
Semantic Path Order and Dependency Pairs -

Handout

August 21, 2013

1 Lexicographic Semantic Path Order

Let >,≈ be some strict partial order and equivalence relation (respectively)
on the set of terms, that are compatible, i.e.: > ○ ≈ ⊆ > and ≈ ○ > ⊆ >.
Usually their definitions involves some “semantics”.

Definition 1.1. The semantic path equivalence ≈ induced by ≈

is the equivalence relation between terms (inductively defined) by:
f(s1, . . . , sm)≈g(t1, . . . , tn) iff f(s1, . . . , sm)≈g(t1, . . . , tn), m = n, and si≈ti
for every 1 ≤ i ≤ n.

Definition 1.2. The lexicographic semantic path order > induced by ⟨>,≈⟩
is the strict partial order between terms, recursively defined as follows: For
two terms s = f(s1, . . . , sm) and t = g(t1, . . . , tn), s>t if at least one of the
following hold:

1. si≳t for some 1 ≤ i ≤ m, where ≳ = > ∪ ≈ (as usual), and ≈ is The
semantic path equivalence induced by ≈.

2. s>ti for all 1 ≤ i ≤ n, and s>t.

3. s>ti for all 1 ≤ i ≤ n, s≈t, and ⟨s1, . . . , sm⟩>lex⟨t1, . . . , tn⟩ (>lex is the
lexicographic ordering induced by > and ≈).

It is straightforward to verify that ≈ is an equivalence relation, > is a
strict partial order (transitive and irreflexive), and that > ○ ≈ ⊆ > and
≈ ○ > ⊆ >. For this purpose, the following proposition is useful.

Proposition 1.3 (Subterm Property). If t is a proper subterm of s, then
s>t.

1



Proof. By induction on the structure of s: Suppose that for all immediate
subterms si of s, we have si>t whenever t is a proper subterm of si. Assume
that t is a proper subterm of s. Then t is either an immediate subterm si
of s, or a proper subterm of an immediate subterm si of s. In the first case,
si≳t (since ≳ is reflexive). In the latter, si>t by the induction hypothesis.
Therefore, in both cases we have s>t by condition 1.

Example 1.4. Consider a language with a constant 0 (nullary symbol),
three unary symbols S,P,F , and one binary symbol ∗. Define the semantic
interpretation JtK of a term t in this language to be its natural numerical
value, where S is successor, P is previous (and JP (0)K = 0), ∗ is multiplica-
tion, and F is factorial. Define > by t>s if either t is headed by F and s is
not, or both are headed by F and JtK > JsK. Then, for every term x:

• F (0)>S(0), since F (0)>S(0) and F (0)>0.

• F (S(x))>P (S(x)), since F (S(x))>P (S(x)) and F (S(x))>S(x).

• F (S(x))>F (P (S(x)))) since F (S(x))>F (P (S(x))) (since
JF (S(x))K = (JxK + 1)! > (JxK + 1 − 1)! = JF (P (S(x)))K), and
F (S(x))>P (S(x)).

• F (S(x))>S(x) ∗ F (P (S(x))), since F (S(x))>S(x) ∗ F (P (S(x))),
F (S(x))>S(x), and F (S(x))>F (P (S(x))).

Theorem 1.5. If > is well-founded, then the lexicographic semantic path
order > induced by ⟨>,≈⟩ is also well-founded.

Proof. Suppose that > is not well-founded. We take a minimal counterex-
ample t1 = f1(s

1
1, . . . , s

m1
1 )>t2 = f2(s

1
2, . . . , s

m2
2 )> . . . (i.e. tn at each step is

minimal in size of all counterexamples starting with t1, t2, . . . , tn−1). Note
that for every i, s /≳ ti+1 for every subterm s of ti (otherwise, we could take
s instead of ti in the i’th stage and obtain a “shorter” counterexample).

Therefore, for every i, sji>ti+1 for all 1 ≤ j ≤ mi, and either ti>ti+1 or
(ti+1≈ti and ⟨s1i , . . . , s

mi
i ⟩>lex⟨s

1
i+1, . . . , s

mi+1
i+1 ⟩). Since > is well-founded and

> ○ ≈ ⊆ >, there is some N , such that ti≈ti+1 for every i ≥ N . Hence,
⟨s1i , . . . , s

mi
i ⟩>lex⟨s

1
i+1, . . . , s

mi+1
i+1 ⟩ for every i ≥ N . The properties of lexi-

cographic ordering ensure that there is some point from which a certain
component constantly decreases. In other words, the is some M ≥ N and
1 ≤ j ≤ mM such that sjM>sjM+1>s

j
M+2> . . .. Since tM−1>s

j
M (for the rea-

son that tM−1>tM and by the subterm property tM>sjM ), we obtain that

t1>t2> . . .>tM−1>s
j
M>sjM+1>s

j
M+2> . . .. However, this is a “shorter” coun-

terexample. Contradiction.

