Semantic Path Order and Dependency Pairs

August 21, 2013

Semantic Path Order

- > is a strict partial order (on terms).
- \approx is an equivalence relation (on terms).
- They are compatible, i.e.: $> \circ \approx \subseteq >$ and $\approx \circ > \subseteq >$.
- Usually their definition involves some "semantics".

Semantic Path Order

Definition

The semantic path equivalence \approx induced by \approx is the equivalence relation between terms (inductively defined) by: $f(s_1, \ldots, s_m) \approx g(t_1, \ldots, t_n)$ iff $f(s_1, \ldots, s_m) \approx g(t_1, \ldots, t_n)$, m = n, and $s_i \approx t_i$ for every $1 \le i \le n$.

Semantic Path Order

Definition

The lexicographic semantic path order > induced by $\langle >, \approx \rangle$ is the strict partial order between terms, recursively defined as follows: For two terms $s = f(s_1, \ldots, s_m)$ and $t = g(t_1, \ldots, t_n)$, s > t if at least one of the following hold:

2 $s > t_i$ for all $1 \le i \le n$, and s > t.

s>t_i for all 1 ≤ i ≤ n, s≈t, and ⟨s₁,..., s_m⟩>_{lex}⟨t₁,..., t_n⟩ (>_{lex} is the lexicographic ordering induced by > and ≈).

Subterm Property

If t is a proper subterm of s, then s > t.

- *s*>*t* is a strict partial order.
- $s \approx t$ is an equivalence relation.
- They are compatible: $> \circ \approx \subseteq >$ and $\approx \circ > \subseteq >$.

- Consider a language with a constant 0 (nullary symbol), three unary symbols *S*, *P*, *F*, and one binary symbol *.
- Define the semantic interpretation [[t]] of a term t to be its natural numerical value (S is successor, P is previous and [[P(0)]] = 0, * is multiplication, and F is factorial).
- Define > by t>s if either t is headed by F and s is not, or both are headed by F and [[t]] > [[s]].
- Then, for every term *x*:
 - F(0) > S(0), since F(0) > S(0) and F(0) > 0.
 - F(S(x)) > P(S(x)), since F(S(x)) > P(S(x)) and F(S(x)) > S(x).
 - F(S(x))>F(P(S(x)))) since F(S(x))>F(P(S(x))) and F(S(x))>P(S(x)).
 - F(S(x)) > S(x) * F(P(S(x))). Why?

Basic Theorem

Theorem

If > is well-founded, then the lexicographic semantic path order > induced by $\langle >, \approx \rangle$ is also well-founded.

Proof Outline.

Take a minimal counterexample t₁ = f₁(s₁¹,...,s₁^{m₁})>t₂ = f₂(s₂¹,...,s₂^{m₂})>...
Observe that s_jⁱ > t_{i+1} cannot hold (by minimality)
Therefore, t_i > t_{i+1} for every i
Since > is well-founded and > 0 ≈ ⊆ >, t_i ≈ t_{i+1} from some point on
From that point: (s_i¹,...,s_i^{m_i})>_{lex}(s_{i+1}¹,...,s_{i+1}<sup>m_{i+1})
From some M a certain component j constantly decreases
t₁>...>t_{M-1}>s_M^j>s_{M+1}>s_{M+2}^j>... is a "shorter" counterexample
</sup>

Proving Termination Using Lexicographic Semantic Path Orders

To prove that a rewrite system terminates, one has to identify relations > and \approx for which the following hold:

- \bigcirc > is well-founded.
- ② If $s \to t$ then $f(\dots, s, \dots) \gtrsim f(\dots, t, \dots)$ for every symbol f (as usual, $\geq = > \cup \approx$).
- Sor every rule *I* → *r* and substitution *σ*: *σI*>*σr*, where > is the lexicographic semantic path order induced by (>,≈).

- $P(S(x)) \rightarrow x$
- $F(0) \rightarrow S(0)$
- $F(S(x)) \rightarrow S(x) * F(P(S(x)))$
- Take > as before, and $t \approx s$ iff both are headed by the same symbol, and $[\![t]\!] = [\![s]\!]$
- > and \approx are compatible.
- > is well-founded.
- if $s \to t$ then $f(\dots, s, \dots) \approx f(\dots, t, \dots)$ (since all rules preserve the numerical value).
- $\sigma I > \sigma r$ for every rule $I \rightarrow r$ and σ .

Therefore, this system is terminating.

