
Semantic Path Order and Dependency Pairs

August 21, 2013



Semantic Path Order

> is a strict partial order (on terms).

≈ is an equivalence relation (on terms).

They are compatible, i.e.: > ◦ ≈ ⊆ > and ≈ ◦> ⊆ >.

Usually their definition involves some “semantics”.



Semantic Path Order

Definition

The semantic path equivalence ≈ induced by ≈ is the equivalence relation
between terms (inductively defined) by: f (s1, . . . , sm)≈g(t1, . . . , tn) iff
f (s1, . . . , sm)≈g(t1, . . . , tn), m = n, and si≈ti for every 1 ≤ i ≤ n.



Semantic Path Order

Definition

The lexicographic semantic path order > induced by 〈>,≈〉 is the strict
partial order between terms, recursively defined as follows: For two terms
s = f (s1, . . . , sm) and t = g(t1, . . . , tn), s>t if at least one of the following
hold:

1 si&t for some 1 ≤ i ≤ m.

2 s>ti for all 1 ≤ i ≤ n, and s>t.

3 s>ti for all 1 ≤ i ≤ n, s≈t, and 〈s1, . . . , sm〉>lex〈t1, . . . , tn〉 (>lex is
the lexicographic ordering induced by > and ≈).



Properties

Subterm Property

If t is a proper subterm of s, then s>t.

s>t is a strict partial order.

s≈t is an equivalence relation.

They are compatible: > ◦ ≈ ⊆ > and ≈ ◦> ⊆ >.



Example

Consider a language with a constant 0 (nullary symbol), three unary
symbols S ,P,F , and one binary symbol ∗.
Define the semantic interpretation JtK of a term t to be its natural
numerical value (S is successor, P is previous and JP(0)K = 0, ∗ is
multiplication, and F is factorial).

Define > by t>s if either t is headed by F and s is not, or both are
headed by F and JtK > JsK.

Then, for every term x :

F (0)>S(0), since F (0)>S(0) and F (0)>0.
F (S(x))>P(S(x)), since F (S(x))>P(S(x)) and F (S(x))>S(x).
F (S(x))>F (P(S(x)))) since F (S(x))>F (P(S(x))) and
F (S(x))>P(S(x)).
F (S(x))>S(x) ∗ F (P(S(x))). Why?



Basic Theorem

Theorem

If > is well-founded, then the lexicographic semantic path order > induced
by 〈>,≈〉 is also well-founded.

Proof Outline.

1 Take a minimal counterexample
t1 = f1(s11 , . . . , s

m1
1 )>t2 = f2(s12 , . . . , s

m2
2 )> . . .

2 Observe that s ij&ti+1 cannot hold (by minimality)

3 Therefore, ti&ti+1 for every i

4 Since > is well-founded and > ◦ ≈ ⊆ >, ti≈ti+1 from some point on

5 From that point: 〈s1i , . . . , s
mi
i 〉>lex〈s1i+1, . . . , s

mi+1

i+1 〉
6 From some M a certain component j constantly decreases

7 t1> . . .>tM−1>s
j
M>s

j
M+1>s

j
M+2> . . . is a “shorter” counterexample



Proving Termination Using Lexicographic Semantic Path
Orders

To prove that a rewrite system terminates, one has to identify relations >
and ≈ for which the following hold:

1 > is well-founded.

2 If s → t then f (· · · , s, · · · )&f (· · · , t, · · · ) for every symbol f (as
usual, & = > ∪ ≈).

3 For every rule l → r and substitution σ: σl>σr , where > is the
lexicographic semantic path order induced by 〈>,≈〉.



Example

P(S(x))→ x

F (0)→ S(0)

F (S(x))→ S(x) ∗ F (P(S(x)))

Take > as before, and t≈s iff both are headed by the same symbol,
and JtK = JsK
> and ≈ are compatible.

> is well-founded.

if s → t then f (· · · , s, · · · )≈f (· · · , t, · · · ) (since all rules preserve the
numerical value).

σl>σr for every rule l → r and σ.

Therefore, this system is terminating.



Proof of Termination

Conditions 2− 3 above ensure that if s → t then s>t
(by induction on the depth of the rewrite step)

The claim follows since > is well-founded



Example

¬¬x → x

¬(x ∨ y)→ ¬¬¬x ∧ ¬¬¬y
¬(x ∧ y)→ ¬¬¬x ∨ ¬¬¬y

t>s iff the number of ∨,∧ in t is greater than their number in s

t≈s iff the number of ∨,∧ in t is equal to their number in s

> and ≈ are compatible, and > is well-founded

s → t implies f (· · · , s, · · · )≈f (· · · , t, · · · ) (since all rules of the
system preserve the number of ∨ and ∧).

σl>σr for every rule l → r and σ (verify).

Consequently, this system is terminating.



Other Semantic Path Orders

Replace >lex by >multiset to obtain “multiset semantic path order”.

All proofs remain the same.

Use >lex with different ordering of the subterms, possibly ignoring or
duplicating some of them.

Associate a list of indices i f1 , . . . , i
f
mf

to every symbol f .
Replace 〈s1, . . . , sm〉>lex〈t1, . . . , tn〉 by 〈si f1 , . . . , si fmf

〉>lex〈tig1 , . . . , tigmg
〉.

The proof that > is well-founded remains the same.
The termination proof does not work: we might have s → t and s≈t.
However, we can still prove termination by showing:

s → t implies s&t.
Top-rewrite of s → t implies s>t.



Slightly Extended Semantic Path Orders

Observation

We did not used the fact that ≈ is an equivalence relation.