2



Note that usual lexicographic path order is obtained as a special instance
by considering > and ≈ that are completely determined according to symbol
at the heads of the compared terms.

2 Proving Termination Using Lexicographic Se-
mantic Path Orders

Given a rewrite system and two terms s, t, we write s→ t if t can be obtained
from s by one rewrite step. To prove that a rewrite system terminates, one
has to identify relations > and ≈ for which the following hold:

1. > is well-founded.

2. For every two terms, s and t, if s → t then f(⋯, s,⋯)≳f(⋯, t,⋯) for
every symbol f (as usual, ≳ = > ∪ ≈).

3. For every rewrite rule l → r and substitution σ: σl>σr, where > is the
lexicographic semantic path order induced by ⟨>,≈⟩.

Lemma 2.1. Conditions 2 − 3 above ensure that if s→ t then s>t.

Proof. Suppose that s → t. Then there is some context c, rule
l → r, and substitution σ, such that s = c[σl] and t = c[σr]. We
prove that s>t, by induction on the depth of the context. For
depth 0 (a top-rewrite of s into t), we have s>t directly by con-
dition 3. Now suppose that s = f(u1, . . . , uj−1, s

′, uj+1, . . . , un)
is rewritten into t = f(u1, . . . , uj−1, t

′, uj+1, . . . , un). Thus
s′ → t′, and by the induction hypothesis, s′>t′. Hence,
⟨u1, . . . , uj−1, s

′, uj+1, . . . , un⟩>lex⟨u1, . . . , uj−1, t
′, uj+1, . . . , un⟩. In addi-

tion, s>t′ (since s>s′ by the subterm property and s′>t′), and s>ui for every
other immediate subterm of t (since it is also an immediate subterm of s).
Hence, it suffices to show that either s>t or s≈t. This follows by condition
2.

Theorem 2.2. Under conditions 1 − 3 above, the rewrite system is termi-
nating.

Proof. By Lemma 2.1, s → t implies s>t. The claim follows since > is well-
founded (Theorem 1.5).

Example 2.3. Consider the following rewrite system for factorial:

• P (S(x)) → x

3



• F (0) → S(0)

• F (S(x)) → S(x) ∗ F (P (S(x)))

Define > as in Example 1.4 (t>s if either t is headed by F and s is not,
or both are headed by F and JtK > JsK), and define ≈ by t≈s, if both are
headed by the same symbol, and JtK = JsK. Then, > and ≈ are compatible. >
is clearly well-founded (since the natural order of natural numbers is well-
founded). Following Example 1.4, we have σl>σr for every rewrite rule l → r
of this system and substitution σ. In addition, since JσlK = JσrK for every
substitution σ and rule l → r, we have that JsK = JtK whenever s → t. It
follows that s → t implies that f(⋯, s,⋯)≈f(⋯, t,⋯) for every symbol f .
Consequently, by Theorem 2.2, this system is terminating.

Example 2.4. Consider the following rewrite system:

• ¬¬x→ x

• ¬(x ∨ y) → ¬¬¬x ∧ ¬¬¬y

• ¬(x ∧ y) → ¬¬¬x ∨ ¬¬¬y

Define > by t>s if the number of ∨,∧ in t is greater than their number in s.
Similarly, define ≈ by t≈s if the number of ∨,∧ in t is equal to their number
in s. Then, > and ≈ are compatible, and > is clearly well-founded. Now, we
have:

• For every two terms, s and t, if s → t then f(⋯, s,⋯)≈f(⋯, t,⋯) for
every symbol f , since all rules of the system preserve the number of ∨
and ∧.

• σl>σr for every rewrite rule l → r and substitution σ. For ¬¬x → x,
this follows by the subterm property. For ¬(x∨y) → ¬¬¬x∧¬¬¬y, note
that ¬(x ∨ y)>¬ix for every i, x and y (proof by induction, using the
subterm property for the base case and ¬(x ∨ y)>¬ix in the induction
step), and similarly ¬(x ∨ y)>¬iy for every i,x and y. Thus, since
¬(x ∨ y)≈¬¬¬x ∧ ¬¬¬y and ⟨x ∨ y⟩>lex⟨¬¬¬x,¬¬¬y⟩ for every x, y, we
have ¬(x∨y)>¬¬¬x∧¬¬¬y for every x, y. The proof for the third rule
is exactly the same.

