

 ביבא-לת תטיסרבינוא
 ךמסומ ידומילל הזת

 םימוסח אל םימוכס לע ןושאר רדסמ הקסה
 ינומיסא לש תוחיטב ינייפאמל םימושיי םע

ERC-20

 דעלא עטנ :שיגמ

 רדניבכוב םהוש ןורש ׳פורפו ביגש ילומ ׳פורפ :םיחנמ

 ביבא-לת תטיסרבינואב .M.Sc – ״הטיסרבינוא ךמסומ״ ראות תלבקל תושירדהמ קלחכ שגוה הז רוביח

 קינטוולב ש״ע בשחמה יעדמל ס״היב
 רלקאס ילרבבו דנומייר ש״ע םיקיודמ םיעדמל הטלוקפה

 2020 ,רבוטקואב השיש

 ריצקת

-crypto(םייפרגוטפירק תועבטמ לועפתל טושפ קשנמ םיקפסמ ERC-20 ינומיסא
currencies(. םינומיסא תעבטה ,תובותכ ןיב םינומיסא תרבעה ןוגכ תולועפב ךמות קשנמה

 ומצע קשנמה .םינומיסאה עציה ךס תניחב םג ומכ ,תבותכ לכ לש תורתיה תניחבו םישדח
 .ילמרופ תומיאל תילאידיא הרטמ הווהמ ןכ-לעו ,תיסחי ןטקו טושפ

 תובותכה רפסמ :תילאיווירט הנניא הז קשנמ תועצמאב בתכנש דוק יבגל הקסה ,תאז םע
 תולועפ ידי-לע תורתיה םוכס רומיש ומכ – תוילבולג תוטנאירווניא סוסיבו ,םוסח ונניא
 .םיהובג םירדסמ הקסה שרוד – הרבעה ומכ

 תוינכת יבגל הקסהל םיסופיט-תבורמ ןושאר רדסמ הקיגול לש תואסרג יתש םיגיצמ ונא
)Sum Logic, SL(״םוכס תקיגול״ איה ןהיניבמ הנושארה .הז קשנמב תושמתשמ רשא
 אל הרתי תויצקנופ לש םימוסח-יתלבה םימוכסה תא םיגציימש םוכס יעובק הגיצמ רשא
 ,םוכס יבגל תוטנאירווניא תורישי ראתל םילוכי ונא וז הקיגולב .)uninterpreted(תושרופמ
 .תורתיה םע םהיסחיו

 Explicit Coins for(״תעמתשמ המיכס רובע םישרופמ תועבטמ״ איה היינשה הסרגה
Implicit Summations, ECIS(20-ה ינומיסא תא תדדוקמ רשא-ERC הקסה .תושרופמ

 תא תורמשמ רשא תופסונ תומויסקא תשירד תועצמאב תישענ וז הקיגולב םימוכס יבגל
 .תוינטרפה תורתיהו םימוכסה ןיב םיסחיה תכרעמ

Tel Aviv University

Master’s Thesis

First-Order Reasoning about Unbounded

Sums with Applications to Safety

Properties of ERC-20 Tokens

Author:
Neta Elad

Supervisors:
Prof. Mooly Sagiv

& Prof. Sharon Shoham Buchbinder

This thesis was submitted as part of the requirements for receiving a M.Sc. degree from
Tel Aviv University

Blavatnik School of Computer Sciense
Faculty of Exact Sciences

October 6, 2020

i

TEL AVIV UNIVERSITY

Abstract
Faculty of Exact Sciences

Blavatnik School of Computer Sciense

Master’s Thesis

First-Order Reasoning about Unbounded Sums with Applications to

Safety Properties of ERC-20 Tokens

by Neta Elad

ERC-201 tokens provide a simple interface (API) to manipulate crypto-currencies.
They support operations like transferring tokens between addresses, minting tokens,
and examining the balance of a specific address as well as the total supply of tokens.
The interface itself is relatively small and simple, which makes it a perfect target for
formal verification.

However, reasoning about code written against this interface is non-trivial: the number
of addresses is potentially unbounded, and establishing global invariants like preser-
vation of the sum of the balances by operations like transfer requires higher order
reasoning.

We present two variants of many-sorted, first-order logic for reasoning about pro-
grams that use this interface. The first is Sum Logic (SL), which introduces sum
constants that represent the unbounded sum of some uninterpreted balance function.
In SL we can directly state global invariants about sums and their relation to the
balances.

The second variant is Explicit Coins for Implicit Summations (ECIS) which encodes
the ERC-20 tokens explicitly. Reasoning about sums in ECIS is done by requiring
additional axioms to maintain the relationship between the sums and the individual
balances.

1ERC stands for "Ethereum Request for Comment", and 20 is the proposal identifier within the
Ethereum community

ii

Acknowledgements
I would like express my gratitude to all of those who contributed to this work, and
helped me during the process of producing it.

First and foremost, to my wonderful supervisors; to Prof. Mooly Sagiv, who guided
me closely with great insight and patience; and to Prof. Sharon Shoham Buchbinder,
who helped me from afar, and has been an important part of my master’s studies
throughout.

To Prof. Laura Kovacs and to Sophie Rain from TU Wien with whom I had the
pleasure to work. Our interesting discussions were inspiring, and in no small way led
to the results achieved in this thesis.

To Prof. Neil Immerman from UMass Amherst, whose expertise and vast knowl-
edge proved invaluable time and time again. I consider myself very lucky for having
the opportunity to get to know him and and to learn from him.

Finally, I’d like to thank my office mates in Tel Aviv University. They made the
university into a home, and provided helpful remarks for this work, as well as much
needed chit-chat breaks.

iii

Table of Contents

Abstract i

Acknowledgements ii

Table of Contents iii

List of Figures v

List of Tables vi

List of Abbreviations vii

1 Introduction 1

1.1 Overview . 2
1.2 Preliminaries . 4

1.2.1 Many-Sorted, First-Order Logic 4
1.2.2 Presburger Arithmetic . 6
1.2.3 EPR in Many-Sorted Logic . 7
1.2.4 2-Counter Machines . 7

