
SIZE-CHANGE SIZE CHANGE
TERMINATIONE

A partial surveyp y

Size-Change Termination1

YE OLDE ARTYE OLDE ART

OF TERMINATION PROOFSOF TERMINATION PROOFS
• Examples will use a simple functional language
(h k h th i t i t)(hence, we ask whether recursion terminates).

• All values will be natural numbers.

add(x,y) =
if 0 h if x=0 then y

else 1+add(x-1, y)

Argument: 1st parameter decreases in every call.

Size-Change Termination7

A slightly harder one

add(x,y) = (,y)
if x=0 then y

else 1+add(y, x-1)else add(y, x)

Argument: 1st parameter decreases after two calls.

Size-Change Termination8

GCD program
gcd(x,y) =

if xd1 or x=y then xif xd1 or x=y then x
else if x<y then gcd(x, y-x)

else gcd(y x y)else gcd(y, x-y)

Argument: larger of param’s decreases in every call.

Size-Change Termination9

Ackermann’s function
ack(x,y) =

if x=0 then y+1
else if y=0

then ack(x-1, y)
else ack(x-1, ack(x, y-1))

Argument:Argument:

In every call, either x decreases or x stays
put and y decreasesput and y decreases.

� the pair ¢x,y² decreases lexicographically.

Size-Change Termination10

Summary
All these examples (and many others) are based
on impossibility of infinite descenton impossibility of infinite descent

In every (hypothetical) chain of calls,
s thi is sh t d s i d fi it l something is shown to decrease indefinitely,
which cannot really happen (because it’s taken
from a well-founded order)from a well founded order).

Ingenuity is required either to define that
“something” or to show the infinite descentsomething or to show the infinite descent

Size-Change Termination11

N t th t tiNote the two options:

• A (complex) combination of the data decreases A (complex) combination of the data decreases
certainly in every step.
• (sum, pair of values…) ranking functionp

C bi ti s t sid d b t th f f

g

• Combinations are not considered, but the proof of
descent may be more clever
• (consider two consecutive calls)(consider two consecutive calls…)

analysis of paths

Size-Change Termination12

The SCT approachThe SCT approach
[Lee Jones & B POPL 2001][Lee, Jones & B, POPL 2001]

subject programsubject program

initial analysisinitial analysis

 t f h

SCT is a purely

a set of graphs

SCT tester p y
combinatorial problem.

SCT tester

“terminating!”

Size-Change Termination
14

g

Products of initial analysis
Control-Flow Graph: possible transitions among
“locations” in a programlocations in a program.

f gg

F ti l mmi t xt:Functional programming context:
functions, calls

Imperative context:
flow-points, statements / basic blocks

Size-Change Termination15

Size-Change Graph

What’s happening in a transition?

Consider call: add(x,y) = …add(x-1,y)…

Information: 1st param decreases. 2nd unchanged.

x x old new

y y
means: old > new

old

means: old t new

new

Size-Change Termination16

m an n w

size-change graphs

x x
gcd(x,y) = …gcd(y,x-y)…

y y

ack(x,y) =… ack(x-1, ack(…))
x x

y y

Size-Change Termination17

Analyzing SCT

Size-Change Graphs “sit” on arcs of the CFG

f gf g

Size-Change Termination18

Multipaths
A multipath results of concatenating SCG’s along

 CFG tha CFG path.

Example: a loop of add (2nd ver) looks like that:Example: a loop of add (2nd ver.) looks like that:

xx

y

x x x

y y y y

Size-Change Termination19

Threads
A thread is a (infinite) path in the multipath.

A thread is infinitely descending if it has
infinitely many down-arcs.

x

infinitely many down arcs.

x

y

x x x

y y y y

Size-Change Termination20

SCT condition

A CFG/SCG-set satisfies SCT if every
infinite multipath contains an infinitely
descending thread.

This criterion is a sufficient condition for
program terminationprogram termination.

Assumptions:
Correct (safe) program representation
Well-founded data (no infinite descent)

Size-Change Termination21

()

An Example: ack

k() k(1 k())
x x

ack(x,y) =… ack(x-1, ack(…))
y y

x x
ack(x,y) =… ack(x, y-1)

x

y

x

yy y

Size-Change Termination22

Is SCT a decidable problem?

Proof #1: reduction to a question on Büchi automata.

Proof #2: the Closure Algorithm.

h h l l f

THM: the SCT problem is PSPACE-complete

What is the complexity class of SCT ?

THM: the SCT problem is PSPACE complete.

Upper bound: a variant of the Closure Algorithm

Hardness: reduction from a PSPACE-complete classic.

Size-Change Termination23

Some (Pre)History

LJB POPL 2001LJB, POPL 2001

Sagiv, Logic Prog. Symp. 1991,

Lindenstrauss & Sagiv ICLP 1997Lindenstrauss & Sagiv, ICLP 1997,

Codish & Taboch, JLP 1999

Dershowitz et al., AA 2001

Size-Change Termination24

Size-Change Termination22

THM: SCT holds iff in the composition closure,

every idempotent graph has an in-situ down-arc.

The Closure Algorithm

x

y

x

y

in-situ down-arc

Size-Change Termination23

An Example
p(m, n, r) = if r>0 then p(m, r-1, n) else

if n>0 then p(r, n-1, m) else m

The Contibution of [LJB2001]

creation of an abstraction boundaryy

subject programj p g

initial analysis

a set of graphs
SCT is a purely
combinatorial problem.

