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1. Introduction 

The most prevalent approach to proving that a 
program satisfies a given property has been the invar- 
iant-assertion method, made known largely through 
the work of Floyd [4] and Hoare [7]. In this method,  
the program being studied is supplied with formal 
documentation in the form of comments,  called invar- 
iant assertions, which express relationships between 
the different variables manipulated by the program. 
Such an invariant assertion is attached to a given point 
in the program with the understanding that the asser- 
tion is to hold every time control passes through the 
point. 

Assuming that an appropriate invariant assertion, 
called the input specification, holds at the start of the 
program, the method allows us to prove that the other 
invariant assertions hold at the corresponding points in 
the program. In particular, we can prove that the 
output specification, the assertion associated with the 
program's exit, will hold whenever control reaches the 
exit. If this output specification reflects what the pro- 
gram is intended to achieve, we have succeeded in 
proving the correctness of the program. 

It is in fact possible to prove that an invariant 
assertion holds at some point even though control 
never reaches that point, since then the assertion holds 
vacuously every time control passes through the point 
in question. In particular, using the invariant-assertion 
method, one might prove that an output specification 
holds at the exit even though control never reaches 
that exit. If we manage to prove that a program's 
output specification holds, but neglect to show that the 
program terminates, we are said to have proved the 
program's partial correctness. 

A separate proof,  by a different method,  is required 
to prove that the program does terminate. Typically, a 
termination proof is conducted by choosing a well- 
founded set, one whose elements are ordered in such a 
way that no infinite decreasing sequences of elements 
exist. (The nonnegative integers under the regular 
greater-than ordering, for example, constitute a well- 
founded set.) For some designated label within each 
loop of the program an expression involving the varia- 
bles of the program is then selected whose value always 
belongs to the well-founded set. These expressions 
must be chosen so that each time control passes from 
one designated loop label to the next, the value of the 
expression corresponding to the second label is smaller 
than the value of the expression corresponding to the 
first label. Here ,  "smaller" means with respect to the 
well-founded ordering, the ordering of the chosen well- 
founded set. This establishes termination of the pro- 
gram, because if there were an infinite computation of 
the program, control would traverse an infinite se- 
quence of designated loop labels; the successive values 
of the corresponding expressions would constitute an 
infinite decreasing sequence of elements of the well- 
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founded set, thereby contradicting the defining prop- 
erty of the set. This well-founded ordering method 
constitutes the conventional way of proving the termi- 
nation of a program [4]. 

If a program both terminates and satisfies its output 
specification, that program is said to be totally correct. 

Burstall [2] introduced a method whereby the total 
correctness of a program can be shown in a single 
proof.  The approach had been applied to specific 
programs earlier by Knuth [9, Section 2.3.1] and 
others. This technique again involves affixing com- 
ments to points in the program,  but with the intention 
that sometime control will pass through the point and 
satisfy the attached assertion. Consequently control 
may pass through a point many times without satisfying 
the assertion, but control must pass through the point 
at least once with the assertion satisfied; therefore we 
call these comments  intermittent assertions. If  we prove 
the output specification as an intermittent assertion at 
the program's  exit, we have simultaneously shown that 
the program must halt and satisfy the specification. 
This establishes the program's  total correctness. Since 
the conventional approach requires two separate  proofs 
to establish total correctness,  the intermittent-assertion 
method invites further attention. 

We use the phrase 

such a lemma,  we assume that the lemma holds for all 
elements of the well-founded set smaller (in the order- 
ing) than a given element and show that the lemma 
then holds for the given element  as well. 

The intermittent-assertion method has begun to 
attract a good deal of attention. Different approaches 
to its formalization have been a t tempted,  using predi- 
cate calculus [16], Hoare-style  axiomatization [18], 
modal logic [15], and the Lucid formalism [1]. Topor  
[17] applied the method to proving the correctness of 
the Schorr-Waite algorithm, a complicated garbage- 
collecting scheme. 

In this paper,  we first present and illustrate the 
intermittent-assertion method with a variety of exam- 
ples for proving correctness and termination.  Some of 
these proofs are markedly simpler than their conven- 
tional counterparts .  On the other hand, we prove that 
the intermittent-assertion method is at least as powerful 
as the conventional invariant-assertion method and the 
well-founded ordering method,  in addition to the more 
recent subgoal-assertion method [12, 14] for proving 
partial correctness. Finally, we show that the intermit- 
tent-assertion method can also be applied to establish 
the validity of  program transformations and to prove 
the correctness of continuously operating programs,  
programs that are intended never  to terminate .  

somet ime Q at L 

to denote  that Q is an intermittent assertion at label L, 
i.e. that sometime control will pass through L with 
assertion Q satisfied. (Similarly, we could use the 
phrase "always Q at L"  to indicate that Q is an 
invariant assertion at L.)  If the entrance of a program 
is labeled start and its exit is labeled finish, we can 
express its total correctness with respect to an input 
specification P and an output specification R by: 

THEOREM. I f  sometime P at start, 
then sometime R at finish. 

This theorem entails the termination as well as the 
partial correctness of the program,  because it implies 
that control must eventually reach the program's  exit 
and satisfy the desired output  specification. 

If  we are only interested in whether  the program 
terminates,  but don' t  care if it satisfies any particular 
output specification, we can try to prove: 

THEOREM. I f  sometime P at start, 
then sometime at finish. 

The conclusion "sometime at finish" expresses that 
control must eventually reach the program's  exit, but 
does not require that any relation be satisfied. (It 
could have been written as "sometime true at finish" 
because the assertion true always holds.) 

Generally,  to prove the total correctness or termi- 
nation theorem for a program,  we must affix intermit- 
tent assertions to some of the program's  internal points 
and supply lemmas to relate these assertions. The 
proofs of the lemmas can often involve complete induc- 
tion over a well-founded ordering (see [13]). In proving 
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2. The Intermittent-Assertion Method: Examples 

Rather  than present  a formal definition of the 
intermittent-assertion method,  we prefer  to illuminate 
it by means of a sequence of examples.  Each example 
has been selected to illustrate a different aspect of the 
method.  

2.1 Counting the Tips of a Tree 
Let us consider a simple program as a vehicle for 

demonstrat ing the basic technique. This is an algorithm 
for counting the tips of a complete  binary tree,  those 
nodes that have no descendents.  A recursive definition 
of a function tips(tree) that counts the tips of a binary 
tree tree is: 
tips(tree) ~ i f  tree is a tip 

then 1 
else tips (left (tree)) + tips (right (tree)) 

where left(tree) and right(tree) are the left and right 
subtrees of tree, respectively. 

An iterative program to count the tips of a binary 
tree tree is: 

input (tree) 
start: s tack ~-- (tree) 

coun t  ~-- 0 
more:  i f  s tack = ( ) 

then f inish: ou tpu t (coun t )  
else if head(stack)  is a tip 

then count  *--- count  + 1 
stack ~-- tail(stack) 
goto m ore  

Communications February 1978 
of Volume 21 
the ACM Number 2 



else f i r s t  *-- head(stack) 
stack ,,-- left (first). [right (first). tail (stack) l 
goto more 

(This program is similar to one used by Burstall in 
[2].) We have used the notation ( )  to denote the 
empty list, (x) to denote the list whose sole element is 
x, and x . l  to denote the list formed by adding the 
element x at the beginning of the list l. (Note that (x) 
is the same as x.  ( ) . )  If the list l is not empty, then 
h e a d ( l )  is its first element and t a i l ( l )  is the list of its 
remaining elements. The indentation of the program 
indicates that, if h e a d ( s t a c k )  is a tip, all three instruc- 
tions following then are to be executed; otherwise all 
three instructions following else are to be executed. 

This program initially inserts the given t r ee  as the 
single element of the s t a c k .  At each iteration, the first 
element is removed from the s t a c k .  If it is a tip, the 
element is counted; otherwise, its left and right sub- 
trees are inserted as the first and second elements of 
the s t a c k .  The process terminates when the s t a c k  is 
empty; c o u n t  is then the number of tips in the given 
tree. 

Using intermittent assertions, we can express the 
total correctness of this program by the following 
theorem: 

THEOREM. I f  s o m e t i m e  t r ee  = t a t  s tar t ,  

t h e n  s o m e t i m e  c o u n t  = t i p s ( t )  a t  f i n i s h .  