Consequently, by Theorem 2.2, this system is terminating.

4



3 Other Semantic Path Orders

In addition to the lexicographic semantic path order defined above, various
different semantic path orders can be used for proving termination of rewrite
systems. For example, by replacing in Definition 1.2 >lex by >multiset, that
denotes the multiset partial order induced by > and ≈, we obtain “mul-
tiset semantic path order”. Each of the proofs above can be modified in
a straightforward way, showing that > is well-founded (provided that > is
well-founded), and that conditions 1−3 guarantee the termination of a given
rewrite system.

Similarly, it is possible to use lexicographic ordering as in Definition 1.2
with different ordering of the subterms, possibly ignoring or duplicating
some of them. To do so, one has to associate a list of indices if1 , . . . , i

f
mf

to
every symbol f , and instead of ⟨s1, . . . , sm⟩>lex⟨t1, . . . , tn⟩ (in Definition 1.2)
have ⟨s

if1
, . . . , s

ifmf

⟩>lex⟨tig1 , . . . , ti
g
mg

⟩. We call the resulting ordering modi-

fied lexicographic semantic path ordering. The proof that > is well-founded
(provided that > is well-founded) remains exactly the same. The proof that
conditions 1− 3 above guarantee termination requires several modifications.
Indeed, since we allow some immediate subterms to be discarded in the lex-
icographic ordering, we might not have s>t whenever s → t. The modified
proof is given below.

Lemma 3.1. Let ≳ be a modified lexicographic semantic path ordering.
Conditions 2 − 3 above ensure that if s→ t then s≳t.

Proof. Suppose that s → t. Then there is some context c, rule l → r, and
substitution σ, such that s = c[σl] and t = c[σr]. We prove that s>t, by
induction on the depth of the context. For depth 0 (a top-rewrite of s into
t), we have s>t directly by condition 3. Now suppose that s = f(u1, . . . , un)
is rewritten into t = f(u′1, . . . , u

′

n). Thus there is some 1 ≤ j ≤ n, such that
uj → u′j , and for every i ≠ j, ui = u

′

i. By the induction hypotheses, uj≳u
′

j .
Hence, ⟨u

if1
, . . . , u

ifmf

⟩>lex⟨u
′

if1
, . . . , u′

ifmf

⟩, or u
if
k
≈u′

if
k

for every 1 ≤ k ≤mf . In

addition, s>u′j (since s>uj by the subterm property, and uj≳u
′

j) and s>u′i for
every other immediate subterm of t (since it is also an immediate subterm
of s). By condition 2, we have s>t or s≈t. It follows that s>t or s≈t.

Theorem 3.2. Under conditions 1− 3 above, where >lex is a modified lexi-
cographic semantic path ordering, the rewrite system is terminating

5



Proof. By condition 3, we have s>t whenever s→ t by a top-level rewriting.
By Lemma 3.1, s≳t whenever s → t by an inner-level rewriting. Since >

is well-founded (Theorem 1.5), these conditions guarantee that the system
is terminating. This is proved as for quasi-simplification orderings. For
completeness, we reproduce the argument for that.

Say that a term s0 initiates an infinite derivation, if there are some
s1, s2, . . . such that s0 → s1 → s2 → . . .. We observe that if s0 initiates
an infinite derivation, then there exists some t that initiates an infinite
derivation and satisfies s0>t. Indeed, if sn → sn+1 is obtained by a top-
level rewrite for some n, then s0≳s1≳ . . .≳sn>sn+1, and by choosing t = sn+1
we have s0>t. If there is no top-level rewrite in s0 → s1 → s2 → . . ., then
there is some immediate subterm of s0 that initiates an infinite derivation
(since s0 has a finite number of subterms), and we can take t to be this
subterm. By the subterm property, we have s0>t.

Now, suppose that s1 → s2 → . . . is an infinite derivation in the system.
We recursively construct and infinite sequence of terms t1, t2, . . ., such that
each ti initiates an infinite derivation, and t1>t2> . . . (contradicting the fact
that > is well-founded). Choose t1 = s1. Suppose that tn was defined. Since
tn initiates an infinite derivation, by the observation above, there some t that
initiates an infinite derivation as well, and satisfies tn>t. Take tn+1 = t.

3.1 Extended Semantic Path Order

Inspecting the proofs above, we note that we did not used the fact that ≈

is an equivalence relation. Indeed, everything works exactly the same if we
replace ≈ by some quasi-order, according the next definition:

Definition 3.3. Let >,≳ be some strict partial order and quasi-order (re-
spectively) on the set of terms, that are compatible, i.e.: > ○ ≳ ⊆ >.

