, the value of ofF',..., F*|(d) cannot be
determined, and hence there is no need to compute
FP' ..., F* at this point.

A safe computation rule is any computation rule
which uses only safe substitutions. It can be shown that
any safe computation rule is a fixedpoint rule (Vuille-
min, 1973 [17]). For example, since the full rule and
the leftmost-outermost rule are safe, they are both
fixedpoint rules.

The leftmost-innermost rule, however, is not safe.
The following example illustrates a program for which
Sur # f.; that is, the leftmost-innermost rule is not a
fixedpoint rule (Morris, 1968 [13]).

Example 9. Consider the program over the integers

F(x,y)«ifx =0thenlelse F(x — 1, F(x — y, »)).
The least fixedpoint f; is
frlx,p) = if x > 0 then 1 else w.

We compute F(1,0) using the leftmost-innermost
computation rule:

E(1,0) > F(0,E(1,0)) = F(O,F(0, E(1,0))) — - --

and so on. The sequence is infinite, and therefore
Jui(1,0) = w. In fact

Suly) =ifx=0V x>0Ay>0A (ydivides x))
then 1 else w,
which is strictly less defined than f,. O
In practice, the fixedpoint computation rules de-
scribed so far (the full rule and the leftmost-outermost
rule) lead to very ineflicient computations. In the rest
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of this section we describe and illustrate a fixedpoint
computation rule, called the normal computation rule,
which leads to efficient computations. In fact, the
normal computation rule can be shown to perform the
minimum possible number of substitutions of any rule
within the class of computation rules which we de-
scribed (Vuillemin, 1973 [17]).

The idea of the normal rule is to delay the evalua-
tion of the arguments of procedures as long as possible,
keeping arguments as formal expressions until they are
needed. This rule is similar to ALgOL 60 “call by name,”
but with two important differences: (a) absolutely no
side effects are allowed, and (b) any argument is evalu-
ated at most once, namely the first time (if ever) it is
needed.

Using the normal rule, #;1, is obtained from #; by
substituting 7[F] for one occurrence of F chosen as
follows: we try first to replace the leftmost-outermost
occurrence of F in 7; by 7[F], and start to evaluate the
necessary tests in the new term, in order to eliminate
the if-then-else connectives. If this is possible, we are
done. Otherwise, we choose a new occurrence of F in
t; which corresponds to the first F we had to test during
the previous evaluation, and repeat the process.

We denote the computed function by fy. The nor-
mal rule is safe, and it is therefore a fixedpoint rule.
The rule can be implemented in programming lan-
guages with almost no overhead, and provides an
attractive alternative to call by value, which is not a
fixedpoint rule, and call by name, which is not efficient.

Example 10. Consider the program over the natural
numbers

F(x, y) < if x = Othen y 4 1
elseif y = O then F(x — 1, 1)
else F(x — 1, F(x, y — 1)).

We shall compute F(2,1) using the normal computa-
tion rule. The occurrence of F chosen for substitution
is underlined.

EQ2,1) - F(LEQ2,0))~F(1,EQ1,1))>F(,EQ, F(1,0)))
— F(1, E(1,0) + 1) —» F(1,EQ,1) + 1) —» E(1,3)
S E@©, F(1,2)) » F(1,2) + 1 = F(0, F(1,1)) + 1
—E(,1) + 2 - EQ©, F(1,0)) + 2 —» E(1,0) + 3
S F(0,1) + 3 — 5.

Note that in F(1,F(2,0)), for example, the inner
occurrence of F was chosen for substitution, since trying
to substitute for the outer F would lead to

if1 = O then...

else if F(2,0) = O then - .-
else - - - |

which requires testing for the value of F(2, 0).
We compare below the number of substitutions
required for each computation rule on this example.

Normal rule: 14

Full rule: 23
Leftmost-innermost: 14
Leftmost-outermost: 29
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Sflxy) = filx,y) is known as “Ackermann’s
function.” This function is of special interest in recur-
sive function theory because it grows faster than any
primitive recursive function; for example, £, (0, 0) = 1,

S (,1)=3,£2,2) =7,f£(3,3) =6],and £, (4, 4) =
228% _ 3

Example 11. Consider the program over the integers
F(x,y)<ifx =0thenlelse F(x — 1, F(x — y, y)).