This theorem states the termination of the program 
in addition to its partial correctness, because it implies 
that control must eventually reach the program's exit 
and satisfy the output specification. 

In order to apply the intermittent-assertion method, 
we supply a lemma to describe the behavior of the 
program's loop. In this case, the correctness of the 
program depends on the following property: If we 
enter the loop with some element t at the head of the 
s t a c k ,  then eventually the tips of t will be counted and 
t will be removed from the s t a c k .  (Note that we may 
need to return to m o r e  many times before the t i p s  of t 
are counted.) This property is expressed more precisely 
by the following lemma: 

LEMMA. I f  s o m e t i m e  c o u n t  = c 

a n d  s t a c k  = t . s  a t  m o r e  

t h e n  s o m e t i m e  c o u n t  = c + t ips ( t )  

s t a c k  = s a t  m o r e .  

The hypothesis c o u n t  = c in the antecedent allows 
us to refer to the original value of c o u n t  in the 
consequent, even though the value may have changed 
subsequently. 

It is not difficult to see that this lemma implies the 
theorem. Suppose 

sometime t r ee  = t at s tar t .  

Then, following the computation specified by the pro- 
gram, we set s t a c k  to (t), c o u n t  to 0, and reach m o r e ,  

so that 

sometime c o u n t  = 0 and s t a c k  =( t )  = t .  ( )  at m o r e .  

The lemma then tells us, taking c to be 0 and s to be 

() ,  that 

sometime c o u n t  = 0 + t i p s ( t )  and s t a c k  = () at m o r e .  

Because we are at m o r e  with s t a c k  = (), the computa- 
tion proceeds to f i n i s h ,  so that 

sometime c o u n t  = t i p s ( t )  at f i n i s h ,  

and the theorem is thereby established. 
The proof of the lemma is by complete induction 

on the structure of t. In other words, we suppose the 
antecedent of the lemma, that 

sometime c o u n t  = c then s t a c k  = t . s  at m o r e ,  

and we assume inductively that the lemma holds when- 
ever c o u n t  = c '  and s t a c k  = t ' . s ' ,  where t' is any 
subtree of t. We then show the consequent of the 
lemma, that 

sometime c o u n t  = c + t ips ( t )  and s t a c k  = s at m o r e .  

The proof distinguishes between two cases, depending 
on whether or not t is a tip. 

C a s e  t is  a t ip .  Then t i p s ( t )  = 1 by the recursive 
definition of t i p s .  Since s t a c k  = t . s ,  it is clearly not 
empty, but its head t is a tip. The program therefore 
increases c o u n t  by 1 and removes t from the s t a c k .  

Thus 

sometime c o u n t  = c + 1 = c + t i p s ( t )  

and s t a c k  = s at m o r e ,  

establishing the conclusion of the lemma in this case. 
C a s e  t is  n o t  a t ip .  Then t i p s ( t )  = t i p s ( l e f t ( t ) )  + 

t i p s ( r i g h t ( t ) ) ,  by the recursive definition of t ips .  Since t 
is not a tip, we pass around the else branch of the loop 
this time: we remove t from the s t a c k ,  break it down 
into its left and right subtrees, replace these on the 
s t a c k  as its first and second elements, and return to 
m o r e .  Thus 

sometime c o u n t  = c 

and s t a c k  = l e f t ( t ) .  [ r i g h t ( t ) . s ]  at m o r e .  

We can then apply the induction hypothesis (taking c '  
to be c, t '  to be l e f t ( t ) ,  and s '  to be r i g h t ( t ) . s )  since 
l e f t ( t )  is a subtree of t. The induction hypothesis tells 
us that 

sometime c o u n t  = c + t i p s ( l e f t ( t ) )  

and s t a c k  = r i g h t ( t ) . s  at m o r e .  

Since r i g h t ( t )  is also a subtree of t, we can apply the 
induction hypothesis again (taking c '  to be c + 
t i p s ( l e f t ( t ) ) ,  t '  to be r i g h t ( t ) ,  and s '  to be s), yielding 

sometime c o u n t  = c + t i p s ( l e f t ( t ) )  + t i p s ( r i g h t ( t ) )  

and s t a c k  = s at m o r e .  

In other words, since t i p s ( t )  = t i p s ( l e f t ( t ) )  + 

t i p s ( r i gh t ( t ) ) ,  

sometime c o u n t  = c + t ips ( t )  and s t a c k  = s at m o r e .  

This is the desired conclusion of the lemma. 
Note that once the lemma was formulated and the 
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basis for the induction decided, the proofs proceeded 
in a fairly mechanical manner .  On the other hand, 
choosing the lemma and the basis for induction re- 
quired some ingenuity. 

The proof  of the lemma called upon the full power  
of the intermittent-assertion method.  Although the 
recursive program that defines the tips function can 
count the tips of a subtree with a single top-level 
recursive call, the iterative program may require many 
traversals of the loop before the tips of a subtree are 
counted. The intermittent-assertion method allows us 
to relate the point at which we are about  to count the 
tips of a subtree t with the point at which we have 
completed the counting and to consider the many 
executions of the body of the loop between these 
points as a single unit, which corresl6onds naturally to 
a single recursive call of tips (t) .  

The conventional invariant-assertion method,  on 
the other  hand, requires that we identify a condition 
that allows us to relate the situation before and after  
each single execution Of the body of the loop. There  
may be no natural connection between these two 
points; consequently our invariant-assertion must be 
exceptionally complete.  In this case, such an assertion 
is 

t ips(tree) = c o u n t  + ~ tips(s) at m o r e ,  
sEs tack  

where ~s~stac~ tips(s) is the sum of the tips of all the 
elements of the s tack  (cf. [11]). Once we know this 
assertion, the invariant-assertion proof  is also straight- 
forward. However ,  to formulate  the above assertion, 
we are required to relate all the elements  of the stack, 
while, to understand the program or to produce the 
intermittent-assertion proof,  we only needed to con- 
sider the first e lement  of the stack. 

The intermittent-assertion proof  established termi- 
nation at the same time as correctness; to prove 
termination by the conventional well-founded ordering 
approach,  we can show that the value of the pair 

( tips(tree )-count tips(head(stack))) 

always decreases in the lexicographic ordering each 
time we return to m o r e .  In other  words, either the first 
component  t i p s ( t r e e ) - c o u n t  is reduced,  or the first 
component  remains fixed and the second component  
t ips(head(s tack))  is reduced. Both components  remain 
nonnegative at all times. 

Although finding the above pair requires a bit of 
ingenuity, this termination proof  is relatively straight- 
forward. In the next section, we will see a program for 
which the simplest known conventional termination 
proof  is significantly more complicated than the inter- 
mittent-assertion proof  of total correctness.  

2 . 2  A c k e r m a n n  F u n c t i o n  
The Ackermann  function, denoted by A(x y), is 

defined recursively for nonnegative integers x and y as 

A(xy) ~ i f x  = 0 
theny + 1 
else ify = 0 

then A ( x - 1  1) 
else A ( x -  1 A(x y - 1)) 

For example,  A(1 1) = A(0 A(1 0)) = A(0 A(0 1)) = 
A(0 2) = 3. 

This function is of theoretical interest,  in part  
because its value grows extremely quickly; for instance, 

22222 
A(4 4) = 22 -3.  

An iterative program to compute  the same function is 

input (Xo Yo) 
start: stack[l] ",-- xo 

stack[2] ,,-- Yo 
index ~- 2 

more: if index = 1 
then finish : output (stack[l]) 
else if stack[index- 1] = 0 

thenstack[index- 1] ,-- stack[index] + 1 
index ,,-- index - 1 
goto more 

else if stack[index] = 0 
thenstack[index- 1] ~ stack[index- 1] - 1 

stack[index] ~-- 1 
goto more 

else stack[index + 1] ~ stack[index] - 1 
stack[index] ~ stack[index- 1] 
stack[index - 1] ~ stack[index- 1] - 1 
index ,,--index + 1 
goto more 

This iterative program represents  a direct translation 
of the recursive definition. If  at some stage the recur- 
sive program is compfiting 

A(s0 A(sl ... A(Si-1 si ) . . . ) ) ,  

then at the corresponding stage of the iterative com- 
putation 

s tack  = (So sl  . . .  si-1 si) and index  = i. 

