SIZE-CHANGE
TERMINATION

A partial survey

Size-Change Termination

YE OLDE ART
OF TERMINATION PROOFS

- Examples will use a simple functional language
(hence, we ask whether recursion terminates).

- All values will be natural numbers.

add(x,y) =
if x=0 theny
else 1+add(x-1, y)

Argument: 1st parameter decreases in every call.

Size-Change Termination

A slightly harder one

add(x,y) =
if x=0 theny
else 1+add(y, x-1)

Argument: 1st parameter decreases after two calls.

Size-Change Termination

GCD program

gcd(xy) =
if x<1 or x=y then x
else if x<y then gcd(x, y-x)
else gcd(y, x-y)

Argument: larger of param’s decreases in every call.

Size-Change Termination

Ackermann’s function

ack(x,y) =
if x=0 then y+1
else if y=0
then ack(x-1,y)
else ack(x-1, ack(x, y-1))

Argument:

In every call, either x decreases or x stays
put and y decreases.

= the pair (x,y) decreases lexicographically.

10 Size-Change Termination

11

Summary

All these examples (and many others) are based
on impossibility of infinite descent

In every (hypothetical) chain of calls,
something is shown to decrease indefinitely,
which cannot really happen (because it’s taken
from a well-founded order).

Ingenuity is required either to define that
“something” or to show the infinite descent

Size-Change Termination

Note the two options:

* A (complex) combination of the data decreases
certainly in every step.

* (sum, pair of values...) Lranking func'l'ion}

 Combinations are not considered, but the proof of
descent may be more clever
* (consider two consecutive calls...)

[analysis of pa‘rhs}

12 Size-Change Termination

14

The SCT approach
[Lee, Jones & B, POPL 2001]

subject program

|

initial analysis

l
a set of graphs

|

SCT tester SCT is a purely
] combinatorial problem.
“terminating!”

Size-Change Termination

Products of initial analysis

Control-Flow Graph: possible transitions among
“locations” in a program.

H=—=G)

Functional programming context:
functions, calls

Imperative context:
flow-points, statements / basic blocks

15 Size-Change Termination

Size-Change Graph

What’s happening in a transition?

Consider call: add(x,y) = ...add(x-1)y)...

Information: 1st param decreases. 2nd unchanged.

X X old hew

means: old > new

old > hew

means: old > new

16 Size-Change Termination

17

size-change graphs

X
gcd(x,y) = ...ged(y, x-y)... ><
Y

ack(x,y) =... ack(x-1, ack(...))

Size-Change Termination

Analyzing SCT

Size-Change Graphs “sit” on arcs of the CFG
:><: X oo o

) —C) ><
o/: v

18 Size-Change Termination

19

Multipaths

A multipath results of concatenating SCG’s along
a CFG path.

Example: a loop of add (2nd ver.) looks like that:

Size-Change Termination

20

Threads

A thread is a (infinite) path in the multipath.

A thread is infinitely descending if it has
infinitely many

X X

y//y/'y//y..

Size-Change Termination

21

SCT condition

A CFG/SCG-set satisfies SCT if every
infinite multipath contains an infinitely
descending thread.

This criterion is a sufficient condition for
program termination.

Assumptions:

Correct (safe) program representation
Well-founded data (no infinite descent)

Size-Change Termination

22

An Example:

ack(x,)y) =... ack(x-1, ack(...))

ack(x,)y) =... ack(x, y-1)

Size-Change Termination

ack

Is SCT a decidable problem?

Proof #1. reduction to a question on Bichi automata.
Proof #2: the Closure Algorithm.

What is the complexity class of SCT ?
THM: the SCT problem is PSPACE-complete.
Upper bound: a variant of the Closure Algorithm

Hardness: reduction from a PSPACE-complete classic.

23 Size-Change Termination

24

Some (Pre)History

LJB, POPL 2001

Sagiv, Logic Prog. Symp. 1991,
Lindenstrauss & Sagiv, ICLP 1997,
Codish & Taboch, JLP 1999
Dershowitz et al., AA 2001

Size-Change Termination

The Closure Algorithm

THM: SCT holds iff in the composition closure,

every idempotent graph has an in-situ down-arc.

22

in-situ down-arc

Size-Change Termination

X
W

!

23

An Example

p(m, n, r) = if r>0 then p(m, r-1, n) else
if n>0 then p(r, n-1, m) else m

Listing of the clisure set

B

<
>

s w8 |

3 G-1 3
xX =
P G-l B

L

A\ » SN

The Contibution of [LTB2001]

creation of an abstraction boundary

subject program

l

initial analysis

l
SCT tester

SCT is a purely

combinatorial problem.