We can take any quasi order & instead of ≈.

Require compatibility: > ◦& ⊆ >.

Same definition of a semantic path order.



Slightly Extended Semantic Path Orders

Theorem

A rewrite system is terminating if there are compatible strict partial order >
and quasi-order & satisfying:

1 > is well-founded.

2 s → t implies f (· · · , s, · · · )>f (· · · , t, · · · ) or
f (· · · , s, · · · )&f (· · · , t, · · · ).

3 For every rule l → r and substitution σ: σl>σr , where > is the
(lexicographic) semantic path order induced by 〈>,&〉.

The proof remains the same.



Dependency Pairs

Definition

A constructor (in some rewrite system) is a symbol that never appears at
the head of a left-hand side of any rule.

Definition

The dependency pairs of a rewrite system consist of all pairs l → u for
every rule l → r and non-variable (not necessarily proper) subterm u of r
that is not headed by a constructor.



Example

x − 0→ x

s(x)− s(y)→ x − y

0÷ s(y)→ 0

s(x)÷ s(y)→ s((x − y)÷ s(y))

s and 0 are constructors.

The dependency pairs are:

s(x)− s(y)→ x − y
s(x)÷ s(y)→ (x − y)÷ s(y)
s(x)÷ s(y)→ x − y



Proving Termination Using Dependency Pairs

Theorem

A rewrite systema is terminating if there exist a quasi-order & and a strict
partial order > that satisfy the following conditions:

1 & ◦> ⊆ >

2 σl&σr for each rule l → r and substitution σ

3 σl>σr for each dependency pair l → r and substitution σ

4 > is well-founded

5 & is weakly monotonic: s&t implies f (· · · , s, · · · )&f (· · · , t, · · · )
aWe assume that each variable occurring in a right side of some rule also

occurs in its left side, and that no rule has the form x → r for some variable x .



Example

x − 0→ x Dependency pairs:
s(x)− s(y)→ x − y s(x)− s(y)→ x − y
0÷ s(y)→ 0 s(x)÷ s(y)→ (x − y)÷ s(y)
s(x)÷ s(y)→ s((x − y)÷ s(y)) s(x)÷ s(y)→ x − y

Define J·K by: J0K = 0; Js(x)K = JxK + 1; Jx − yK = JxK; Jx ÷ yK = JxK
Define: s&t iff JsK ≥ JtK; s>t iff JsK > JtK

& ◦> ⊆ >

σl&σr for each rule l → r and σ

σl>σr for each dependency pair l → r and σ

> is well-founded

& is weakly monotonic (since in the suggested interpretation all
symbols are interpreted by a weakly monotonic function)

Consequently, this system is terminating.



Termination Proof (Using Semantic Path Order)

Lemma

If the conditions above hold for some & and >, then they also hold for
some &′ and >′, such that s>′t whenever t is headed by a constructor and
s is not.

Proof Outline.

Obtain >′ from > by:

Adding all pairs whose left-side is a non-constructor term and
right-side is a constructor term

Removing any pair whose left-side is a constructor term

Obtain &′ from & by:

Removing any pair with left-side a constructor and right-side not.

Show that the conditions above hold for &′ and >′.



Termination Proof (Using Semantic Path Order)

By the previous lemma, we can suppose that in > all terms headed by
constructors are smaller than all those that are not.

Let > be &◦> ◦&.

>◦& ⊆ >, so > and & are compatible.

We show that > and & meet all conditions required to prove
termination using the lexicographic semantic path order induced by
〈>,&〉.



Termination Proof (Using Semantic Path Order)

> is well-founded since & ◦> ⊆ > and > is well-founded.

Suppose that s → t, and show that f (· · · , s, · · · )&f (· · · , t, · · · ).
Since & is weakly monotonic, it suffices to show that s → t implies
that s&t. This is proven by induction on the depth of the rewrite step
s → t (again, using weak monotonicity for the induction step).



Termination Proof (Using Semantic Path Order)

Consider a rule l → r and a substitution σ. We show that σl>σr .

If r is a proper subterm of l (in particular, if r is a variable), then σl>σr
by the subterm property.
Otherwise r is headed by a constructor or l → r is a dependency pair.
In both cases, σl>σr and so σl>σr .
To show that σl>σr , it suffices to prove that σl>σr ′ for every subterm
r ′ of r .
Use induction on the structure of r ′:

Suppose that for all subterms r ′′ of r ′ we have σl>σr ′′.
If r ′ is a subterm of l (in particular, if r ′ is a variable), then σl>σr ′ by
the subterm property.
Otherwise r ′ is headed by a constructor or l → r ′ is a dependency pair.
In both cases, σl>σr ′ and so σl>σr ′.
By the induction hypothesis, σl>σr ′.



Revisiting Example Above

x − 0→ x Dependency pairs:
s(x)− s(y)→ x − y s(x)− s(y)→ x − y
0÷ s(y)→ 0 s(x)÷ s(y)→ (x − y)÷ s(y)
s(x)÷ s(y)→ s((x − y)÷ s(y)) s(x)÷ s(y)→ x − y

Define J·K by: J0K = 0; Js(x)K = JxK + 1; Jx − yK = JxK; Jx ÷ yK = JxK.

Define & by: s&t iff JsK ≥ JtK.

Define > by: s>t iff JsK > JtK.

According to the last proof, termination can be proved using the
lexicographic semantic path order induced by 〈>,&〉, that are defined by:

s>t if s is not headed by S or 0, and either JsK > JtK or t is headed by
S or 0.

s&t if JsK ≥ JtK, and either s is not headed by S or 0 or t is headed by
S or 0.