Using intermittent assertions, we can express the pro- 
gram's  total correctness by: 

THEOREM. I f  s o m e t i m e  xo, Yo >- 0 at start,  

then  s o m e t i m e  s t a c k [ l ]  = A ( x  o Yo) at 

f in i sh .  
In proving this theorem,  we employ the following 
lemma: 

LEMMA. I f  s o m e t i m e  index  = i, i >- 2,  

s tack[1 : i - 2 ]  = s, 

s t a c k [ i - l ]  = a, and  
stack[i] = b at m o r e ,  

then s o m e t i m e  index  = i - 1 ,  
s t a c k [ l : i - 2 ]  = s and 
s t a c k [ i - l ]  = A ( a  b)  at m o r e .  

Here  s represents a tuple of stack elements.  The 
abbreviation s tack[  l : i -  2] = s will be used to denote  
that s equals the tuple of elements  ( s tack[ l ]  s tack[2]  .. .  

s t a c k [ i - 2 ] ) ;  this expression is included in the hypothe-  
sis and the conclusion of the l emma to convey that the 
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ini t ia l  s egmen t  o f  the  a r ray ,  the  first i - 2 e l emen t s ,  is 
u n c h a n g e d  when  we re tu rn  to m o r e .  

I t  is s t r a igh t fo rward  to see  tha t  the  l e m m a  impl ies  
the  t h e o r e m ,  for  i ndex  is 2, s t a c k [ l ]  is x0, and  s tack[2]  
is Y0 the  first  t ime  we reach  m o r e .  T h e n  the l e m m a  
impl ies  tha t  even tua l ly  we shall  r each  m o r e  again ,  with 
i ndex  = 1 and  s t a c k [ l ]  = A(x0 Y0). Since i ndex  = 1, we 
then  pass  to f in i sh  with the  des i r ed  ou tpu t .  

To  p rove  the  l e m m a ,  let  us suppose  

s o m e t i m e  i ndex  = i, i >- 2, 
s tack[1  : i -  2] = s ,  
s t a c k [ i - i ]  = a ,  and  
stack[i]  = b at m o r e .  

O u r  p r o o f  will be  by induc t ion  on the  pa i r  
( s t a c k [ i n d e x - 1 ]  s tack[ index])  u n d e r  the  l ex icograph ic  
o rde r ing  < ove r  the  nonnega t i ve  in tegers ;  in o t h e r  
words ,  we assume the  l e m m a  holds  w h e n e v e r  
s t a c k [ i n d e x - l ]  = a '  and  s tack[ index]  = b ' ,  where  a '  
and  b '  a re  any nonnega t i ve  in tegers  such tha t  a '  < a 
or  such tha t  a '  = a and  b '  < b, and  show tha t  it  then  
holds  when  s t a c k [ i n d e x - 1 ]  = a and  s tack[ index]  = b,  
i .e .  

s o m e t i m e  i ndex  = i -  1, 

s t a c k [ l : i - 2 ]  = s ,  and  
s t a c k [ i - 1 ]  = A(a  b) at  m o r e .  

The  p r o o f  d is t inguishes  b e t w e e n  th ree  cases ,  cor re -  
spond ing  to the  cond i t iona l  tests  in the  recurs ive  defi-  
ni t ion of  the  A c k e r m a n n  func t ion .  

Case a = 0. Then  A(a  b) = b + 1 by  the  recurs ive  
def in i t ion  of  the  A c k e r m a n n  func t ion .  But  since i ndex  

1, and  s t a c k [ i n d e x - l ]  = a = 0, we r e tu rn  to m o r e  
with 

i ndex  = i - 1 and  
s t a c k [ i - 1 ]  = b + 1, 

sat isfying the  conclus ion  of  the  l e m m a .  
Case a > 0, b = 0. H e r e ,  A(a  b) = A ( a - 1  1) by  

the def in i t ion  of  the  A c k e r m a n n  func t ion .  Because  
i ndex  ~ 1, s t a c k [ i n d e x - l ]  = a ~ O, and  s tack[ index]  = 
b = 0, we r e tu rn  to m o r e  with 

index  = i,  
s t a c k [ i - I ]  = a - 1, and  
stack[i]  = 1. 

Since we have  

( s t a c k [ i - i ]  s tack[i])  = ( a - 1  1) < (a 0), 

the  induct ive  hypo thes i s  can be  a p p l i e d  ( tak ing  a '  to  
be  a - 1 and  b '  to  be  1) to  y ie ld  tha t  

s o m e t i m e  i ndex  = i -  1, 

s t a c k [ l : i - 2 ]  = s and  
s t a c k [ i - I ]  = A ( a - 1  1) at  m o r e .  

Because  A(a  b) = A ( a - 1  1), the  l e m m a  is e s t ab l i shed  
in this case.  

Case a > 0, b > 0. Then  A(a  b) = A ( a - 1  
A(a  b -  1)) by  the  recurs ive  def in i t ion .  Since i ndex  --/: 1, 

s t a c k [ i n d e x - 1 ]  = a ~ 0, and  s tack[ index]  = b ~ 0, we 
re tu rn  to m o r e  with 

i ndex  = i + 1, 
s t a c k [ i - l ]  = a - 1, 
s tack[i]  = a,  and  
s tack[ i+1]  = b - 1. 

Because  i ndex  = i + 1 and  

(stack[i] s tack[ i  + 1]) = (a b - l )  < ( a b) ,  

our  induc t ion  hypo thes i s  app l ies  ( t ak ing  a '  to be  a and  
b '  to be  b - 1 ) ,  y ie ld ing  

s o m e t i m e  i ndex  = i,  

s t ack  [1:i  - 2] = s ,  
s tack[ i  - 1] = a - 1, and  
stack[i]  = A(a  b - 1) at  m o r e .  

Note  tha t  we could  conc lude  tha t  s t a c k [ i - I ]  = a - 1 
because  the  induc t ion  hypo thes i s ,  for  i ndex  = i + 1, 
s ta tes  tha t  the  first i - 1  a r r ay  e l e m e n t s  a re  unchanged .  

Because  i ndex  = i and  

( s t a c k [ i - l ]  s tack[i])  = ( a - 1  A(a  b - l ) )  < (a b) ,  

we can app ly  the  induc t ion  hypo thes i s  once  m o r e  
( t a k i n g a '  to be  a - 1 and b '  to be  A(a  b - 1)) to  
ob ta in  tha t  

s o m e t i m e  i ndex  = i - 1, 
s t a c k [ l : i - 2 ]  = s ,  and  
s t a c k [ i -  1] = A ( a -  1 A(a  b - 1)) at m o r e ,  

which is the  des i r ed  conclus ion  in this  case.  [] 
This  c o m p l e t e s  the  i n t e rmi t t en t - a s se r t i on  p r o o f  of  

the  to ta l  cor rec tness  of  the  A c k e r m a n n  p r o g r a m ;  we 
be l ieve  it ref lects  ou r  u n d e r s t a n d i n g  of  the  way the  
p r o g r a m  works .  The  inva r i an t - a s se r t ion  p r o o f  of  the  
pa r t i a l  co r rec tness  is qui te  na tura l ;  at  each  i t e ra t ion  it 
can be  shown tha t  

A(s tack[1]  A(s tack[2]  . . .  

A ( s t a c k [ i n d e x -  1] s tack[ index] ) . . . ) )  = A(x0 Y0) 

at m o r e  and ,  when  the  p r o g r a m  t e r m i n a t e s ,  tha t  

s t a c k [ l ]  = A(x0 Y0). 

On  the  o the r  hand ,  the  k n o w n  proofs  of  the  t e rmina -  
t ion of  this i t e ra t ive  p r o g r a m  using the c onven t i ona l  
we l l - founded  o rde r ing  m e t h o d  are  e x t r e m e l y  compl i -  
ca ted ,  and  we cha l lenge  the  in t r ep id  r e a d e r  to cons t ruc t  
such a p roof .  

