
Programming J . J . Horning
Languages Editor

Is "Sometime"
Sometimes Better
than "Always"?
Intermittent Assertions in
Proving Program Correctness
Zohar Manna
Stanford University and
The Weizmann Institute
Richard Waldinger
SRI International

This paper explores a technique for proving the
correctness and termination of programs
simultaneously. This approach, the intermittent-
assertion method, involves documenting the program
with assertions that must be true at some time when
control passes through the corresponding point, but
that need not be true every time. The method,
introduced by BurstaH, promises to provide a valuable
complement to the more conventional methods.

The intermittent-assertion method is presented
with a number of examples of correctness and
termination proofs. Some of these proofs are
markedly simpler than their conventional
counterparts. On the other hand, it is shown that a
proof of correctness or termination by any of the
conventional techniques can be rephrased directly as a
proof using intermittent assertions. Finally, it is shown
how the intermittent-assertion method can be applied
to prove the validity of program transformations and
the correctness of continuously operating programs.

Key Words and Phrases: intermittent assertions,
correctness of programs, termination of programs,
program verification, program transformation,
continuously operating programs.

CR Categories: 5.24

General permission to make fair use in teaching or research of
all or part of this material is granted to individual readers and to
nonprofit libraries acting for them provided that ACM's copyright
notice is given and that reference is made to the publication, to its
date of issue, and to the fact that reprinting privileges were granted
by permission of the Association for Computing Machinery. To
otherwise reprint a figure, table, other substantial excerpt, or the
entire work requires specific permission as does republication, or
systematic or multiple reproduction.

This research w a s supported in part by the Advanced Research
Projects Agency under contract MDA903-76-C-0206, by the Na-
tional Science Foundation under grant DCR72-03737A01, by the
Office of Naval Research under contracts N00014-76-C-0687 and
N00014-75-C-0816, and by a grant from the United States-Israel
Binational Science Foundation.

Authors' addresses: Z. Manna, Artificial Intelligence Lab, Stan-
ford University, Stanford, CA 94305; R. Waldinger, Artificial
Intelligence Center, SRI International, Menlo Park, CA 94025.
© 1978 ACM 0001-0782/78/0200-0159 $00.75

159

1. Introduction

The most prevalent approach to proving that a
program satisfies a given property has been the invar-
iant-assertion method, made known largely through
the work of Floyd [4] and Hoare [7]. In this method,
the program being studied is supplied with formal
documentation in the form of comments, called invar-
iant assertions, which express relationships between
the different variables manipulated by the program.
Such an invariant assertion is attached to a given point
in the program with the understanding that the asser-
tion is to hold every time control passes through the
point.

Assuming that an appropriate invariant assertion,
called the input specification, holds at the start of the
program, the method allows us to prove that the other
invariant assertions hold at the corresponding points in
the program. In particular, we can prove that the
output specification, the assertion associated with the
program's exit, will hold whenever control reaches the
exit. If this output specification reflects what the pro-
gram is intended to achieve, we have succeeded in
proving the correctness of the program.

It is in fact possible to prove that an invariant
assertion holds at some point even though control
never reaches that point, since then the assertion holds
vacuously every time control passes through the point
in question. In particular, using the invariant-assertion
method, one might prove that an output specification
holds at the exit even though control never reaches
that exit. If we manage to prove that a program's
output specification holds, but neglect to show that the
program terminates, we are said to have proved the
program's partial correctness.

A separate proof, by a different method, is required
to prove that the program does terminate. Typically, a
termination proof is conducted by choosing a well-
founded set, one whose elements are ordered in such a
way that no infinite decreasing sequences of elements
exist. (The nonnegative integers under the regular
greater-than ordering, for example, constitute a well-
founded set.) For some designated label within each
loop of the program an expression involving the varia-
bles of the program is then selected whose value always
belongs to the well-founded set. These expressions
must be chosen so that each time control passes from
one designated loop label to the next, the value of the
expression corresponding to the second label is smaller
than the value of the expression corresponding to the
first label. Here , "smaller" means with respect to the
well-founded ordering, the ordering of the chosen well-
founded set. This establishes termination of the pro-
gram, because if there were an infinite computation of
the program, control would traverse an infinite se-
quence of designated loop labels; the successive values
of the corresponding expressions would constitute an
infinite decreasing sequence of elements of the well-

Communications February 1978
of Volume 21
the ACM Number 2

founded set, thereby contradicting the defining prop-
erty of the set. This well-founded ordering method
constitutes the conventional way of proving the termi-
nation of a program [4].

If a program both terminates and satisfies its output
specification, that program is said to be totally correct.

Burstall [2] introduced a method whereby the total
correctness of a program can be shown in a single
proof. The approach had been applied to specific
programs earlier by Knuth [9, Section 2.3.1] and
others. This technique again involves affixing com-
ments to points in the program, but with the intention
that sometime control will pass through the point and
satisfy the attached assertion. Consequently control
may pass through a point many times without satisfying
the assertion, but control must pass through the point
at least once with the assertion satisfied; therefore we
call these comments intermittent assertions. If we prove
the output specification as an intermittent assertion at
the program's exit, we have simultaneously shown that
the program must halt and satisfy the specification.
This establishes the program's total correctness. Since
the conventional approach requires two separate proofs
to establish total correctness, the intermittent-assertion
method invites further attention.

We use the phrase

such a lemma, we assume that the lemma holds for all
elements of the well-founded set smaller (in the order-
ing) than a given element and show that the lemma
then holds for the given element as well.

The intermittent-assertion method has begun to
attract a good deal of attention. Different approaches
to its formalization have been a t tempted, using predi-
cate calculus [16], Hoare-style axiomatization [18],
modal logic [15], and the Lucid formalism [1]. Topor
[17] applied the method to proving the correctness of
the Schorr-Waite algorithm, a complicated garbage-
collecting scheme.

In this paper, we first present and illustrate the
intermittent-assertion method with a variety of exam-
ples for proving correctness and termination. Some of
these proofs are markedly simpler than their conven-
tional counterparts . On the other hand, we prove that
the intermittent-assertion method is at least as powerful
as the conventional invariant-assertion method and the
well-founded ordering method, in addition to the more
recent subgoal-assertion method [12, 14] for proving
partial correctness. Finally, we show that the intermit-
tent-assertion method can also be applied to establish
the validity of program transformations and to prove
the correctness of continuously operating programs,
programs that are intended never to terminate .

somet ime Q at L

to denote that Q is an intermittent assertion at label L,
i.e. that sometime control will pass through L with
assertion Q satisfied. (Similarly, we could use the
phrase "always Q at L" to indicate that Q is an
invariant assertion at L.) If the entrance of a program
is labeled start and its exit is labeled finish, we can
express its total correctness with respect to an input
specification P and an output specification R by:

THEOREM. I f sometime P at start,
then sometime R at finish.

This theorem entails the termination as well as the
partial correctness of the program, because it implies
that control must eventually reach the program's exit
and satisfy the desired output specification.

If we are only interested in whether the program
terminates, but don' t care if it satisfies any particular
output specification, we can try to prove:

THEOREM. I f sometime P at start,
then sometime at finish.

The conclusion "sometime at finish" expresses that
control must eventually reach the program's exit, but
does not require that any relation be satisfied. (It
could have been written as "sometime true at finish"
because the assertion true always holds.)

Generally, to prove the total correctness or termi-
nation theorem for a program, we must affix intermit-
tent assertions to some of the program's internal points
and supply lemmas to relate these assertions. The
proofs of the lemmas can often involve complete induc-
tion over a well-founded ordering (see [13]). In proving

160

2. The Intermittent-Assertion Method: Examples

Rather than present a formal definition of the
intermittent-assertion method, we prefer to illuminate
it by means of a sequence of examples. Each example
has been selected to illustrate a different aspect of the
method.

2.1 Counting the Tips of a Tree
Let us consider a simple program as a vehicle for

demonstrat ing the basic technique. This is an algorithm
for counting the tips of a complete binary tree, those
nodes that have no descendents. A recursive definition
of a function tips(tree) that counts the tips of a binary
tree tree is:
tips(tree) ~ i f tree is a tip

then 1
else tips (left (tree)) + tips (right (tree))

where left(tree) and right(tree) are the left and right
subtrees of tree, respectively.