2 The Sum Logic (SL) 8

2.1 Syntax & Semantics . 8
2.1.1 Syntax . 8
2.1.2 Semantics . 8
2.1.3 Encoding ERC-20 in SL . 9

2.2 A Decidable Fragment of SL . 9
2.2.1 Distinct Models . 10
2.2.2 Small Models . 14
2.2.3 Presburger Reduction . 20

Outline . 20
Defining the Transformations 20

2.3 Undecidable Sum Logics . 29
2.3.1 Outline . 29
2.3.2 Formalization . 32

3 Theory of Explicit Coins for Implicit Summations (ECIS) 34

3.1 Syntax & Semantics . 34
3.1.1 Syntax . 34
3.1.2 Semantics . 34
3.1.3 Axioms . 35

3.2 Encoding in a Limited Fragment of ECIS 38
3.2.1 Axioms in ECIS \ EPR . 38
3.2.2 Transitions in ECIS \ EPR . 38

transferFrom(x1, x2) Transition 38

iv

throw(x1) and catch(x2) Transitions 39
transfer(x, c) Transition . 40
burn(c) Transition . 40

3.3 Undecidabiliy Result in ECIS . 41
3.3.1 General Idea . 41
3.3.2 Encoding Ordering . 41

Global Ordering . 41
Per-Address, "Local" Ordering 42

3.3.3 Encoding Market Size . 42
3.3.4 Encoding Balances . 43
3.3.5 Expressing SL using ECIS [Nat 43

4 Conclusions 46

4.1 Related Work . 46
4.2 Future Research . 47

References 48

v

List of Figures

1.1 Simplified donate procedure in ERC-20 2
1.2 Lower-level donate procedure . 3

2.1 Transition System of a 2-Counter Machine in SL 30

vi

List of Tables

1.1 ERC-20 Token Standard Interface . 2

2.1 ERC-20 Token Standard interface in Sum Logic 9
2.2 Transition System of a 2-Counter Machine, Array View 31

vii

List of Abbreviations

ECIS Explicit Coins (for) Implicit Summations
EPR Effectively PRopositional (Logic)
ERC Ethereum Request (for) Comments
FO First Order
PA Presburger Arithmetic
PC Program Counter
SL Sum Logic

1

Chapter 1

Introduction

Deductive verification [1] is a technique for mathematically proving that all executions
of a given program satisfy a correctness condition. We are interested in the special
case of formal verification where the correctness condition is expressed by some logical
formula ("verification condition").

This thesis addresses the challenge of expressing the verification condition in a way
that is amenable to existing automatic techniques. In particular, we are interested in
known decidable logics, in which to formalize those verification conditions.

Whereas previous works discuss extending first-order logic with aggregates as
counting quantifiers or generalized quantifiers [2, 3, 4], in this thesis we restrict our-
selves to the special case of sums over an uninterpreted functions. These sums are
encoded using integer constants — and thus are not truly aggregate operators — and
we show that their properties are first-order expressible. We prove that this manner
of encoding results in decidable fragments of first-order logic, under certain conditions
that we lay out.

Our examples are motivated by programs from the domain of smart contracts,
and specifically the usage of the ERC-20 Token Standard Interface [5] to manipulate
balances. We show two complementary ways to formally describe this interface and
related verification conditions.

The first approach — Sum Logic, or SL for short — is an extension of Presburger
arithmetic, with additional uninterpreted functions ("balances") and a semantic re-
quirement that relates the sum over the balances with integer constants.

We show that for such an extension with at least 3 uninterpreted functions (and
their associated sums) this logic becomes undecidable, thus giving us an upper-bound
for the practicality of this approach.

However, for a restricted fragment with 1 uninterpreted function (and no explicit
arithmetic) we prove that it is decidable. This encourages us to think that there exist
additional decidable fragments of this logic.

The second framework for verifying ERC-20 programs is by explicitly encoding
the tokens (which we dub coins) and expressing the higher-level properties using ax-
ioms over them. This is formalized using a theory of two-sorted, first-order logic
with uninterpreted relations which we call "Explicit Coins for Implicit Summations"
(ECIS).

EPR — Essentially Propositional Logic — is a fragment of first-order logic which
is known to be decidable [6], but still quite expressible. We examine the intersection of
this fragment with ECIS and show that several interesting programs and verification
conditions can still be expressed, even in this limited logic.

Finally, we show that when we extend the expressiveness of ECIS, by adding
uninterpreted functions — but without the semantic requirement we had in SL — we
get a variant of first-order logic which is as expressible as SL, and hence undecidable.

Chapter 1. Introduction 2

Function Arguments Result

totalSupply - uint
balanceOf address uint
allowance address, address uint
transfer address, uint boolean
approve address, uint boolean
transferFrom address, address, uint boolean

Table 1.1: ERC-20 Token Standard Interface

donor: address

receivers: address []

amount: uint

for each receiver in receivers:

transferFrom(donor , receiver , amount)

Post -conditions

assert totalSupply () == totalSupply
0
()

for each receiver in receivers:

assert balanceOf
0
(receiver) >= amount

Figure 1.1: Simplified donate procedure in ERC-20

It is important to note that throughout this thesis we regard sums as a special type
of integer constants, and not as a general-purpose, higher-order operation. Moreover,
the decidability results in this work further restrict the logics that we discuss. The fact
that we can express these sums using many-sorted first-order logic — as in Section 3.3
— is therefore not counter-intuitive, and in complete agreement with previous results
[2], that show logics with aggregates (or counting in particular) are more expressive
than first-order logic.

1.1 Overview

The ERC-20 Token Standard interface consists of three data-types: address, uint
and boolean; and six functions: "totalSupply", "balanceOf", "allowance", "transfer",
"approve" and "transferFrom" (see Table 1.1).

The functions that return a boolean indicate success/failure, and are considered
transitions, whereas the functions that return a uint represent the current state.
Figure 1.1 depicts an example procedure for donations. We use primed versions of the
API functions in the post-conditions to denote the state after the transition.

We focus on the "totalSupply", "balanceOf", "transfer" and "transferFrom" func-
tions, and on verification conditions that arise in programs that use this interface.
Specifically, we consider formulas that assert some state of the sum and the balances,
and the relation between the states before and after a transition.

We show how to encode these operations and conditions in the two variants of
first-order logic that we describe in Chapters 2 and 3. When encoding, we sometimes
consider a lower-level description of the API (see Figure 1.2). Note that in the lower-
level description, "balance" is used as a mutable map, which differs from the API
"balanceOf" function.

Chapter 1. Introduction 3

donor: address

receivers: address []

amount: uint

balance: address -> uint

for each receiver in receivers:

simplified low -level "transferFrom"

balance[receiver] += amount

balance[donor] -= amount

Post -conditions

assert totalSupply () == totalSupply
0
()

for each receiver in receivers:

assert balance
0
[receiver] >= amount

Figure 1.2: Lower-level donate procedure

In Section 2.1 we use a more direct approach, where uninterpreted functions encode
the balances. We use multiple functions to represent different, unrelated "markets",
or a single market before and after a transition occurs.