2.3 Greatest C o m m o n  Divisor of  Two  Numbers  
In the  p rev ious  two e x a m p l e s ,  we have a p p l i ed  the  

i n t e rmi t t en t - a s se r t i on  m e t h o d  to p r o g r a m s  involving 
only one  loop .  The  fo l lowing p r o g r a m ,  which c o m p u t e s  
the  g rea tes t  c o m m o n  divisor  (gcd) of two posi t ive  
in tegers ,  is i n t roduc e d  to show how the  i n t e rmi t t en t -  
asser t ion  m e t h o d  is a pp l i e d  to a p r o g r a m  with a more  
c omple x  l oop  s t ruc ture .  
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W e  def ine  gcd(x y),~ where  x and y are  posi t ive  
in tegers ,  as the  g rea tes t  in teger  that  d iv ides  bo th  x and 
y ,  that  is, 

gcd(x y)  = max{u : u Ix and  u [Y}. 
F o r  ins tance ,  gcd(9 12) = 3 and  gcd(12 25) = 1. 

The  p r o g r a m  is 

input(x y)  
start: 
more: i f x  = y 

then finish : output (y) 

else reducex: i f x  > y 

then x ~ x - y 

goto  reducex 
reducey: i f  y > x 

then y <--- y - x 

goto reducey 
goto more 

This  p r o g r a m  is m o t i v a t e d  by the  fo l lowing p r o p e r t i e s  
of  the  gcd: 

gcd (xy )  = y  if x = y ,  

g c d ( x y )  = g c d ( x - y y )  if x > y ,  and  
g c d ( x y )  = g c d ( x y - x )  if y > x .  

W e  wou ld  l ike to use the  i n t e r m i t t e n t - a s s e r t i o n  m e t h o d  
to p rove  the to ta l  co r rec tness  of  this p r o g r a m .  The  
to ta l  co r rec tness  can be  exp re s sed  as fol lows:  

THEOREM.-If sometime X = a, y = b and a, b > 0 
at start, 

then sometime y = gcd(a b) at finish. 
To p rove  this t h e o r e m ,  we need  a l e m m a  tha t  

desc r ibes  the  in te rna l  b e h a v i o r  of  the  p r o g r a m .  
LEMMA. I f  sometime x = a, y = b, and a, b > 0 

at more 
or sometime x = a, y = b, and a, b > 0 

at reducex 
or sometime x = a, y = b, and a, b > 0 

at reducey, 
then sometime y = gcd(a b) at finish. 

To show tha t  the  l e m m a  impl ies  the  t h e o r e m ,  we 
assume tha t  

s o m e t i m e x  = a ,  y = b ,  and  a ,  b > 0 at start. 

Then  con t ro l  passes  to  more, so tha t  

s o m e t i m e  x = a, y = b, and  a ,  b > 0 at more. 

But  then  the l e m m a  impl ies  tha t  

s o m e t i m e  y = gcd(a b) at finish, 

which is the  des i r ed  conclus ion  of  the  t h e o r e m .  
I t  r ema ins  to  p rove  the l e m m a .  W e  suppose  

s o m e t i m e x  = a, y = b, and  a ,  b > 0 at  more 
or  s o m e t i m e x  = a, y = b, and  a, b > 0 at reducex 
or  s o m e t i m e  x = a ,  y = b ,  and  a ,  b > 0 at  reducey. 

The  p r o o f  p r o c e e d s  by induc t ion  on a + b ;  we assume 
induc t ive ly  tha t  the  l e m m a  holds  w h e n e v e r  x = a '  and  
y = b ' ,  whe re  a '  + b '  < a + b, and  show tha t  

s o m e t i m e  y = gcd(a b) at finish. 

1 6 4  

W e  mus t  dis t inguish be tw e e n  th ree  cases .  

Case a = b. Regard l e s s  of  w h e t h e r  con t ro l  is at  
more, reducex, or  reducey, con t ro l  passes  to  finish 
with y = b, so tha t  

s o m e t i m e  y = b at  finish. 

But  in this case b = gcd(a b), by a given p r o p e r t y  of  
the  gcd func t ion ,  so we have  

s o m e t i m e  y = gcd(a b) at finish, 

which is the  des i r ed  conclus ion  of  the  l e m m a .  

Case a > b. Re ga rd l e s s  of  w h e t h e r  con t ro l  is at 
more,  reducex, or  reducey, con t ro l  r eaches  reducex 
and  passes  a r o u n d  the  t op  inner  l o o p ,  rese t t ing  x to  
a - b ,  s o t h a t  

s o m e t i m e  x = a - b  and  y = b at  reducex. 

F o r  s impl ic i ty ,  let  us d e n o t e  a - b  and  b by  a' and  b ' ,  
r espec t ive ly .  N o t e  tha t  

a',  b' > 0 
a + b  > a '  + b ' , a n d  
gcd(a' b') = g c d ( a - b  b) = gcd(a b). 

This last  cond i t i on  fol lows by  a g iven  p r o p e r t y  o f  the  
gcd. 

Because  a ' ,  b '  > 0 and  a + b > a '  + b ' ,  the  
induc t ion  hypo thes i s  impl ies  tha t  

s o m e t i m e  y -- gcd(a' b') at finish; 

i . e . ,  by  the  th i rd  cond i t ion  a b o v e ,  

s o m e t i m e  y = gcd(a b) at finish. 

Case b > a. This  case  is d i s p o s e d  of  in a m a n n e r  
symmet r i c  to the  p rev ious  case.  

This  conc ludes  the  p r o o f  of  the  l e m m a .  The  to ta l  
co r rec tness  of  the  p r o g r a m  is thus  e s t ab l i shed .  [] 

I t  is not  diff icult  to p rove  the  pa r t i a l  co r rec tness  of  
the  a b o v e  p r o g r a m  by using the  c o n v e n t i o n a l  invar ian t -  
asser t ion  m e t h o d .  F o r  ins tance ,  to  p rove  tha t  the  
p r o g r a m  is pa r t i a l ly  cor rec t  wi th  r e spec t  to the  inpu t  
spec i f ica t ion  

x 0 > 0 a n d y 0 >  0 

and  o u t p u t  spec i f ica t ion  

y = gcd(xo Yo) 

(where  x0 and  Y0 a re  the  ini t ia l  va lues  of  x and  y ) ,  we 
can use the  s ame  invar ian t  asse r t ion  

x,  y > 0 and  gcd(x y) = gcd(xo Yo) 

at each  of  the  labe ls  more, reducex, and  reducey. 
In con t ras t ,  the  t e r m i n a t i o n  o f  this p r o g r a m  is 

a w k w a r d  to  p rove  by  the  c o n v e n t i o n a l  w e l l - f o u n d e d  
o r d e r i n g  m e t h o d ,  be c a use  it is poss ib le  to  pass  f rom 
more to  reducex, reducex to  reducey, or  f rom reducey 
to  more withou t  changing  any  of  the  p r o g r a m  va r i ab les .  
O n e  of  the  s imples t  p roof s  of  the  t e r m i n a t i o n  of  the  
gcd p r o g r a m  by this m e t h o d  involves  t ak ing  the  wel l-  
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founded set to be the pairs of  nonnegative integers 
ordered by the regular lexicographic ordering. When 
the expressions corresponding to the loop labels are 
taken to be 

(x + y 2) at more, 
if x :~ y then (x + y 1) else (x + y 4) at reducex, and 
i fx  < y then (x + y 0) else (x + y 3) at reducey, 

it can be shown that their successive values decrease as 
control passes from one loop label to the next [8]. 
Although this method is effective, it is not the most 
natural in establishing the termination of the gcd 
program.  

3. Relation to Conventional Proof Techniques 

One question that naturally arises in presenting a 
new proof  technique is its relationship to the more 
conventional methods.  In the previous section, we 
have seen examples of intermittent-assertion proofs of 
correctness and termination that are simpler than any 
known conventional counterparts .  In this section we 
show that the reverse is never  the case; in fact, we can 
directly rephrase any partial-correctness proof  using 
the invariant-assertion method as an intermittent-asser- 
tion proof.  The same result applies to another  standard 
partial-correctness proof  technique, the "subgoal-as- 
sertion method . "  Fur thermore ,  we will show that any 
termination proof  using the well-founded ordering 
method can also be expressed using intermittent asser- 
tions instead. Therefore  we can always use the inter- 
mittent-assertion method in place of the established 
techniques. 