An iterative program to count the tips of a binary
tree tree is:

input (tree)
start: s tack ~-- (tree)

coun t ~-- 0
more: i f s tack = ()

then f inish: ou tpu t (coun t)
else if head(stack) is a tip

then count *--- count + 1
stack ~-- tail(stack)
goto m ore

Communications February 1978
of Volume 21
the ACM Number 2

else f i r s t *-- head(stack)
stack ,,-- left (first). [right (first). tail (stack) l
goto more

(This program is similar to one used by Burstall in
[2].) We have used the notation () to denote the
empty list, (x) to denote the list whose sole element is
x, and x . l to denote the list formed by adding the
element x at the beginning of the list l. (Note that (x)
is the same as x. () .) If the list l is not empty, then
h e a d (l) is its first element and t a i l (l) is the list of its
remaining elements. The indentation of the program
indicates that, if h e a d (s t a c k) is a tip, all three instruc-
tions following then are to be executed; otherwise all
three instructions following else are to be executed.

This program initially inserts the given t r ee as the
single element of the s t a c k . At each iteration, the first
element is removed from the s t a c k . If it is a tip, the
element is counted; otherwise, its left and right sub-
trees are inserted as the first and second elements of
the s t a c k . The process terminates when the s t a c k is
empty; c o u n t is then the number of tips in the given
tree.

Using intermittent assertions, we can express the
total correctness of this program by the following
theorem:

THEOREM. I f s o m e t i m e t r ee = t a t s tar t ,

t h e n s o m e t i m e c o u n t = t i p s (t) a t f i n i s h .

This theorem states the termination of the program
in addition to its partial correctness, because it implies
that control must eventually reach the program's exit
and satisfy the output specification.

In order to apply the intermittent-assertion method,
we supply a lemma to describe the behavior of the
program's loop. In this case, the correctness of the
program depends on the following property: If we
enter the loop with some element t at the head of the
s t a c k , then eventually the tips of t will be counted and
t will be removed from the s t a c k . (Note that we may
need to return to m o r e many times before the t i p s of t
are counted.) This property is expressed more precisely
by the following lemma:

LEMMA. I f s o m e t i m e c o u n t = c

a n d s t a c k = t . s a t m o r e

t h e n s o m e t i m e c o u n t = c + t ips (t)

s t a c k = s a t m o r e .

The hypothesis c o u n t = c in the antecedent allows
us to refer to the original value of c o u n t in the
consequent, even though the value may have changed
subsequently.

It is not difficult to see that this lemma implies the
theorem. Suppose

sometime t r ee = t at s tar t .

Then, following the computation specified by the pro-
gram, we set s t a c k to (t), c o u n t to 0, and reach m o r e ,

so that

sometime c o u n t = 0 and s t a c k =(t) = t . () at m o r e .

The lemma then tells us, taking c to be 0 and s to be

() , that

sometime c o u n t = 0 + t i p s (t) and s t a c k = () at m o r e .

Because we are at m o r e with s t a c k = (), the computa-
tion proceeds to f i n i s h , so that

sometime c o u n t = t i p s (t) at f i n i s h ,

and the theorem is thereby established.
The proof of the lemma is by complete induction

on the structure of t. In other words, we suppose the
antecedent of the lemma, that

sometime c o u n t = c then s t a c k = t . s at m o r e ,

and we assume inductively that the lemma holds when-
ever c o u n t = c ' and s t a c k = t ' . s ' , where t' is any
subtree of t. We then show the consequent of the
lemma, that

sometime c o u n t = c + t ips (t) and s t a c k = s at m o r e .

The proof distinguishes between two cases, depending
on whether or not t is a tip.

C a s e t is a t ip . Then t i p s (t) = 1 by the recursive
definition of t i p s . Since s t a c k = t . s , it is clearly not
empty, but its head t is a tip. The program therefore
increases c o u n t by 1 and removes t from the s t a c k .

Thus

sometime c o u n t = c + 1 = c + t i p s (t)

and s t a c k = s at m o r e ,

establishing the conclusion of the lemma in this case.
C a s e t is n o t a t ip . Then t i p s (t) = t i p s (l e f t (t)) +

t i p s (r i g h t (t)) , by the recursive definition of t ips . Since t
is not a tip, we pass around the else branch of the loop
this time: we remove t from the s t a c k , break it down
into its left and right subtrees, replace these on the
s t a c k as its first and second elements, and return to
m o r e . Thus

sometime c o u n t = c

and s t a c k = l e f t (t) . [r i g h t (t) . s] at m o r e .

We can then apply the induction hypothesis (taking c '
to be c, t ' to be l e f t (t) , and s ' to be r i g h t (t) . s) since
l e f t (t) is a subtree of t. The induction hypothesis tells
us that

sometime c o u n t = c + t i p s (l e f t (t))

and s t a c k = r i g h t (t) . s at m o r e .

Since r i g h t (t) is also a subtree of t, we can apply the
induction hypothesis again (taking c ' to be c +
t i p s (l e f t (t)) , t ' to be r i g h t (t) , and s ' to be s), yielding

sometime c o u n t = c + t i p s (l e f t (t)) + t i p s (r i g h t (t))

and s t a c k = s at m o r e .

In other words, since t i p s (t) = t i p s (l e f t (t)) +

t i p s (r i gh t (t)) ,

sometime c o u n t = c + t ips (t) and s t a c k = s at m o r e .

This is the desired conclusion of the lemma.
Note that once the lemma was formulated and the

161 Communications February 1978
of Volume 21
the ACM Number 2

basis for the induction decided, the proofs proceeded
in a fairly mechanical manner . On the other hand,
choosing the lemma and the basis for induction re-
quired some ingenuity.

The proof of the lemma called upon the full power
of the intermittent-assertion method. Although the
recursive program that defines the tips function can
count the tips of a subtree with a single top-level
recursive call, the iterative program may require many
traversals of the loop before the tips of a subtree are
counted. The intermittent-assertion method allows us
to relate the point at which we are about to count the
tips of a subtree t with the point at which we have
completed the counting and to consider the many
executions of the body of the loop between these
points as a single unit, which corresl6onds naturally to
a single recursive call of tips (t) .

The conventional invariant-assertion method, on
the other hand, requires that we identify a condition
that allows us to relate the situation before and after
each single execution Of the body of the loop. There
may be no natural connection between these two
points; consequently our invariant-assertion must be
exceptionally complete. In this case, such an assertion
is

t ips(tree) = c o u n t + ~ tips(s) at m o r e ,
sEs tack

where ~s~stac~ tips(s) is the sum of the tips of all the
elements of the s tack (cf. [11]). Once we know this
assertion, the invariant-assertion proof is also straight-
forward. However , to formulate the above assertion,
we are required to relate all the elements of the stack,
while, to understand the program or to produce the
intermittent-assertion proof, we only needed to con-
sider the first e lement of the stack.

The intermittent-assertion proof established termi-
nation at the same time as correctness; to prove
termination by the conventional well-founded ordering
approach, we can show that the value of the pair

(tips(tree)-count tips(head(stack)))

always decreases in the lexicographic ordering each
time we return to m o r e . In other words, either the first
component t i p s (t r e e) - c o u n t is reduced, or the first
component remains fixed and the second component
t ips(head(s tack)) is reduced. Both components remain
nonnegative at all times.

Although finding the above pair requires a bit of
ingenuity, this termination proof is relatively straight-
forward. In the next section, we will see a program for
which the simplest known conventional termination
proof is significantly more complicated than the inter-
mittent-assertion proof of total correctness.

2 . 2 A c k e r m a n n F u n c t i o n
The Ackermann function, denoted by A(x y), is

defined recursively for nonnegative integers x and y as

A(xy) ~ i f x = 0
theny + 1
else ify = 0

then A (x - 1 1)
else A (x - 1 A(x y - 1))

For example, A(1 1) = A(0 A(1 0)) = A(0 A(0 1)) =
A(0 2) = 3.