In addition, we have integer constants that we semantically require to be equal
to the sum of the uninterpreted function over the unbounded Address space. This is
akin to a higher-order operation, although of a very basic form.

By proving a non-trivial small model property, we are able to reduce this extended
first-order logic back to Presburger arithmetic. The reduction outlines a decision
procedure for SL. We prove this decidability condition in Section 2.2, and show a
specific fragment that holds that condition.

In Section 2.3 we present an encoding of the halting problem for 2-counter machines
in a fragment of SL, thus proving SL to be undecidable in some cases. The proof shows
that three uninterpreted functions in SL are enough to make it undecidable, but also
has an interesting corollary that any two-sorted extension to Presburger arithmetic
with two uninterpreted functions, and a size operation is undecidable.

Section 3.1 shows a complementary way to express the higher-order setting of
unbounded sums, and builds it up from a theory of discrete Coin elements. By using
several axioms, specifically crafted for this type of programs, we can describe and
maintain important properties of the code.

We explore the expressiveness of the decidable intersection of ECIS and EPR in
Section 3.2, and show what kind of operations and verification conditions can be
encoded in it.

Section 3.3 extends ECIS with a Nat sort, constants thereof, and uninterpreted
functions, all of which in order to encode sums and balances. In contrast with SL,
ECIS does not impose a semantic requirement that the sums and balances associate
correctly. Instead, we rely on the axioms of the theory to express this requirement.
We explain how this extension is as expressible as SL, and thus undecidable for the
same cases as SL.

Finally, Chapter 4 summarizes the results presented here, surveys related work in
this field, and concludes with implications and possible future research.

Chapter 1. Introduction 4

1.2 Preliminaries

1.2.1 Many-Sorted, First-Order Logic

Throughout this thesis we use standard many-sorted, first-order logic.

Definition 1.2.1. A sorted first-order vocabulary ⌃ consists of sorted constant sym-
bols c1, . . . , cl, sorted function symbols f

r1
1 , . . . , f

rm
m , and sorted relation symbols

R
r̃1
1 , . . . , R

r̃n
n , where r1, . . . , rm, r̃1, . . . , r̃n indicate the arity of the function and re-

lation symbols respectively.

Definition 1.2.2. Given a vocabulary ⌃, a term t over ⌃ is defined inductively:

hti , x : s where x is a free variable of sort s
| ci where ci is a constant symbol
| f

rj
j (t1, . . . , trj) where fj is a function symbol

and t1, . . . , trj are terms

A term with no free variables is called a ground term.

Definition 1.2.3. Given a vocabulary ⌃, a formula ' over ⌃ is defined inductively:

h'i , t1 ⇡ t2 where t1, t2 are terms
| R

r̃k
k (t1, . . . , tr̃k) where Rk is a relation symbol

and t1, . . . , tr̃k are terms
| ¬'0 where '0 is a formula
| '1 _ '2 where '1,'2 are formulas
| '1 ^ '2 where '1,'2 are formulas
| '1 ! '2 where '1,'2 are formulas
| '1 $ '2 where '1,'2 are formulas
| 8x : s.'0 where '0 is a formula
| 9x : s.'0 where '0 is a formula

A formula with no free variables is called a sentence or a closed formula.

We always assume terms admit to sort restrictions, that formulas are syntactically
valid, and that the arguments to relations and function agree with their arity. We
omit arity superscripts from functions and relations, and sort markers from quantifiers,
when they are clear from context.

Definition 1.2.4. A structure A for a vocabulary ⌃ is a pair (D, I) where D (the
domain of the structure) maps each sort s of ⌃ to some set D(s); and I (the inter-

pretation of the structure) maps each symbol in ⌃ to a corresponding object:

1. Each constant symbol ci of sort s to an element I(ci) 2 D(s).

2. Each function symbol f
rj
j of sort

�
s1, . . . , srj

�
! s to a function I(f rj

j) 2
D(s)D(s1)⇥···⇥D(srj).

3. Each relation symbol Rr̃k
k of sort (s1, . . . , sr̃k) to a relation I(Rr̃k

k) ✓ D(s1) ⇥
· · ·⇥D(sr̃k).

Definition 1.2.5. We denote the set of all structures for a vocabulary ⌃ as STRUCT[⌃].

Notation. For any symbol in the vocabulary we sometimes write its interpretation in
some structure with a superscript. E.g. for a structure A = (D, I), cAi = I(ci).

Chapter 1. Introduction 5

Definition 1.2.6. We extend the definition of an interpretation I to all ground terms
inductively:

I(f rj
j (t1, . . . , trj)) ,

h
I(f rj

j)
i�
I(t1), . . . , I(trj)

�

Definition 1.2.7. Given a structure A = (D, I) for a vocabulary ⌃, an assignment
� maps any free variable x of sort s into an element �(x) 2 D(s).

Definition 1.2.8. Given a structure A = (D, I) for a vocabulary ⌃, a partial as-
signment � maps some free variables x1, . . . , xr of sorts s1, . . . , sr into elements
�(xi) 2 D(si).

We can explicitly write the partial assignment as

[�(x1)/x1, . . . ,�(xr)/xr]

Notation. We use the same notation [e01/e1, . . . , e
0
i/ei, . . .] for syntactical substitutions,

where ei, e
0
i are arbitrary expressions, and we replace each occurrence of ei with e

0
i.

Definition 1.2.9. We can override an assignment � with a partial assignment �0 =
[↵1/x1, . . . ,↵r/xr]:

⇥
��0⇤(x) ,

⇢
↵i if x = xi 2 {x1, . . . , xr}
�(x) otherwise

Definition 1.2.10. Given an assignment �, we extend the definition of an interpre-
tation I to all terms inductively:

I�(x) , �(x)
I�(ci) , I(ci)
I�
⇣
f
rj
j (t1, . . . , trj)

⌘
,

h
I(f rj

j)
i�
I�(t1), . . . , I�(trj)

�

Definition 1.2.11. Let ' be some formula over a vocabulary ⌃. Given a structure
A 2 STRUCT[⌃] and an assignment �, we define when A,� satisfy ' (A,� ✏ ')
inductively:

A,� ✏ t1 ⇡ t2 , I�(t1) = I�(t2)
A,� ✏ R

r̃k
k (t1, . . . , tr̃k) , (I�(t1), . . . , I�(tr̃k)) 2 I(Rr̃k

k)
A,� ✏ ¬'0 , A,� 2 '0

A,� ✏ '1⇤'2 , A,� ✏ '1 ⇤ A,� ✏ '2

where ⇤ 2 {_,^,!,$}
A,� ✏ 8x : s.'0 , A,�[↵/x] ✏ '0

for all ↵ 2 D(s)
A,� ✏ 9x : s.'0 , A,�[↵/x] ✏ '0

for some ↵ 2 D(s)

We call (A,�) a model for '.

