
Rewrite System

• Example: need to prove the termination of the
following rules:

 ¬ ¬x -> x

 ¬(x∨y) -> (¬ x)∧(¬ y)

 ¬(x∧y) -> (¬ x)∨(¬ y)

 x∧(y∨z) -> (x∧y)∨(x∧z)

 (y∨z)∧x -> (y∧x)∨(z∧x)

• Rule can be applied to top term or inner term

• We consider terms as labeled trees.

• ¬ 𝑎 ∧ 𝑏 ∨ ¬(𝑐 ∧ 𝑑)

∨

c a

𝑏 ¬ ∧

a

∧

¬

• Suppose ≲ is a quasi-order on trees, < the
corresponding strict order

• < is a simplification order if:
• subterm property:

𝑓 … , 𝑠, … > 𝑠

• monotony:
 𝑠 > 𝑡 ⇒ 𝑓 … , 𝑠, … > 𝑓(… , 𝑡, …)

• deletion property:
𝑓 … , 𝑠, … > 𝑓(… …)

• In case of fixed arity the deletion property
isn’t necessary

• Claim: Suppose we have a finite alphabet Σ,
and < is a simplification order. Then ≲ is WQO

• Proof:
Consider the identity WQO on Σ. (Why it’s a
WQO ?)
Let 𝑡1, 𝑡2, … , 𝑡𝑛, … be some infinite sequence
of trees. According to Kruskal's theorem we
know that 𝑡𝑖 ↪ 𝑡𝑗 for some 𝑖 < 𝑗 (↪ stands

for "can be embedded")

• Claim:
 𝑡 = 𝑔 𝑡1, … , 𝑡𝑛 ↪ 𝑠 = 𝑓 𝑠1, … , 𝑠𝑚 ⇒ 𝑡 ≲ 𝑠
• Proof:
Since 𝑡 ↪ 𝑠 we must have one of the following cases:

1. 𝑡 ↪ 𝑠𝑗 for some j. Then 𝑡 ≲ 𝑠𝑗 (induction) hence 𝑡 ≲ 𝑠
(subterm property)

2. 𝑔 = 𝑓 and 𝑡𝑖 ↪ 𝑠𝑗𝑖
 for 𝑗1 < 𝑗2 < … < 𝑗𝑛

 By induction 𝑡𝑖 ≲ sji
.

 By monotony and deletion:

 t = g t1, . . . , tn ≲ 𝑓 𝑠𝑗1
, … , 𝑠𝑗𝑛

≲ 𝑓 𝑠1, … , 𝑠𝑚 = 𝑠

So ≲ is W.Q.O.

• How can we prove termination of rewriting
system ?

• If we can define a simplification order such
that for every rule 𝑙 → 𝑟 we have a decrease
in the order, we’re done !

• Since we have: 𝑠 < 𝑡 ⇒ 𝑓 … 𝑠 … < 𝑓(… 𝑡 …)
it guaranties that inner substitutions will
cause a decrease in the top term.

• We’ll see several example for simplification
orders.

multiset path Order

• 𝑡 = 𝑔 𝑡1, … , 𝑡𝑛 𝑠 = 𝑓(𝑠1, … , 𝑠𝑚)

• Recursive definition for 𝑡 ≲ 𝑠 ∶

1. 𝑡 ≲ 𝑠𝑖 for some 1 ≤ 𝑖 ≤ 𝑚

2. 𝑡𝑗 < 𝑠 for all 1 ≤ 𝑗 ≤ 𝑚

 and

 𝑔, 𝑡1, … , 𝑡𝑛 ≲𝑙𝑒𝑥 𝑓, 𝑠1, … 𝑠𝑚

• ≲ is reflexive

• ≲ is transitive (structure induction)

• ⟹ ≲ is quasi-order.

• When proving termination of rewrite systems we
are mainly interested with < relation rather then
≲.

• The following can be proved by structural
induction:

• Suppose 𝑡 = 𝑔 𝑡1, … , 𝑡𝑛 𝑠 = 𝑓(𝑠1, … , 𝑠𝑚).
then 𝑡 < 𝑠 iff:
 𝑡 ≤ 𝑠𝑖 for some 1 ≤ 𝑖 ≤ 𝑚

or

 𝑔 < 𝑓 and 𝑡𝑗 < 𝑠 for all 1 ≤ 𝑗 ≤ 𝑚
or
 𝑔 ≈ 𝑓 and t1, … , tn <𝑙𝑒𝑥 {𝑠1, … , 𝑠𝑚}

• ⇒ the multiset path order is a simplification order
!!

• So we get that for finite alphabet Σ the
multiset path order is WQO

• What about infinite alphabet ?
We can prove directly from Kruskal’s theorem
that if the alphabet Σ is WQO, then the
multiset path order ≲ is also WQO.