This function is of theoretical interest, in part
because its value grows extremely quickly; for instance,

22222
A(4 4) = 22 -3.

An iterative program to compute the same function is

input (Xo Yo)
start: stack[l] ",-- xo

stack[2] ,,-- Yo
index ~- 2

more: if index = 1
then finish : output (stack[l])
else if stack[index- 1] = 0

thenstack[index- 1] ,-- stack[index] + 1
index ,,-- index - 1
goto more

else if stack[index] = 0
thenstack[index- 1] ~ stack[index- 1] - 1

stack[index] ~-- 1
goto more

else stack[index + 1] ~ stack[index] - 1
stack[index] ~ stack[index- 1]
stack[index - 1] ~ stack[index- 1] - 1
index ,,--index + 1
goto more

This iterative program represents a direct translation
of the recursive definition. If at some stage the recur-
sive program is compfiting

A(s0 A(sl ... A(Si-1 si) . . .)) ,

then at the corresponding stage of the iterative com-
putation

s tack = (So sl . . . si-1 si) and index = i.

Using intermittent assertions, we can express the pro-
gram's total correctness by:

THEOREM. I f s o m e t i m e xo, Yo >- 0 at start,

then s o m e t i m e s t a c k [l] = A (x o Yo) at

f in i sh .
In proving this theorem, we employ the following
lemma:

LEMMA. I f s o m e t i m e index = i, i >- 2,

s tack[1 : i - 2] = s,

s t a c k [i - l] = a, and
stack[i] = b at m o r e ,

then s o m e t i m e index = i - 1 ,
s t a c k [l : i - 2] = s and
s t a c k [i - l] = A (a b) at m o r e .

Here s represents a tuple of stack elements. The
abbreviation s tack[l : i - 2] = s will be used to denote
that s equals the tuple of elements (s tack[l] s tack[2] .. .

s t a c k [i - 2]) ; this expression is included in the hypothe-
sis and the conclusion of the l emma to convey that the

162 Communications February 1978
of Volume 21
the ACM Number 2

ini t ia l s egmen t o f the a r ray , the first i - 2 e l emen t s , is
u n c h a n g e d when we re tu rn to m o r e .

I t is s t r a igh t fo rward to see tha t the l e m m a impl ies
the t h e o r e m , for i ndex is 2, s t a c k [l] is x0, and s tack[2]
is Y0 the first t ime we reach m o r e . T h e n the l e m m a
impl ies tha t even tua l ly we shall r each m o r e again , with
i ndex = 1 and s t a c k [l] = A(x0 Y0). Since i ndex = 1, we
then pass to f in i sh with the des i r ed ou tpu t .

To p rove the l e m m a , let us suppose

s o m e t i m e i ndex = i, i >- 2,
s tack[1 : i - 2] = s ,
s t a c k [i - i] = a , and
stack[i] = b at m o r e .

O u r p r o o f will be by induc t ion on the pa i r
(s t a c k [i n d e x - 1] s tack[index]) u n d e r the l ex icograph ic
o rde r ing < ove r the nonnega t i ve in tegers ; in o t h e r
words , we assume the l e m m a holds w h e n e v e r
s t a c k [i n d e x - l] = a ' and s tack[index] = b ' , where a '
and b ' a re any nonnega t i ve in tegers such tha t a ' < a
or such tha t a ' = a and b ' < b, and show tha t it then
holds when s t a c k [i n d e x - 1] = a and s tack[index] = b,
i .e .

s o m e t i m e i ndex = i - 1,

s t a c k [l : i - 2] = s , and
s t a c k [i - 1] = A(a b) at m o r e .

The p r o o f d is t inguishes b e t w e e n th ree cases , cor re -
spond ing to the cond i t iona l tests in the recurs ive defi-
ni t ion of the A c k e r m a n n func t ion .

Case a = 0. Then A(a b) = b + 1 by the recurs ive
def in i t ion of the A c k e r m a n n func t ion . But since i ndex

1, and s t a c k [i n d e x - l] = a = 0, we r e tu rn to m o r e
with

i ndex = i - 1 and
s t a c k [i - 1] = b + 1,

sat isfying the conclus ion of the l e m m a .
Case a > 0, b = 0. H e r e , A(a b) = A (a - 1 1) by

the def in i t ion of the A c k e r m a n n func t ion . Because
i ndex ~ 1, s t a c k [i n d e x - l] = a ~ O, and s tack[index] =
b = 0, we r e tu rn to m o r e with

index = i,
s t a c k [i - I] = a - 1, and
stack[i] = 1.

Since we have

(s t a c k [i - i] s tack[i]) = (a - 1 1) < (a 0),

the induct ive hypo thes i s can be a p p l i e d (tak ing a ' to
be a - 1 and b ' to be 1) to y ie ld tha t

s o m e t i m e i ndex = i - 1,

s t a c k [l : i - 2] = s and
s t a c k [i - I] = A (a - 1 1) at m o r e .

Because A(a b) = A (a - 1 1), the l e m m a is e s t ab l i shed
in this case.

Case a > 0, b > 0. Then A(a b) = A (a - 1
A(a b - 1)) by the recurs ive def in i t ion . Since i ndex --/: 1,

s t a c k [i n d e x - 1] = a ~ 0, and s tack[index] = b ~ 0, we
re tu rn to m o r e with

i ndex = i + 1,
s t a c k [i - l] = a - 1,
s tack[i] = a, and
s tack[i+1] = b - 1.

Because i ndex = i + 1 and

(stack[i] s tack[i + 1]) = (a b - l) < (a b) ,

our induc t ion hypo thes i s app l ies (t ak ing a ' to be a and
b ' to be b - 1) , y ie ld ing

s o m e t i m e i ndex = i,

s t ack [1:i - 2] = s ,
s tack[i - 1] = a - 1, and
stack[i] = A(a b - 1) at m o r e .

Note tha t we could conc lude tha t s t a c k [i - I] = a - 1
because the induc t ion hypo thes i s , for i ndex = i + 1,
s ta tes tha t the first i - 1 a r r ay e l e m e n t s a re unchanged .

Because i ndex = i and

(s t a c k [i - l] s tack[i]) = (a - 1 A(a b - l)) < (a b) ,

we can app ly the induc t ion hypo thes i s once m o r e
(t a k i n g a ' to be a - 1 and b ' to be A(a b - 1)) to
ob ta in tha t

s o m e t i m e i ndex = i - 1,
s t a c k [l : i - 2] = s , and
s t a c k [i - 1] = A (a - 1 A(a b - 1)) at m o r e ,

which is the des i r ed conclus ion in this case. []
This c o m p l e t e s the i n t e rmi t t en t - a s se r t i on p r o o f of

the to ta l cor rec tness of the A c k e r m a n n p r o g r a m ; we
be l ieve it ref lects ou r u n d e r s t a n d i n g of the way the
p r o g r a m works . The inva r i an t - a s se r t ion p r o o f of the
pa r t i a l co r rec tness is qui te na tura l ; at each i t e ra t ion it
can be shown tha t

A(s tack[1] A(s tack[2] . . .

A (s t a c k [i n d e x - 1] s tack[index]) . . .)) = A(x0 Y0)

at m o r e and , when the p r o g r a m t e r m i n a t e s , tha t

s t a c k [l] = A(x0 Y0).

On the o the r hand , the k n o w n proofs of the t e rmina -
t ion of this i t e ra t ive p r o g r a m using the c onven t i ona l
we l l - founded o rde r ing m e t h o d are e x t r e m e l y compl i -
ca ted , and we cha l lenge the in t r ep id r e a d e r to cons t ruc t
such a p roof .

2.3 Greatest C o m m o n Divisor of Two Numbers
In the p rev ious two e x a m p l e s , we have a p p l i ed the

i n t e rmi t t en t - a s se r t i on m e t h o d to p r o g r a m s involving
only one loop . The fo l lowing p r o g r a m , which c o m p u t e s
the g rea tes t c o m m o n divisor (gcd) of two posi t ive
in tegers , is i n t roduc e d to show how the i n t e rmi t t en t -
asser t ion m e t h o d is a pp l i e d to a p r o g r a m with a more
c omple x l oop s t ruc ture .

163 Communications February 1978
of Volume 21
the ACM Number 2

W e def ine gcd(x y),~ where x and y are posi t ive
in tegers , as the g rea tes t in teger that d iv ides bo th x and
y , that is,

gcd(x y) = max{u : u Ix and u [Y}.
F o r ins tance , gcd(9 12) = 3 and gcd(12 25) = 1.