Notation. We denote A ✏ ' if for all assignments �, A,� ✏ ', and we reserve this
notation to closed formulas (sentences). In this case, we simply call A a model for
the sentence '.
Notation. We write A ✏ '[↵1/x1, . . . ,↵r/xr] if for any assignment �,

A,�[↵1/x1, . . . ,↵r/xr] ✏ '

Chapter 1. Introduction 6

Definition 1.2.12. A formula ' is said to be satisfiable if there exist some structure
A, assignment � such that A,� ✏ '.

Definition 1.2.13. A fragment FRAG over a sorted first-order vocabulary ⌃ is the
set of all formulas ' over any vocabulary ⌃0 that is a subset of ⌃. Moreover, FRAG
may impose additional syntactic or semantic restrictions over the formulas that are
within it.

Definition 1.2.14. The satisfiability problem for a fragment FRAG of first-order
logic with vocabulary ⌃ is determining whether any given formula ' 2 FRAG is
satisfiable.

We say that a fragment of first-order logic is decidable if its satisfiability problem
is decidable.

Definition 1.2.15. Two formulas ', over vocabularies ⌃,⌃0 (respectively) are said
to be equisatisfiable if ' is satisfiable () is satisfiable. I.e.,

9A 2 STRUCT[⌃],� s.t. A,� ✏ ' () 9A0 2 STRUCT
⇥
⌃0⇤

,�0 s.t. A0
,�0 ✏ .

Definition 1.2.16. Two formulas ', over some vocabulary ⌃ are said to be equiv-
alent if for any structure A 2 STRUCT[⌃], any assignment �,

A,� ✏ ' () A,� ✏

Definition 1.2.17. A formula ' is said to be in prenex normal form when it is written
as a string of quantifiers, called the prefix, followed by a quantifier-free formula, called
the matrix.

Claim 1.2.18. Every first-order formula has an equivalent formula in prenex normal
form. Moreover, the translation is computable [7].

1.2.2 Presburger Arithmetic

Presburger arithmetic (PA) is the decidable [8] first-order theory of natural numbers
with addition. I.e. it has the vocabulary ⌃Presburger =

�
0, 1, c1, . . . , cl,+2

�
, and all of

the constants 0, 1, ci are of Nat sort.

Definition 1.2.19. A structure A = (D, I) 2 STRUCT[⌃Presburger] is called a Stan-

dard Model of Arithmetic when D(Nat) = N and I(+2) is interpreted naturally.

The vocabulary can be extended to have a total order relation so we get ⌃⇤
Presburger =�

0, 1,+2
, <

2
�
, where <

2 is interpreted naturally for Standard Models of Arithmetic.
We usually write the symbols +2

, <
2 in infix notation: t1 + t2, t1 < t2.

Remark. We include zero in the naturals: 0 2 N. We write N+ to explicitly exclude
zero.

Claim 1.2.20. Given a formula over ⌃⇤
Presburger, it is possible to decide if it is sat-

isfiable in the theory of Presburger Arithmetic. Moreover, if it is decidable, we can
construct a Standard Model of Arithmetic for it [8].

Put differently, if PA is the set of all formulas in the theory of Presburger Arith-
metic, then ' 2 PA () ' has a Standard Model of Arithmetic.

Chapter 1. Introduction 7

1.2.3 EPR in Many-Sorted Logic

Definition 1.2.21. Let be some first-order formula over vocabulary ⌃ in prenex
normal form. We define the sort dependency graph for it as a directed graph with the
sorts of the vocabulary as the vertices, and the following edges:

1. For each function symbol f rj
j that appears in ' of sort

�
s1, . . . , srj

�
! s we

have rj edges si ! s.

2. For each existential quantifier in the prefix of sort s and each universal quantifier
of sort s0 that appears before it, we have an edge s0 ! s.

Definition 1.2.22. A first-order formula ' is said to be in EPR2 if there exists some
equivalent formula in prenex normal form, such that ’s sort dependency graph has
no cycles.

Claim 1.2.23. The fragment of EPR is decidable [6].

1.2.4 2-Counter Machines

A 2-counter machine is an abstract machine that has two general-purpose registers,
as well as a program counter (sometimes called state register).

These machines are simple enough that we can encode their entire transition sys-
tem in a quantifier-free formula over Presburger arithmetic with 6 free variables (one
for the content of each register before and after the transition).

However, since 2-counter machines are Turing equivalent [9], the halting problem
for them is undecidable. We use this fact to prove undecidability results in this thesis.

2Also known as Bernays–Schönfinkel or Bernays–Schönfinkel-Ramsey class

8

Chapter 2

The Sum Logic (SL)

2.1 Syntax & Semantics

In its most general form, SL is an extension of Presburger arithmetic, adding a new
Address sort, and uninterpreted functions between the Address sort and the Nat sort,
as well as a Nat constant for each of those functions, which represent the associated
sum of each function, taken over the entire domain of the Address sort.

2.1.1 Syntax

Definition 2.1.1 (Sum vocabulary). A vocabulary

⌃l,m,n
+,< =

�
a1, . . . , al, b

1
1, . . . , b

1
m, c1, . . . , cn, s1, . . . , sm, 0, 1,+2

, <
2
�

where

• We have in mind two sorts: Address and Nat.

• The constants a1, . . . , al are of Address sort.

• b
1
1, . . . , b

1
m are unary function symbols from Address to Nat ("balances").

• The constants c1, . . . , cn, s1, . . . , sm and 0, 1 are of Nat sort.

• +2 is a binary function in Nat.

• <
2 is a binary relation in Nat.

The pair
⇣
b
1
j , sj

⌘
is called the j

th market, and we call the constant sj the associated

sum of the function b
1
j (for any j 2 [1,m]). Alternatively, we use the symbol sb to

represent the associated sum of the function b.

Remark. Unless stated otherwise, we always restrict ourselves to universal sentences

over Sum vocabularies, with quantification only over the Address sort.
Notation. When the cardinalities of the vocabulary are clear from context, as well as
the available binary functions +, <, we simply denote the vocabulary as ⌃.