We shall compute F(2, 1), using the normal computation
rule:

E(2,1)->E(,F(1,1)) = EQ,F(1 - F(1,1),F(1, 1)) - L.
We again compare the substitutions required:

Normal rule: 3

Full rule: 7
Leftmost-innermost: 7
Leftmost-outermost: 3 O

I1. Computational Induction

The first method we shall describe is conceptually
very simple: In order to prove some property of a pro-
gram, we show that it is an invariant during the course
of the computation.

For simplicity, we shall first explain the method for
simple programs, consisting of a single recursive defini-
tion, then generalize to more complex programs.

Computational Induction for a Single Recursive
Definition

To prove the property P(f,) of the function f;
defined by F < 7[F], it is sufficient to: (a) check that P
is true before starting the computation, i.e. P(Q); and
(b) show that, if P is true at one step of the computa-
tion, it remains true after the next step, i.e. P(F) implies
P (+[F]) for every F. In short

from P(Q) and NF{P(F) = P(r{F))}, infer P(f,).

Since this rule is not valid for every P,’ we shall only
consider admissible predicates P(F) which are simply
conjunctions of inequalities «[F] & B[F], where « and
B are two continuous functionals. In this case, the justi-
fication of the principle is easy; if «[Q] & B[Q] and
YF{a[F] C B[F] = alr[F]] < 8[r[FI}}, then by a simple
induction, afr'[Q]] C B[+°[2]] for every i > 0. Since by
Kleene’s first recursion theorem °[2] C f. for all i, and 8
is monotonic, we have Bl7'[Q]] < Blf-], and therefore
a[r*[2]] € BIf;] for any i. By definition of the limit, this
implies lim; {a[r*[2]]} € BLf,), and since « is continu-
ous, we have

alf)] = oflim; (rQl}] = lim; {o[~'[O]} < B(/].
Thus,

o f:] € Bl
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Example 12. We wish to show that the program
F(x) & if p(x) then x else F(F(h(x)))

defines an idempotent function,i.e. that Vx[f;(f-(x)) =
f-(x)], or in short, f,f> = f. . By p and A, we understand
respectively any naturally extended partial predicate and
function. We prove P(f;), where P(F) is f,F = F, i.e.
(ffF S F) \ (F C fF).

(a) Show P(Q), ie. £, = Q.

= f,(w) definition of Q
if p(w) thenwelse £, (f; (h{w)))
definition of £,
if w then w else £, (f; (A (w)))
since plw) = w
w definition of if w then a else b
Q(x) definition of Q.

(b) Show YF{P(F) = P(z[F])}], ie.
VYF\f.,F = F = fir[F)| = r[F]}.

S GIF](x))
= f,(if p(x) then x else F(F(h(x))))
definition of =
= if p(x) then f, (x) else £, (F(F(h(x)}))
distributing f, over conditional,
since f; (@) = w
= if p(x) then x else £, (F(F(h(x))))
definition of f;
= if p(x) then x else F(F(A(x)))
induction hypothesis
definition of ». O

il

I

m

= 7[F](x)

The next example uses as domain the set =* of
finite strings over a given finite alphabet =, including
the empty string A. There are three basic functions:

h{x) gives the head (first letter) of the string x;

t(x) gives the tail of the string x (i.e. x with its first
letter removed );

a-x concatenates the letter a to the string x.

For example, #(BCD) = B, t(BCD) = CD, B-CD =
BCD. These functions satisfy the following properties,
for every ¢ € = and w € 3*:

he-w) = o, t{c-w) = w,e-w # A, and
w = A= h(w) t(w) = w.

This system is sometimes called “linear Lisp.” There is
no difficulty involved in generalizing our proofs to real
LISP programs.

Example 13. The program

F(x, y) & if x = A then y else h(x) -F(¢t(x), y)

defines the append function f; (x, y), denoted xxy. We
shall show that append is associative, i.e. that x* (y*z) =
(x*y)*z. For this purpose we prove P(f;), where P(F) is
F(x, y)*z = F(x, ysz).

(a) Show P(Q);ie. Vx, y, z[Q(x, y)*z = Q(x, y*z)].

¢ Consider, for example, the recursive program over the nat-
ural numbers F(x) <= if x = O then 1 else x-F(x — 1), and the
predicate P(F): Ax[F(x) = « A X # w]. Then P(Q) and
VF{P(F) = P(+[F])} hold; but, since f,(x) is a total function
(the factorial function), P (f;) does not hold.
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Q(x, y)*z

Wz definition of

if w = A then z else 1 (w)- (¢ (w)*z)
definition of append

® sincew = Alsw

Q(x, y*z) definition of Q.