SCT tester
¾solid theory

¾it’s not about Prolog
Size-Change Termination25

¾it s not about Prolog

The next decade

• Contributions byy
Avery, Bohr, Codish, Dershowitz, Fogarty,
Heizmann Giesl Jones Krauss Lagoon Lee Heizmann, Giesl, Jones, Krauss, Lagoon, Lee,
Lindenstrauss, Manolios, Moyen, Podelski,
Rybalchenko Sagiv Schneider-Kamp Serebrenik Rybalchenko, Sagiv, Schneider Kamp, Serebrenik,
Sereni, Stuckey, Thiemann, Vardi, Vroon …

Size-Change Termination26

The next decade

• Systems applying SCT

• Better understanding the theory, in
particular in a larger context of termination particular in a larger context of termination
analysis

Size-Change Termination27

Semantics forSemantics for
Termination Analysisy

(e.g., Codish-Taboch 99 for Prolog)

STEP 1:S E
A semantics [| � |]bin that maps a program into its

(i fi it) s t f “t siti s”(infinite) set of “transitions”
Program P is terminating iff there is no infinite g g
chain in [| P|]bin

STEP 2: check it

Abstract Semantics forAbstract Semantics for
Termination Analysisy

STEP 1:
An abstraction that maps a program into a (finite)
set P# of “abstract transitions” (an abstract (
program)
Abstract programs have a semantics that super-Abstract programs have a semantics that super-
approximates the semantics of the source program.
If P# is terminating then P is.

#STEP 2: forget about P and study P# instead.

Abstract Programs forAbstract Programs for
Termination Analysisy

1. Define the abstract state space + .
A typical state: (f, x1 ,..., xn)

(add, 5, 4)

2 Choose a language for describing 2. Choose a language for describing
transitions in +u+.

append(x,y) =
 fcase x of

[] => y
h::t => h::append(t, y)

concrete state: (append, [l,i,s,t], [a,n,o,t,h,e,r])

abstract state: (append, 4, 7)

Size-Change Termination31

A language to describe A language to describe
transitionstrans t ons

• Fix a logical theoryg y
• Fix a class of formulas for this theory

h d f l that define relations over
x x x’ x’x1 ,..., xn , x 1 ,..., x n

(state and new state)()

Size-Change Termination32

Size-Change Graphs
gcd(x,y) o gcd(y,x-y)

x xx

y

x

yy y

x > y’ � y � x’

ranking functions II33

The Size-Change Graph abstraction is based
on the theory of well-ordered setson the theory of well ordered sets

and its transitions are conjunctions of atomic
di t fpredicates from:

x > y’x y

x � y’

where x,y are any state variables.

Size-Change Termination34

The Secret of Success

SCT is an abstraction which is useful, but
simple enough to get results.

Result #1:
A “size change program” terminates iff it A size-change program terminates iff it

satisfies the SCT condition.

So termination is decidable.

size-change termination35

Highlights of SCT theoryHighlights of SCT theory

• Analysis of complexity (PSPACE complete;
time complexity 2O(nlog n))time complexity 2O(n og n)).

• 3 algorithms to decide termination (and then
some more)

• Each algorithm has a storyEach algorithm has a story

36 monotonicity constraints

Algorithm 1 (POPL 2001):

Reduction to a problem about Büchi automataReduction to a problem about Büchi automata.

Fogarty, Vardi (TACAS ‘09,’10) went from
th t t d th ffi i f l ith there to study the efficiency of algorithms
on such automata.

Algorithm 2 (POPL 2001):

the Closure Algorithm.g
Podelski, Rybalchenko (LICS ‘04) formulated a
general notion of “disjunctive transition g j
invariants” that justifies a whole class of
similar algorithms.

Size-Change Termination37

Algorithm 3 (CAV ‘09 - LMCS ‘10):

Generating a global ranking functionGenerating a global ranking function

= A combination of the variables that
d i t itidecreases in every transition

So with SCT a pro ram terminates So, with SCT, a program terminates �
a ranking function can be generated.

Size-Change Termination38

More expressive abstractions
The Size-Change Graph abstraction:

th th f ll d d tthe theory of well-ordered sets

atomic predicates from:atomic predicates from

x > y’

x � y’

A richer language allows for handling more programs
Size-Change Termination39

g g f g m p g m

More expressive abstractions
The Monotonicity Constraint abstraction:

th th f ll d d tthe theory of well-ordered sets

atomic predicates from:atomic predicates from

x > y, x � y, x = y

where x,y range over all state variables.

Size-Change Termination40

Monotonicity ConstraintsMonotonicity Constraints
x
y

x'
y'

x
y

x'
y'y

z
w

y
z'
w'

y
z
w

y
z'
w'w w

 ' '

w w

y ! x'

y t y'

x d z'

z � z'y t y

w ! w'

z � z

z ! w
41 monotonicity constraints

Monotonicity Constraint theoryMonotonicity Constraint theory

• Broadly speaking – all the results from SCT
theory have been successfully extendedtheory have been successfully extended.

• In particular, termination is decidable, and
ranking functions can be automatically found.

Codish et al. ’05, B. ‘09/’10

42 monotonicity constraints

• Order constraints over the integers
(instead f a well rdered set)(instead of a well-ordered set)

mid(x,y) =
if x>=y then y x < x’ � y > y’

else mid(x+1, y-1) x < x’ � y > y’ � x � y

We still have decidability etc• We still have decidability etc.
and a little more (e.g., execution time bounds)

Size-Change Termination43

