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Colony Dies Out

® depth(o) =0
® depth(@ @ = 1+max{depth{ai}}
® { (depth(a),al) : subcolony a }

® outer fission: depth decreases

® fusion: size decreases




Colony Dies Out

® d(a) = depth(a)

® #4(a) = number in a of depth d

® { (d(a), #d@(a), #d@-1(a),...) : colony a}
® fission: depth decreases

® fusion: size decreases
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Big Picture

® Programs are state-transition systems
® Choose a well-founded order on states

® Show that transitions are decreases

e
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Real Picture

® Programs are state-transition systems
® Choose a function for “ranking” states
® Choose a well-founded order on ranks

® Show that transitions always
decrease rank




Imaginary Picture

® Programs are state-transition systems
® Choose a function for “ranking” states
® Choose a well-founded order on ranks

® Show that transitions eventually
decrease rank
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Nested Loops

=1
®u.=1
®loop vi=u w(n-r)+w(r-s)+Kk
® until r=n
®s =1
®oop u:=u+tv
®s:=s+]
® while s<r
® repeat
®r.=r+]

® repeat




Per Iteration

®r.=1
®u:=1
® =
. intilizn WL
®s:=1
®oop u:=u+tv
®s:=s+l
® while s<r
® repeat
®r:=r+]1

® repeat :




Lexicographic

=1
® =1
® |00 Vi=Uu
p. until r=n (n-rr+1-s)
®s =1
®oop u:=u+tv
®s:=s+]
® while s<r
® repeat
®r . =r+]

® repeat A




Invariants

o e |
®u:=1
®loop v:i=u 1<r<n
® until r=n
®s:.=1
®oop u:=u+tv
®s:.=s+l 1<s<r+1
® while s<r
® repeat
®r:.=r+l
® repeat

e
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Well-Founded
Orderings

® No infinite descending sequences

®v]1 >x2>x3> ...




Well-Founded
Induction

> |Ss a W.f.0. of X

® vxeX. [vy<x. P(y)] = P(x)
® vxeX. P(x)

Why?




Well-Founded
Induction

We’'ll prove that if < if w.f.0. over X, then the following holds:

® vxeX. [Vy<x. P(y)] = P(x) %
® vxeX. P(x) ( )

In other words, if induction scheme (*) doesn’t hold — then <isn’t a
w.f.0. over X (meaning that correctness of induction scheme implies
w.f.0.).

Proof: Assume that (*) isn’t true, meaning that line 1 holds, but there is
an element al in X for which P(al) = F. Since line 1 holds,

there is a2 < al, for which P(a2) = F (as otherwise P(al) would be T).
For same reason, thereis a3 <a2<al, for which P(a3) = F and so on.
So, we got an infinite chain in X =<isn’t w.f.0. QED

e

(That’s why the proof of the base case is so vital in inductive prc_)cess!)i '



David Gries

® Under the reasonable assumption that
non-determinism is bounded, the two
methods are equivalent.... In this
situation, we prefer using strong
termination.




n =
while ©+ > 0 do

n:=n-+1

y:=0; while y* +2y < do y :=y+ 1
if =y~

then » := y — 1

else s := ()

r:=0; while r* +2r <z —y? dor :=r+1
while x > y* + r* do
y = 0: while y* +2y <z do y := y + 1
s=s5+(s+y" +y—x)°

T i=x — y*
r:=0:whiler“ 4+ 2r <z —9y° dor:=r+1
fori:=1 ton doxr:=7r°+r—1

while s > (0 do
r:=10:whiler* +2r <s dor:=r+1
r:=r+(z+7ri+7r—5)°

§ = § — <






Contra-Gries

® To prove terminating with a natural
(Strong) ranking tunction requires ., -
Induction.




All-Purpose Ranks

O0<l1<?2...
<ow<owt+l<o+?2<..
<wl2<wl2+1l<..<w3<..<wld<...

<o < +l<. . <dro<o’+w+l<..

<o <+l<.<ot<. <w <..

)

<’ <. <w” <.<wn” <..
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Ordinals
0,12,...
w,0+1o+2,...

2,200 +1, ..., 3w, ...,

W, ... +20+3,... @, ...

0 w®

g Ey+1,.., 26, + 0" + 2w+ 3, ...,

... c
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Transition System
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Discrete Transition System

Qo
5 K

8
Zi
Ze

O

&—O
-
cos —(




Well-Founded
Method

® States Q
® Algorithm R € QxQ
® Well-founded order > on Q

®RC>




All-Purpose Ranking

®r:-Q— Ord
®r(x)=sup{ry)+tl|x—y}




Computation

" Y 7 6 XX A Y A YXXX




Abstraction
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Frank Ramsey




Frank Ramsey
(1903-1930)

Frank Ramsey was British mathematician, philosopher and economist.