(b) Show VF{ P(F) = P(r[F})}:
{F]{x, y*z)
= if x = A then yxz else /i(x) - F(t(x), y*z)
definition of =

'

o

= if x = A then yxz else /i(x) - (F(t(x), y)*z)
induction hypothesis
= if x = A then ysz else (h(x)-F(t(x), y))*z

. definition of append
(if x = Athen y else A (x)-F(r(x), y))*z
distributing append over condi-
tional, since w*z =
definition of r. O

L]

[F (x, p)*z

i

Parallel Induction

We shall now present an application of computa-
tional induction to proving properties of two programs:
F & 7[F] and G < ¢[G]. To prove P(f., g.) for an ad-
missible predicate P(F, G) (e.g. a conjunction of in-
equalities a{F, G] C B[F, G], where « and 8 are continu-
ous functionals), use the following rule:

from P(Q,Q) and (VF, G){P(F, G) = P(+[F], 6[G])},
infer P(f., g).

Example 14. Consider the two programs (Morris,
1971 [14})

F(x, y) < if p(x) then y else & (F(k(x), y))
G (x, y) < if p(x) then y else G (k (x), h(y)),

where p stands for any naturally extended partial pred-
icate, and 4 and k for any naturally extended partial

functions. In order to prove that f,(x, y) = g.(x, »)
for all x and y, we shall consider

P(F, G) :Yxpl[F(x,y) = G(x, p)]
NIG(x, h(y)) = h(G(x, ¥}
We prove P(f,, g,), which implies f, = g, , as follows:
(a) Show P(Q, Q).
Vxpil(x, y) = Q(x, y)]
N Q(x, h(y)) = R(Q(x, YD},

clearly true, since A(w) = w.
(b) Show (VYF, G){P(F, G) = P(z[F], o[G])}.

(1
r[F](x, »)
= if p(x) then y else i (F(k(x), y))
= if p(x) then y else 1 (G (k (x), y))
induction hypothesis
= if p(x) then y else G (k(x), h(y))
induction hypothesis
= o[G](x, )
)

alG](x, k(y))

if p(x) then /i(y) else G(k(x), H{h(y)))

if p(x) then s (y) else h (G (k(x), h(¥)))
induction hypothesis

h(f p(x) then y else G(k(x), h(»)))

= h(e[Gl(x, »)). O

i
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Computational Induction for a System of Recursive
Definitions

We shall state the computational induction principle
for a program consisting of two recursive definitions,

{F]_ = T1[F1, FQ]
Fg (== Tz[F]_, Fz],

the generalization to a system of n (n > 2) recursive
definitions is straightforward.

To prove P(f.,, f+,), where P(F, F») is an admis-
sible predicate, use the following rule:

from P(Q, Q) and (VFl, Eg){P(Fl, Fg)
= P(nlF1, R, nlF, B},
infer P(f,, fr,)-

Example 15. Consider the program

IF; (x) &= if p(x) then Fi (F:(h(x))) else F.(g(x))

F,(x) = if q(x) then f(F.(Fi(x))) else f{ii(x))

lFs(X) < if p(x) then F3(f(Fi(h(x)))) else f(Fi(g(x)))
Fi(x) & if g(x) then f(Fy(F5(x))) else A (x)

in which p and ¢ stand for any naturally extended par-
tial predicates, and f, g, and & for any naturally extended
partial functions. To prove that f;, = f., ,let P(Fi, F,,
Fi,Fy)be (Fi= F) N\ (B =fF). O

Transformations Which Leave f; Invariant

We can use computational induction to prove useful
theorems about recursive programs. For example, if we
modify a recursive program F < r[F] by replacing some
occurrences of F in 7[F] by either 7[F] or f;, the function
computed by the new program is precisely the originalf, .

To prove this, let us write 7[F] = +'[F, F], where we
use the second argument in 7 [F, F] to distinguish the
occurrences of F which we wish to replace. We define
nlF] = 7'[F, 7[F]] and n,[F] = 7'[F, f,]; our goal is to
show that f, = f,, = f,, . We show this in two steps:
(a) (f;, € f+) and (f,, < f,). This part is easy since by
definition of 7y and 72, f; = 7ilf;] = n[f.]. Thatis, f;is a
fixedpoint of both 7; and =, ; therefore, it is more defined
than both f;, and £;, .
(b) (s C f.,)) and (f, C f.,). This can be shown by
computational induction with P(F, F,, F.) being the
admissible predicate (F C Fy) N\ (F C Fo) N\ (F &
T[FI) A\ (F C f2).