To characterize the conventional techniques pre- 
cisely, we find it convenient to introduce some new 
notations,  which are described more fully in [13]. Let  
x be a complete list of the variables of a given program,  
and let x0 denote their initial values. Suppose that we 
have designated a special set of labels L0, L1, ... , Lh, 
where L0 and L h are the program's  entrance (start) and 
exit (finish), respectively. It  is assumed that each of 
the program's  loops passes through at least one of the 
designated labels. A path between two designated 
labels is said to be basic if it does not pass through any 
designated label (except at its endpoints).  For each 
basic path ct f rom label Li to Lj, we let t~(x) denote 
the condition that must hold for control to pass from 
Li along path a to L~, and we let g~(x) be the 
transformation of the values of x effected in traversing 
the path t~. Thus, if x = a at L~ and condition t~(a) 
holds, then control will pass along path a ,  reaching Lj 
with x = g~(a). 

We now define the ordering that will enable us to 
mimic conventional partial-correctness proofs by the 
intermittent-assertion method.  Suppose that the pro- 
gram is intended to apply to inputs satisfying the input 
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specification P(x0). Then the ordering > induced by the 
computation is defined as follows: 

(a i) > (b j) 

if control passes through Li with x = a and then 
eventually passes through Lj with x = b for some 
computat ion that initially satisfies the input specifica- 
tion P(x0) and that ultimately terminates.  This ordering 
is well-founded because any infinite decreasing se- 
quence in the ordering would correspond to an infinite 
computat ion of the program,  but we have only defined 
the ordering for finite (terminating) computat ions.  

Now let us see how the concepts we have intro- 
duced allow us to rephrase an invariant-assertion proof  
of the partial correctness of a program as an intermit- 
tent-assertion proof.  

3.1 Invariant-Assertion Method 
Suppose that we have used the invariant-assertion 

technique to prove that a program is partially correct 
with respect to some input specification P(xo) and 
output specification R(x0 x). Then we have a set of 
invariant assertions Qo(xo x), Qx(xo x), ... , Qh(xo x) 
corresponding to the designated labels L0, LI . . . . .  Lh, 
for which we have proved that,  for every xo and x,  

(1) P(x0) ~ Q0(x0 x0) 
(the input specification implies the initial invariant 
assertion) and 

(2) Oh(x0 x) ~ R(x0 x) 
(the final invariant assertion implies the output 
specification), 

and, for each basic path a from Li to Lj, we have 
proved the verification condition 

(3~) Q,(x0 x) and t~(x) ~ Qj(xo g~(x)) 
(the invariant assertion before the path implies 
the invariant assertion after).  

Conditions (1) and (3~) establish that each Q~(x0 x) is 
indeed an invariant assertion at L~; it has the property 
that,  each time we pass through L~, Q~(x0 x) will be 
true for the current value of x. Condition (2) then 
implies that,  if the program terminates,  the desired 
output specification will be satisfied. Together ,  these 
conditions establish the partial correctness of our pro- 
gram. 

From the given proof  of the partial correctness of 
the program,  we can extract an intermittent-assertion 
proof  of the same result. The theorem that expresses 
the partial correctness in the intermittent-assertion 
notation is as follows: 

THEOREM. I f  sometime x = Xo and P(xo) at start 
and the computation terminates, 
then sometime R(xo x) at finish. 

This theorem expresses the partial correctness of 
the program because it includes the explicit assumption 
that the particular computat ion being considered ter- 
minates. Given the assertions Qi(x0 x) f rom the invar- 
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iant-assertion proof,  we can construct the following 
lemma, which will enable us to prove the partial- 
correctness theorem: 

LEMr~A. For every i, 0 <_ i <-- h, 
i f  sometime x = a, P(x0) and Qi(x0 a) at Li 

and the computation terminates, 
then sometime R(x0 x) at finish. 

To prove that the lemma implies the theorem,  
assume 

sometime x = x0 and P(x0) at start 
and the computation terminates. 

Our invariant-assertion proof  includes a proof of (1), 
that P(x0) ~ Q0(x0 Xo). That proof  can be incorporated 
here,  to yield 

sometime x = xo, P(x0) and Qo(xo x0) at L0 
and the computation terminates 

(because Lo is identical to start). Taking i = 0 in the 
lemma, we may deduce 

sometime R(x0 x) at finish, 

which is the desired conclusion of the theorem. 
To prove the lemma, we suppose 

sometime x = a, P(x0) and Qi(x0 a) at Li 
and the computation terminates,  

for some i between 0 and h. The proof  is by induction 
on the ordering > induced by the computation.  Thus 
we assume inductively that the lemma holds whenever 
x = a '  at Le, where (a i) > (a' i'). The proof  
distinguishes between two cases. 

If i = h, we have supposed that 

sometime x = a and Qh(x0 a) at Lb. 

Incorporating the proof of (2) and recalling that Lh is 
finish, we have 

sometime R(x0 x) at finish, 

which is the desired conclusion of the lemma. 
On the other hand, if 0 -< i < h, control must 

follow some basic path a to a designated label Lj .  For 
this path, to(a) must be true, and x = g~(a) when 
control reaches L~. Because Qi(x0 a) and to(a) are true, 
we can reproduce the proof of (3o) to deduce that 
Q~(xo g~(a)) is true. Thus 

sometime x = go(a) and Q~(xo g~(a)) at Lj.  

Because Xo has been assumed to satisfy the input 
specification P(xo) and because the computation has 
been assumed to terminate,  we have that 

(a i) > (go(a) j ) ,  

by the definition of the ordering induced by the com- 
putation, and therefore that 

sometime R(xo x) at finish, 

by our induction hypothesis. This completes the proof  
of the lemma. 

166 

We have thus constructed an intermittent-assertion 
proof of the partial correctness of the program, assum- 
ing that we were given an invariant-assertion proof. In 
the next section we indicate how the same procedure 
can be applied to subgoal-assertion proofs. 

3.2. Subgoal-Assertion Method 
The invariant-assertion approach always relates the 

current values of the program variables to their initial 
values. Another  approach for proving partial correct- 
ness, the subgoal-assertion method, relates these varia- 
bles to their ultimate values when the program halts. 
We first present the method and then show as before 
that, if we have proved the partial correctness of a 
program using this method,  then we can rephrase the 
same proof with intermittent assertions instead. 

Suppose now that we have used the subgoal-asser- 
tion method to prove that a program is partially correct 
with respect to some input specification P(x0) and 
output specification R(x0 x). Then we have a set of 
subgoal assertions Q~(x xh), Q*(x xh) . . . . .  Q~(x Xh), 
corresponding to the designated labels L0, LI . . . .  , Lh, 
with the intuitive meaning that Q*(x xh) must hold for 
the current value of x as control passes through Li and 
the ultimate value xh of x when the computation halts. 
For these assertions we have proved that for every x0, 
x, and xh: 

(1") Q~(xh xh), 
(the final subgoal assertion always holds for the 
final value of x)  and 

(2*) P(x0) and Q~(x0 xh) ~ R(xo xh) 
(the input specification and the initial subgoal 
assertion imply the output: specification), 

and, for each basic path a from Li to L~, we have 
proved the verification condition 

(3*) Q~(g~(x) xh) and t~(x) ~ Q*(x xh), 
(the subgoal assertion after the path implies the 
subgoal assertion before).  

The subgoal-assertion method works backward 
through the computation,  whereas the invariant-asser- 
tion method works forward. Condition (1") implies 
that the final subgoal assertion always holds. Condi- 
tions (3"~) say that,  if the appropriate subgoal assertion 
holds when control reaches the end of a path, then the 
corresponding subgoal assertion holds when control is 
at the beginning of the path. If the program does 
terminate,  conditions (1") and (3*) imply that each 
Q*(x xh) is indeed a subgoal assertion at L~; it has the 
property that, each time we pass through L~, Q*(x xh), 
will be true for the current value of the program's 
variables x and its ultimate value xh. Condition (2*) 
then implies that,  if the program terminates, the de- 
sired output specification will be satisfied. Together ,  
these conditions imply the partial correctness of the 
given program. 