The p r o g r a m is

input(x y)
start:
more: i f x = y

then finish : output (y)

else reducex: i f x > y

then x ~ x - y

goto reducex
reducey: i f y > x

then y <--- y - x

goto reducey
goto more

This p r o g r a m is m o t i v a t e d by the fo l lowing p r o p e r t i e s
of the gcd:

gcd (xy) = y if x = y ,

g c d (x y) = g c d (x - y y) if x > y , and
g c d (x y) = g c d (x y - x) if y > x .

W e wou ld l ike to use the i n t e r m i t t e n t - a s s e r t i o n m e t h o d
to p rove the to ta l co r rec tness of this p r o g r a m . The
to ta l co r rec tness can be exp re s sed as fol lows:

THEOREM.-If sometime X = a, y = b and a, b > 0
at start,

then sometime y = gcd(a b) at finish.
To p rove this t h e o r e m , we need a l e m m a tha t

desc r ibes the in te rna l b e h a v i o r of the p r o g r a m .
LEMMA. I f sometime x = a, y = b, and a, b > 0

at more
or sometime x = a, y = b, and a, b > 0

at reducex
or sometime x = a, y = b, and a, b > 0

at reducey,
then sometime y = gcd(a b) at finish.

To show tha t the l e m m a impl ies the t h e o r e m , we
assume tha t

s o m e t i m e x = a , y = b , and a , b > 0 at start.

Then con t ro l passes to more, so tha t

s o m e t i m e x = a, y = b, and a , b > 0 at more.

But then the l e m m a impl ies tha t

s o m e t i m e y = gcd(a b) at finish,

which is the des i r ed conclus ion of the t h e o r e m .
I t r ema ins to p rove the l e m m a . W e suppose

s o m e t i m e x = a, y = b, and a , b > 0 at more
or s o m e t i m e x = a, y = b, and a, b > 0 at reducex
or s o m e t i m e x = a , y = b , and a , b > 0 at reducey.

The p r o o f p r o c e e d s by induc t ion on a + b ; we assume
induc t ive ly tha t the l e m m a holds w h e n e v e r x = a ' and
y = b ' , whe re a ' + b ' < a + b, and show tha t

s o m e t i m e y = gcd(a b) at finish.

1 6 4

W e mus t dis t inguish be tw e e n th ree cases .

Case a = b. Regard l e s s of w h e t h e r con t ro l is at
more, reducex, or reducey, con t ro l passes to finish
with y = b, so tha t

s o m e t i m e y = b at finish.

But in this case b = gcd(a b), by a given p r o p e r t y of
the gcd func t ion , so we have

s o m e t i m e y = gcd(a b) at finish,

which is the des i r ed conclus ion of the l e m m a .

Case a > b. Re ga rd l e s s of w h e t h e r con t ro l is at
more, reducex, or reducey, con t ro l r eaches reducex
and passes a r o u n d the t op inner l o o p , rese t t ing x to
a - b , s o t h a t

s o m e t i m e x = a - b and y = b at reducex.

F o r s impl ic i ty , let us d e n o t e a - b and b by a' and b ' ,
r espec t ive ly . N o t e tha t

a', b' > 0
a + b > a ' + b ' , a n d
gcd(a' b') = g c d (a - b b) = gcd(a b).

This last cond i t i on fol lows by a g iven p r o p e r t y o f the
gcd.

Because a ' , b ' > 0 and a + b > a ' + b ' , the
induc t ion hypo thes i s impl ies tha t

s o m e t i m e y -- gcd(a' b') at finish;

i . e . , by the th i rd cond i t ion a b o v e ,

s o m e t i m e y = gcd(a b) at finish.

Case b > a. This case is d i s p o s e d of in a m a n n e r
symmet r i c to the p rev ious case.

This conc ludes the p r o o f of the l e m m a . The to ta l
co r rec tness of the p r o g r a m is thus e s t ab l i shed . []

I t is not diff icult to p rove the pa r t i a l co r rec tness of
the a b o v e p r o g r a m by using the c o n v e n t i o n a l invar ian t -
asser t ion m e t h o d . F o r ins tance , to p rove tha t the
p r o g r a m is pa r t i a l ly cor rec t wi th r e spec t to the inpu t
spec i f ica t ion

x 0 > 0 a n d y 0 > 0

and o u t p u t spec i f ica t ion

y = gcd(xo Yo)

(where x0 and Y0 a re the ini t ia l va lues of x and y) , we
can use the s ame invar ian t asse r t ion

x, y > 0 and gcd(x y) = gcd(xo Yo)

at each of the labe ls more, reducex, and reducey.
In con t ras t , the t e r m i n a t i o n o f this p r o g r a m is

a w k w a r d to p rove by the c o n v e n t i o n a l w e l l - f o u n d e d
o r d e r i n g m e t h o d , be c a use it is poss ib le to pass f rom
more to reducex, reducex to reducey, or f rom reducey
to more withou t changing any of the p r o g r a m va r i ab les .
O n e of the s imples t p roof s of the t e r m i n a t i o n of the
gcd p r o g r a m by this m e t h o d involves t ak ing the wel l-

C o m m u n i c a t i o n s F e b r u a r y 1 9 7 8
of V o l u m e 21
the A C M N u m b e r 2

founded set to be the pairs of nonnegative integers
ordered by the regular lexicographic ordering. When
the expressions corresponding to the loop labels are
taken to be

(x + y 2) at more,
if x :~ y then (x + y 1) else (x + y 4) at reducex, and
i fx < y then (x + y 0) else (x + y 3) at reducey,

it can be shown that their successive values decrease as
control passes from one loop label to the next [8].
Although this method is effective, it is not the most
natural in establishing the termination of the gcd
program.

3. Relation to Conventional Proof Techniques

One question that naturally arises in presenting a
new proof technique is its relationship to the more
conventional methods. In the previous section, we
have seen examples of intermittent-assertion proofs of
correctness and termination that are simpler than any
known conventional counterparts . In this section we
show that the reverse is never the case; in fact, we can
directly rephrase any partial-correctness proof using
the invariant-assertion method as an intermittent-asser-
tion proof. The same result applies to another standard
partial-correctness proof technique, the "subgoal-as-
sertion method . " Fur thermore , we will show that any
termination proof using the well-founded ordering
method can also be expressed using intermittent asser-
tions instead. Therefore we can always use the inter-
mittent-assertion method in place of the established
techniques.

To characterize the conventional techniques pre-
cisely, we find it convenient to introduce some new
notations, which are described more fully in [13]. Let
x be a complete list of the variables of a given program,
and let x0 denote their initial values. Suppose that we
have designated a special set of labels L0, L1, ... , Lh,
where L0 and L h are the program's entrance (start) and
exit (finish), respectively. It is assumed that each of
the program's loops passes through at least one of the
designated labels. A path between two designated
labels is said to be basic if it does not pass through any
designated label (except at its endpoints). For each
basic path ct f rom label Li to Lj, we let t~(x) denote
the condition that must hold for control to pass from
Li along path a to L~, and we let g~(x) be the
transformation of the values of x effected in traversing
the path t~. Thus, if x = a at L~ and condition t~(a)
holds, then control will pass along path a , reaching Lj
with x = g~(a).

We now define the ordering that will enable us to
mimic conventional partial-correctness proofs by the
intermittent-assertion method. Suppose that the pro-
gram is intended to apply to inputs satisfying the input

165

specification P(x0). Then the ordering > induced by the
computation is defined as follows:

(a i) > (b j)

if control passes through Li with x = a and then
eventually passes through Lj with x = b for some
computat ion that initially satisfies the input specifica-
tion P(x0) and that ultimately terminates. This ordering
is well-founded because any infinite decreasing se-
quence in the ordering would correspond to an infinite
computat ion of the program, but we have only defined
the ordering for finite (terminating) computat ions.

Now let us see how the concepts we have intro-
duced allow us to rephrase an invariant-assertion proof
of the partial correctness of a program as an intermit-
tent-assertion proof.