Example 16. Consider the two recursive programs
over the natural numbers

F(x) < if x > 10 then x — 10 else F(F(x + 13))
and
G(x) <= if x > 10 then x — 10 else G(x + 3).

We want to prove that f; = g, .
If we replace F(x + 13) in 7 by r[F](x + 13), we get
. 14
a new recursive program F(x) < r [F](x) where
F(x) =ifx > 10 thenx — 10

else F(if x + 13 > 10 then x 4+ 13 — 10
else F(F(x 4+ 13 4 13))).

Since this is an f, invariant transformation f; = fi.
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Since x > 0, we always have x + 13 > 10, therefore
fir = g, . The case x = w is immediate. Thus, f; = g
as desired. O
Example 17. To prove f;, = f,, for the program

[Fi(x) & if p(x) then F; (F:(F:(f(x)))) else g(x)

F:(x) < if g(x) then Fy(i(x)) else £ (x)

F;(x) < if p(x) then F, (F,(f(x))) else g(x)

Fi(x) &= if g(x) then F.(F;(h(x))) else F:(k(x)),

we first change the definitions of Fy and Fj to
Fi(x) & if p(x) then Fi(f; (Fo(f(x)))) else g (x)
and

Fi(x) <= if g (x) then £, (Fi(h(x))) else f,. (k (x)),

respectively, and then prove by computational induction
that

(fr, = f13) N\ (foufr, = f+,), using
P(F1, Fo, B, Fy) : (Fy = F) N (ﬁ'zFl = Fy).

The reader should be aware of the difficulties in-
volved in proving that f;, = f,, without the above
modifications. O

Truncation Induction
If for some continuous functional T We define the
sequence of functions f* by letting /* = +'[Q], i.e.

f° =Qand ' = 7[f’] for all i € N (natural numbers),

then the same argument used to establish the validity
of computational induction also shows the validity of
the following very similar rule:

from P(f°) and (Yi € N)P(f') = P(f*)],

infer P(f.).

The resemblance of this rule to the usual mathematical
induction on natural numbers suggests that we con-
sider a similar rule using complete induction over na-
tural numbers, which Morris, 1971 [14] calls truncation
induction.* More precisely:

In order to prove P(f,), P(F) being an admissible
predicate, we show that for any natural number i,
the truth of P(f°) for all j < i implies the truth of P(f’).
That is

from (Wi € N){[ (V€ Nsuchthatj < i)P(f)] = P(f")},
infer P(f).
The validity of this rule is established by first using induc-
tion on & to show that P(f*) holds for all n € N; one can
then use the proof given above for the validity of com-
putational induction.

When the program consists of a system of recursive
definitions such as

F1¢=TI[F1, ...,ij

F, <= T;;[Fl, ey F/cJ,
we let fobe(Q, ..., Q), f be (mlf), ..., rnlf]), and £
be (f;,, ..., fo; the truncation induction rule is then

precisely the same as above.
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Example 18. (Morris, 1971 [14]). We consider again
(see Example 14) the two programs:

F(x,y) < if p(x) then y else i (F(k (x), »))
G (x,y) «=if p(x) then y else G (k (x), #(y)),

where p stands for any naturally extended partial pred-
icate, and A and k for any naturally extended partial
functions.

In order to prove that both programs define the same
function, we check that f° = g° f' = g and that
[P = g’ forall i > 2. We treat the cases for i = 0 and
i = 1 separately, since to prove f * = g" we have to use
the induction hypothesis for bothi — landi — 2. O

Termination

The examples introduced so far demonstrated that
computational induction is convenient and natural for
proving many kinds of properties of recursive programs.
However, certain difficulties are involved in proving
termination. To show that g C f, for some fixed func-
tion g (which is not Q), we cannot simply choose P(F)
to be g C F, as then P(?) will always be false. In the
next example we demonstrate that if the domain is
specified by a “recursive predicate,” it is possible to
overcome this difficulty.

Example 19 (Milner). The function reverse(x) =
f+(x, A) where F(x, y) & if x = A then y else F(z(x),
h(x)-p) gives as value over =* the string made up of the
letters of x in reverse order. For example, if

{A, B, C}, then reverse(ACBB) = BBCA.