To contrast the invariant-assertion and the subgoal- 
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assertion methods,  let us consider a simple program to 
compute the gcd: 

input(x y) 
start: 
more:  i f  x = 0 

then  f inish:  output(y) 
else (x y)  ,-- (rem(y x)  x)  

goto more  

Here  rem(y x) is the remainder of dividing y by x. The 
notation (x y) ~ (rem(y x) x) means that the values of 
x and y are simultaneously assigned to be rem(y x)  and 
x,  respectively. 

To show that this program is partially correct with 
respect to the input specification 

P(x0yo): Xo > 0 andy0 > 0 

and the output specification 

R(xo Yo Y): Y = gcd(xo Yo), 

we can employ the invariant assertions 

Q~tart(xoYoX y): xo > 0 andyo > 0 
(i.e., P(xo Yo)) 

Qmore(xoyoxy):x >- 0 a n d y  > 0 and 
gcd(x y) = gcd(xo Yo) 

Qeini~h (Xo Yo x y): y = gcd(xo Yo) 
(i.e., R(xo Yo Y)). 

On the other hand, to prove the same result by the 
subgoal-assertion method,  we can use the subgoal 
assertions 

Qstart(X y Yh): x --> 0 andy  > 0 ~ Y h  = gcd(x y), 
Qmo~e(x y yh): x >- 0 andy  > 0 ~ Yh = gcd(x y), 
Q~,h(X y Yh): Y = yh. 

The reader may observe that the invariant assertions 
relate the program variables x and y with their initial 
values Xo and Y0 and the subgoal assertions relate the 
program variables with the ultimate value Yh of y. 

Let us return to the general case. From a given 
subgoal-assertion proof of the partial correctness of a 
program, we can mechanically paraphrase the argu- 
ment as an intermittent-assertion proof, just as we did 
for the invariant-assertion method. The theorem that 
expresses the partial correctness of the program is 
again: 

THEOREM. I f  sometime x = xo and P(x0) at start 
and the computation terminates, 
then sometime R(x0 x) at finish. 

The lemma that we shall use in proving the theo- 
rem, however, is different from the lemma in the 
invariant-assertion case: 

LEMMA. For every i, 0 <_ i <-- h, 
i f  sometime x = a and P(xo) at Li 

and the computation terminates, 
then sometime Q*(a x) at finish. 

To construct a proof that the lemma implies the 
theorem, we take i = 0 in the Lemma,  and employ in 
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the new proof the justification for Condition (2*) from 
the given subgoal-assertion proof. 

The proof of the lemma is constructed in a way 
analogous to the earlier invariant-assertion case. Induc- 
tion is again based on the ordering > induced by the 
computation. When i = h we use the lbroof of Condi- 
tion (1"), and if 0 -< i < h we use the inductive 
hypothesis and the proof of (3*). [] 

The results of this section could actually have been 
proved in another way: The subgoal-assertion method 
is known (see [14]) to be equivalent in power to the 
invariant-assertion method,  in the sense that any proof 
by either method can be transformed directly into a 
proof by the other method. We also know that any 
invariant-assertion proof can be transformed into an 
intermittent-assertion proof of the same result, by the 
process given in the preceeding section. Therefore ,  
any subgoal-assertion proof can be transformed into 
an intermittent-assertion proof, by first transforming it 
into an invariant-assertion proof,  and then into an 
intermittent-assertion proof. 

We have remarked that the invariant-assertion 
method relates the current values of the program 
variables to their initial values, whereas the subgoal- 
assertion method relates the current values to their 
final values. The intermittent-assertion technique can 
imitate both of these methods because it can relate the 
values of the program variables at any two stages in 
the computation. 

3.3. Well-Founded Ordering Method 
The above constructions enabled us to mirror con- 

ventional partial-correctness proofs using intermittent 
assertions. In fact, we can also use the intermittent- 
assertion method to express conventional termination 
proofs that use the well-founded ordering approach. 

Suppose that we have used the well-founded order- 
ing approach to prove the termination of a given 
program with respect to some input specification P(x0). 
Then we have found a well-founded ordering > over a 
set W, and, for some set of designated labels L0, L1, 
. . . .  L~, we have found a set of invariant assertions 
Q0(xo x), Ql(x0 x) . . . .  , Qh (xo x) and a set of expressions 
E0(x0 x), El(X0 x) . . . . .  Eh(xo x) for which we have 
proved the following conditions for every x0 and x : 

(1) P(x0) ~ Q0(xo x0) 
(the input specification implies the initial invariant 
assertion), 

(2~) Q,(x0 x) and t~(x) ~ Qj(x0 g~(x)) for every basic 
path a from L~ to Lj 
(the invariant assertion before the path implies 
the invariant assertion after), 

(3i) Qi(x0 x) ~ Ei(x0 x) E W for each label Li 
(the value of the expression belongs to W when 
control passes through Li),  and 

(4~) Qi(xo x) and to(x) ~ Ei(xo x) > E~(x0 g~(x)) for 
every basic path a from L, to L~ 
(as control passes from L~ to Lj, the value of the 
corresponding expression is reduced).  
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The above conditions establish the termination of 
the program. Conditions (1) and (2~) ensure that each 
Qi(x0 x) is indeed an invariant assertion at Li: When- 
ever control passes through L~, assertion Q~(x0 x) is 
true for the current value of x. Condition (3) then tells 
us that each time control passes through L~ the value 
of the expression Ei(x0 x) belongs to W. 

Now suppose that Conditions (1)-(4)  are satisfied 
but the program does not terminate for some input x0 
satisfying the input specification P(x0). Control then 
passes through an infinite sequence of designated la- 
bels; the values of the corresponding expressions 
E~(x0 x) constitute an infinite sequence of elements of 
W. Condition (4) then implies that this is a decreasing 
sequence under the well-founded ordering, thereby 
contradicting the definition of a well-founded set. 
Conditions (1)-(4)  therefore suffice to establish the 
termination of the given program.  

It  is our  task to transform a proof  by the above 
method into an intermittent-assertion proof  of the 
termination of the program.  The following theorem 
expresses the desired property:  

THEOREM. I f  somet ime x = Xo and P(x0) at start 
then somet ime at finish. 

Recall that "somet ime at f i n i sh"  expresses the ter- 
mination of the program in the intermittent-assertion 
notation. We can prove this theorem by establishing 
the following lemma: 

LEMMA. For every i, 0 <-- i <-- h,  
i f  somet ime x = a and Qi(x0 a) at L~, 
then somet ime at finish. 

To construct a proof  that the lemma implies the 
theorem,  we take i to be 0 in the l emma and incorpo- 
rate the given proof  of Condition (1) into the intermit- 
tent-assertion proof  of the theorem.  

To prove the lemma we use induction over  the 
same well-founded ordering ~ that we employed in 
the given termination proof.  Suppose that 

sometime x = a and Qi(x0 a) at L~ 

for some designated label L~. We assume inductively 
that the l emma holds whenever  x = a '  and Qe(x0 a ' )  at 
Li, , where Ei(x0 a) ~ Ee(x0 a ' ) .  If  i = h, termination 
has already occurred. Otherwise control must follow 
some path c~ from L, to L~, i.e.,  t~(a) is true. Thus 

sometime x = g~(a) at Lj. 

Because both Qi(x0 a) and t~(a) hold, the proof  of 
Condition (2) enables us to deduce Qj(x0 g~(a)). The 
proof  of Condition (3) can be incorporated to yield 

E,(x0 a) E W and Ej(x0 g~(a)) E W ,  

because both Q~(x0 a) and Q~(x0 g~(a)) are true. By 
Condition (4) then, we have 

E~(x0 a) > E~(x0 g~(a)). 

We can now use the induction hypothesis,  with i '  = j 
and a '  = g~(a), yielding the desired conclusion 

sometime at finish. [] 

In this section we have shown how proofs by the 
conventional methods for establishing partial correct- 
ness and termination of programs may be translated 
into intermittent-assertion proofs of the same results. 
The translation process is pure, ly mechanical and does 
not increase the complexity of the proof.  For this 
reason we can conclude that in employing the intermit- 
tent-assertion method we have not lost any of the 
power of the existing methods.  