Proof of Termination

- Conditions 2 − 3 above ensure that if s → t then s>t (by induction on the depth of the rewrite step)
- The claim follows since > is well-founded

- $\bullet \neg \neg x \to x$
- $\neg(x \lor y) \rightarrow \neg \neg \neg x \land \neg \neg \neg y$
- $\neg(x \land y) \rightarrow \neg \neg \neg x \lor \neg \neg \neg y$
- t > s iff the number of \lor, \land in t is greater than their number in s
- $t \approx s$ iff the number of \lor , \land in t is equal to their number in s
- ullet > and pprox are compatible, and > is well-founded
- s → t implies f(···, s, ···)≈f(···, t, ···) (since all rules of the system preserve the number of ∨ and ∧).
- $\sigma l > \sigma r$ for every rule $l \rightarrow r$ and σ (verify).

Consequently, this system is terminating.

Other Semantic Path Orders

- Replace >_{lex} by >_{multiset} to obtain "multiset semantic path order".
 All proofs remain the same.
- Use >_{lex} with different ordering of the subterms, possibly ignoring or duplicating some of them.
 - Associate a list of indices $i_1^f, \ldots, i_{m_f}^f$ to every symbol f.
 - Replace $\langle s_1, \ldots, s_m \rangle >_{lex} \langle t_1, \ldots, t_n \rangle$ by $\langle s_{i_1^f}, \ldots, s_{i_{m_f}^f} \rangle >_{lex} \langle t_{i_1^g}, \ldots, t_{i_{m_g}^g} \rangle$.
 - The proof that > is well-founded remains the same.
 - The termination proof does not work: we might have $s \rightarrow t$ and $s \approx t$.
 - However, we can still prove termination by showing:
 - $s \to t$ implies $s \gtrsim t$.
 - Top-rewrite of $s \rightarrow t$ implies s > t.

Slightly Extended Semantic Path Orders

Observation

We did not used the fact that \approx is an equivalence relation.

- We can take any quasi order \gtrsim instead of \approx .
- Require compatibility: $> \circ \gtrsim \subseteq >$.
- Same definition of a semantic path order.

Slightly Extended Semantic Path Orders

Theorem

A rewrite system is terminating if there are compatible strict partial order > and quasi-order \geq satisfying:

- \bigcirc > is well-founded.
- ② $s \to t$ implies $f(\cdots, s, \cdots) > f(\cdots, t, \cdots)$ or $f(\cdots, s, \cdots) \gtrsim f(\cdots, t, \cdots)$.
- Sor every rule I → r and substitution σ: σI>σr, where > is the (lexicographic) semantic path order induced by (>,≥).

• The proof remains the same.

Definition

A *constructor* (in some rewrite system) is a symbol that never appears at the head of a left-hand side of any rule.

Definition

The dependency pairs of a rewrite system consist of all pairs $l \rightarrow u$ for every rule $l \rightarrow r$ and non-variable (not necessarily proper) subterm u of r that is not headed by a constructor.

•
$$x - 0 \rightarrow x$$

• $s(x) - s(y) \rightarrow x - y$
• $0 \div s(y) \rightarrow 0$
• $s(x) \div s(y) \rightarrow s((x - y) \div s(y))$

- s and 0 are constructors.
- The dependency pairs are:

•
$$s(x) - s(y) \rightarrow x - y$$

• $s(x) \div s(y) \rightarrow (x - y) \div s(y)$
• $s(x) \div s(y) \rightarrow x - y$

Proving Termination Using Dependency Pairs

Theorem

A rewrite system^a is terminating if there exist a quasi-order \geq and a strict partial order > that satisfy the following conditions:

- $\mathbf{0} \gtrsim \circ > \subseteq >$
- **2** $\sigma I \gtrsim \sigma r$ for each rule $I \rightarrow r$ and substitution σ
- **3** $\sigma I > \sigma r$ for each dependency pair $I \rightarrow r$ and substitution σ
- Is well-founded
- $0 \ge is weakly monotonic: s \ge t implies f(\cdots, s, \cdots) \ge f(\cdots, t, \cdots)$

^aWe assume that each variable occurring in a right side of some rule also occurs in its left side, and that no rule has the form $x \rightarrow r$ for some variable x.

$$\begin{array}{c|c} x - 0 \to x \\ s(x) - s(y) \to x - y \\ 0 \div s(y) \to 0 \\ s(x) \div s(y) \to s((x - y) \div s(y)) \end{array} \end{array} \begin{array}{c} \text{Dependency pairs:} \\ s(x) - s(y) \to x - y \\ s(x) \div s(y) \to (x - y) \div s(y) \\ s(x) \div s(y) \to x - y \end{array}$$