1. The semantic path equivalence ≈ induced by ≳ is identical to the se-
mantic path equivalence induced by ≈ = ≳ ∩ ≲ (see Definition 1.1).

2. The lexicographic semantic path order > induced by ⟨>,≳⟩ is defined
exactly as in Definition 1.2, where ≈ is replaced by ≳.

Note that the subterm property still holds as well as the next theorem
(with the same proofs):

Theorem 3.4. A rewrite system is terminating if there are compatible strict
partial order > and quasi-order ≳ satisfying:

1. > is well-founded.

6



2. For every two terms, s and t, if s → t then f(⋯, s,⋯)>f(⋯, t,⋯) or
f(⋯, s,⋯)≳f(⋯, t,⋯) for every symbol f .

3. For every rewrite rule l → r and substitution σ: σl>σr, where > is the
lexicographic semantic path order induced by ⟨>,≳⟩.

4 Dependency Pairs

In this section we briefly introduce the Dependency Pairs method, and show
its correctness using a semantic path order.

Definition 4.1. A constructor (in some rewrite system) is a symbol that
never appears at the head of a left-hand side of any rule.

Definition 4.2. The dependency pairs of a rewrite system consist of all
pairs l → u for every rule l → r and non-variable (not necessarily proper)
subterm u of r that is not headed by a constructor.

Example 4.3. Consider the following rewrite system:

• x − 0→ x

• s(x) − s(y) → x − y

• 0 ÷ s(y) → 0

• s(x) ÷ s(y) → s((x − y) ÷ s(y))

Then s and 0 are constructors, and the dependency pairs are:

• s(x) − s(y) → x − y

• s(x) ÷ s(y) → (x − y) ÷ s(y)

• s(x) ÷ s(y) → x − y

Definition 4.4. A rewrite system is called normal if each variable occurring
in a right side of some rule also occurs in its left side, and no rule has the
form x→ r for some variable x.

Obviously, if some variable occurs only in a right side of some rule, then
the system is not terminating. In addition, rules of the form x → r can
always be replaced by equivalent rules with non-variable left side.

7



Theorem 4.5. A normal rewrite system1 is terminating if there exist a
quasi-order ≳ and a strict partial order > that satisfy the following conditions:

1. ≳ ○ > ⊆ >.

2. σl≳σr for each rule l → r and substitution σ.

3. σl>σr for each dependency pair l → r and substitution σ.

4. > is well-founded.

5. ≳ is weakly monotonic, i.e.: s≳t implies f(⋯, s,⋯)≳f(⋯, t,⋯) for every
symbol f .

Example 4.6. Consider the rewrite system from Example 4.3. Define a
numerical interpretation J⋅K for terms in this language as follows: J0K = 0;
Js(x)K = JxK+1; Jx − yK = JxK; Jx ÷ yK = JxK. Define ≳ by s≳t iff JsK ≥ JtK; and
> by s>t iff JsK > JtK. Clearly, ≳○> ⊆ >. It is easy to verify that σl≳σr for each
rule l → r and substitution σ, and σl>σr for each dependency pairs l → r and
substitution σ. In addition, > is well-founded, and ≳ is weakly monotonic
(since in the suggested interpretation all symbols are interpreted by a weakly
monotonic function). By Theorem 4.5 this system is terminating.

To prove Theorem 4.5, we use the following lemma.

Lemma 4.7. If conditions 1 − 5 hold for some ≳ and > (for some normal
rewrite system), then they also hold for some ≳′ and >′, such that s>′t
whenever t is headed by a constructor and s is not.

Proof. We obtain >′ from > by adding all pairs whose left-side is a non-
constructor term and right-side is a constructor term, and removing from
> any pair whose left-side is a constructor term. ≳′ is obtained from ≳ by
removing any pair with left-side a constructor and right-side not. We still
have:

1. ≳′ ○ >′ ⊆ >′.

2. σl≳′σr for each rule l → r and substitution σ, since constructors by
definition never appear at the head of a left-side. Here we also use the
fact that l is not a variable, and thus sigmal is headed by a constructor
iff l is.

1

8



3. σl>′σr for each dependency pair l → r and substitution σ, for the same
reason.

4. >′ is well-founded.

5. ≳′ is weakly monotonic. Indeed, suppose that s≳′t, and let f be
some symbol. Then s≳t, and the weak monotonicity of ≳ entails that
f(⋯, s,⋯)≳f(⋯, t,⋯). Since both sides are headed by the same sym-
bol, we also have f(⋯, s,⋯)≳′f(⋯, t,⋯).

