Semantic Path Order and Dependency Pairs

August 21, 2013

Semantic Path Order

> is a strict partial order (on terms).
~ is an equivalence relation (on terms).
They are compatible, i.e: >o~ C >and ~o> C >.

Usually their definition involves some “semantics”.

Semantic Path Order

Definition

The semantic path equivalence ~ induced by ~ is the equivalence relation
between terms (inductively defined) by: f(s1,...,sm)~g(t1,...,ts) iff
f(s1,.-.,5m)~g(t1,...,tn), m=n, and s;~t; for every 1 < < n.

Semantic Path Order

Definition

The lexicographic semantic path order > induced by (>, ~) is the strict
partial order between terms, recursively defined as follows: For two terms
s=1(s1,...,5m) and t = g(t1,...,ts), s>t if at least one of the following
hold:

Q s>t forsomel <i<m.

@ s>t foralll <i<n, and s>t.

@ s>tiforall 1 <i<n, s~t, and (s1,...,5m) > lex(t1,- -, tn) (Zlex IS

the lexicographic ordering induced by > and ~).

Properties

Subterm Property

If t is a proper subterm of s, then s>t.

@ s>t is a strict partial order.
@ s~t is an equivalence relation.

o They are compatible: >0~ C >and ~o> C >.

Example

o Consider a language with a constant 0 (nullary symbol), three unary
symbols S, P, F, and one binary symbol .

o Define the semantic interpretation [t] of a term ¢ to be its natural
numerical value (S is successor, P is previous and [P(0)] =0, x is
multiplication, and F is factorial).

o Define > by t>s if either t is headed by F and s is not, or both are
headed by F and [t] > [s].
@ Then, for every term x:
o F()>5(0), since F(0)>5(0) and F(0)>0.

F(5(x))>P(5(x)), since F(5(x))>P(5(x)) and F(5(x))>S(x).
F(S(X))>F(P(5(x)))) since F(S(x))>F(P(5(x))) and
F(5(x))>P(5(x)).

F(S(x))>S(x) * F(P(S(x))). Why?

Basic Theorem

Theorem

If > is well-founded, then the lexicographic semantic path order > induced
by (>,~) is also well-founded.

Proof Outline.

@ Take a minimal counterexample
tr=f(st,...,s™) >t = h(sh, ..., s57)> ...

@ Observe that stt,-H cannot hold (by minimality)

© Therefore, tj~tj+1 for every i

@ Since > is well-founded and > o~ C >, t;~t;;1 from some point on
. i m;

© From that point: (s!,..., ™) >jex(St1,---Si11)

@ From some M a certain component j constantly decreases

Q t>... >tM_1>s’,;4>s’,;,,+1>s’,;/,+2> ... is a “shorter” counterexample

Proving Termination Using Lexicographic Semantic Path

Orders

To prove that a rewrite system terminates, one has to identify relations >
and ~ for which the following hold:

@ > is well-founded.

@ If s— tthen f(---,s,---)>f(---,t,---) for every symbol f (as
usual, = = >U~=).

© For every rule | — r and substitution o: o/>or, where > is the
lexicographic semantic path order induced by (>, ~).

Example

P(5(x)) — x
F(0) — S(0)
F(5(x)) = S(x) = F(P(5(x)))

Take > as before, and t~s iff both are headed by the same symbol,
and [t] = [s]

> and ~ are compatible.

> is well-founded.

if s — tthen f(---,s,--)
numerical value).

Q

f(---,t,---) (since all rules preserve the

ol>ar for every rule | — r and o.

Therefore, this system is terminating.

Proof of Termination

o Conditions 2 — 3 above ensure that if s — t then s>t
(by induction on the depth of the rewrite step)

@ The claim follows since > is well-founded

Example

@ X — X

o —|(X \V y) — X A -y

—|(X A y) — XV Ty

t>s iff the number of V, A in t is greater than their number in s
~s iff the number of V, A in t is equal to their number in s

> and ~ are compatible, and > is well-founded

s — t implies f(---,s,---)=f(--- ,t,---) (since all rules of the
system preserve the number of V and A).

@ ol>or for every rule | — r and o (verify).

Consequently, this system is terminating.

Other Semantic Path Orders

o Replace >ox by > pmuniser to obtain “multiset semantic path order”.
o All proofs remain the same.

@ Use > with different ordering of the subterms, possibly ignoring or
duplicating some of them.

o Associate a list of indices if, ..., i,’;f to every symbol f.
Replace (s1,...,Sm)>ex(t1, .-, ta) by <S"1f,...,S,’;f>>/ex<t,'1§,...,t,';_gng>.

The proof that > is well-founded remains the same.
The termination proof does not work: we might have s — t and s~t.
However, we can still prove termination by showing:

o s — t implies s>t.
o Top-rewrite of s — t implies s>t.

Slightly Extended Semantic Path Orders

We did not used the fact that ~ is an equivalence relation.

@ We can take any quasi order — instead of ~.
@ Require compatibility: >0 -~ C >.

@ Same definition of a semantic path order.