We shall show that reverse(x), i.e. f;(x, A), is defined
for any x in =¥, For this purpose, we characterize the
elements of =* by the function word (x) = g,(x), where

2:

G(x) <=if x = A then true else G(¢(x)).

We let P(F, G) be the admissible predicate
(Vx, y € ZH{[G(x) A word(y)] C word(F(x, »))}.
(a) Show P(2, Q).

[Q2(x) A word(y)] C word (£2(x, y))

holds since it reduces to w C w.
(b) Show YF,G{P(F,G) = P(z[F], o[GD}.

a[G1(x) N\ word(y)
= (if x = A then true else G(¢(x))) A word(y)
definition of ¢
if x = A then word(y) else G(1(x)) A\ word(y)
distributing A over conditional
if x = A then word(y) else G(1(x)) A word(2i(x)-y)
definition of word
C if x = A then word(y) else word(F(t(x), #(x)-y))
induction hypothesis
= word(if x = A then y else F(r(x), i(x)-y))
distributing word over conditional
= word(+|F](x, y)) definition of 7.

i

]

1 When applied to natural numbers, the two induction schemata
are equivalent, i.e. we can validate either rule using the other. Thus
in any system which includes a formalization of natural numbers,
truncation induction and computational induction are equivalent
from a theoretical point of view. Experience in using both methods
shows that they are also equivalent in practice.
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Therefore, by computational induction, we have:
[word(x) A word(y)] C word(f;(x, y)) forall x, y € =*

which for y = A gives word(x) C word(reverse(x)).
Since by definition we have that word(x) is true for all
x € 2* and word(w) = w, this implies that reverse(x) =
wforany x € =*. O

IIL. Structural Induction

One familiar method of proving assertions on the
domain N of natural numbers is that of complete induc-
tion: in order to prove that the statement P(c) is true
for every natural number ¢, we show that for any natural
number a, the truth of P(d) for all b < a implies the
truth of P (a).

That is,

from (Na € NY{[(Vb € N such that b < a)P (b)]
= P(a)}},
infer (Wc¢ € NYP(c).

Since this induction rule is not valid for every ordered
domain (e.g. it is valid over the natural numbers with
ordering < but fails over the integers with ordering <—
consider P which is always false), we shall first charac-
terize the ordered domains which are “good’ for such
induction. We then present a general rule called struc-
tural induction, for proving assertions over these do-
mains; complete induction, as well as many other well-
known induction rules, is a special case of structural
induction. Finally, we give several examples using struc-
tural induction to prove properties of programs.

Well-founded Sets

A partially ordered set (S, <) consists of a set S and
a partial ordering < on S. Note that the ordering need
not be total; i.e. it is possible that for some g, b € S,
neither a < b nor b < a holds. A partially ordered set
(S, <) which contains no infinite decreasing sequence
ag > a > as > ... of elements of S is called a well-
JSounded set.

Exampie 20.
(a) The set of all real numbers between 0 and I, with
the usual ordering <, is partially ordered but not well
founded (consider the infinite decreasing sequence 3 >
% > % > ... )
(b) The set I of integers, with the usual ordering <, is
partially ordered but not well founded (consider 0 > —1
> —2> ...
(c) The set N of natural numbers, with the usual order-
ing <, is well founded.
(d) If = is any alphabet, then the set =* of all finite
strings over Z, with the substring relation (w; < w, iff w;
is a substring of w,), is well founded. [

500

Structural Induction

We may now state and prove the rule of structural
induction on well-founded sets.” Let (S, <) be a well-
founded set, and let P be a total predicate over S. If
for any a in S, we can prove that the truth of P(a) is
implied by the truth of P(b) for all b < q, then P(c) is
true for every cin S. That is

Jrom (Wa € S){{(VYb € Ssuchthatb < a)P(b)]= P(a)},
infer (Wc & S)P(c).

To prove the validity of this rule, we show that if the
assumption is satisfied, there can be no element in S for
which P is false. Consider the set A of elements a € S
such that P(a) is false. Let us assume that 4 is non-
empty. Then there is a leastelement a, such thata { ao
for any a € A; otherwise there would be an infinite de-
scending sequence in S. Then, for any element & such
that b < a,, P(b) is true; that is, (Vb € S such that
b < a,) P(b) must hold. But the assumption then im-
plies that P(a,) is true, in contradiction with the fact
that a, € A. Therefore 4 must be empty, i.e. P(c) is
true for all elements ¢ € S.