Is it possible that a similar translation could be 
performed in the other direction? For example ,  
couldn't  we devise a procedure for translating any 
partial-correctness proof  by the intermittent-assert ion 
method into a conventional invariant-assertion proof  
of comparable  complexity? We believe not. We have 
seen no invariant-assertion proof  for the tips program 
that does not require consideration of the sum of the 
tips of all the elements  in the stack. We have seen no 
termination proof  of the iterative Ackermann  program 
by the conventional method that employs such a simple 
well-founded ordering as the intermittent-assert ion 
proof.  Without formulating a precise notion of the 
"complexi ty"  of a proof ,  we cannot argue rigorously 
that the intermittent-assertion method is strictly more 
powerful than the conventional methods,  but we main- 
tain that this is so. 

4. Application: Validity of Transformations That 
Eliminate Recursion 

In discussing the tips program (Section 2.1),  we 
remarked  that part  of the difficulty in proving the 
correctness of the program arose because the program 
was developed by introducing a stack to remove  the 
recursion from the original definition. It has been 
argued (e.g. [3,  6, 10]) that in such cases we should 
first prove the correctness of the original recursive 
program and then develop the more efficient iterative 
version by applying one or more transformations to 
the recursive one. These t ransformations are intended 
to increase the efficiency of the program (at the possi- 
ble expense of clarity) while still maintaining its cor- 
rectness. 

If we were applying this method in producing our 
tips program,  therefore,  we would first prove the 
correctness of the recursive version (a trivial task, 
since that version is completely transparent) ;  we would 
then develop the iterative tips program by systemati- 
cally transforming the recursive p r o g r a m - r e m o v i n g  
its recursion and introducing a stack instead. Conse- 
quently, the proof  we presented in Section 2 would be 
completely unnecessary, since the program would have 
been produced by applying to a correct recursive 
program a sequence of t ransformations that are guar- 
anteed not to change that p rogram's  specifications. 

To realize such a plan, however ,  we must be certain 
that the t ransformations we use are valid, i.e. that 
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they actually do produce a program equiva len t  to the 
original one. Given the same input, the two programs 
must be guaranteed to return the same output. In 
other words, we must be certain that bugs cannot be 
introduced during the transformation process. 

In this section we illustrate how intermittent asser- 
tions can be employed to establish the validity of such 
transformations. We present the intermittent-assertion 
proof of the validity of a transformation that removes 
a recursion by introducing a stack. This transformation 
could have been used to produce our iterative tips 
program from its recursive definition. 

Suppose we have a recursive program of form 

F (x) (= ifp(x) 
then f (x ) 
else h(F(gl(x)) F(gz(x)) ). 

(For simplicity, let us assume that p,  f ,  gl, g2, and h 
are defined for all arguments.) If we know that 

(1) h(u  h(v  w))  = h(h(u  v) w)  for every u, v, and w 
(h is associative) and 

(2) h(e u) = u for every u (e is a left identity of h), 

then we can transform our program into an equivalent 
iterative program of the form 

input(x) 
start: stack ~-- (x) 

z ~ - - - e  

more : if stack = 0 
then finish: output(z) 
else if p(head(stack)) 

then z ~ h(z f(head(stack ))) 
stack ,--- tail(stack) 
goto more 

else first ~ head(stack) 
stack ~-- gl(first ) " [g~(first ) . tail(stack)] 
goto more 

The validity of this transformation is expressed by the 
following two theorems: 

THEOREM 1. If s o m e t i m e  x = a at start  

and  F(a) is de f i ned ,  

then s o m e t i m e  z = F(a) at f i n i sh .  
THEOREM 2. I f  s o m e t i m e  x = a at start 

and  the iterative c o m p u t a t i o n  
t ermina tes ,  

then F(a) is de f ined .  

Theorem 1 contains the condition that F(a) is 
defined (that the recursive computation of F with input 
a will terminate). This condition is necessary for oth- 
erwise the iterative program will not terminate, and 
therefore control will never reach f in i sh  at all. If we 
succeed in proving Theorem 1, we shall have estab- 
lished that the iterative program terminates whenever 
the original recursive program does and returns the 
same output; in other words, the iterative program 
computes an ex tens ion  of the function computed by 
the recursive program rather than the exact same 
function. Theorem 2 shows that the recursive program 
halts whenever the iterative program does. Together,  
Theorems 1 and 2 imply that the recursive and iterative 
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programs are equivalent. The proof of Theorem 1 is 
analogous to the proof of the total correctness of the 
tips program; it requires the following lemma: 

LEMMA 1. I f  s o m e t i m e  z = c 

and  s tack  = a ' s  at m o r e  

and  F(a) is d e f i n e d ,  

then s o m e t i m e  z = h(c  F(a)) 
and  s tack  = s at m o r e .  

To show that the lemma implies Theorem 1, assume 

sometime x = a at start 

and that F(a) is defined. Then immediately control 
passes to m o r e ;  so 

sometime z = e and s tack  = (a) = a.  () at more .  

By the lemma (taking c to be e and s to be ()), we have 

sometime z = h(e F(a)) and s tack  = () at more .  

But h(e F(a)) = F(a) by Property (2), that e is a left 
identity of h. Because s tack  is (), control passes to 
f i n i sh ,  and we deduce 

sometime z = F(a) at f i n i sh ,  

which is the desired conclusion of the theorem. 
To prove the lemma, suppose 

sometime z = c and s tack  = a .s at m o r e ,  

where F(a) is defined. The proof employs complete 
induction on a over the order ing  > i nduced  by  the 

recursive c o m p u t a t i o n .  This is the ordering such that 

d > d ' ,  

where F(d ') is called recursively during the computa- 
tion of F(d) and where the computation of F(d) ter- 
minates. In particular, if F(d) is defined, d > gl (d)  and 
d > g2(d). This ordering > is well-founded because an 
infinite decreasing sequence in the ordering would 
correspond to an infinite, nonterminating computation 
of the recursive program, but the ordering has only 
been defined for finite (terminating) computations. 

We shall assume inductively that the lemma holds 
whenever z = c '  and s tack  = a ' . s ' ,  where a > a '  in 
the ordering > induced by the recursive computation, 
and show that it holds when z = c and s tack  = a ' s  as 
well. We distinguish between two cases, depending on 
the truth of p (a). 

Case p(a)  is true. Then F(a) = f ( a ) ,  by the recursive 
definition of F. Because a is at the head of the s t a c k ,  

the s tack  is not empty and p ( h e a d ( s t a c k ) )  is true; 
therefore we follow the t h e n  branch of the program; so 

sometime z = h(c  f (a ) )  and s tack  = s at m o r e .  

But f (a )  = F(a); so we have 

sometime z = h(c  F(a)) and s tack  = s at m o r e ,  

which is the desired conclusion. 
Case p (a)  is false.  Here F(a) = h(F(gl(a)) F(g2(a))), 

by the recursive definition of F. Note that F(a) is 
defined; therefore F(gl(a)) and F(g2(a)) are also de- 
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fined. Because stack is not empty and p(head(stack))  is 
false, control follows the else branch of the loop body; 
s o  

sometime z = c and stack = gl(a)" [g~(a).s] at more.  

Recall that a > gl(a) because we have assumed that 
F(a) is defined; therefore we can apply the induction 
hypothesis (taking c '  to be c, a '  to be g~(a), and s '  to 
be g~(a)'s) to obtain 

sometime z = h(c F(gl(a))) 
and stack = gz(a) .s  at more.  

Because a > g2(a), we can apply the induction hypoth- 
esis a second time (taking c '  to be h(c F(gl(a))), a '  to 
be g2(a), and s '  = s). We derive 

sometime z = h(h(c F(gl(a))) F(gz(a))) 
and stack = s at more.  

By the associativity of h (Property (1)) and the recur- 
sive definition of F, we have 

h(h(c F(g~(a))) F(g~(a))) = 
h(c h(F(g~(a)) F(gz(a)))) = h(c F(a)). 

Therefore  we can conclude that 

sometime z = h(c F(a)) and stack = s at more ,  

completing the proof  of the lemma.  [] 
So far we have only established Theorem 1, that 

the function computed  by the iterative program is an 
extension of the function computed  by the recursive 
program. We still need to prove Theorem 2, that,  if 
the iterative program terminates,  then the recursive 
program also terminates.  This proof  depends on an- 
other lemma.  

