




 





Amoebae 



Fission 





Colony Dies Out 

•depth(o) = 0 

•depth( a1 ... an ) = 1+max{depth{ai}} 

• { (depth(a),|a|) : subcolony a } 

•outer fission: depth decreases 

• fusion: size decreases 



Colony Dies Out 

•d(a) = depth(a) 

•#d(a) = number in a of depth d 

• { (d(a), #d(a)(a), #d(a)-1(a),...) : colony a } 

• fission: depth decreases 

• fusion: size decreases 



Big Picture 

•Programs are state-transition systems 

•Choose a well-founded order on states 

•Show that transitions are decreases 



Real Picture 

•Programs are state-transition systems 

•Choose a function for “ranking” states 

•Choose a well-founded order on ranks 

•Show that transitions always       

decrease rank 



Imaginary Picture 

•Programs are state-transition systems 

•Choose a function for “ranking” states 

•Choose a well-founded order on ranks 

•Show that transitions eventually 

decrease rank 



Nested Loops 
•r := 1 
•u := 1 
• loop     v := u 

•until r≥n 
•s := 1 
•loop   u := u+v 

•s := s+1 
•while s≤r 
•repeat  

•r := r+1 
•repeat 

 

ω2 (n - r) + ω(r - s) + k 

 

 



Per Iteration 
•r := 1 
•u := 1 
• loop     v := u 

•until r≥n 
•s := 1 
•loop   u := u+v 

•s := s+1 
•while s≤r 
•repeat  

•r := r+1 
•repeat 

 

ω(n-r)+r+1-s 

 

 



Lexicographic 

•r := 1 
•u := 1 
• loop     v := u 

•until r≥n 
•s := 1 
•loop   u := u+v 

•s := s+1 
•while s≤r 
•repeat  

•r := r+1 
•repeat 

 

(n-r,r+1-s) 

 

 



Invariants 
•r := 1 
•u := 1 
• loop     v := u 

•until r≥n 
•s := 1 
•loop   u := u+v 

•s := s+1 
•while s≤r 
•repeat  

•r := r+1 
•repeat 

 

1≤r≤n 

 

 

 

1≤s≤r+1 



Well-Founded 

Orderings 

•No infinite descending sequences 

•x1 > x2 > x3 > ... 



Well-Founded 

Induction 

•∀x∈X. [∀y<x. P(y)] ⇒ P(x) 

•∀x∈X. P(x) 

Why? 

> is a w.f.o. of X 



Well-Founded 

Induction 

• ∀x∈X. [∀y<x. P(y)] ⇒ P(x) 

• ∀x∈X. P(x) 

We’ll prove that if < if w.f.o. over X, then the following holds: 

In other words, if induction scheme (*) doesn’t hold – then < isn’t a 

w.f.o. over X (meaning that correctness of induction scheme implies 

w.f.o.). 

Proof: Assume that (*) isn’t true, meaning that line 1 holds, but there is 

an element a1 in X for which P(a1) = F. Since line 1 holds,  

there is a2 < a1, for which P(a2) = F (as otherwise P(a1) would be T). 

For same reason, there is a3 < a2 < a1 , for which P(a3) = F and so on. 

So, we got an infinite chain in X = < isn’t w.f.o.       QED 

 

(That’s why the proof of the base case is so vital in inductive process!) 

(*) 



David Gries 

•Under the reasonable assumption that 

non-determinism is bounded, the two 

methods are equivalent…. In this 

situation, we prefer using strong 

termination. 





 



Contra-Gries 

•To prove terminating with a natural 

(strong) ranking function requires        -

induction. 
0



All-Purpose Ranks 

2 2 2 2

3 3 4 5

0 1 2...

1 2 ...

2 2 1 ... 3 ... 4 ...

1 ... 1 ...

1 ... ... ...

... ... ...
   

  

   

     

   

  

 

     

       

         

       

     



Ordinals 
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Transition System 

State 

Transition 



Discrete Transition System 

Q0 

QF 

Q 



Well-Founded 

Method 

•States Q 

•Algorithm R ⊆ QxQ 

•Well-founded order > on Q 

•R ⊆ > 



All-Purpose Ranking 

•r : Q → Ord 

•r(x) = sup { r(y)+1 | x → y } 



Computation 



Abstraction 



Frank Ramsey 



Frank Ramsey  

(1903-1930) 

Frank Ramsey was British mathematician, philosopher and economist. 

 

He had developed the “Ramsey theory”, a branch of mathematics 

that studies the conditions under which order must appear. Problems 

in “Ramsey theory” typically ask a question of the form: "how many 

elements of some structure must there be to guarantee that a 

particular property will hold?" 