Conversely, when we want to explicitly state that some binary function is not
available (in some fragment of SL), we denote it as ⌃l,m,n

⇢+,⇢< .

2.1.2 Semantics

Definition 2.1.2 (Sum structure). Let ⌃ be a Sum vocabulary. We usually write a
structure A = (D, I) 2 STRUCT[⌃] as a tuple

A =
�
A,N, aA1 , . . . , aAl , bA1 , . . . , bAm, c

A
1 , . . . , c

A
n , s

A
1 , . . . , s

A
m, 0, 1,+, <

�

Chapter 2. The Sum Logic (SL) 9

Function Encoding

totalSupply s or s
0

balanceOf(a) b(a) or b
0(a)

transfer(a, v) b
0(a) ⇡ b(a) + v

transferFrom(f, t, v) b
0(t) ⇡ b(t) + v ^ b(f) ⇡ b

0(f) + v

Table 2.1: ERC-20 Token Standard interface in Sum Logic

where A = D(Address) is some finite
3 set (possibly empty if l = 0); aAi = I(ai) 2 A;

b
A
j = I(b1j) 2 NA; and c

A
k = I(ck), sAj = I(sj) 2 N.

We always assume that D(Nat) = N, and that 0, 1,+2 and <
2 are interpreted

naturally. For brevity, we omit them when describing Sum structures.

Definition 2.1.3 (Sum model). Let ' be a first-order formula over a Sum vocabulary
⌃. A Sum model for ' is a Sum structure A 2 STRUCT[⌃] such that A ✏ '. In
addition, we require that for each j 2 [1,m],

s
A
j =

X

a2A
b
A
j (a). (Sum property)

We will denote A ✏SL ' to mean that A ✏ ' (as a many-sorted, first-order
formula), and that A holds the Sum property. When it is clear from context, we will
omit the SL subscript.

2.1.3 Encoding ERC-20 in SL

Given a sum vocabulary of ⌃l,2,n we can trivially encode the ERC-20 operations,
simply by formalizing the balance manipulations before/after a transition. We denote
the balance functions as b, b

0 and their associated sums as s, s
0. See Table 2.1 for the

encoding of ERC-20.

2.2 A Decidable Fragment of SL

The general method of proving decidability for a fragment of SL is by showing a
reduction to Presburger arithmetic. We do this by encoding the Sum Logic extensions
with regular Presburger constructs. The crux of the proof relies on two properties:

1. Distinctness: the Address constants ai represent distinct elements in the domain
D(Address). This restriction is somewhat unnatural, but we show that for each
vocabulary and formula that has a model, there exists an equisatisfiable formula
over a different vocabulary that has a distinct model.

2. Smallness: given a formula ', if it is satisfiable, then there exists a model where
|D(Address)|  (|'|), where |'| is the length of ', and (·) is some computable
function. This property only holds for some fragments of SL.

3In fact, we need only to require that the set of addresses with non-zero balances�
↵ 2 D(Address) | 8j.bAj (↵) > 0

be finite. Except for addresses that are referred by an Address

constant, we can always discard all zero-balance addresses from a model. Thus, we might as well
limit ourselves to finite sets of addresses.

Chapter 2. The Sum Logic (SL) 10

2.2.1 Distinct Models

Observation 2.2.1. For any set X and any partition P thereof, it holds that |P | 
|X|.

Definition 2.2.2 (Partition-induced function). Let P be a partition of a finite set X
of size l. P = {A1, . . . , Al0} where l

0  l.
We define the partition-induced function fP (x) (for any x 2 X) as the index i

such that Ai 2 P and x 2 Ai.
For short, we denote fP (x) as P (x).

Definition 2.2.3 (Function-induced equivalence class). Let f be some function over
some set X. We define the function-induced equivalence class for each x 2 X as

[x]f ,
�
x
0 2 X | f(x0) = f(x)

.

Definition 2.2.4 (Function-induced partition). Let f be some function defined over
some set X. We define the function-induced partition Pf as

Pf , {[x]f | x 2 X}.

Definition 2.2.5 (Partitioning Sum terms by P). Let t be some term over a Sum
vocabulary ⌃ = ⌃l,m,n (with l Address constants) and let P be some partition of
{a1, . . . , al}.

We define a transformation ⌧P (t) inductively as a term over a Sum vocabulary
⌃P = ⌃l0,m,n with l

0 = |P |  l Address constants:

⌧P (t) ,

8
>>>><

>>>>:

aP (ai) if t = ai

xi if t = xi of sort Address

sj if t = sj

bj(⌧P (t1)) if t = bj(t1) where t1 is some ai or xi

⌧P (t1) + ⌧P (t2) if t = t1 + t2

Definition 2.2.6 (Partitioning a Sum formula by P). We naturally extend the terms
transformation ⌧P to formulas.

Observation 2.2.7. For any Sum vocabulary ⌃, ⌃P ✓ ⌃, since l
0  l. Therefore, for

any formula ' in some fragment FRAG of SL, ⌧P (') 2 FRAG as well.

Definition 2.2.8 (Distinct Structures). A Sum structure A is considered distinct

when
���aA1 , . . . , aAl

 �� = l. I.e. the l Address constants represent l distinct elements in
D(Address).

Theorem 2.2.9. Let ' be some Sum formula over ⌃. ' has a model () there
exists some partition P of {a1, . . . , al} such that ⌧P (') has a distinct model.

Proof of Theorem 2.2.9

Part 1: If ' has a model, then there exists some partition P such that ⌧P (')
has a distinct model ())

Let A be some model of ' and let f be the mapping from {a1, . . . , al} to A, i.e

f(ai) , a
A
i

Chapter 2. The Sum Logic (SL) 11

Let P be the partition (of size l
0) induced by f and we construct a distinct model

A
0 =

�
A, a

0
1, . . . , a

0
l0 , b

A
1 , . . . , b

A
m, c

A
1 , . . . , c

A
n , s

A
1 , . . . , s

A
m

�

for ⌧P ('), where A, bA1 , . . . , bAm, cA1 , . . . , cAn , and s
A
1 , . . . , s

A
m are taken from A.

For every i
0 2 [1, l0], a0i0 is defined as a0i0 = a

A
i for some i 2 [1, l] such that P (ai) = i

0.
Remark. The choice of i is unimportant, since for any two indices i1, i2, if P (ai1) =
i
0 = P (ai2) then by definition of P , aAi1 = a

A
i2 .

Observation 2.2.10. A0 is distinct and holds the sum property.

Claim 2.2.11. For any closed term t over ⌃, I(t) = I 0(⌧P (t)) (i.e. the interpretation
of t in A equals to the interpretation of ⌧P (t) in A0).