LEMMA 2. I f  somet ime  z = c 
and stack = a . s  at more  
and the iterative computat ion 
terminates, 

then F(a) is defined. 
L e m m a  2 implies Theorem 2 directly because the 

stack is initialized to (a) = a .  (). 
The proof  of the lemma employs induction over  

the ordering > induced by the iterative computat ion.  
In this ordering, (cl sl) > (c2 s2), where c~ and cz are 
successive values of the variable z at more  and s~ and 
s2 are successive values of the stack at more  during a 
terminating computat ion of the iterative program.  

To prove the lemma,  suppose that 

sometime z = c and stack = a . s  at more  

and that the iterative computat ion terminates.  We 
assume inductively that the l emma holds whenever  
z = c '  and stack = a ' . s ' ,  where (c a . s )  > (c' a ' . s ' )  in 
the ordering induced by the computat ion,  and show 
that F(a) is then defined. We distinguish between two 
cases. 

Case p(a)  is true. Here  F(a) = f (a)  by the recursive 
program,  and therefore F(a) is defined. 

1 7 0  

Case p(a) is false. Here F(a) = h(F(gl(a)) F(g2(a))), 
by the recursive program. Since', stack is not empty  and 
p(head(stack)) is false, the iterative computat ion fol- 
lows the else branch; so 

sometime z = c and stack = gl(a).  [g2(a)'s] at more.  

Because the computat ion was assumed to terminate ,  
we have that 

(c a .s) > (c gl(a)" [g2(a)'s]), 

and therefore,  by our induction hypothesis,  that F(gl(a)) 
is defined. 

By L e m m a  1, we have that 

sometime z = h(c F(gl(a))) 
and stack = gz(a) .s  at more.  

Again, by the induction hypothesis,  we have that 
F(g2(a)) is defined. Because both F(gl(a)) and F(g2(a)) 
are defined and F(a) = h(F(gl(a)) F(g2(a))), we can 
conclude that F(a) is defined. [] 

We have just shown the validity of the t ransforma- 
tion that was actually used to produce the iterative tips 
program in Section 2.1. As in that section, we could 
have used the conventional invariant-assertion tech- 
nique in the proof  of Theorem 1. However ,  although 
we could employ the standard ~ notation to denote  
repeated applications of the + operat ion in the tips 
invariant assertion, we would have had to invent a 
new notation to denote  repeated application of the 
function h in the invariant assertion for the iterative 
program here. 

In the next section, we discuss an entirely different 
application of the intermittent-assert ion method.  

5. Application: Correctness of Continuously 
Operating Programs 

Conventionally,  in proving the correctness of a 
program,  we describe its expected behavior  in terms of 
an output specification, which is intended to hold when 
the program terminates.  Some programs,  such as op- 
erating systems, airline-reservation systems, and man- 
agement  information systems, however ,  are never  ex- 
pected to terminate.  Such programs will be said to be 
continuously operating (see, for example ,  [5]). The 
correctness of continuously operat ing programs there- 
fore cannot be expressed by output  specifications, but 
rather  by their intended behavior  while running. 

Fur thermore ,  we conventionally describe the inter- 
nal workings of a program with an invariant assertion, 
which is intended to hold every time control passes 
through the corresponding point.  The description of 
the workings of a continuously operating program,  
however,  often involves a relationship that some event 
A is inevitably followed by some other  event B. Such 
a relationship connects two different states of the 
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program and, generally, cannot be phrased as an 
invariant assertion. 

In other words, the standard tools for proving the 
correctness of terminating programs,  input-output 
specifications and invariant assertions, are not appro- 
priate for continuously operating programs.  The inter- 
mittent-assertion method provides a natural comple- 
ment  here,  both as a means for specifying the internal 
and external behavior  of these programs,  and as a 
technique for proving the specifications correct. 

We use one very simple example,  an imaginary 
sequential operating system, to illustrate this point: 

more: read(requests) 
setup: if requests = () 

then goto more 
else (job requests) ~ (head(requests) tail(requests)) 

execute: process(job) 
goto setup. 

At each iteration this program reads a list, requests, of 
jobs to be processed. If  requests is empty,  the program 
will read a new list and will repeat  this operation 
indefinitely until a nonempty request list is read. The 
system will then process the jobs one by one,  when 
they are all processed, the system will again at tempt  to 
read a request list. 

What we wish to establish about  this program is 
that, if a job ] is read into the request list, it will 
eventually be processed. Although this claim is not 
representable as an input-output specification, it is 
directly expressed in the following: 

THEOREM. I f  somet ime ] E requests at setup,  
then somet ime job  = ] at execute. 

Here  ] ~ requests means that ] belongs to the list of 
current requests. 

To prove the theorem,  assume that 

sometime ] E requests at setup. 

Then requests is not empty and is of the form 

where a and fl are the sublists of jobs occurring before 
and after/ ' ,  respectively, in the request list. Our  proof  
will be by complete induction on the structure of a: 
We assume the theorem holds whenever  requests is of 
form 

a ' j~ ,  

for any sublist c~' of ct. The proof  distinguishes between 
two cases. 

Case a = (). T h e n j  = head(requests) .  Since requests 
¢ (), we reach execute with job  = head(requests)  = ], 
satisfying the conclusion of the theorem.  

Case a :~ (). Then c~ = head(a) . ta i l (a ) .  Because 
again requests ¢ (), we process job  = head(or) and 
return to setup with requests reset to tail(or) j ft. Since 
tail(c 0 is a sublist of a ,  we can conclude from our 
inductive assumption that 

sometime job  = j at execute,  

as we had hoped.  
This program is very simple, but it may serve to 

suggest how the intermittent-assert ion method can be 
applied to more realistic examples.  

Note that,  when we make a s ta tement  of form 

if sometime P at L1, 
then sometime Q at L2, 

we do not necessarily imply that condition Q is satisfied 
at I-.2 after condition P is satisfied at L1; in fact, 
condition Q could hold before condition P. Thus,  in 
the above example,  we should be perfectly content if 
some especially fast operating system were able to 
process the job before it was submitted.  In fact, the 
proof  techniques that we have used in this paper  will 
only allow us to prove an implication of the above 
form if Q holds at L2 after P holds at LI. Additional 
techniques would be necessary if we wanted to prove 
such an implication if Q actually holds before P. 

Throughout  this paper,  in proving an implication 
of the above form, we have tacitly assumed that 
conditions P and Q are satisfied at different stages of 
the same computat ion.  It is possible to relax this 
assumption and relate different computat ions by ex- 
tending our notation appropriately.  We believe one 
could then apply the intermittent-assertion method to 
prove propert ies of nondeterministic and concurrent  
programs as well. 

6.  Conc lus ions  

The intermittent-assertion method not only serves 
as a valuable tool, but also provides a general frame- 
work encompassing a wide variety of techniques for 
the logical analysis of programs.  Diverse methods for 
establishing partial correctness, termination,  and 
equivalence fit easily within this f ramework.  Further- 
more,  some proofs,  naturally expressed with intermit- 
tent assertions, are not as easily conveyed by the more 
conventional methods.  

It has yet to be determined which phases of the 
intermittent-assertion proof  process will be amenable  
to implementat ion in verification systems. If the lem- 
mas and the well-founded orderings for the induction 
are provided by the programmer ,  constructing the 
remainder  of the proof  appears  to be fairly mechanical.  
On the other hand, to find the appropriate  lemmas 
and the corresponding orderings may require some 
ingenuity. We believe that the intermittent-assertion 
method will have practical impact because it allows us 
to incorporate our intuitive understanding about the 
way a program works directly into a proof  of its 
correctness. 
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This note describes two operators that respond to 
step edges, but not to ramps. The f'nrst is similar to the 
digital Laplacian, but uses the max, rather than the 
sum, of the x and y second differences. The second 
uses the difference between the mean and median gray 
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these operators applied to a set of test pictures are 
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centroid of a neighborhood as an edge value, is also 
briefly considered; it turns out to be equivalent to one 
of the standard digital approximations to the gradient. 
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