
Rewrite System 

• Example: need to prove the termination of the 
following rules: 

 ¬ ¬x -> x 

 ¬(x∨y) -> (¬ x)∧(¬ y) 

 ¬(x∧y) -> (¬ x)∨(¬ y) 

 x∧(y∨z) -> (x∧y)∨(x∧z) 

 (y∨z)∧x -> (y∧x)∨(z∧x) 

 

• Rule can be applied to top term or inner term 



• We consider terms as labeled trees. 

• ¬ 𝑎 ∧ 𝑏 ∨ ¬(𝑐 ∧ 𝑑)  
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• Suppose ≲ is a quasi-order on trees, < the 
corresponding strict order 

• < is a simplification order if: 
• subterm property: 

𝑓 … , 𝑠, … > 𝑠 

• monotony: 
          𝑠 > 𝑡 ⇒ 𝑓 … , 𝑠, … > 𝑓(… , 𝑡, … )  

• deletion property: 
𝑓 … , 𝑠, … > 𝑓(… … ) 

                         

• In case of fixed arity the deletion property 
isn’t necessary 



• Claim: Suppose we have a finite alphabet Σ, 
and < is a simplification order. Then ≲ is WQO 

• Proof: 
Consider the identity WQO on Σ. (Why it’s a 
WQO ?) 
Let 𝑡1, 𝑡2, … , 𝑡𝑛, … be some infinite sequence 
of trees. According to Kruskal's theorem we 
know that 𝑡𝑖 ↪  𝑡𝑗 for some 𝑖 < 𝑗  (↪ stands 

for "can be embedded") 

 

 



• Claim:  
   𝑡 = 𝑔 𝑡1, … , 𝑡𝑛 ↪ 𝑠 = 𝑓 𝑠1, … , 𝑠𝑚 ⇒ 𝑡 ≲ 𝑠  
• Proof: 
Since 𝑡 ↪ 𝑠 we must have one of the following cases: 

1. 𝑡 ↪ 𝑠𝑗 for some j. Then 𝑡 ≲ 𝑠𝑗 (induction) hence 𝑡 ≲ 𝑠 
(subterm property) 

2. 𝑔 = 𝑓 and 𝑡𝑖 ↪ 𝑠𝑗𝑖
 for 𝑗1 < 𝑗2 <  … < 𝑗𝑛 

     By induction 𝑡𝑖 ≲ sji
.  

 
     By monotony and deletion: 

     t = g t1, . . . , tn ≲ 𝑓 𝑠𝑗1
, … , 𝑠𝑗𝑛

≲ 𝑓 𝑠1, … , 𝑠𝑚 = 𝑠 
 
So ≲  is W.Q.O. 

 



• How can we prove termination of rewriting 
system ?  

• If we can define a simplification order such 
that for every rule 𝑙 → 𝑟 we have a decrease 
in the order, we’re done ! 

• Since we have: 𝑠 < 𝑡 ⇒ 𝑓 … 𝑠 … < 𝑓(… 𝑡 … ) 
it guaranties that inner substitutions will 
cause a decrease in the top term. 

 

• We’ll see several example for simplification 
orders. 

 



multiset path Order 

• 𝑡 = 𝑔 𝑡1, … , 𝑡𝑛     𝑠 = 𝑓(𝑠1, … , 𝑠𝑚)  

• Recursive definition for 𝑡 ≲ 𝑠 ∶ 

1. 𝑡 ≲ 𝑠𝑖 for some 1 ≤ 𝑖 ≤ 𝑚 

2. 𝑡𝑗 < 𝑠 for all 1 ≤ 𝑗 ≤ 𝑚      

    and 

    𝑔, 𝑡1, … , 𝑡𝑛 ≲𝑙𝑒𝑥  𝑓, 𝑠1, … 𝑠𝑚  

 

    



• ≲ is reflexive 

• ≲ is transitive (structure induction) 

•        ⟹     ≲   is quasi-order. 



• When proving termination of rewrite systems we 
are mainly interested with < relation rather then 
≲. 

• The following can be proved by structural 
induction: 

• Suppose  𝑡 = 𝑔 𝑡1, … , 𝑡𝑛     𝑠 = 𝑓(𝑠1, … , 𝑠𝑚). 
then  𝑡 < 𝑠 iff: 
 𝑡 ≤ 𝑠𝑖 for some 1 ≤ 𝑖 ≤ 𝑚 

or 

 𝑔 < 𝑓 and 𝑡𝑗 < 𝑠 for all 1 ≤ 𝑗 ≤ 𝑚 
or 
 𝑔 ≈ 𝑓 and t1, … , tn <𝑙𝑒𝑥 {𝑠1, … , 𝑠𝑚} 

• ⇒ the multiset path order is a simplification order 
!! 



• So we get that for finite alphabet Σ the 
multiset path order is WQO 

• What about infinite alphabet ? 
We can prove directly from Kruskal’s theorem 
that if the alphabet Σ is WQO, then the 
multiset path order ≲ is also WQO. 