3.1 Invariant-Assertion Method
Suppose that we have used the invariant-assertion

technique to prove that a program is partially correct
with respect to some input specification P(xo) and
output specification R(x0 x). Then we have a set of
invariant assertions Qo(xo x), Qx(xo x), ... , Qh(xo x)
corresponding to the designated labels L0, LI Lh,
for which we have proved that, for every xo and x,

(1) P(x0) ~ Q0(x0 x0)
(the input specification implies the initial invariant
assertion) and

(2) Oh(x0 x) ~ R(x0 x)
(the final invariant assertion implies the output
specification),

and, for each basic path a from Li to Lj, we have
proved the verification condition

(3~) Q,(x0 x) and t~(x) ~ Qj(xo g~(x))
(the invariant assertion before the path implies
the invariant assertion after).

Conditions (1) and (3~) establish that each Q~(x0 x) is
indeed an invariant assertion at L~; it has the property
that, each time we pass through L~, Q~(x0 x) will be
true for the current value of x. Condition (2) then
implies that, if the program terminates, the desired
output specification will be satisfied. Together , these
conditions establish the partial correctness of our pro-
gram.

From the given proof of the partial correctness of
the program, we can extract an intermittent-assertion
proof of the same result. The theorem that expresses
the partial correctness in the intermittent-assertion
notation is as follows:

THEOREM. I f sometime x = Xo and P(xo) at start
and the computation terminates,
then sometime R(xo x) at finish.

This theorem expresses the partial correctness of
the program because it includes the explicit assumption
that the particular computat ion being considered ter-
minates. Given the assertions Qi(x0 x) f rom the invar-

Communica t ions February 1978
of Volume 21
the A C M N u m b e r 2

iant-assertion proof, we can construct the following
lemma, which will enable us to prove the partial-
correctness theorem:

LEMr~A. For every i, 0 <_ i <-- h,
i f sometime x = a, P(x0) and Qi(x0 a) at Li

and the computation terminates,
then sometime R(x0 x) at finish.

To prove that the lemma implies the theorem,
assume

sometime x = x0 and P(x0) at start
and the computation terminates.

Our invariant-assertion proof includes a proof of (1),
that P(x0) ~ Q0(x0 Xo). That proof can be incorporated
here, to yield

sometime x = xo, P(x0) and Qo(xo x0) at L0
and the computation terminates

(because Lo is identical to start). Taking i = 0 in the
lemma, we may deduce

sometime R(x0 x) at finish,

which is the desired conclusion of the theorem.
To prove the lemma, we suppose

sometime x = a, P(x0) and Qi(x0 a) at Li
and the computation terminates,

for some i between 0 and h. The proof is by induction
on the ordering > induced by the computation. Thus
we assume inductively that the lemma holds whenever
x = a ' at Le, where (a i) > (a' i'). The proof
distinguishes between two cases.

If i = h, we have supposed that

sometime x = a and Qh(x0 a) at Lb.

Incorporating the proof of (2) and recalling that Lh is
finish, we have

sometime R(x0 x) at finish,

which is the desired conclusion of the lemma.
On the other hand, if 0 -< i < h, control must

follow some basic path a to a designated label Lj . For
this path, to(a) must be true, and x = g~(a) when
control reaches L~. Because Qi(x0 a) and to(a) are true,
we can reproduce the proof of (3o) to deduce that
Q~(xo g~(a)) is true. Thus

sometime x = go(a) and Q~(xo g~(a)) at Lj.

Because Xo has been assumed to satisfy the input
specification P(xo) and because the computation has
been assumed to terminate, we have that

(a i) > (go(a) j) ,

by the definition of the ordering induced by the com-
putation, and therefore that

sometime R(xo x) at finish,

by our induction hypothesis. This completes the proof
of the lemma.

166

We have thus constructed an intermittent-assertion
proof of the partial correctness of the program, assum-
ing that we were given an invariant-assertion proof. In
the next section we indicate how the same procedure
can be applied to subgoal-assertion proofs.

3.2. Subgoal-Assertion Method
The invariant-assertion approach always relates the

current values of the program variables to their initial
values. Another approach for proving partial correct-
ness, the subgoal-assertion method, relates these varia-
bles to their ultimate values when the program halts.
We first present the method and then show as before
that, if we have proved the partial correctness of a
program using this method, then we can rephrase the
same proof with intermittent assertions instead.

Suppose now that we have used the subgoal-asser-
tion method to prove that a program is partially correct
with respect to some input specification P(x0) and
output specification R(x0 x). Then we have a set of
subgoal assertions Q~(x xh), Q*(x xh) Q~(x Xh),
corresponding to the designated labels L0, LI , Lh,
with the intuitive meaning that Q*(x xh) must hold for
the current value of x as control passes through Li and
the ultimate value xh of x when the computation halts.
For these assertions we have proved that for every x0,
x, and xh:

(1") Q~(xh xh),
(the final subgoal assertion always holds for the
final value of x) and

(2*) P(x0) and Q~(x0 xh) ~ R(xo xh)
(the input specification and the initial subgoal
assertion imply the output: specification),

and, for each basic path a from Li to L~, we have
proved the verification condition

(3*) Q~(g~(x) xh) and t~(x) ~ Q*(x xh),
(the subgoal assertion after the path implies the
subgoal assertion before).

The subgoal-assertion method works backward
through the computation, whereas the invariant-asser-
tion method works forward. Condition (1") implies
that the final subgoal assertion always holds. Condi-
tions (3"~) say that, if the appropriate subgoal assertion
holds when control reaches the end of a path, then the
corresponding subgoal assertion holds when control is
at the beginning of the path. If the program does
terminate, conditions (1") and (3*) imply that each
Q*(x xh) is indeed a subgoal assertion at L~; it has the
property that, each time we pass through L~, Q*(x xh),
will be true for the current value of the program's
variables x and its ultimate value xh. Condition (2*)
then implies that, if the program terminates, the de-
sired output specification will be satisfied. Together ,
these conditions imply the partial correctness of the
given program.

To contrast the invariant-assertion and the subgoal-

Communications February 1978
of Volume 21
the ACM Number 2

assertion methods, let us consider a simple program to
compute the gcd:

input(x y)
start:
more: i f x = 0

then f inish: output(y)
else (x y) ,-- (rem(y x) x)

goto more

Here rem(y x) is the remainder of dividing y by x. The
notation (x y) ~ (rem(y x) x) means that the values of
x and y are simultaneously assigned to be rem(y x) and
x, respectively.

To show that this program is partially correct with
respect to the input specification

P(x0yo): Xo > 0 andy0 > 0

and the output specification

R(xo Yo Y): Y = gcd(xo Yo),

we can employ the invariant assertions

Q~tart(xoYoX y): xo > 0 andyo > 0
(i.e., P(xo Yo))

Qmore(xoyoxy):x >- 0 a n d y > 0 and
gcd(x y) = gcd(xo Yo)

Qeini~h (Xo Yo x y): y = gcd(xo Yo)
(i.e., R(xo Yo Y)).

On the other hand, to prove the same result by the
subgoal-assertion method, we can use the subgoal
assertions

Qstart(X y Yh): x --> 0 andy > 0 ~ Y h = gcd(x y),
Qmo~e(x y yh): x >- 0 andy > 0 ~ Yh = gcd(x y),
Q~,h(X y Yh): Y = yh.

The reader may observe that the invariant assertions
relate the program variables x and y with their initial
values Xo and Y0 and the subgoal assertions relate the
program variables with the ultimate value Yh of y.

Let us return to the general case. From a given
subgoal-assertion proof of the partial correctness of a
program, we can mechanically paraphrase the argu-
ment as an intermittent-assertion proof, just as we did
for the invariant-assertion method. The theorem that
expresses the partial correctness of the program is
again:

THEOREM. I f sometime x = xo and P(x0) at start
and the computation terminates,
then sometime R(x0 x) at finish.

The lemma that we shall use in proving the theo-
rem, however, is different from the lemma in the
invariant-assertion case:

LEMMA. For every i, 0 <_ i <-- h,
i f sometime x = a and P(xo) at Li

and the computation terminates,
then sometime Q*(a x) at finish.

To construct a proof that the lemma implies the
theorem, we take i = 0 in the Lemma, and employ in

167

the new proof the justification for Condition (2*) from
the given subgoal-assertion proof.