Note that if there is no b in S such that b < a, the
statement (Vb & S such that b < @)P(b) holds vacu-
ously. For such a’s we must therefore show P(a) uncon-
ditionally to establish the hypothesis needed for the
structural induction.

Applications

We now give several examples using structural induc-
tion to prove properties of recursive programs. Such
proofs require suitable choices of both the partial order-
ing < and of the predicate P. Some of the examples
show that the partial ordering to be chosen is not always
the usual partial ordering on the domain. Other ex-
amples illustrate that it is often useful to prove a more
general result than the desired property.

Example 21 (Cadiou). Factorial functions. Consider
the programs over the natural numbers

F(x) <= if x = Othen 1l else x-F(x — 1)

and

G(x,y)<ifx = ythenlelse G(x, y + 1)- (y + 1).

f+(x) and g, (x, 0) compute x! = 1-2- --- -x for every
x € N in two different ways: g,(x, 0) by “going up”
from 0 to x and f,(x) by “going down” from x to O.

We wish to show that g,(x, 0) = f,(x) for any x € N
by using the predicate

P(x): (Vy € N)g(x + »») /() =filx + )]
and the usual ordering on natural members.

(@)If x = 0, P(0) is Yylg.(y, »)-f-(y) = L),
which is clearly true by definition of g, .

(b) If x > 0, we assume P (x") for all X' < x and show
P(x).

5 Structural induction is sometimes also called Noetherian in-
duction. When the ordering < is total;i.e. a < bor b < a holds
for any a, b € S, it is called transfinite induction.

Communications August 1973
of Volume 16
the ACM Number 8



Forany y € N,

go(x + Y }")fr(}’)
=gx+y,y+1)-0+1£0)

definition of g, (since x > 0)
L +y,y+ DLy + 1)

definition of f; (since y + 1 > 0)
sg{x—-D+ @+, yp+D-£p+1)
since x > 0
induction hypothesis (since
x—1<x)

i

=filx—1+y+1)

= filx + y).

By complete induction, then, P(x) holds for all
x € N. In particular, for y = 0, g,(x,0)-/,(0) = f, (x).
Sincef, (0) = 1, we have g, (x,0) = f, (x) asdesired. [

In the preceding example we used the most natural
ordering on the domain to perform the structural in-
duction. In the next example it is natural to use a some-
what surprising ordering.

Example 22 (Burstall), “McCarthy’s 91-function” f;
is defined by the following program over the integers:

F(x) < if x > 100 then x — 10 else F(F(x + 11)).
We wish to show that f, = g, where g is
g(x) = if x > 100 then x — 10 else 91.

The proof is by structural induction on the well-founded
set (I, <), where I is the integers and < is defined as
follows:

x < yiff y < x £ 101

(where < is the usual ordering on the integers); thus
101 < 100 < 99 < ..., but for example, 102 4 101.
One can easily check that (I, <) is well founded.

Suppose f,(y) = g(y) for all y € I'such that y < x.

We must show that £, (x) = g(x).

(a) For x > 100, f,{(x) = g(x) directly.

(b) For 100 > x > 90, fi(x) = fi(fi(x + 11))
f-(x + 1), and since x + 1 < x we have f;(x)
fi(x + 1) = g(x + 1) by the induction assumption.
But g(x + 1) = 91 = g(x), therefore £, (x) = g(x).

(c) Finally, for x < 90, f;(x) = f:(f;(x + 11)), and
since x + 11 < x we have f,(x) = f,(f,(x + 11)) =
f-(g(x + 11)) by induction. But g(x + 11) = 91, and
we know by induction that f;(91) = g(91) = 91, so
fi(x) = figx + 11)) = £(91) = 91 = g(x), as
desired.

We could alternatively have proven the above prop-
erty by structural induction on the natural numbers with
the usual ordering <, using the more complicated pred-
icate P(n) : (¥x € D[x > 100 — n = f.(x) = g(x)].
The reader should note that the details of this proof
and of the above proof are precisely the same. [

Since the set (=¥, <) of finite strings over = with
the substring relation is well founded, we may use it for
structural induction. In the following example we use an
induction rule that can easily be derived from struc-
tural induction, namely:

from P(A) and (Wx € =%)[x = A A\ P(¢(x)) = P(x)],
infer (¥x € Z*)P(x).

o
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Example 23. Consider again the program of Ex-
ample 19 defining the function reverse(x) = f:(x, A),
where

F(x, y) < if x = A then y else F(¢(x), h(x)-y).