Slightly Extended Semantic Path Orders

Theorem

A rewrite system is terminating if there are compatible strict partial order >
and quasi-order — satisfying:
@ > is well-founded.
@ s —timplies f(---,s,---)>f(---,t,--+) or
(oo sy) F(oee ty).
© For every rule | — r and substitution o: ol>or, where > is the
(lexicographic) semantic path order induced by (>,).

@ The proof remains the same.

Dependency Pairs

Definition
A constructor (in some rewrite system) is a symbol that never appears at
the head of a left-hand side of any rule.

Definition

The dependency pairs of a rewrite system consist of all pairs | — u for
every rule /| — r and non-variable (not necessarily proper) subterm v of r
that is not headed by a constructor.

o x—0—>x

o s(x)—s(y) > x—y

e 0+5s(y)—0

o s(x) +s(y) = s((x —y) +s(y))

@ s and 0 are constructors.

@ The dependency pairs are:
o s(x)—s(y) > x—y
o s(x)+s(y) = (x—y)+s(y)
o s(x)+s(y) > x—y

Proving Termination Using Dependency Pairs

Theorem

A rewrite system? is terminating if there exist a quasi-order — and a strict
partial order > that satisfy the following conditions:

Q@ o> C >

@ ol or for each rule | — r and substitution o

© ol>or for each dependency pair | — r and substitution o
Q@ > is well-founded

@ is weakly monotonic: st implies f(--- ,s,---) f(--- ,t,--+)

“We assume that each variable occurring in a right side of some rule also
occurs in its left side, and that no rule has the form x — r for some variable x.

Example

x—0—x Dependency pairs:
s(x)=s(y) = x—y s(x)=s(y) = x—y
0-+s(y) =0 s(x) +s(y) = (x —y) +s(y)

s(x) =s(y) = s((x —y) +s(y)) | s(x) +s(y) > x—y

o Define [-] by: [0] = 0; [s(x)] = [x] + 1; [x — y] = [x]; [x + y] = [x]
Define: st iff [s] > [t]; s>t iff [s] > [t]

o> C >
ol -or for each rule | — r and o

°
o
@ ol>or for each dependency pair | — r and o
e > is well-founded

o

is weakly monotonic (since in the suggested interpretation all
symbols are interpreted by a weakly monotonic function)

Consequently, this system is terminating.

Termination Proof (Using Semantic Path Order)

Lemma

If the conditions above hold for some — and >, then they also hold for
some ' and >', such that s>'t whenever t is headed by a constructor and

S is not.

Proof Outline.
Obtain >’ from > by:

@ Adding all pairs whose left-side is a non-constructor term and
right-side is a constructor term

@ Removing any pair whose left-side is a constructor term
Obtain —/ from — by:

@ Removing any pair with left-side a constructor and right-side not.
Show that the conditions above hold for /" and >'. O

Termination Proof (Using Semantic Path Order)

@ By the previous lemma, we can suppose that in > all terms headed by
constructors are smaller than all those that are not.

o Let > be “0o>o0
@ >0~ C >, so > and — are compatible.

@ We show that > and — meet all conditions required to prove
termination using the lexicographic semantic path order induced by

(>,).

Termination Proof (Using Semantic Path Order)

@ > is well-founded since ~ o> C > and > is well-founded.

@ Suppose that s — t, and show that f(---,s,---) f(--- ,t,---).
Since — is weakly monotonic, it suffices to show that s — t implies
that s—t. This is proven by induction on the depth of the rewrite step
s — t (again, using weak monotonicity for the induction step).

Termination Proof (Using Semantic Path Order)

@ Consider a rule | — r and a substitution o. We show that o/>or .

If ris a proper subterm of / (in particular, if r is a variable), then o/>or
by the subterm property.

o Otherwise r is headed by a constructor or / — r is a dependency pair.

o In both cases, o/>or and so ol>or.

o To show that o/>or, it suffices to prove that o/>cr’ for every subterm
r'of r.

Use induction on the structure of r’:

Suppose that for all subterms r”’ of r’ we have o/>or”.

If ¥’ is a subterm of / (in particular, if r'is a variable), then ol>or' by
the subterm property.

Otherwise r’ is headed by a constructor or | — r’ is a dependency pair.
In both cases, o/>cr’ and so o/>aor'.

By the induction hypothesis, o/>or'.

Revisiting Example Above

x—0—x Dependency pairs:
s(x)=s(y) = x—y s(x)=s(y) = x—y
0-+s(y) =0 s(x) +s(y) = (x —y) +s(y)

s(x) =s(y) = s((x —y) +s(y)) | s(x) +s(y) > x—y

o Define [-] by: [0] = 0; [s(x)] = [x] +1; [x — y] = [x]; [x = y] = [x].
o Define ~ by: st iff [s] > [¢].
o Define > by: s>t iff [s] > [t].

According to the last proof, termination can be proved using the
lexicographic semantic path order induced by (>, ~), that are defined by:

@ s>t if s is not headed by S or 0, and either [[s] > [t] or t is headed by
Sor0.

o s tif [s] > [t], and either s is not headed by S or 0 or t is headed by
Sor0.