The proof of the lemma is constructed in a way
analogous to the earlier invariant-assertion case. Induc-
tion is again based on the ordering > induced by the
computation. When i = h we use the lbroof of Condi-
tion (1"), and if 0 -< i < h we use the inductive
hypothesis and the proof of (3*). []

The results of this section could actually have been
proved in another way: The subgoal-assertion method
is known (see [14]) to be equivalent in power to the
invariant-assertion method, in the sense that any proof
by either method can be transformed directly into a
proof by the other method. We also know that any
invariant-assertion proof can be transformed into an
intermittent-assertion proof of the same result, by the
process given in the preceeding section. Therefore ,
any subgoal-assertion proof can be transformed into
an intermittent-assertion proof, by first transforming it
into an invariant-assertion proof, and then into an
intermittent-assertion proof.

We have remarked that the invariant-assertion
method relates the current values of the program
variables to their initial values, whereas the subgoal-
assertion method relates the current values to their
final values. The intermittent-assertion technique can
imitate both of these methods because it can relate the
values of the program variables at any two stages in
the computation.

3.3. Well-Founded Ordering Method
The above constructions enabled us to mirror con-

ventional partial-correctness proofs using intermittent
assertions. In fact, we can also use the intermittent-
assertion method to express conventional termination
proofs that use the well-founded ordering approach.

Suppose that we have used the well-founded order-
ing approach to prove the termination of a given
program with respect to some input specification P(x0).
Then we have found a well-founded ordering > over a
set W, and, for some set of designated labels L0, L1,
. . . . L~, we have found a set of invariant assertions
Q0(xo x), Ql(x0 x) , Qh (xo x) and a set of expressions
E0(x0 x), El(X0 x) Eh(xo x) for which we have
proved the following conditions for every x0 and x :

(1) P(x0) ~ Q0(xo x0)
(the input specification implies the initial invariant
assertion),

(2~) Q,(x0 x) and t~(x) ~ Qj(x0 g~(x)) for every basic
path a from L~ to Lj
(the invariant assertion before the path implies
the invariant assertion after),

(3i) Qi(x0 x) ~ Ei(x0 x) E W for each label Li
(the value of the expression belongs to W when
control passes through Li), and

(4~) Qi(xo x) and to(x) ~ Ei(xo x) > E~(x0 g~(x)) for
every basic path a from L, to L~
(as control passes from L~ to Lj, the value of the
corresponding expression is reduced).

Communicat ions February 1978
of Volume 21
the A C M Number 2

The above conditions establish the termination of
the program. Conditions (1) and (2~) ensure that each
Qi(x0 x) is indeed an invariant assertion at Li: When-
ever control passes through L~, assertion Q~(x0 x) is
true for the current value of x. Condition (3) then tells
us that each time control passes through L~ the value
of the expression Ei(x0 x) belongs to W.

Now suppose that Conditions (1)-(4) are satisfied
but the program does not terminate for some input x0
satisfying the input specification P(x0). Control then
passes through an infinite sequence of designated la-
bels; the values of the corresponding expressions
E~(x0 x) constitute an infinite sequence of elements of
W. Condition (4) then implies that this is a decreasing
sequence under the well-founded ordering, thereby
contradicting the definition of a well-founded set.
Conditions (1)-(4) therefore suffice to establish the
termination of the given program.

It is our task to transform a proof by the above
method into an intermittent-assertion proof of the
termination of the program. The following theorem
expresses the desired property:

THEOREM. I f somet ime x = Xo and P(x0) at start
then somet ime at finish.

Recall that "somet ime at f i n i sh" expresses the ter-
mination of the program in the intermittent-assertion
notation. We can prove this theorem by establishing
the following lemma:

LEMMA. For every i, 0 <-- i <-- h,
i f somet ime x = a and Qi(x0 a) at L~,
then somet ime at finish.

To construct a proof that the lemma implies the
theorem, we take i to be 0 in the l emma and incorpo-
rate the given proof of Condition (1) into the intermit-
tent-assertion proof of the theorem.

To prove the lemma we use induction over the
same well-founded ordering ~ that we employed in
the given termination proof. Suppose that

sometime x = a and Qi(x0 a) at L~

for some designated label L~. We assume inductively
that the l emma holds whenever x = a ' and Qe(x0 a ') at
Li, , where Ei(x0 a) ~ Ee(x0 a ') . If i = h, termination
has already occurred. Otherwise control must follow
some path c~ from L, to L~, i.e., t~(a) is true. Thus

sometime x = g~(a) at Lj.

Because both Qi(x0 a) and t~(a) hold, the proof of
Condition (2) enables us to deduce Qj(x0 g~(a)). The
proof of Condition (3) can be incorporated to yield

E,(x0 a) E W and Ej(x0 g~(a)) E W ,

because both Q~(x0 a) and Q~(x0 g~(a)) are true. By
Condition (4) then, we have

E~(x0 a) > E~(x0 g~(a)).

We can now use the induction hypothesis, with i ' = j
and a ' = g~(a), yielding the desired conclusion

sometime at finish. []

In this section we have shown how proofs by the
conventional methods for establishing partial correct-
ness and termination of programs may be translated
into intermittent-assertion proofs of the same results.
The translation process is pure, ly mechanical and does
not increase the complexity of the proof. For this
reason we can conclude that in employing the intermit-
tent-assertion method we have not lost any of the
power of the existing methods.

Is it possible that a similar translation could be
performed in the other direction? For example ,
couldn't we devise a procedure for translating any
partial-correctness proof by the intermittent-assert ion
method into a conventional invariant-assertion proof
of comparable complexity? We believe not. We have
seen no invariant-assertion proof for the tips program
that does not require consideration of the sum of the
tips of all the elements in the stack. We have seen no
termination proof of the iterative Ackermann program
by the conventional method that employs such a simple
well-founded ordering as the intermittent-assert ion
proof. Without formulating a precise notion of the
"complexi ty" of a proof , we cannot argue rigorously
that the intermittent-assertion method is strictly more
powerful than the conventional methods, but we main-
tain that this is so.

4. Application: Validity of Transformations That
Eliminate Recursion

In discussing the tips program (Section 2.1), we
remarked that part of the difficulty in proving the
correctness of the program arose because the program
was developed by introducing a stack to remove the
recursion from the original definition. It has been
argued (e.g. [3, 6, 10]) that in such cases we should
first prove the correctness of the original recursive
program and then develop the more efficient iterative
version by applying one or more transformations to
the recursive one. These t ransformations are intended
to increase the efficiency of the program (at the possi-
ble expense of clarity) while still maintaining its cor-
rectness.

If we were applying this method in producing our
tips program, therefore, we would first prove the
correctness of the recursive version (a trivial task,
since that version is completely transparent) ; we would
then develop the iterative tips program by systemati-
cally transforming the recursive p r o g r a m - r e m o v i n g
its recursion and introducing a stack instead. Conse-
quently, the proof we presented in Section 2 would be
completely unnecessary, since the program would have
been produced by applying to a correct recursive
program a sequence of t ransformations that are guar-
anteed not to change that p rogram's specifications.

To realize such a plan, however , we must be certain
that the t ransformations we use are valid, i.e. that

168 Communications February 1978
of Volume 21
the ACM Number 2

they actually do produce a program equiva len t to the
original one. Given the same input, the two programs
must be guaranteed to return the same output. In
other words, we must be certain that bugs cannot be
introduced during the transformation process.

In this section we illustrate how intermittent asser-
tions can be employed to establish the validity of such
transformations. We present the intermittent-assertion
proof of the validity of a transformation that removes
a recursion by introducing a stack. This transformation
could have been used to produce our iterative tips
program from its recursive definition.

Suppose we have a recursive program of form

F (x) (= ifp(x)
then f (x)
else h(F(gl(x)) F(gz(x))).

(For simplicity, let us assume that p, f , gl, g2, and h
are defined for all arguments.) If we know that

(1) h(u h(v w)) = h(h(u v) w) for every u, v, and w
(h is associative) and

(2) h(e u) = u for every u (e is a left identity of h),

then we can transform our program into an equivalent
iterative program of the form

input(x)
start: stack ~-- (x)

z ~ - - - e

more : if stack = 0
then finish: output(z)
else if p(head(stack))

then z ~ h(z f(head(stack)))
stack ,--- tail(stack)
goto more

else first ~ head(stack)
stack ~-- gl(first) " [g~(first) . tail(stack)]
goto more

The validity of this transformation is expressed by the
following two theorems:

THEOREM 1. If s o m e t i m e x = a at start

and F(a) is de f i ned ,

then s o m e t i m e z = F(a) at f i n i sh .
THEOREM 2. I f s o m e t i m e x = a at start

and the iterative c o m p u t a t i o n
t ermina tes ,

then F(a) is de f ined .