Proof. Since ⌧P (t) = t for all terms except terms containing ai, and since A0 is identical
to A except for Address constants, we only need to consider this kind of terms.

Moreover, since ⌧P is defined inductively, it suffices to prove the claim for the basis
terms ai.

Let t = ai for some i 2 [1, l], and let i
0 = P (ai):

I 0(⌧P (t)) = I 0(⌧P (ai))

= I 0(ai0)

= a
0
i0

= a
A
i

= I(ai) = I(t)

Claim 2.2.12. For any term t with free variables x1, . . . , xr (of sort Address), for all
↵1, . . . ,↵r 2 A, for any assignment �, let �0 = �[↵1/x1, . . . ,↵r/xr], and therefore
I�0(t) = I 0

�0(⌧P (t)).

Proof. Identical to the proof of Claim 2.2.11.

Claim 2.2.13. Let ⇠ be a sub-formula of ', therefore:

1. If ⇠ is a closed formula then A ✏ ⇠ () A0 ✏ ⌧P (⇠)

2. If ⇠ is a formula with free variables x1, . . . , xr then for any ↵1, . . . ,↵r 2 A,
A ✏ ⇠[↵1/x1, . . . ,↵r/xr] () A0 ✏ ⌧P (⇠)[↵1/x1, . . . ,↵r/xr]

Since ' is a closed formula, and since A ✏ ', it holds that A0 ✏ ⌧P (') and therefore
A0 is a distinct model for ⌧P (').

Proof of Claim 2.2.13. Let us consider the following cases:
Case 1.1 : ⇠ = t1 ⇡ t2 without free variables

Follows from Claim 2.2.11.
Case 1.2 : ⇠ = t1 ⇡ t2 with free variables x1, . . . , xr

Follows from Claim 2.2.12.
Case 1.3 : ⇠ = ¬⇣ without free variables

⇣ is also a closed sub-formula of ' and from the induction hypothesis:

Chapter 2. The Sum Logic (SL) 12

A ✏ ⇠ () A 2 ⇣
() A0 2 ⌧P (⇣)
() A0 ✏ ⌧P (⇠)

Case 1.4 : ⇠ = ¬⇣ with free variables x1, . . . , xr

⇣ is also a sub-formula of ' with free variables x1, . . . , xr and from the induction
hypothesis, for any ↵1, . . . ,↵r 2 A:

A ✏⇠[↵1/x1, . . . ,↵r/xr]

() A 2 ⇣[↵1/x1, . . . ,↵r/xr]

() A0 2 ⌧P (⇣)[↵1/x1, . . . ,↵r/xr]

() A0 ✏ ⌧P (⇠)[↵1/x1, . . . ,↵r/xr]

Case 1.5 : ⇠ = ⇣1 _ ⇣2 without free variables
⇣1, ⇣2 are also closed sub-formulas of ', and from the induction hypothesis:

A ✏ ⇠ () A ✏ ⇣1 or A ✏ ⇣2
() A0 ✏ ⌧P (⇣1) or A0 ✏ ⌧P (⇣2)
() A0 ✏ ⌧P (⇠)

Case 1.6 : ⇠ = ⇣1 _ ⇣2 with free variables x1, . . . , xr

⇣1, ⇣2 are also sub-formulas of ' with (at most) free variables x1, . . . , xr, and from
the induction hypothesis, for any ↵1, . . . ,↵r:

A ✏ ⇠[↵1/x1, . . . ,↵r/xr]

() A ✏ ⇣1[↵1/x1, . . . ,↵r/xr]

or A ✏ ⇣2[↵1/x1, . . . ,↵r/xr]

() A0 ✏ ⌧P (⇣1)[↵1/x1, . . . ,↵r/xr]

or A0 ✏ ⌧P (⇣2)[↵1/x1, . . . ,↵r/xr]

() A0 ✏ ⌧P (⇠)[↵1/x1, . . . ,↵r/xr]

Case 1.7 : ⇠ = 8x.⇣ without free variables
⇣ is a sub-formula of ' with (at most) one free variable x. From the induction

hypothesis:

A ✏ ⇠ () For any ↵ 2 A.A ✏ ⇣[↵/x]
() For any ↵ 2 A.A0 ✏ ⌧P (⇣)[↵/x]
() A ✏ ⌧P (⇠)

Case 1.8 : ⇠ = 8x.⇣ with free variables x1, . . . , xr

⇣ is a sub-formula of ' with (at most) m+1 free variables x, x1, . . . , xr. From the
induction hypothesis, for any ↵1, . . . ,↵r 2 A:

Chapter 2. The Sum Logic (SL) 13

A ✏ ⇠[↵1/x1, . . . ,↵r/xr]

() For any ↵ 2 A.A ✏ ⇣[↵/x,↵1/x1, . . . ,↵r/xr]

() For any ↵ 2 A.A0 ✏ ⌧P (⇣)[↵/x,↵1/x1, . . . ,↵r/xr]

() A0 ✏ ⌧P (⇠)[↵1/x1, . . . ,↵r/xr]

Part 2: If there exists some partition P such that ⌧P (') has a distinct
model, then ' has a model (()

Let A0 be some model for ⌧P (') and we construct a model

A =
�
A, a

A
1 , . . . , a

A
l , b

A
m, . . . , b

A
m, c

A
n , . . . , c

A
n , s

A
m, . . . , s

A
m

�

for ', where A, bAm, . . . , b
A
m, cAn , . . . , cAn , and s

A
m, . . . , s

A
m are taken from A0.

For every i 2 [1, l], aAi is defined as: a
A
i = a

0
P (ai)

.

Observation 2.2.14. A is a Sum structure, and holds the sum property.

Claim 2.2.15. For any closed term t, I(t) = I 0(⌧P (t))

Proof. Similarly to Claim 2.2.11, we only need to consider t = ai, and we get:

I(t) = I(ai)
= a

A
i

= a
0
P (ai)

= I 0(aP (ai)) = I 0(⌧P (t))

Claim 2.2.16. For any term t with free variables x1, . . . , xr, for any assignment �,
and for any ↵1, . . . ,↵r 2 A, we define �0 = �[↵1/x1, . . . ,↵r/xr], and I�0(t[↵1/x1, . . . ,↵r/xr]) =
I 0
�0(⌧P (t)[↵1/x1, . . . ,↵r/xr]).

Proof. Identical to the proof of Claim 2.2.15.

