An Infinite Needle in a Finite Haystack

Finding Infinite Counter-Models in Deductive Verification

Neta Elad, Oded Padon, Sharon Shoham

SMT-Based Deductive Verification

This Work

- Finite representation of infinite counter-models
 - Enables simple model-checking

Efficient search procedure

- Decidability result
 - Fragment of formulas, for which we can always find an infinite model, or disprove its existence

Motivation: Infinite Objects from Abstractions

Distributed Protocols

Linked Lists

Rounds (natural numbers)

Nodes in the heap

Example: Simplified VC from Paxos

Round

Value

Total Order Abstraction "≺"

- Anti-reflexive: $\forall R.R \prec R$
- Transitive: $\forall R_1, R_2, R_3, R_1 \prec R_2 \land R_2 \prec R_3 \rightarrow R_1 \prec R_3$
- Total: $\forall R_1, R_2, R_1 \neq R_2 \rightarrow R_1 \prec R_2 \lor R_2 \prec R_1$

 $\forall R, V. \text{proposal}(R, V) \rightarrow \text{safe}(V) \lor \exists R'. R' \prec R \land \text{proposal}(R', V)$

$$\forall V_1, V_2$$
. safe $(V_1) \land \text{safe}(V_2) \rightarrow V_1 = V_2$

 $proposal(r_1, v_1) \land proposal(r_2, v_2) \land v_1 \neq v_2$

TOY

Example: Simplified VC from Paxos

Existing tools are unable to verify

Bad luck due to quantifier alternation or matching loops?

• No, there is an infinite counterexample

This Work

- Finite representation of infinite counter-models
 - Enables simple model-checking

Efficient search procedure

- Decidability result
 - Fragment of formulas, for which we can always find an infinite model, or disprove its existence

Symbolic Models

Symbolic Models

Symbolic Linear Integer Arithmetic Bound Formulas **Function** Terms Relation Formulas

Symbolic Models – Model Checking

$$M \vDash \varphi \iff \vDash \varphi_M^{LIA}$$

This Work

- Finite representation of infinite counter-models
 - Enables simple model-checking

• Efficient search procedure

- Decidability result
 - Fragment of formulas, for which we can always find an infinite model, or disprove its existence

Search Space: Templates Template

Checking every symbolic model explicitly is impractical

{ Function }
Terms

{ Relation }
Formulas

Symbolic Models

Symbolic² Search Procedure

Uninterpreted Formula φ Template TPure LIA Formula φ^{LIA}

$$M_v \in T \models \varphi \iff v \models \varphi_T^{LIA}$$

Symbolic² Search Procedure

Which formulas and terms to consider?

Which symbolic domains to check?

Are we guaranteed to have a satisfying symbolic model?

This Work

- Finite representation of infinite counter-models
 - Enables simple model-checking

Efficient search procedure

- Decidability result
 - Fragment of formulas, for which we can always find an infinite model, or disprove its existence

OSC – New Decidable Fragment

- New fragment of FOL, "Ordered Self-Cycle" (OSC)
 - Paxos Simplified VC in OSC
- OSC extends Effectively PRpositional (EPR) fragment

OSC – New Decidable Fragment

- New fragment of FOL, "Ordered Self-Cycle" (OSC)
 - Paxos Simplified VC in OSC
- OSC extends Effectively PRpositional (EPR) fragment
- Every satisfiable formula in OSC has a symbolic model
- "Small symbolic model property"
 - Bounding size of candidate symbolic models
 - Fixed sets of possible relation & bound formulas and function terms

Linked Lists (Sorted List, List Segment)[3]

- [1] "Towards an Automatic Proof of Lamport's Paxos". Goel et al, FMCAD 2021
- [2] "Ivy: Safety Verification by Interactive Generalization". Padon et al, PLDI 2016
- [3] "Foundations for Natural Proofs and Quantifier Instantiation". Löding et al, POPL 2018

Evaluation

Example	Infinite Sort Size regular/summary	Other Sorts Sizes	Time (s)
Echo Machine	1/1	2	< 1
Voting Protocol	2/1	3, 2, 2	~ 45
Simple Paxos	2/1	2, 2, 2	~ 12
Implicit Paxos	2/1	3, 2, 2	~ 133
Paxos	2/1	3, 3, 3	~ 80
Flexible Paxos	2/1	3, 3, 1, 1	~ 28
Ring Leader	0/1	-	< 1
Line Leader	2/1	-	~ 2

Example	Infinite Sort Size regular/summary	Time (s)
List Length	1/1	< 1
Seg. Const	1/1	< 1
Seg. Var	1/1	< 1
Seg. Order	2/1	< 1
Seg. Reverse	1/1	< 1
DL	1/1	< 1
DL Length	1/1	< 1
DL Seg.	1/1	< 1
Reverse List	2/1	< 1
Sorted Length	1/1	< 1
Sorted	1/1	< 1
Sorted Seg.	1/1	< 1
Sorted Max	1/1	< 1

Conclusion

- Symbolic Models and model-checking
 - Using LIA as an underlining language
- Templates and Symbolic² Search
 - Encoding infinitely many models in a single query
- Decidable Fragment OSC
 - Superset of EPR
- Future Work
 - More application domains
 - Other underlining theories
 - "Larger" infinite models