Theorem 1 contains the condition that F(a) is
defined (that the recursive computation of F with input
a will terminate). This condition is necessary for oth-
erwise the iterative program will not terminate, and
therefore control will never reach f in i sh at all. If we
succeed in proving Theorem 1, we shall have estab-
lished that the iterative program terminates whenever
the original recursive program does and returns the
same output; in other words, the iterative program
computes an ex tens ion of the function computed by
the recursive program rather than the exact same
function. Theorem 2 shows that the recursive program
halts whenever the iterative program does. Together,
Theorems 1 and 2 imply that the recursive and iterative

169

programs are equivalent. The proof of Theorem 1 is
analogous to the proof of the total correctness of the
tips program; it requires the following lemma:

LEMMA 1. I f s o m e t i m e z = c

and s tack = a ' s at m o r e

and F(a) is d e f i n e d ,

then s o m e t i m e z = h(c F(a))
and s tack = s at m o r e .

To show that the lemma implies Theorem 1, assume

sometime x = a at start

and that F(a) is defined. Then immediately control
passes to m o r e ; so

sometime z = e and s tack = (a) = a. () at more .

By the lemma (taking c to be e and s to be ()), we have

sometime z = h(e F(a)) and s tack = () at more .

But h(e F(a)) = F(a) by Property (2), that e is a left
identity of h. Because s tack is (), control passes to
f i n i sh , and we deduce

sometime z = F(a) at f i n i sh ,

which is the desired conclusion of the theorem.
To prove the lemma, suppose

sometime z = c and s tack = a .s at m o r e ,

where F(a) is defined. The proof employs complete
induction on a over the order ing > i nduced by the

recursive c o m p u t a t i o n . This is the ordering such that

d > d ' ,

where F(d ') is called recursively during the computa-
tion of F(d) and where the computation of F(d) ter-
minates. In particular, if F(d) is defined, d > gl (d) and
d > g2(d). This ordering > is well-founded because an
infinite decreasing sequence in the ordering would
correspond to an infinite, nonterminating computation
of the recursive program, but the ordering has only
been defined for finite (terminating) computations.

We shall assume inductively that the lemma holds
whenever z = c ' and s tack = a ' . s ' , where a > a ' in
the ordering > induced by the recursive computation,
and show that it holds when z = c and s tack = a ' s as
well. We distinguish between two cases, depending on
the truth of p (a).

Case p(a) is true. Then F(a) = f (a) , by the recursive
definition of F. Because a is at the head of the s t a c k ,

the s tack is not empty and p (h e a d (s t a c k)) is true;
therefore we follow the t h e n branch of the program; so

sometime z = h(c f (a)) and s tack = s at m o r e .

But f (a) = F(a); so we have

sometime z = h(c F(a)) and s tack = s at m o r e ,

which is the desired conclusion.
Case p (a) is false. Here F(a) = h(F(gl(a)) F(g2(a))),

by the recursive definition of F. Note that F(a) is
defined; therefore F(gl(a)) and F(g2(a)) are also de-

Communications February 1978
of Volume 21
the ACM Number 2

fined. Because stack is not empty and p(head(stack)) is
false, control follows the else branch of the loop body;
s o

sometime z = c and stack = gl(a)" [g~(a).s] at more.

Recall that a > gl(a) because we have assumed that
F(a) is defined; therefore we can apply the induction
hypothesis (taking c ' to be c, a ' to be g~(a), and s ' to
be g~(a)'s) to obtain

sometime z = h(c F(gl(a)))
and stack = gz(a) .s at more.

Because a > g2(a), we can apply the induction hypoth-
esis a second time (taking c ' to be h(c F(gl(a))), a ' to
be g2(a), and s ' = s). We derive

sometime z = h(h(c F(gl(a))) F(gz(a)))
and stack = s at more.

By the associativity of h (Property (1)) and the recur-
sive definition of F, we have

h(h(c F(g~(a))) F(g~(a))) =
h(c h(F(g~(a)) F(gz(a)))) = h(c F(a)).

Therefore we can conclude that

sometime z = h(c F(a)) and stack = s at more ,

completing the proof of the lemma. []
So far we have only established Theorem 1, that

the function computed by the iterative program is an
extension of the function computed by the recursive
program. We still need to prove Theorem 2, that, if
the iterative program terminates, then the recursive
program also terminates. This proof depends on an-
other lemma.

LEMMA 2. I f somet ime z = c
and stack = a . s at more
and the iterative computat ion
terminates,

then F(a) is defined.
L e m m a 2 implies Theorem 2 directly because the

stack is initialized to (a) = a . ().
The proof of the lemma employs induction over

the ordering > induced by the iterative computat ion.
In this ordering, (cl sl) > (c2 s2), where c~ and cz are
successive values of the variable z at more and s~ and
s2 are successive values of the stack at more during a
terminating computat ion of the iterative program.

To prove the lemma, suppose that

sometime z = c and stack = a . s at more

and that the iterative computat ion terminates. We
assume inductively that the l emma holds whenever
z = c ' and stack = a ' . s ' , where (c a . s) > (c' a ' . s ') in
the ordering induced by the computat ion, and show
that F(a) is then defined. We distinguish between two
cases.

Case p(a) is true. Here F(a) = f (a) by the recursive
program, and therefore F(a) is defined.

1 7 0

Case p(a) is false. Here F(a) = h(F(gl(a)) F(g2(a))),
by the recursive program. Since', stack is not empty and
p(head(stack)) is false, the iterative computat ion fol-
lows the else branch; so

sometime z = c and stack = gl(a). [g2(a)'s] at more.

Because the computat ion was assumed to terminate ,
we have that

(c a .s) > (c gl(a)" [g2(a)'s]),

and therefore, by our induction hypothesis, that F(gl(a))
is defined.

By L e m m a 1, we have that

sometime z = h(c F(gl(a)))
and stack = gz(a) .s at more.

Again, by the induction hypothesis, we have that
F(g2(a)) is defined. Because both F(gl(a)) and F(g2(a))
are defined and F(a) = h(F(gl(a)) F(g2(a))), we can
conclude that F(a) is defined. []

We have just shown the validity of the t ransforma-
tion that was actually used to produce the iterative tips
program in Section 2.1. As in that section, we could
have used the conventional invariant-assertion tech-
nique in the proof of Theorem 1. However , although
we could employ the standard ~ notation to denote
repeated applications of the + operat ion in the tips
invariant assertion, we would have had to invent a
new notation to denote repeated application of the
function h in the invariant assertion for the iterative
program here.

In the next section, we discuss an entirely different
application of the intermittent-assert ion method.

5. Application: Correctness of Continuously
Operating Programs

Conventionally, in proving the correctness of a
program, we describe its expected behavior in terms of
an output specification, which is intended to hold when
the program terminates. Some programs, such as op-
erating systems, airline-reservation systems, and man-
agement information systems, however , are never ex-
pected to terminate. Such programs will be said to be
continuously operating (see, for example , [5]). The
correctness of continuously operat ing programs there-
fore cannot be expressed by output specifications, but
rather by their intended behavior while running.

Fur thermore , we conventionally describe the inter-
nal workings of a program with an invariant assertion,
which is intended to hold every time control passes
through the corresponding point. The description of
the workings of a continuously operating program,
however, often involves a relationship that some event
A is inevitably followed by some other event B. Such
a relationship connects two different states of the

Communications February 1978
of Volume 21
the ACM Number 2

program and, generally, cannot be phrased as an
invariant assertion.

In other words, the standard tools for proving the
correctness of terminating programs, input-output
specifications and invariant assertions, are not appro-
priate for continuously operating programs. The inter-
mittent-assertion method provides a natural comple-
ment here, both as a means for specifying the internal
and external behavior of these programs, and as a
technique for proving the specifications correct.