Claim 2.2.17. Let ⇠ be a sub-formula of ', therefore:

1. If ⇠ is a closed formula, then A0 ✏ ⌧P (⇠) () A ✏ ⇠.

2. If ⇠ is a formula with free variables x1, . . . , xr then for every ↵1, . . . ,↵r 2 A,
A0 ✏ ⌧P (⇠)[↵1/x1, . . . ,↵r/xr] () A ✏ ⇠[↵1/x1, . . . ,↵r/xr]

Since ' is a closed formula, and since A ✏ ⌧P (') we get that A0 ✏ '.

Proof of Claim 2.2.17. In the same vain of Claim 2.2.13, this follows from Claims 2.2.15
and 2.2.16.

Q.E.D. Theorem 2.2.9.

Chapter 2. The Sum Logic (SL) 14

2.2.2 Small Models

Definition 2.2.18 (Small model property). Let FRAG be some fragment of SL over
vocabulary ⌃ = ⌃l,m,n

+,< . FRAG is said to have small models if there exists some
computable function ⌃(·), such that for any Sum formula ' 2 FRAG, ' has a model
() ' has a small model A = (D, I) where |D(Address)|  ⌃(|'|).

Moreover, ' has a distinct model () it has a distinct, small model (with regards
to ⌃(|'|)).

⌃(·) is called the bound function of FRAG, and when the vocabulary is clear
from context we simply write (·).

Theorem 2.2.19. For any l, n, the fragment of Sum formulas over the Sum vocab-
ulary ⌃l,1,n

⇢+,⇢< =
�
a1, . . . , al, b

1
, c1, . . . , cn, sb, 0, 1

�
holds the small model property with

bound function (x) = l + x+ 1.
I.e. we have a single uninterpreted function (and its associated sum), no plus and

no order relation.

Proof of Theorem 2.2.19

Let there be some universal, closed formula ' over ⌃ = ⌃l,1,n

⇢+,⇢< and let there be some
minimal structure A 2 STRUCT[⌃] such that A ✏SL ' (i.e. A is a Sum model for ').

We denote the (finite) size of A as z , |A|, and we assume towards contradiction
that z � l + |'| + 1 (as our bound function is (x) = l + x + 1). We construct a
smaller model A0 for '. Thus contradicting the minimality of A, and proving our
desired claim.

We write out the given model A =
�
A, a

A
1 , . . . , a

A
l , b

A
, c

A
1 , . . . , c

A
n , s

A�

We know that |A| = z > l, and therefore the set

S , A \
�
a
A
1 , . . . , a

A
l

is not empty. Let us define
↵
⇤ , argmin

↵2S

�
b
A(↵)

and b
⇤ , b

A(↵⇤).
We construct the following smaller structure A0 =

⇣
A

0
, a

A0
1 , . . . , a

A0
l , b

A0
, c

A0
1 , . . . , c

A0
n , s

A0
⌘

where

A
0 , A \ {↵⇤} (2.1)

a
A0
i , a

A
i (2.2)

b
A0 , b

A projected on A
0 (2.3)

s
A0 , s

A � b
⇤ (2.4)

and we postpone defining c
A0
k for now. We observe that:

Observation 2.2.20. If A is a distinct model, then so is A0.

Firstly, we prove the following claim:

Claim 2.2.21. A0 holds the Sum property.

Chapter 2. The Sum Logic (SL) 15

Proof. Since A holds the Sum property for s
A:

s
A0

= s
A � b

⇤

=
X

↵2A
b
A(↵)� b

⇤

=

0

@
X

↵2A\{↵⇤}

b
A(↵)

1

A+ b
A(↵⇤)| {z }
=b⇤

�b
⇤

=
X

↵2A0

b
A0
(↵)

The definition for cA0
k depends on b

⇤. If b⇤ = 0 then simply c
A0
k = c

A
k . In this case,

we prove the following:

Lemma 2.2.22. For any term t, assignment �,

I�(t) = I 0
�(t)

Proof. Since b
⇤ = 0, we get that s

A0
= s

A and therefore the interpretations of A and
A0 are identical — I = I 0.

Corollary 2.2.22.1. Since the domain of A0 is a strict subset of the domain of A,
for any formula ⇠, A ✏ ⇠) A0 ✏ ⇠, and in particular A0 is also a model for '.

In the case that b
⇤
> 0, we define

c
A0
k ,

8
<

:

s
A � b

⇤ if cAk = s
A

c
A
k + 1 if cAk � s

A � b
⇤ and c

A
k 6= s

A

c
A
k otherwise

and the proof is more involved. We firstly make the following observations:

Observation 2.2.23. For any k 2 [1, n],

c
A
k = s

A () c
A0
k = s

A0

Observation 2.2.24. For any k1, k2 2 [1, n],

c
A
k1 = c

A
k2 () c

A0
k1 = c

A0
k2

The central claim we need to prove is:

Claim 2.2.25. Let ⇠ be a sub-formula of ',

1. If ⇠ is a closed, quantifier-free formula then

A ✏ ⇠ () A0 ✏ ⇠

2. If ⇠ is a quantifier-free formula with free variables x1, . . . , xr, then for every
↵1, . . . ,↵r 2 A

0,

A ✏ ⇠[↵1/x1, . . . ,↵r/xr] () A0 ✏ ⇠[↵1/x1, . . . ,↵r/xr]

Chapter 2. The Sum Logic (SL) 16

3. If ⇠ is a closed, universally quantified formula then

A ✏ ⇠) A0 ✏ ⇠

4. If ⇠ is a universally quantified formula with free variables x1, . . . , xr, then for
every ↵1, . . . ,↵r 2 A

0,

A ✏ ⇠[↵1/x1, . . . ,↵r/xr]) A0 ✏ ⇠[↵1/x1, . . . ,↵r/xr]

Corollary 2.2.25.1. A0 ✏ '.

Proof. Since ' is a closed, universally quantified sub-formula of itself, and since it is
given that A ✏ ', we get from Claim 2.2.25 that A0 ✏ '.

In order to prove Claim 2.2.25 we firstly need to prove the following two lemmas:

Lemma 2.2.26. For any ↵ 2 A
0,

b
A(↵) = b

A0
(↵) < s

A0
< s

A

Proof. First, since b
A0 is defined to be a projection of bA on a subset of its domain

A
0 ✓ A it is obvious that b

A(↵) = b
A0
(↵) for any ↵ 2 A

0.
Also, since s

A0
= s

A � b
⇤ and we know that b

⇤
> 0, it is clear that s

A0
< s

A.
What remains to prove is that for any ↵ 2 A

0, b
A0
(↵) < s

A0 . A
0 has at least

l+ |'|+1 elements, and therefore A
0 \
n
a
A0
1 , . . . , a

A0
l

o
has at least 2 elements. Let us

denote them: ↵1,↵2.
For both of these elements,

b
A0
(↵1), b

A0
(↵2) > 0

since otherwise they would have been chosen as ↵⇤ — contradicting b
⇤’s minimality.