• Proof: 
Let 𝑡1, 𝑡2, … , 𝑡𝑛, … be some infinite sequence 
of trees. According to Kruskal's theorem we 
know that 𝑡𝑖 ↪  𝑡𝑗 for some 𝑖 < 𝑗  (↪ stands 
for "can be embedded") 

 

 



• Claim:  

   𝑡 = 𝑔 𝑡1, … , 𝑡𝑛 ↪ 𝑠 = 𝑓 𝑠1, … , 𝑠𝑚 ⇒ 𝑡 ≲ 𝑠  

• Proof: 

Since 𝑡 ↪ 𝑠 we must have one of the following cases: 

1. 𝑡 ↪ 𝑠𝑗  for some j. Then 𝑡 ≲ 𝑠𝑗 (induction) hence 

𝑡 ≲ 𝑠 

2. 𝑔 ≲ 𝑓 and 𝑡𝑖 ↪ 𝑠𝑗𝑖
 for 𝑗1 < 𝑗2 <  … < 𝑗𝑛 

     By induction 𝑡𝑖 ≲ sji
  ⟹   𝑡𝑖 < 𝑠  for all i. 

     Also 𝑡1, … , 𝑡𝑛 ≲ 𝑠1, … , 𝑠𝑚   ⟹ 
𝑔, 𝑡1, … , 𝑡𝑛 ≲𝑙𝑒𝑥  𝑓, 𝑠1, … 𝑠𝑚  ⟹   𝑡 ≲ 𝑠 

•  So ≲  is W.Q.O. 



• Back to the example:  

 ¬ ¬x -> x 

 ¬(x∨y) -> (¬ x)∧(¬ y) 

 ¬(x∧y) -> (¬ x)∨(¬ y) 

 x∧(y∨z) -> (x∧y)∨(x∧z) 

 (y∨z)∧x -> (y∧x)∨(z∧x) 

• The alphabet is Σ = ¬,∨,∧ . 

• Define WQO on it: ¬  >  ∧  >  ∨ 

• Easy to verify that all the above rules do cause 
reduction in the multiset path order 



Lexicographic Path Order 

• 𝑡 = 𝑔 𝑡1, … , 𝑡𝑛     𝑠 = 𝑓(𝑠1, … , 𝑠𝑚)  

• Recursive definition for 𝑡 ≲ 𝑠 ∶ 

1. 𝑡 ≲ 𝑠𝑖 for some 1 ≤ 𝑖 ≤ 𝑚 

2. 𝑡𝑗 < 𝑠 for all 1 ≤ 𝑗 ≤ 𝑚      

    and 

    𝑔, 𝑡1, … , 𝑡𝑛 ≲𝑙𝑒𝑥  𝑓, 𝑠1, … , 𝑠𝑚  

 

    



• ≲ is reflexive, and transitive hence ≲ is quasi-
order. 

• The following can be proved: 

     Let 𝑡 = 𝑔 𝑡1, … , 𝑡𝑛     𝑠 = 𝑓(𝑠1, … , 𝑠𝑚) then 
     𝑡 < 𝑠 iff: 

1. 𝑡 ≲ 𝑠𝑖 for some 1 ≤ 𝑖 ≤ 𝑚 

2. 𝑡𝑗 < 𝑠 for all 1 ≤ 𝑗 ≤ 𝑚 

      and 

     𝑔, 𝑡1, … , 𝑡𝑛 <𝑙𝑒𝑥  𝑓, 𝑠1, … , 𝑠𝑚  

• ⇒   Easily follows that the lexicographic path 
ordering is a simplification ordering. 



Recursive path order 

• We can also mix multiset, lexicographic, and 
also avoid arguments.  

• Always need to preserve the property: 

 
For 𝑡 = 𝑔 𝑡1, … , 𝑡𝑛   ≲  𝑠 = 𝑓 𝑠1, … , 𝑠𝑚  

we must have 𝑡𝑗 < 𝑠 for all 1 ≤ 𝑗 ≤ 𝑚      

     

• Note: 𝑡𝑗 < 𝑠 and not just  𝑡𝑗 ≲ 𝑠  



• Example: 
 ¬ ¬x -> x 

 ¬(x ∨ y) -> (¬ x)∧(¬ y) 

 ¬(x ∧ y) -> (¬ x)∨(¬ y) 

 x ∧ (y ∨ z) -> (x ∧ y) ∨ (x ∧ z) 

 (y ∨ z) ∧ x -> (y ∧ x) ∨ (z ∧ x) 

 (x ∨ y) ∨ z → x ∨ (y ∨ z) 

 x ∧ (y ∧  z) → (x ∧ y) ∧ z 

 

• Multiset won’t work for the last 2 rules … 

• Lexicographic won’t work for the last rule 

 
 

 

 



• We take: 

 
∨   <   ∧   <    ¬ 

 

For  “∨”  we use lexicographic order 

 

For  “∧”  we use reverse lexicographic order  

 



 