Ramsey’s Theorem 

(finite case) 
Before presenting Ramsey’s Theorem for infinite graphs, which we 

would use later in proving termination, in different schemes, we start 

by presenting the theorem for finite graphs. 

 

 

Def1: Suppose G = (V, E) is an undirected simple graph.  

A c-coloring (c is a natural number) of the edges of G (not necessarily 

legal) is a function f: E --> {1, … , c}. 

 

Now lets define the Ramsey Numbers R(k, s): 

R(k,s) is the smallest number n, s.t. any 2-coloring (say in RED and 

BLUE) of         (the complete graph on n vertices) either contains a 

monochromatic RED clique of size k, or a monochromatic BLUE clique 

of size s, as a sub-graph. 

nK



Ramsey’s Theorem 

(finite case) 
Trivial Ramsey Numbers are R(1,k) = 1 (1 vertex is a 1-clique) and R(2,k) = k 

(as (k-1)-clique can be all RED). 

It’s also trivial that R(k,s) = R(s,k) (just flip the colors). 

Ramsey Number are very difficult to calculate precicely, and we know very 

few of them. 

Ramsey’s Theorem states that for every k,s , R(k,s) is finite.  

The theorem is easily proven by induction, after proving the following 

lemma: R(k,s) ≤ R(k−1,s) + R(k,s−1) 

 

The theorem is also generalized for any number of colors (and not just 2) 

and also for hyper graphs.  

 



Ramsey’s Theorem 

(finite case) 
“Social example”: 

A nice “social fact”, follows from Ramsey’s Theorem, is that any group 

of 6 persons, either has 3 mutually friends, or 3 mutually strangers. 

Proof: Denote persons by p1, … , p6 – vertices of a graph. We’ll 

connect 2 friends with BLUE edge, and 2 strangers with RED. p1 has 

either at least 3 BLUE or 3 RED edges from him (trivial). W.l.o.g. they’ll 

BLUE, and to p2, p3, p4. If either of p2, p3, p4 are friends, then we have 

a BLUE triangle. Otherwise, they’re all strangers – and we have a RED 

triangle.  

 



Ramsey’s Theorem 

(finite case) 

p1 

p2 

p3 

p4 

p5 

p6 



Ramsey’s Theorem 

(infinite case) 
Natural generalization of Ramsey’s Theorem for infinite graphs (we’ll deal 

just with graphs where |V| =      ), would be the following: 

 

If we have an undirected simple infinite complete graph, which edges are 

colored by finite number of colors (mostly we’ll use 2), then this graph has a 

monochromatic infinite clique as a sub-graph. 

 

Proof: For simplicity, the set of vertices of our graph would be the natural 

numbers. Also, we will denote the complete graph on   

An infinite clique in this graph will be denoted with  

 

0 .NV N as K

.K



Ramsey’s Theorem 

(infinite case) 
Proof cont.: Suppose we have the edges of our       colored in two colors 

{RED, BLUE} (the proof works for any finite number of colors). Let 

be an arbitrary vertex. Since v0 has an infinite number of edges incident on 

it, and each edge has a color drawn from a finite set, some color, c0 (RED or 

BLUE), is the color of infinitely many of these edges. 

Let V1 be the set of neighbors of v0, to which it connected with an edge 

colored in c0. So,                                                 V1 is infinite, by definition. 

 

0 0v V

NK

1 0 0{ | ({ , }) }.V x COL v x c 

V0 

v0 

V1 

c0 = BLUE 



Ramsey’s Theorem 

(infinite case) 

Proof cont.: Clearly,                (v0 is in V0 but not in V1). 

As V1 is infinite, we make the same construction on it. Let  

be an arbitrary vertex. From v1 there is an infinite number of edges of same 

color, c1, to vertices in V1. Then, we define the infinite set V2 as previously: 

                                                                  And also,   

That way, we construct the infinite sequences: 

 

2 1 1 1{ | ({ , }) }.V x COL v x c and x V  

1 0V V

1 1v V

0 0 0{ } ,{ } ,{ } .i i i i i iv c V  

  

2 1.V V

V0 
v0 

c0 
V1 

v1 

c1 
V2 … Vi 

vi 

ci 1iV 
… 



Ramsey’s Theorem 

(infinite case) 
Proof cont.: For all i, we get: 

 

 

 

We claim that for any i, j, s.t. i < j, the edge {vi, vj} is colored ci. The proof is 

simple: from (1)              , from (2)                                   and so                . 

Therefore, from (3), the edge {vi, vj} is colored ci. Now, as we have only 2 

colors, one of them occurs infinitely many times among c0, c1,… W.l.o.g. 

it’ll be BLUE. Now, lets define the set:                                    , and we’ll show 

that T is a monochromatic infinite clique. Firstly, T is infinite, from previous 

explanation about the colors.  