»>solid theory
>it's not about Prolog

25 Size-Change Termination

26

The next decade

Contributions by

Avery, Bohr, Codish, Dershowitz, Fogarty,
Heizmann, Giesl, Jones, Krauss, Lagoon, Lee,
Lindenstrauss, Manolios, Moyen, Podelski,
Rybalchenko, Sagiv, Schneider-Kamp, Serebrenik,
Sereni, Stuckey, Thiemann, Vardi, Vroon ...

Size-Change Termination

The next decade

+ Systems applying SCT

nnnnnnnnnnnnnnnnn

= AProVE

.....................

* Better understanding the theory, in
particular in a larger context of termination
analysis

27 Size-Change Termination

Semantics for
Termination Analysis

(e.g., Codish-Taboch 99 for Prolog)

STEP 1.

A semantics [| - |P" that maps a program into its
(infinite) set of “transitions”

Program P is terminating iff there is no infinite
chain in [|P| P

STEP 2: check it Abstraction

Abstract Semantics for
Termination Analysis

STEP 1.
An abstraction that maps a program into a (finite)

set P# of "abstract transitions” (an abstract
program)

Abstract programs have a semantics that super-
approximates the semantics of the source program.

If P# is ferminating then P is.

STEP 2: forget about P and study P# instead.

Abstract Programs for
Termination Analysis

1. Define the abstract state space S.
A typical state: (f, x; ,..., X,))

flOW—-—po in + \gaf“iﬁb‘as
(add, 5, 4)

2. Choose a language for describing
transitions in SxS.

31

append(x.y) =
case x of

[1=>y
h:it => h::append(t, y)

concrete state: (append, [l,i;s,t], [a,n,0,1,her])

abstract state: (append, 4, 7)

Size-Change Termination

A language to describe
transitions

* Fix a logical theory

* Fix a class of formulas for this theory
that define relations over

X1 yeees Xpy 0 X1 sees X'
(state and new state)

32 Size-Change Termination

33

Size-Change Graphs

gcd(x,y) — ged(y x-y)

X>Y Ay2Xx

ranking functions IT

The Size-Change Graph abstraction is based
on the theory of well-ordered sets

and its transitions are conjunctions of atomic
predicates from:

X>y
X2y

where X,y are any state variables.

34 Size-Change Termination

The Secret of Success

SCT is an abstraction which is useful, but

simple enough to get results.

Result #1:

A "size-change program” terminates iff it
satisfies the SCT condition.

So termination is decidable.

35 size-change ftermination

Highlights of SCT theory

» Analysis of complexity (PSPACE complete;

time complexity 20(nlogn)),

» 3 algorithms to decide termination (and then

some more)

» Each algorithm has a story

36

monotonicity constraints

Algorithm 1 (POPL 2001):

Reduction to a problem about Biichi automata.

Fogarty, Vardi (TACAS '09,'10) went from
there to study the efficiency of algorithms
oh such automata.

Algorithm 2 (POPL 2001):

the Closure Algorithm.

Podelski, Rybalchenko (LICS '04) formulated a
general notion of "disjunctive transition
invariants” that justifies a whole class of
similar algorithms.

37 Size-Change Termination

Algorithm 3 (CAV '09 - LMCS '10):
Generating a global ranking function

= A combination of the variables that
decreases in every ftransition

So, with SCT, a program terminates =
a ranking function can be generated.

38 Size-Change Termination

More expressive abstractions

The Size-Change Graph abstraction:
the theory of well-ordered sets
atomic predicates from:

X>y

X2y

A richer language allows for handling more programs

39 Size-Change Termination

More expressive abstractions

The Monotonicity Constraint abstraction:
the theory of well-ordered sets
atomic predicates from:

X>Y, X2y, X=Yy

where x,y range over all state variables.

40 Size-Change Termination

Monotonicity Constraints

X

Y
Z

W

xl

/ '

— Y

zl

LW

41

y > X

y>y

w>Ww

z2<Z

Z>W

monotonicity constraints

Monotonicity Constraint theory

» Broadly speaking - all the results from SCT

theory have been successfully extended.

* In particular, fermination is decidable, and

ranking functions can be automatically found.

Codish et al. '05, B.'09/'10

42

monotonicity constraints

» Order constraints over the integers
(instead of a well-ordered set)
mid(x,y) =

if x>=y theny Xexny>y
else mid(x+1, Y'l) X<X A y > y' ANX2Y

* We still have decidability etc.
and a little more (e.g., execution time bounds)

43 Size-Change Termination

