Rewrite System

 Example: need to prove the termination of the
following rules:

o ox > X

" ~(xVy) -> (= x)A(-y)

" ~(x/y)-> (= x)-Y)

" xA(yVz) -> (xNy) xNz)
" (yVz)Ax -> (y/x) Uz/x)

* Rule can be applied to top term or inner term



e \We consider terms as labeled trees.
* (maAb)Va(cAd)




* Suppose < is a quasi-order on trees, < the
corresponding strict order

e < isasimplification order if:
* subterm property:

f(C..,s,..)>s
* monotony:
s>t=> f(..,s,..)>f(..,t,..)
e deletion property:

F(ys, ) > Fln)

* |n case of fixed arity the deletion property
isn’t necessary



* Claim: Suppose we have a finite alphabet 2,
and < is a simplification order. Then < is WQO

* Proof:
Consider the identity WQO on XZ. (Why it’s a
WQO ?)
Let ¢4, ¢, ..., t,,, ... be some infinite sequence
of trees. According to Kruskal's theorem we
know that t; & t; forsome i <j (© stands

for "can be embedded")



e Claim:

t=g(ty,....t5) @S =f(S1,...,Sy) >t SSs
* Proof:
Since t < s we must have one of the following cases:

1. t - sjforsomej.Thent < s; (induction) hencet < s
(subterm property)

2. g=fandt; o s; forj; <j, < ..<jy
By induction t; < ;..

By monotony and deletion:
t=g(ty,...,ty) S f(sjl, ...,Sjn) S f(sy, e, Sp) =S

So < is W.Q.0.



How can we prove termination of rewriting
system ?
If we can define a simplification order such

that for every rule [ = r we have a decrease
in the order, we’re done !

Sincewe have:s <t = f(..s...) < f(...t...)
it guaranties that inner substitutions will
cause a decrease in the top term.

We'll see several example for simplification
orders.



multiset path Order

e t=g(ty, ..., t;) S=f(Sq1,,Sm)
* Recursive definition fort < s:

1. tss;forsomel<i<m
2. ti<sforalll<j<m

and

(g' {tl; Ll tn}) Slex (f! {Sl' Sm})




< is reflexive
< is transitive (structure induction)
— < is quasi-order.



When proving termination of rewrite systems we

are mainly interested with < relation rather then
<

a4

The following can be proved by structural
induction:

Suppose t = g(ty,...,t) S = f(Sq,..,Sm).
then t < s iff:

"t <s;forsomel<i<m

or

"g<fandt;<sforalll<j<m

or

" g= fand{ty,..,th} <iex {51, »Sm}

= the multiset path order is a simplification order
¥



* So we get that for finite alphabet X the
multiset path order is WQO

 What about infinite alphabet ?

We can prove directly from Kruskal’s theorem
that if the alphabet 2 is WQO, then the
multiset path order < is also WQQO.

* Proof:
Let ¢4, >, ..., L, ... be some infinite sequence
of trees. According to Kruskal's theorem we
know that t; & t; forsome i <j (© stands
for "can be embedded")



e Claim:
t=g9(ty, ... t5) ©s=f(S1,...,Sy) 2t Ss
* Proof:
Since t < s we must have one of the following cases:
1. t © sjforsomej. Thent < s; (induction) hence
t<s
2. gsfandt; o s forj; <j, < ... <Jy
By induction t; 55 = t; <s foralli.
Also {t, ..., t,} S {S1, .., S} =
(g: {tl» ) tn}) Slex (f: {51: ---Sm}) = tSS
* So< isW.Q.0.



Back to the example:

"L ox > X

" ~(xWy)-> (= x)A(-y)

" ~(x/Ny)->(=x)-Y)

" xA(yVz) -> (xNy) xNz)

" (yVz)/x -> (y/x) z/x)

The alphabetis X = {—,V,A}.
Define WQOonit: = > A > V

Easy to verify that all the above rules do cause
reduction in the multiset path order



Lexicographic Path Order

e t=g(ty, ..., t;) S=f(Sq1,,Sm)
* Recursive definition fort < s:

1. tss;forsomel<i<m
2. ti<sforalll<j<m

and
(g' tl) "re ) tn) Slex (f! S1y wee) Sm)




< is reflexive, and transitive hence < is quasi-
order.

* The following can be proved:
lett = g(tq, ..., t,) S = f(Sq1,...,5y) then
t < s iff:
1. t<s;forsomel<i<m
2. ti<sforalll<j<m
and
(g, t1, eer tn) <tex (F)S1) s Sm)

e = Easily follows that the lexicographic path
ordering is a simplification ordering.



Recursive path order

* We can also mix multiset, lexicographic, and
also avoid arguments.

* Always need to preserve the property:

Fort = g(ty,....,t) S s=f(Sq,..,5m)
we musthave t; <sforall1<j<m

* Note:t; <sandnotjust t; S s



 Example:
o ax > X
" =(xVy)->(=x)A(-y)
" =(xAy)-> (= x)V(-y)
" XxA(yVz)->(XAY)V(XAZ)
" (yWZ)AX->(YAX)V (ZAX)
" (xVy)Vz = xV(yVz)
" XA(YA z) = (XAY)AzZ

 Multiset won’t work for the last 2 rules ...
e Lexicographic won’t work for the last rule



e We take:

V < A < =7

For “V” we use lexicographic order

For “A” we use reverse lexicographic order