 

 

 

 

1

1

1.

2.

3. { , } is colored ci for every x V

i i

i i
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









j jv V 1 1...j j iV V V    1j iv V 

{ | }i iT v c BLUE 



Ramsey’s Theorem 

(infinite case) 

Proof cont.: Secondly, for all                  (i < j), edge {vi, vj} is colored  

ci = BLUE, from previous claim. So, any edge between vertices of T is 

colored in BLUE  T is an infinite monochromatic clique, and this finishes 

the proof.  

 

 

 

,i jv v T



Infinite Ramsey’s Theorem 



Infinite Ramsey’s Theorem 



Infinite Ramsey’s Theorem 



Closure 



Proving Termination with 

Ramsey’s Theorem 

The infinite version of Ramsey’s Theorem is one of the tools of proving 

termination of programs (together with well-founded orderings).  

We’ll show one example of that. 

Before presenting our example program, we shell define the following: 

Def.: if A is a set, then input(A) is user’s input to program, that is taken from 

set A. For example: x := input(     ), means that x gets a positive integer 

number from user’s input. 

 

 

 

N



Proving Termination with 

Ramsey’s Theorem 

Now, lets prove the termination of the following program, using Ramsey’s 

Theorem: 

 

 

 

 

(x,y,z) = (input(   ), input(   ), input(   )) 

 

while (x>0 and y>0 and z>0) { 

 

 c = input({1, 2}) 

 if (c==1) then  

  (x,y) = (x-1, input({y+1, y+2, …})) 

 else  

  (y,z) = (y-1, input({z+1, z+2, …})) 

 

} 

N N N

* The program is taken from notes of William Gasarch, University of Maryland. 



Proving Termination with 

Ramsey’s Theorem 

If this program doesn’t terminate, then there is infinite sequence 

(x1, y1, z1), (x2, y2, z2), … , representing the state of the variables. 

Lets look at the sub-sequence (xi, yi, zi), … ,(xj, yj, zj). 

1. If c is ever 1, then xi > xj. 

2. If c is never 1, then yi > yj. 

So, for all i < j, either xi > xj or yi > yj.  

With this fact, and with the contra-assumption that the program doesn’t 

terminate, we’ll use Ramsey’s Theorem to reach a contradiction. 

Proof: We start by defining an infinite complete graph, whose vertices 

would be the triplets of variables’ state (xi, yi, zi). 

 



Proving Termination with 

Ramsey’s Theorem 

Proof cont.: We then define a 2-coloring of edges of this graph: 

COL(i, j) = if (xi > xj) then output BLUE  

         else output RED  // yi > yj      

From previous observation, the function is well-defined. 

From Ramsey’s Theorem, there is an infinite monochromatic clique in this 

graph. Lets denote its vertices’ indexes by:                           

If this clique color is BLUE, then 

If this clique color is RED, then 

In either case, we’ll eventually have a variable (x or y) ≤ 0 and hence 

program must terminate (while cond. is false). This is due to the fact that 

the variables get only integer values (and natural numbers are well-

ordered).  Contradiction  The program terminates. 

 

 

1 2 3 ...i i i  

1 2 3
...i i iX X X  

1 2 3
...i i iY Y Y  



Disjunctive Orders 

•States Q 

•Algorithm R ⊆ QxQ 

•Transitive closure R+ 

•Well-founded orders > and ⊐ on Q 

•R+ ⊆ > ∪ ⊐ 



Ranking Method 

•States Q 

•Algorithm R ⊆ QxQ 

•Well-founded order ≻ on W 

•Ranking function r : Q → W 

•Define X > Y if r(X) ≻ r(Y) 

•R ⊆ > 



Invariants 

•States Q 

•Algorithm R ⊆ QxQ 

•Well-founded order ≻ on W 

•Ranking function r : Q → W 

•Define X > Y if r(X) ≻ r(Y) 

•R ⊆ > 



Algorithmic System 

State 

Transition 

Program 



Classical Algorithms 

•Every algorithm can be expressed 

precisely as a set of conditional 

assignments, executed in parallel 

repeatedly. 

•if c then f(s1,...,sn) := t 

•if c then f(s1,...,sn) := t 

•if c then f(s1,...,sn) := t 



Practical Method 

•States Q 

•Algorithm R ⊆ QxQ 

•Well-founded order ≻ on W 

•Ranking function r : Q → W 

•Define X > Y if r(X) ≻ r(Y) 

•R ⊆ > 



 

 



















Enough? 



Enough? 



Enough? 



Jumping 



Jumping 





Jumping 



Jumping 



Jumping 