- Define $[\cdot]$ by: [0] = 0; [s(x)] = [x] + 1; [x y] = [x]; $[x \div y] = [x]$
- Define: $s \gtrsim t$ iff $\llbracket s \rrbracket \ge \llbracket t \rrbracket$; s > t iff $\llbracket s \rrbracket > \llbracket t \rrbracket$
- \gtrsim > \subseteq >
- $\sigma I \gtrsim \sigma r$ for each rule $I \rightarrow r$ and σ
- $\sigma I \!>\! \sigma r$ for each dependency pair $I \rightarrow r$ and σ
- > is well-founded
- is weakly monotonic (since in the suggested interpretation all symbols are interpreted by a weakly monotonic function)

Consequently, this system is terminating.

Lemma

If the conditions above hold for some \geq and >, then they also hold for some \geq' and >', such that s>'t whenever t is headed by a constructor and s is not.

Proof Outline.

Obtain >' from > by:

 Adding all pairs whose left-side is a non-constructor term and right-side is a constructor term

• Removing any pair whose left-side is a constructor term Obtain \gtrsim' from \gtrsim by:

• Removing any pair with left-side a constructor and right-side not. Show that the conditions above hold for \geq' and >'.

- By the previous lemma, we can suppose that in > all terms headed by constructors are smaller than all those that are not.
- Let > be $\geq \circ > \circ \geq$.
- $> \circ \gtrsim \subseteq >$, so > and \gtrsim are compatible.
- We show that > and ≥ meet all conditions required to prove termination using the lexicographic semantic path order induced by ⟨>,≥⟩.

- > is well-founded since $\geq \circ > \subseteq >$ and > is well-founded.
- Suppose that s → t, and show that f(..., s, ...)≥f(..., t, ...).
 Since ≥ is weakly monotonic, it suffices to show that s → t implies that s≥t. This is proven by induction on the depth of the rewrite step s → t (again, using weak monotonicity for the induction step).

• Consider a rule $l \rightarrow r$ and a substitution σ . We show that $\sigma l {>} \sigma r$.

- If r is a proper subterm of l (in particular, if r is a variable), then $\sigma l > \sigma r$ by the subterm property.
- Otherwise r is headed by a constructor or $l \rightarrow r$ is a dependency pair.
- In both cases, $\sigma l > \sigma r$ and so $\sigma l > \sigma r$.
- To show that $\sigma l > \sigma r$, it suffices to prove that $\sigma l > \sigma r'$ for every subterm r' of r.
- Use induction on the structure of *r*':
 - Suppose that for all subterms r'' of r' we have $\sigma I > \sigma r''$.
 - If r' is a subterm of l (in particular, if r' is a variable), then $\sigma l > \sigma r'$ by the subterm property.
 - Otherwise r' is headed by a constructor or $l \rightarrow r'$ is a dependency pair.
 - In both cases, $\sigma l > \sigma r'$ and so $\sigma l > \sigma r'$.
 - By the induction hypothesis, $\sigma l > \sigma r'$.

Revisiting Example Above

$$\begin{array}{ll} x - 0 \to x & & \text{Dependency pairs:} \\ s(x) - s(y) \to x - y & & s(x) - s(y) \to x - y \\ 0 \div s(y) \to 0 & & s(x) \div s(y) \to s((x - y) \div s(y)) \\ s(x) \div s(y) \to x - y & & s(x) \div s(y) \to x - y \end{array}$$

- Define $\llbracket \cdot \rrbracket$ by: $\llbracket 0 \rrbracket = 0$; $\llbracket s(x) \rrbracket = \llbracket x \rrbracket + 1$; $\llbracket x y \rrbracket = \llbracket x \rrbracket$; $\llbracket x \div y \rrbracket = \llbracket x \rrbracket$.
- Define \gtrsim by: $s \gtrsim t$ iff $\llbracket s \rrbracket \ge \llbracket t \rrbracket$.
- Define > by: s > t iff $\llbracket s \rrbracket > \llbracket t \rrbracket$.

According to the last proof, termination can be proved using the lexicographic semantic path order induced by $\langle >, \gtrsim \rangle$, that are defined by:

- s>t if s is not headed by S or 0, and either [[s]] > [[t]] or t is headed by S or 0.
- s≥t if [[s]] ≥ [[t]], and either s is not headed by S or 0 or t is headed by S or 0.