We wish to prove that reverse (reverse(x)) = x for
all x € =* Of course, proving that reverse has this
property does not show that it actually reverses all
words: many other functions, e.g. the identity function,
also satisfy this property.

To prove reverse (reverse (x)) = x, we let

P(x) be (¥y € =%)reverse(f,(x, y)) = f;(y, X)l.
(a) If x = A, then for any y we have
reverse (f; (A, y)) = reverse(y) = fi(y, A).

(b) If x £ A, then for any y, we have
reverse( f,(x, y))

= reverse( f,(¢(x), h(x)-y))
definition of f, (since x % A)
induction hypothesis (since x >
1(x))
definition of f,(since h(x)-y 5 A)

= [,(h(x)-y, 1(x))
= f.(y, h(x)-1(x))

= f,(y, x).
Therefore reverse (f,(x, y)) = f:(y, x) forall x, y € =%
in particular, for y = A, reverse(reverse(x)) = re-

verse (f,(x, A)) = f,(4, x) = x, as desired. [

Other properties of reverse may easily be proven by
structural induction. In particular, the following ex-
ample uses the properties that, for any a, b € 2 and
we ™

(i) reverse(wxa) = a-reverse (w),

(ii) reverse(a-w) = reverse (w)x*a, and

(ili) reverse(a- (wxb)) = b- (reverse(w)xa),
where * is the append function defined in Example 13
(Section II).

Example 24. Another reverse function. We wish to
show that the program (due to Ashcroft)

F(x) &< if x = A then A
else if r(x) = A then x
else A (F(t(x)))
“Flh(x)-F(t(F(t(x)))))

also defines a reversing function on =¥ ie. thatf,(x) =
reverse (x) for all x € =* Note that this definition does
not use any auxiliary functions.

In the proof we shall use the following lemma charac-
terizing the elements of =*: for any x € =* either
x = A, orx €2 (ie t(x) = A), or x = a-(wxb) for
some a € T, w € =¥ and b € Z. The lemma is easy to
prove by a straightforward structural induction.

We now prove that f, = reverse by structural induc-
tion on (Z* <), where < is the following partial
ordering:

x < yiff xis a substring of y or x is a proper substring
of reverse (). Onecancheck that (=*, <) iswell founded.

Using the above lemma, the proof may be done in
three parts.

(1) x = A:f.(x) = A = reverse(x).

(2) x € T :f;,(x) = x = reverse(x).

(3) x = a-(wxb) forsome a € 2, w € ¥ b c 2
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fr(x)
=h(fe(t(x))) £ (h(x) fo ( (f (2 (D))
definition of f;
= h(f; (wxb)) fx (a-f: (¢ (f: (w*b))))
since f1(x) = a, t(x) = wxb
= fi(reverse (w=b))-f. (a-f, (t (reverse (w*b))))
induction hypothesis (since
wxb < x)
= /i(b-reverse(w))-f, (a-f, (t (b-reverse (w))))
property (i) of reverse
b-f; (a-f; (reverse (w))) properties of /4 and ¢
b-f; (a-reverse (reverse (w)))
induction hypothesis
(since reverse (w) < x)®
property of reverse proven in pre-
vious example
induction hypothesis
(since a-w < x)
property (ii) of reverse
property (iii) of reverse.

mm

b-f(a-w)

b-reverse (a-w)

b- (reverse (w)*a)
reverse (x)

o

We conclude that f;(x) = reverse(x) for all x € =%,
as desired. O

Given a partially ordered set (S, <), we define the
lexicographic ordering <, on n-tuples of elements of
S (i.e., on elements of S*) by letting (a1, ..., a.) <,
<b1, ,b"> iffal = bl, cee, Qi1 = bi—landai < bi
for some i, 1 < i < n. It is easy to show that if (S, <)
is well founded, so is (S", <,,). In the following example,
we use the well-founded set (N°, <,), i.e. the lexico-
graphic ordering on pairs of natural numbers. Note
that under this ordering (m , n,) <, (my, my) iff my < my
or i = m and ny, < ms ; for example, (1,100) <,
(2, 0).

