DISTINGUISHED PAPER

An Infinite Needle in a Finite Haystack

Finding Infinite Counter-Models in Deductive Verification

Neta Elad, Oded Padon, Sharon Shoham
000 vmware 000

TEL AVIV UNIVERSITY TEL AVIV UNIVERSITY



SMT-Based Deductive Verification

Finite SAT
Counter-Model

SMT Solver

{é:} Infinite SAT
» Problem
LR

Uninterpreted
First-Order Logic

Verified
UNSAT




This Work

* Finite representation of infinite counter-models
* Enables simple model-checking

- |
e Efficient search procedure TG

4

L

e Decidability result

* Fragment of formulas, for which we can always find an infinite
model, or disprove its existence




Motivation: Infinite Objects from Abstractions

~

Distributed Protocols Linked Lists

Rounds (natural numbers) Nodes in the heap

\_




1oV
Example: Simplified VC from Paxos

e Anti-reflexive: VR.R < R

¢ Transitive: VRl, Rz, R3.R1 < Rz /\RZ < R3 - Rl < R3
e Total: VR, Ry. Ry # Ry = Ry < Ry V Ry < R,

VR,V.proposal(R,V) - safe(V) v3R'.R' < R A proposal(R’,V)

Total Order Abstraction “<”

VVl, Vz. Safe(Vl) N Safe(VZ) - V]_ = VZ

proposal(ry, v1) A proposal(r,, v,) A v, # v,



1oV
Example: Simplified VC from Paxos

$ |
* Existing tools are unable to verify -

* Bad luck due to quantifier alternation or matching loops?
@

* No, there is an infinite counterexample

VR,V...aR".R' <R ...




Infinite Counterexample

safe —safe

VR,V.proposal(R,V) — safe(V) V3IR'.R" < R A proposal(R’,V)

Solvers cannot find this infinite model

o |
"] "]
n 2]
o o
& &'
Fomt $t
Q. Q.




This Work

> * Finite representation of infinite counter-models
* Enables simple model-checking

- |
e Efficient search procedure TG

4

L

e Decidability result

* Fragment of formulas, for which we can always find an infinite
model, or disprove its existence




Infinite Counterexample

safe —safe

Repeating Pattern!

ey p— |
g g =
%] 7]

@) (@) (@)
5 ) &'
st = ‘a
Q, Q,




Infinite Counterexample

safe —safe

Repeating Pattern!

f— p—
@ 3
o o
Q, %
o =
o, Q,




Infinite Counterexample

safe —safe

proposal




Symbolic Models

safe: T

safe: 1

proposal: T

proposal: T

<:i1 < iz



Symbolic Models

Linear Integer Arithmetic

Bound
Formulas

Function
Terms

Relation
Formulas




Symbolic Models — Model Checking

Uninterpreted + Symbolic »
Formula ¢ Model M

Pure LIA

Formula @44




This Work

* Finite representation of infinite counter-models
* Enables simple model-checking

- |
) » Efficient search procedure TG

L

e Decidability result

* Fragment of formulas, for which we can always find an infinite
model, or disprove its existence




Search Space: Templates
Template

 bomains

Checking every symbolic model explicitly is impractical

Symbolic

{ Function } Models
Terms

{ Ffi)ei"l;tlilcl): S }




Symbolic? Search Procedure

Uninterpreted + ata T »
Formula ¢ lemplate

Pure LIA

Formula @44




Symbolic? Search Procedure

e Which formulas and terms to consider?
 Which symbolic domains to check?

* Are we guaranteed to have a satisfying symbolic model?



This Work

* Finite representation of infinite counter-models
* Enables simple model-checking

- |
e Efficient search procedure TG

4

-
> » Decidability result

* Fragment of formulas, for which we can always find an infinite
model, or disprove its existence




OSC — New Decidable Fragment

* New fragment of FOL, “Ordered Self-Cycle” (OSC)
* Paxos Simplified VC in OSC

* OSC extends Effectively PRpositional (EPR) fragment

VY Value 3 Round

Y Round 3 Round

)( EPR




OSC — New Decidable Fragment

* New fragment of FOL, “Ordered Self-Cycle” (OSC)
* Paxos Simplified VC in OSC

e OSC extends Effectively PRpositional (EPR) fragment
* Every satisfiable formula in OSC has a symbolic model

* “Small symbolic model property”
* Bounding size of candidate symbolic models
* Fixed sets of possible relation & bound formulas and function terms

) O
o



Evaluation — FEST

Uninterpreted Symbolic
Formula Search Query

Construct and present the infinite model

Distributed Protocols (Ring Leader, Paxos)[1, 2]

Linked Lists (Sorted List, List Segment)[3]

[1] “Towards an Automatic Proof of Lamport's Paxos”. Goel et al, FMCAD 2021
[2] “Ivy: Safety Verification by Interactive Generalization”. Padon et al, PLDI 2016
[3] “Foundations for Natural Proofs and Quantifier Instantiation”. Loding et al, POPL 2018



Evaluation

Infinite Sort Size | Other Sorts Sizes Infinite Sort Size | Time (s)
regular/summary regular/summary

List Length 1/1 <1
Echo Machine 1/1 2 <1 Seg. Const 1/1 <1

Seg. V. 1/1 <1
Voting Protocol 2/1 3,2,2 ~45 = /

Seg. Order 2/1 <1
Simple Paxos 2/1 2,2,2 ~12 Seg. Reverse 1/1 <1

.. DL 1/1 <1

Implicit Paxos 2/1 3,2,2 ~133

DL Length 1/1 <1
Paxos 2/1 3,3,3 ~ 80 DL Seg. 1/1 <1

Reverse List 2/1 <1
Flexible Paxos 2/1 3,3,1,1 ~ 28

Sorted Length 1/1 <1
Ring Leader 0/1 - <1 Sorted 1/1 <1

Sorted Seg. 1/1 <1
Line Leader 2/1 - ~2

Sorted Max 1/1 <1



Conclusion

* Symbolic Models and model-checking
e Using LIA as an underlining language

* Templates and Symbolic? Search
* Encoding infinitely many models in a single query

e Decidable Fragment OSC
e Superset of EPR

e Future Work
* More application domains
e Other underlining theories
e “Larger” infinite models




	Slide 1: An Infinite Needle in a Finite Haystack
	Slide 2: SMT-Based Deductive Verification
	Slide 3: This Work
	Slide 4: Motivation: Infinite Objects from Abstractions
	Slide 5: Example: Simplified VC from Paxos
	Slide 6: Example: Simplified VC from Paxos
	Slide 7: Infinite Counterexample
	Slide 8: This Work
	Slide 9: Infinite Counterexample
	Slide 10: Infinite Counterexample
	Slide 11: Infinite Counterexample
	Slide 12: Symbolic Models
	Slide 13: Symbolic Models
	Slide 14: Symbolic Models – Model Checking
	Slide 15: This Work
	Slide 16: Search Space: Templates
	Slide 17: Symbolic2 Search Procedure
	Slide 18: Symbolic2 Search Procedure
	Slide 19: This Work
	Slide 20: OSC – New Decidable Fragment
	Slide 21: OSC – New Decidable Fragment
	Slide 22: Evaluation – FEST (Find and Evaluate Symbolic structures via Templates)
	Slide 23: Evaluation
	Slide 24: Conclusion