He had developed the “Ramsey theory”, a branch of mathematics
that studies the conditions under which order must appear. Problems
In “Ramsey theory” typically ask a question of the form: "how many
elements of some structure must there be to guarantee that a

particular property will hold?"

il



Ramsey's Theorem
(finite case)

Before presenting Ramsey’s Theorem for infinite graphs, which we
would use later in proving termination, in different schemes, we start
by presenting the theorem for finite graphs.

Defl: Suppose G = (V, E) is an undirected simple graph.

A c-coloring (c Is a natural number) of the edges of G (not necessarily
legal) is a function f: E--> {1, ..., c}.

Now lets define the Ramsey Numbers R(k, s):

R(k,s) is the smallest number n, s.t. any 2-coloring (say in RED and
BLUE) of K, (the complete graph on n vertices) either contains a '
monochromatic RED clique of size k, or a monochromatic BLUE clique .

of size s, as a sub-graph. '




Ramsey's Theorem
(finite case)

Trivial Ramsey Numbers are R(1,k) =1 (1 vertex is a 1-cligue) and R(2,k) = k
(as (k-1)-clique can be all RED).

It’s also trivial that R(k,s) = R(s,k) (just flip the colors).

Ramsey Number are very difficult to calculate precicely, and we know very
few of them.

Ramsey’s Theorem states that for every k,s , R(k,s) is finite.

The theorem is easily proven by induction, after proving the following
lemma: R(k,s) £ R(k-1,s) + R(k,s=1)

The theorem is also generalized for any number of colors (and not just 2)

and also for hyper graphs. ~I



Ramsey's Theorem
(finite case)

“Social example”:

A nice “social fact”, follows from Ramsey’s Theorem, is that any group
of 6 persons, either has 3 mutually friends, or 3 mutually strangers.

Proof. Denote persons by p1, ..., p6 — vertices of a graph. We’'ll

connect 2 friends with BLUE edge, and 2 strangers with RED. p1 has
either at least 3 BLUE or 3 RED edges from him (trivial). W.l.o.g. they’ll
BLUE, and to p2, p3, p4. If either of p2, p3, p4 are friends, then we have
a BLUE triangle. Otherwise, they’re all strangers — and we have a RED

triangle. «
‘J




Ramsey's Theorem
(finite case)




Ramsey's Theorem
(Infinite case)

Natural generalization of Ramsey’s Theorem for infinite graphs (we’ll deal

just with graphs where |V| = ¥), would be the following:

If we have an undirected simple infinite complete graph, which edges are

colored by finite number of colors (mostly we’ll use 2), then this graph has a

monochromatic infinite cligue as a sub-graph.

Proof: For simplicity, the set of vertices of our graph would be the natural

numbers. Also, we will denote the complete graph on V, =N as K.

E

e

il

An infinite clique in this graph will be denoted with K_.



Ramsey's Theorem
(Infinite case)

Proof cont.: Suppose we have the edges of our K, colored in two colors

{RED, BLUE} (the proof works for any finite number of colors). Let V, €V,
be an arbitrary vertex. Since vO has an infinite number of edges incident on
It, and each edge has a color drawn from a finite set, some color, cO (RED or
BLUE), is the color of infinitely many of these edges.

Let V1 be the set of neighbors of v0, to which it connected with an edge

colored in c0. So, V, ={x|COL({v,, X}) =C,}. V1is infinite, by definition.

cO = BLUE




Ramsey's Theorem
(Infinite case)

Proof cont.: Clearly, V, <V, (vOis in VO but not in V1).

As V1 is infinite, we make the same construction on it. Let V, €V|

be an arbitrary vertex. From v1 there is an infinite number of edges of same
color, c1, to vertices in V1. Then, we define the infinite set V2 as previously:
V, ={x|COL({v,,x})=c, and xeV,}. Andalso, V, C V..