Example 25. Consider again the recursive program
over the natural numbers of Example 10 for-computing
Ackermann’s function

F(x, y) =if x = Othen y +-1
elseif y = Othen F(x — 1, 1)
else F(x — 1, F(x, y — 1)).

We wish to show that f.(x, y) is defined, i.e. f,(x, y) #
w, for any x, y € N. We shall use the structural induc-
tion rule applied to the well-founded set (N°, <,). As-
sut,nir,lg that £,(x’,p") is defined for any (x/,y'> such that
(x,y) <:{x,y), we show that f;(x, y) must also be de-
fined.

(a) if x = 0, obviously f;(x, y) is defined.

(b) if x % 0and y = 0, we note that (x — 1, 1) <,
(x, y), so by the induction hypothesis f;(x — 1, 1) is
defined. Thus f;(x, y) is also defined.

(c) Finally, if x % Oand y = 0, (x, y — 1) <,
(x, ), and therefore f,(x, y — 1) is defined by the in-
duction hypothesis. Now, regardless of the value of
ff(x: Yy = 1)7 we have <X - l:f“’(xy y - 1)) <a <x: y>
and the desired result follows by another application of
the induction hypothesis. O

® Note that reverse (w) < x because reverse (w) is a proper
substring of reverse(x), as may be seen from property (iii) of
reverse.

502

Acknowledgments. We are indebted to Robin Milner
for many stimulating discussions and James Morris for
suggesting many improvements to this paper.

Received November 1971: revised April 1972

References

1. Burstall, R.M. Proving properties of programs by structural
induction. Computer J. 12, 1 (Feb. 1969), 41-48.

2. Cadiou, J.M. Recursive definitions of partial functions and
their computations. Ph.D. Th. Computer Science Dept., Stanford
U, 1972.

3. deBakker, J.W., and Scott, D. A theory of programs
(unpublished memo., Aug. 1969).

4. Floyd, R.W. Assigning meanings to programs. Proc. Sympo. in
Appl. Math. Vol. 19. Mathematical Aspects of Computer Science,
(J.T. Schwartz, Ed.) AMS, Providence, R.1., 1967, pp. 19-32.

5. Grief, I.G. Induction in proofs about programs. Master’s Th.,
M.LT., 1972.

6. Kleene, S.C. Introduction to Metamathematics. D. Van
Nostrand, Princeton, N.J., 1950.

7. Manna, Zohar, and Pnueli, Amir. Formalization of properties
of functional programs. J. ACM, 17, 3 (July 1970), 555-569.

8. Manna, Zohar, and Vuillemin, John. Fixpoint approach

to the theory of computation. Comm. ACM 15,7 (July 1972),
pp. 528-536.

9. McCarthy, John, and Painter, J.A. Correctness of a compiler
for arithmetic expressions. Proc. Sympo. in Appl. Math. Vol. 19.
Mathematical Aspects of Computer Science, (J.T. Schwartz, Ed.)
AMS, Providence, R.1., 1967, pp. 33-41.

10. Milner, Robin. Logic for computable functions—description
of a machine implementation. Comput. Sci. Rept., Stanford U.,
1972,

11. Milner, Robin. Implementation and applications of Scott’s
logic for computable functions. Presented at Proc. ACM Conf. on
Proving Assertions About Programs, Las Cruces, N.M., Jan. 1972,
pp. 1-6.

12. Minsky, Marvin. Computation—Finite and Infinite Machines.
Prentice-Hall, Englewood-Cliffs, N.J., 1967.

13. Morris, James H. Lambda-calculus models of programming
languages. Ph.D. Th., Proj. MAC, MIT, MAC-TR-57, Dec. 1968.
14. Morris, James H. Another recursion induction principle.
Comm. ACM 14, 5 (May 1971), 351-354.

15. Park, David. Fixpoint induction and proofs of program
properties. In Machine Intelligence 5, (B. Meltzer and D. Michie,
Eds.) Edinburgh U. Press, Edinburgh, 1969, pp. 59-78.

16. Scott, Dana. Outline of a mathematical theory of computation.
Proc. Fourth Ann. Princeton Conf. on Information Sciences and
Systems, Princeton U., 1970, pp. 169-176.

17. Vuillemin, Jean. Proof techniques for recursive programs.
Ph.D. Th., Comput. Sci. Dept., Stanford U., 1973 (to appear).

Communications August 1973
of Volume 16
the ACM Number 8