We use one very simple example, an imaginary
sequential operating system, to illustrate this point:

more: read(requests)
setup: if requests = ()

then goto more
else (job requests) ~ (head(requests) tail(requests))

execute: process(job)
goto setup.

At each iteration this program reads a list, requests, of
jobs to be processed. If requests is empty, the program
will read a new list and will repeat this operation
indefinitely until a nonempty request list is read. The
system will then process the jobs one by one, when
they are all processed, the system will again at tempt to
read a request list.

What we wish to establish about this program is
that, if a job] is read into the request list, it will
eventually be processed. Although this claim is not
representable as an input-output specification, it is
directly expressed in the following:

THEOREM. I f somet ime] E requests at setup,
then somet ime job =] at execute.

Here] ~ requests means that] belongs to the list of
current requests.

To prove the theorem, assume that

sometime] E requests at setup.

Then requests is not empty and is of the form

where a and fl are the sublists of jobs occurring before
and after/ ' , respectively, in the request list. Our proof
will be by complete induction on the structure of a:
We assume the theorem holds whenever requests is of
form

a ' j~ ,

for any sublist c~' of ct. The proof distinguishes between
two cases.

Case a = (). T h e n j = head(requests) . Since requests
¢ (), we reach execute with job = head(requests) =],
satisfying the conclusion of the theorem.

Case a :~ (). Then c~ = head(a) . ta i l (a) . Because
again requests ¢ (), we process job = head(or) and
return to setup with requests reset to tail(or) j ft. Since
tail(c 0 is a sublist of a , we can conclude from our
inductive assumption that

sometime job = j at execute,

as we had hoped.
This program is very simple, but it may serve to

suggest how the intermittent-assert ion method can be
applied to more realistic examples.

Note that, when we make a s ta tement of form

if sometime P at L1,
then sometime Q at L2,

we do not necessarily imply that condition Q is satisfied
at I-.2 after condition P is satisfied at L1; in fact,
condition Q could hold before condition P. Thus, in
the above example, we should be perfectly content if
some especially fast operating system were able to
process the job before it was submitted. In fact, the
proof techniques that we have used in this paper will
only allow us to prove an implication of the above
form if Q holds at L2 after P holds at LI. Additional
techniques would be necessary if we wanted to prove
such an implication if Q actually holds before P.

Throughout this paper, in proving an implication
of the above form, we have tacitly assumed that
conditions P and Q are satisfied at different stages of
the same computat ion. It is possible to relax this
assumption and relate different computat ions by ex-
tending our notation appropriately. We believe one
could then apply the intermittent-assertion method to
prove propert ies of nondeterministic and concurrent
programs as well.

6. Conc lus ions

The intermittent-assertion method not only serves
as a valuable tool, but also provides a general frame-
work encompassing a wide variety of techniques for
the logical analysis of programs. Diverse methods for
establishing partial correctness, termination, and
equivalence fit easily within this f ramework. Further-
more, some proofs, naturally expressed with intermit-
tent assertions, are not as easily conveyed by the more
conventional methods.

It has yet to be determined which phases of the
intermittent-assertion proof process will be amenable
to implementat ion in verification systems. If the lem-
mas and the well-founded orderings for the induction
are provided by the programmer , constructing the
remainder of the proof appears to be fairly mechanical.
On the other hand, to find the appropriate lemmas
and the corresponding orderings may require some
ingenuity. We believe that the intermittent-assertion
method will have practical impact because it allows us
to incorporate our intuitive understanding about the
way a program works directly into a proof of its
correctness.

Acknowledgmen t s . We would like to thank Rod
Burstall and Nachum Dershowitz for many helpful

171 Communications February 1978
of Volume 21
the ACM Number 2

discussions related to this work. We would also like to
thank Ed Ashcroft, Edsger Dijkstra, Jim King and
Wolfgang Polak for their careful critical reading of the
manuscript.

Received June 1976; revised May 1977

References
1. Ashcroft, E.A., and Wadge, W.W. Intermittent-assertion
proofs in Lucid. Information Processing 77, North-Holland Pub.
Co., Amsterdam, 1977, pp. 723-726.
2. Burstall, R.M. Program proving as hand simulation with a little
induction. Information Processing 74, North-Holland Pub. Co.,
Amsterdam, 1974, pp. 308-312.
3. Burstall, R.M., and Darlington, J. A transformation system for
developing recursive programs. J. ACM, 24, 1 (Jan. 1977), 44-67.
4. Floyd, R.W. Assigning meaning to programs. Proc. Symp. in
Applied Math. Vol. 19, J.T. Schwartz, Ed., Amer. Math. Soc.,
Providence, R.I., 1967, pp. 19-32.
5. Francez, N., and Pnueli, A. A proof method for cyclic
programs. To appear in Acta Informatica.
6. Gerhart, S.L. Correctness-preserving program transformations.
Second Symp. on Principles of Programming Languages, Palo Alto,
Calif., Jan. 1975, pp. 54-65.
7. Hoare, C.A.R. An axiomatic basis of computer programming.
Comm. ACM 12, 10 (Oct. 1969), 576-580,583.
8. Katz, S.M., and Manna, Z. A closer look at termination. Acta
Informatica 5 (Dec. 1975), 333-352.
9. Knuth, D.E. The Art of Computer Programming, Vol. 1"
Fundamental Algorithms. Addison-Wesley Reading, Mass., 1968.
10. Knuth, D.E. Structured programming with goto statements.
Computing Surveys 6, 4 (Dec. 1974), 261-301.
11. London, R.L. A view of program verification. Proc. Conf. on
Reliable Software, Los Angeles, Calif., April 1975, 534-545.
12. Manna, Z. Mathematical theory of partial correctness. J.
Comptr. Syst. Sci. 5, 3 (June 1971), 239-253.
13. Manna, Z. Mathematical Theory of Computation. McGraw-
Hill, New York, 1974.
14. Morris, J.H., and Wegbreit, B. Subgoal induction. Comm.
ACM 20, 4 (April 1977), 209-222.
15. Pratt, V.R. Semantical considerations on Floyd-Hoare logic.
Proc. 17th Symp. on Foundations of Comptr. Sci., Houston, Tex.,
Oct. 1976, pp. 109-121.
16. Schwarz, J. Event-based reasoning-a system for proving
correct termination of programs. Proc. Third Int. Colloquium on
Automata, Languages and Programming, Edinburgh, Scotland, July
1976, pp. 131-146.
17. Topor, R.W. A simple proof of the Schorr-Waite garbage
collection algorithm. To appear in Acta Informatica.
18. Wang, A. An axiomatic basis for proving total correctness of
goto-programs. BIT 16 (1976), 88-102.

Graphics and
Image Processing

James D. Foley
Editor

Some New Methods of
.Detecting Step Edges
in Digital Pictures
Bruce J. Schachter and Azriel Rosenfeld
University of Maryland

This note describes two operators that respond to
step edges, but not to ramps. The f'nrst is similar to the
digital Laplacian, but uses the max, rather than the
sum, of the x and y second differences. The second
uses the difference between the mean and median gray
levels in a neighborhood. The outputs obtained from
these operators applied to a set of test pictures are
compared with each other and with the standard
digital Laplacian and gradient. A third operator,
which uses the distance between the center and
centroid of a neighborhood as an edge value, is also
briefly considered; it turns out to be equivalent to one
of the standard digital approximations to the gradient.

Key Words and Phrases: image processing, pattern
recognition, edge detection

CR Category: 3.63

172

General permission to make fair use in teaching or research of
all or part of this material is granted to individual readers and to
nonprofit libraries acting for them provided that ACM's copyright
notice is given and that reference is made to the publication, to its
date of issue, and to the fact that reprinting privileges were granted
by permission of the Association for Computing Machinery. To
otherwise reprint a figure, table, other substantial excerpt, or the
entire work requires specific permission as does republication, or
systematic or multiple reproduction.

The support of the Directorate of Mathematical and Information
Sciences, U.S. Air Force Office of Scientific Research, under Con-
tract F44620-72C-0062, is gratefully acknowledged, as is the help
of Shelly Rowe in preparing this paper. Authors' address: Computer
Science Center, University of Maryland, College Park, MD 20712.
Copyright © 1978, ACM
© 1978 ACM 0001-0782/78/0200-0172 $00.75

Communications February 1978
of Volume 21
the ACM Number 2