Proof of Theorem 4.5. We use a semantic path order to show that the sys-
tem is terminating (Theorem 3.4). By Lemma 4.7, we can suppose w.l.o.g.
that in > all terms headed by constructors are smaller than all those that
are not. Let > = ≳○ > ○ ≳ (its transitivity can be proved using the fact that
≳ ○ > ⊆ >). Clearly, >○ ≳ ⊆ >, so > and ≳ are compatible. We show that >

and ≳ satisfy all conditions from Theorem 3.4:

• > is well-founded since ≳ ○ > ⊆ > and > is well-founded.

• We prove that for every two terms, s and t, if s → t then
f(⋯, s,⋯)≳f(⋯, t,⋯) for every symbol f . Since ≳ is weakly mono-
tonic, it suffices to show that s → t implies that s≳t. Suppose that
s → t. Then there is some context c, rule l → r, and substitution σ,
such that s = c[σl] and t = c[σr]. We prove that s≳t, by induction on
the depth of the context c. For depth 0 (a top-rewrite of s into t), we
have s≳t by definition. Now suppose that s = f(u1, . . . , un) is rewritten
into t = f(u′1, . . . , u

′

n). Thus there is some 1 ≤ j ≤ n, such that uj → u′j ,
and for every i ≠ j, ui = u

′

i. By the induction hypotheses, uj≳u
′

j . and
since ≳ is weakly monotonic, s≳t as well.

• We prove that σl>σr for every rule l → r and substitution σ. Consider
a rule l → r and a substitution σ. If r is a proper subterm of l (in
particular, if r is a variable), then σl>σr by the subterm property of >.
If not, we have σl>σr (if r is headed by a constructor, this holds by our
assumption, and otherwise it holds since l → r is a dependency pair),
and so σl>σr. To show that σl>σr, it remains to prove that σl>σr′

for every immediate subterm r′ of r. We show that by induction on
the structure of r′ that σl>σr′ for every subterm r′ of r. Suppose that
for all subterms r′′ of r′ we have σl>σr′′. If r′ is a subterm of l (in
particular, if r′ is a variable), then σl>σr′ by the subterm property.

9



Otherwise, using the induction hypothesis, it suffices to show that
σl>σr′. Since > ⊆ >, we can show that σl>σr′. If r′ is headed by a
constructor, then σl>σr′ by our assumption, and if not, then l → r′ is
a dependency pair, and again σl>σr′.

Example 4.8. According to the last proof, the system from Example 4.6
can be proved to be terminating by Theorem 3.4, using ⟨>,≳⟩ defined by:

• s>t if s is not headed by S or 0, and either JsK > JtK or t is headed by
S or 0.

• s≳t if JsK ≥ JtK, and either s is not headed by S or 0 or t is headed by
S or 0.

References

[Arts and Giesl, 2000] Thomas Arts and Jürgen Giesl. Termination of
term rewriting using dependency pairs. Theoretical Computer Science,
236:133–178, 2000. Preliminary version available at http://verify.

rwth-aachen.de/giesl/papers/ibn-97-46.ps.

[Dershowitz and Hoot, 1995] Nachum Dershowitz and Charles Hoot. Nat-
ural termination. Theoretical Computer Science, 142(2):179–207, 1995.
Available at http://nachum.org/papers/natural-sterm94.pdf.

[Dershowitz, 1982] Nachum Dershowitz. Orderings for term-rewriting sys-
tems. Theoretical Computer Science, 17(3):279–301, 1982. Available at
http://nachum.org/papers/Orderings4TRS.pdf.

[Dershowitz, 2013] Nachum Dershowitz. Dependency Pairs are a Simple
Semantic Path Ordering. Unpublished note.

[Kamin and Lévy, 1980] Sam Kamin and Jean-Jacques Lévy. Two general-
izations of the recursive path ordering. Unpublished letter to Nachum
Dershowitz, Department of Computer Science, University of Illinois,
Urbana, IL, February 1980. Available at http://nachum.org/term/

kamin-levy80spo.pdf.

10

http://verify.rwth-aachen.de/giesl/papers/ibn-97-46.ps
http://verify.rwth-aachen.de/giesl/papers/ibn-97-46.ps
http://nachum.org/papers/natural-sterm94.pdf
http://nachum.org/papers/Orderings4TRS.pdf
http://nachum.org/term/kamin-levy80spo.pdf
http://nachum.org/term/kamin-levy80spo.pdf

	Lexicographic Semantic Path Order
	Proving Termination Using Lexicographic Semantic Path Orders
	Other Semantic Path Orders
	Extended Semantic Path Order

	Dependency Pairs