That way, we construct the infinite sequences: {V. }_,,{C }_o, 1V, }_o-

C

vO vl Vi
VO T’Vl T’VZ - V] —= Vi+1

il



Ramsey's Theorem
(Infinite case)

Proof cont.: For all I, we get:
1. v. eV
2.V, V,

3. edge {v,, x} Is colored ci forevery x eV, ,

We claim that for any I, |, s.t. 1 <], the edge {vi, vj} Is colored ci. The proofis

simple: from (1) V; eV, from (@2 V, V., c..cV

. andso V; eV, .
Therefore, from (3), the edge {vi, v|} Iis colored ci. Now, as we have only 2
colors, one of them occurs infinitely many times among c0, c1,... W.l.0.g.

it’ll be BLUE. Now, lets define the set: T ={v. |c. = BLUE}, and we’ll show
that T iIs a monochromatic infinite clique. Firstly, T is infinite, from previous

explanation about the colors. Iy
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Ramsey's Theorem
(Infinite case)

Proof cont.: Secondly, for all V;,V,; el (i <j), edge {vi, vj} is colored

cl = BLUE, from previous claim. So, any edge between vertices of T is

colored in BLUE = T is an infinite monochromatic clique, and this finishes

the proof.

v



Infinite Ramsey's Theorem
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Infinite Ramsey's Theorem
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Infinite Ramsey's Theorem







Proving Termination with
Ramsey’'s Theorem

The infinite version of Ramsey’s Theorem is one of the tools of proving
termination of programs (together with well-founded orderings).

We’ll show one example of that.

Before presenting our example program, we shell define the following:

Def.. if A is a set, then input(A) is user’s input to program, that is taken from

set A. For example: x :=input( N ), means that x gets a positive integer

number from user’s input.

i ol



Proving Termination with
Ramsey’'s Theorem

Now, lets prove the termination of the following program, using Ramsey’s

Theorem:

(x,y,z) = (input(N), input(N), input(N))
while (x>0 and y>0 and z>0) {

c = input({1, 2})
If (c==1) then

(x,y) = (x-1, input({y+1, y+2, ...}))
else

(v,z) = (y-1, input({z+1, z+2, ...}))

] I

*The program is taken from notes of William Gasarch, University of Maryland. M



Proving Termination with
Ramsey’'s Theorem

If this program doesn’t terminate, then there is infinite sequence
(x1,vyl, z1), (x2,y2, z2), ... , representing the state of the variables.
Lets look at the sub-sequence (xi, vi, zi), ... ,(X], Y], Z)).

1. If cis ever 1, then xi > x|.

2.1f cis never 1, then yi >vyj.

So, for all | <j, either xi > xj or yi >yj.

With this fact, and with the contra-assumption that the program doesn’t
terminate, we’ll use Ramsey’s Theorem to reach a contradiction.

Proof: We start by defining an infinite complete graph, whose vertices

would be the triplets of variables’ state (xi, yi, zi). '
ﬁ
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Proving Termination with
Ramsey’'s Theorem

Proof cont.: We then define a 2-coloring of edges of this graph:

COL(, ) =if (xi > x]) then output BLUE

else output RED //yi >yj
From previous observation, the function is well-defined.
From Ramsey’s Theorem, there is an infinite monochromatic clique in this
graph. Lets denote its vertices’ indexes by: I, <1, <I, <...
f this clique color is BLUE, then X, > X, > X, >...
f this cliqgue color is RED, then Y.1 >Y.2 >Y.3 > ...

n either case, we’ll eventually have a variable (x or y) £ 0 and hence

orogram must terminate (while cond. is false). This is due to the fact that
the variables get only integer values (and natural numbers are well-

ordered). = Contradiction = The program terminates.




Disjunctive Orders

® States Q
® Algorithm R € QxQ

® Transitive closure R*

® Well-founded orders > and 3 on Q

®RTC>UO




Ranking Method

® States Q

® Algorithm R € QxQ

® Well-founded order >on W
® Ranking functionr: Q —» W
® Define X > Y if r(X) > r(Y)

®RC>




lnvariants

® States Q

® Algorithm R € QxQ

® Well-founded order >on W
® Ranking functionr: Q —» W
® Define X > Y if r(X) > r(Y)

®RC>




Algorithnmic System

Program




Classical Algorithms

® Every algorithm can be expressed
precisely as a set of conditional
assignments, executed In parallel
repeatedly.

®if c then f(s1,...,sn) =t
® if c then f(s1,...,sn) =t

®if c then f(s1,...,sn) =t

.



Practical Method

® States Q

® Algorithm R € QxQ

® Well-founded order >on W
® Ranking functionr: Q —» W
® Define X > Y if r(X) > r(Y)

®RC>













Color Code

\\A

Azure




“Well, lemme think. ... You’ve stumped me, son. Most
folks only wanna know how to go the other way.”




Mortal (black) nodes on bottom and immortal (green)
nodes on top
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Mortal in each alone (dashed Azure or solid Bordeaux),
but immortal in their union




Infinite Separation




Infinite Separation







Enough?
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Enough?













Constriction + Jumping




Constriction + Jumping




Constriction + Jumping