• Proof:
Let 𝑡1, 𝑡2, … , 𝑡𝑛, … be some infinite sequence
of trees. According to Kruskal's theorem we
know that 𝑡𝑖 ↪ 𝑡𝑗 for some 𝑖 < 𝑗 (↪ stands
for "can be embedded")

• Claim:

 𝑡 = 𝑔 𝑡1, … , 𝑡𝑛 ↪ 𝑠 = 𝑓 𝑠1, … , 𝑠𝑚 ⇒ 𝑡 ≲ 𝑠

• Proof:

Since 𝑡 ↪ 𝑠 we must have one of the following cases:

1. 𝑡 ↪ 𝑠𝑗 for some j. Then 𝑡 ≲ 𝑠𝑗 (induction) hence

𝑡 ≲ 𝑠

2. 𝑔 ≲ 𝑓 and 𝑡𝑖 ↪ 𝑠𝑗𝑖
 for 𝑗1 < 𝑗2 < … < 𝑗𝑛

 By induction 𝑡𝑖 ≲ sji
 ⟹ 𝑡𝑖 < 𝑠 for all i.

 Also 𝑡1, … , 𝑡𝑛 ≲ 𝑠1, … , 𝑠𝑚 ⟹
𝑔, 𝑡1, … , 𝑡𝑛 ≲𝑙𝑒𝑥 𝑓, 𝑠1, … 𝑠𝑚 ⟹ 𝑡 ≲ 𝑠

• So ≲ is W.Q.O.

• Back to the example:

 ¬ ¬x -> x

 ¬(x∨y) -> (¬ x)∧(¬ y)

 ¬(x∧y) -> (¬ x)∨(¬ y)

 x∧(y∨z) -> (x∧y)∨(x∧z)

 (y∨z)∧x -> (y∧x)∨(z∧x)

• The alphabet is Σ = ¬,∨,∧ .

• Define WQO on it: ¬ > ∧ > ∨

• Easy to verify that all the above rules do cause
reduction in the multiset path order

Lexicographic Path Order

• 𝑡 = 𝑔 𝑡1, … , 𝑡𝑛 𝑠 = 𝑓(𝑠1, … , 𝑠𝑚)

• Recursive definition for 𝑡 ≲ 𝑠 ∶

1. 𝑡 ≲ 𝑠𝑖 for some 1 ≤ 𝑖 ≤ 𝑚

2. 𝑡𝑗 < 𝑠 for all 1 ≤ 𝑗 ≤ 𝑚

 and

 𝑔, 𝑡1, … , 𝑡𝑛 ≲𝑙𝑒𝑥 𝑓, 𝑠1, … , 𝑠𝑚

• ≲ is reflexive, and transitive hence ≲ is quasi-
order.

• The following can be proved:

 Let 𝑡 = 𝑔 𝑡1, … , 𝑡𝑛 𝑠 = 𝑓(𝑠1, … , 𝑠𝑚) then
 𝑡 < 𝑠 iff:

1. 𝑡 ≲ 𝑠𝑖 for some 1 ≤ 𝑖 ≤ 𝑚

2. 𝑡𝑗 < 𝑠 for all 1 ≤ 𝑗 ≤ 𝑚

 and

 𝑔, 𝑡1, … , 𝑡𝑛 <𝑙𝑒𝑥 𝑓, 𝑠1, … , 𝑠𝑚

• ⇒ Easily follows that the lexicographic path
ordering is a simplification ordering.

Recursive path order

• We can also mix multiset, lexicographic, and
also avoid arguments.

• Always need to preserve the property:

For 𝑡 = 𝑔 𝑡1, … , 𝑡𝑛 ≲ 𝑠 = 𝑓 𝑠1, … , 𝑠𝑚

we must have 𝑡𝑗 < 𝑠 for all 1 ≤ 𝑗 ≤ 𝑚

• Note: 𝑡𝑗 < 𝑠 and not just 𝑡𝑗 ≲ 𝑠

• Example:
 ¬ ¬x -> x

 ¬(x ∨ y) -> (¬ x)∧(¬ y)

 ¬(x ∧ y) -> (¬ x)∨(¬ y)

 x ∧ (y ∨ z) -> (x ∧ y) ∨ (x ∧ z)

 (y ∨ z) ∧ x -> (y ∧ x) ∨ (z ∧ x)

 (x ∨ y) ∨ z → x ∨ (y ∨ z)

 x ∧ (y ∧ z) → (x ∧ y) ∧ z

• Multiset won’t work for the last 2 rules …

• Lexicographic won’t work for the last rule

• We take:

∨ < ∧ < ¬

For “∨” we use lexicographic order

For “∧” we use reverse lexicographic order

