Rewrite System

- Example: need to prove the termination of the following rules:
 - ¬ ¬*X* -> *X*
 - $\neg (x \lor y) \rightarrow (\neg x) \land (\neg y)$
 - $\neg (x \land y) \rightarrow (\neg x) \lor (\neg y)$
 - $x \land (y \lor z) \rightarrow (x \land y) \lor (x \land z)$
 - $(y \lor z) \land x \rightarrow (y \land x) \lor (z \land x)$

• Rule can be applied to top term or inner term

- We consider terms as labeled trees.
- $(\neg a \land b) \lor \neg (c \land d)$

- Suppose ≤ is a quasi-order on trees, < the corresponding strict order
- < is a simplification order if:
 - subterm property:

 $f(\dots, s, \dots) > s$

• monotony:

$$s > t \Rightarrow f(\dots, s, \dots) > f(\dots, t, \dots)$$

- deletion property: $f(\dots, s, \dots) > f(\dots)$
- In case of fixed arity the deletion property isn't necessary

- Claim: Suppose we have a finite alphabet Σ , and < is a simplification order. Then \lesssim is WQO
- Proof:

Consider the identity WQO on Σ . (Why it's a WQO ?)

Let $t_1, t_2, ..., t_n$, ... be some infinite sequence of trees. According to Kruskal's theorem we know that $t_i \hookrightarrow t_j$ for some i < j (\hookrightarrow stands for "can be embedded") • Claim:

$$t = g(t_1, \dots, t_n) \hookrightarrow s = f(s_1, \dots, s_m) \Rightarrow t \leq s$$

• Proof:

Since $t \hookrightarrow s$ we must have one of the following cases:

- *1.* $t \hookrightarrow s_j$ for some j. Then $t \leq s_j$ (induction) hence $t \leq s$ (subterm property)
- 2. g = f and $t_i \hookrightarrow s_{j_i}$ for $j_1 < j_2 < ... < j_n$ By induction $t_i \leq s_{j_i}$.

By monotony and deletion:

$$\mathbf{t} = \mathbf{g}(\mathbf{t}_1, \dots, \mathbf{t}_n) \leq f(s_{j_1}, \dots, s_{j_n}) \leq f(s_1, \dots, s_m) = s$$

So \leq is W.Q.O.

- How can we prove termination of rewriting system ?
- If we can define a simplification order such that for every rule *l* → *r* we have a decrease in the order, we're done !
- Since we have: s < t ⇒ f(...s ...) < f(...t ...) it guaranties that inner substitutions will cause a decrease in the top term.
- We'll see several example for simplification orders.

multiset path Order

- $t = g(t_1, ..., t_n)$ $s = f(s_1, ..., s_m)$
- Recursive definition for $t \leq s$:
- *1.* $t \leq s_i$ for some $1 \leq i \leq m$
- *2.* $t_j < s$ for all $1 \le j \le m$

and

 $(g, \{t_1, ..., t_n\}) \leq_{lex} (f, \{s_1, ..., s_m\})$

- \leq is reflexive
- \leq is transitive (structure induction)
- \implies \lesssim is quasi-order.

- When proving termination of rewrite systems we are mainly interested with < relation rather then ≲.
- The following can be proved by structural induction:
- Suppose $t = g(t_1, \dots, t_n)$ $s = f(s_1, \dots, s_m)$. then t < s iff:

•
$$t \leq s_i$$
 for some $1 \leq i \leq m$

or

•
$$g < f$$
 and $t_j < s$ for all $1 \le j \le m$

or

•
$$g \approx f$$
 and $\{t_1, \dots, t_n\} <_{lex} \{s_1, \dots, s_m\}$

⇒ the multiset path order is a simplification order
!!

- So we get that for finite alphabet Σ the multiset path order is WQO
- What about infinite alphabet ? We can prove directly from Kruskal's theorem that if the alphabet Σ is WQO, then the multiset path order ≤ is also WQO.
- Proof:

Let $t_1, t_2, ..., t_n$, ... be some infinite sequence of trees. According to Kruskal's theorem we know that $t_i \hookrightarrow t_j$ for some i < j (\hookrightarrow stands for "can be embedded") • Claim:

$$t = g(t_1, \dots, t_n) \hookrightarrow s = f(s_1, \dots, s_m) \Rightarrow t \leq s$$

• Proof:

Since $t \hookrightarrow s$ we must have one of the following cases: 1. $t \hookrightarrow s_j$ for some j. Then $t \leq s_j$ (induction) hence $t \leq s$

2. $g \leq f$ and $t_i \hookrightarrow s_{j_i}$ for $j_1 < j_2 < ... < j_n$ By induction $t_i \leq s_{j_i} \implies t_i < s$ for all i. Also $\{t_1, ..., t_n\} \leq \{s_1, ..., s_m\} \implies$ $(g, \{t_1, ..., t_n\}) \leq_{lex} (f, \{s_1, ..., s_m\}) \implies t \leq s$ • So \leq is W.Q.O.

- Back to the example:
 - ¬ ¬*X* -> *X*
 - $\neg (x \lor y) \rightarrow (\neg x) \land (\neg y)$
 - $\neg (x \land y) \rightarrow (\neg x) \lor (\neg y)$
 - $x \land (y \lor z) \rightarrow (x \land y) \lor (x \land z)$
 - $(y \lor z) \land x \rightarrow (y \land x) \lor (z \land x)$
- The alphabet is $\Sigma = \{\neg, \lor, \land\}$.
- Define WQO on it: $\neg > \land > \lor$
- Easy to verify that all the above rules do cause reduction in the multiset path order

Lexicographic Path Order

•
$$t = g(t_1, ..., t_n)$$
 $s = f(s_1, ..., s_m)$

- Recursive definition for $t \leq s$:
- *1.* $t \leq s_i$ for some $1 \leq i \leq m$
- *2.* $t_j < s$ for all $1 \le j \le m$

and

$$(g, t_1, \dots, t_n) \leq_{lex} (f, s_1, \dots, s_m)$$

- ≤ is reflexive, and transitive hence ≤ is quasiorder.
- The following can be proved:

Let $t = g(t_1, ..., t_n)$ $s = f(s_1, ..., s_m)$ then t < s iff:

1. $t \leq s_i$ for some $1 \leq i \leq m$

2.
$$t_j < s$$
 for all $1 \le j \le m$

and

$$(g, t_1, \dots, t_n) <_{lex} (f, s_1, \dots, s_m)$$

• ⇒ Easily follows that the lexicographic path ordering is a simplification ordering.

Recursive path order

- We can also mix multiset, lexicographic, and also avoid arguments.
- Always need to preserve the property:

For
$$t = g(t_1, ..., t_n) \leq s = f(s_1, ..., s_m)$$

we must have $t_j < s$ for all $1 \leq j \leq m$

• Note: $t_j < s$ and not just $t_j \leq s$

- Example:
 - ¬ ¬X -> X

•
$$\neg(x \lor y) \rightarrow (\neg x) \land (\neg y)$$

• $x \land (y \lor z) \rightarrow (x \land y) \lor (x \land z)$

•
$$(y \lor z) \land x \rightarrow (y \land x) \lor (z \land x)$$

•
$$(x \lor y) \lor z \rightarrow x \lor (y \lor z)$$

•
$$x \land (y \land z) \rightarrow (x \land y) \land z$$

- Multiset won't work for the last 2 rules ...
- Lexicographic won't work for the last rule

• We take:

$V < \Lambda < \neg$

For "V" we use lexicographic order

For " Λ " we use reverse lexicographic order