For any element ↵, since A0 holds the Sum property,

s
A0

=
X

↵02A0

b
A0
(↵0)

= b
A0
(↵) +

X

↵02A0\{↵}

b
A0
(↵0)

We can re-arrange and get that

b
A0
(↵) = s

A0 �
X

↵02A0\{↵}

b
A0
(↵0)

and since A
0 \ {↵} contains either ↵1 or ↵2, it must be that

X

↵02A0\{↵}

b
A0
(↵0) > 0

and therefore b
A0
(↵) < s

A0 .

Lemma 2.2.27.

|'| < s
A0

< s
A

Chapter 2. The Sum Logic (SL) 17

Proof. Let us examine the set S , A
0\
n
a
A0
1 , . . . , a

A0
l

o
. It has at least |'|+1 elements.

For any ↵ 2 S, bA0
(↵) > 0, otherwise it would have been chosen as ↵⇤ and we’d

have b
⇤ = 0 — which contradicts b

⇤’s minimality.
Therefore, on the one hand,

X

↵2S
b
A0
(↵) � |S| � |'|+ 1 > |'|

And, on the other hand, since S ✓ A
0, we know that

X

↵2S
b
A0
(↵) 

X

↵2A0

b
A0
(↵) = s

A0

And combining the two results we get that |'| < s
A0 , and since b

⇤
> 0, s

A0
<

s
A.

Proof of Claim 2.2.25. We prove the claim using structural induction.
Step 1: ⇠ = t1 ⇡ t2 without free variables

⇠ is a closed, quantifier-free formula, so we prove that A ✏ ⇠ () A0 ✏ ⇠. We
consider the following cases:
Case 1.1 : t1 = t2

Tautology.
Case 1.2 : t1 = s, t2 = numeral

Since ⇠ is a sub-formula of ', |⇠|  |'|, and therefore the numeral is less than |'|.
However, sA, sA0

> |'| from Lemma 2.2.27 and therefore A,A0 2 ⇠.
Case 1.3 : t1 = s, t2 = ck

From Observation 2.2.23 we know that s
A = c

A
k () s

A0
= c

A0
k and therefore

A ✏ ⇠ () A0 ✏ ⇠.
Case 1.4 : t1 = s, t2 = b(ai)

From Lemma 2.2.26 we know that for any ↵ 2 A
0, bA0

(↵) = b
A(↵) < s

A0
< s

A

and in particular for ↵ = a
A
i = a

A0
i , A,A0 2 ⇠.

Case 1.5 : t1 = ck, t2 = numeral
If cAk = c

A0
k then trivially A ✏ ⇠ () A0 ✏ ⇠.

Otherwise, cAk , c
A0
k � s

A0 . However, since ⇠ is a sub-formula of ', the numeral is
less than |'|, and s

A0
> |'|, from Lemma 2.2.27. Therefore, A,A0 2 ⇠.

Case 1.6 : t1 = ck1 , t2 = ck2

Trivial, from Observation 2.2.24.
Case 1.7 : t1 = ck, t2 = b(ai)

If cAk = c
A0
k then from Lemma 2.2.26, A ✏ ⇠ () A0 ✏ ⇠.

Otherwise, c
A
k , c

A0
k � s

A0 . However, from Lemma 2.2.26 we know that for any
a 2 A

0 (and in particular for a
A
j), b

A0
(a) = b

A(a) < s
A0  c

A
k , c

A0
k . Therefore,

A,A0 2 ⇠.
Case 1.8 : t1 = ai1 , t2 = ai2

Trivial, since the interpretation of the Address constants is identical in A, A0.
Any other case is symmetrical to one of the cases above.

Step 2: ⇠ = t1 ⇡ t2 with free variables x1, . . . , xr

⇠ is a quantifier-free formula, so we prove that for any ↵1, . . . ,↵r 2 A
0

A ✏ ⇠[↵1/x1, . . . ,↵r/xr] () A0 ✏ ⇠[↵1/x1, . . . ,↵r/xr]

Chapter 2. The Sum Logic (SL) 18

We consider the following cases:
Case 2.1 : t1 = t2

Tautology.
Case 2.2 : t1 = s, t2 = b(x)

From Lemma 2.2.26 we know that for any ↵ 2 A
0, bA0

(↵) = b
A(↵) < s

A0
< s

A

and in particular A,A0 2 ⇠[↵/x].
Case 2.3 : t1 = b(x), t2 = numeral

Trivial, since from Lemma 2.2.26, for every ↵ 2 A
0, bA(↵) = b

A0
(↵).

Case 2.4 : t1 = b(x), t2 = ck

Let there be ↵ 2 A
0, we separate into the following cases:

1. If cAk = c
A0
k :

From Lemma 2.2.26 we get

A ✏ ⇠[↵/x] () A ✏ b(↵) ⇡ ck

() b
A(↵) = c

A
k

() b
A0
(↵) = c

A0
k

() A0 ✏ b(↵) ⇡ ck

() A0 ✏ ⇠[↵/x]

2. Otherwise, c
A
k � s

A0 and c
A0
k � s

A0 . From Lemma 2.2.26 we get b
A0
(a) =

b
A(a) < s

A0
< s

A and therefore A 2 ⇠[↵/x] and A0 2 ⇠[↵/x].

Case 2.5 : t1 = b(x), t2 = b(ai)

Trivial from Lemma 2.2.26.
Case 2.6 : t1 = b(x1), t2 = b(x2)

Trivial from Lemma 2.2.26.
Case 2.7 : t1 = ai, t2 = x

Trivial, since the interpretation of the address constants is identical in A and A0.
Case 2.8 : t1 = x1, t2 = x2

Trivially holds for any a 2 A
0.

Any other case is symmetrical to one of the cases above.
Step 3: ⇠ = ¬⇣ without free variables

Since ' is a universal formula we can assume it is in prenex form, and therefore, ⇣
is a closed, quantifier-free formula, shorter than ⇠ and from the induction hypothesis,
A ✏ ⇣ () A0 ✏ ⇣, and therefore

A ✏ ⇠ () A 2 ⇣
() A0 2 ⇣
() A0 ✏ ⇠

Step 4: ⇠ = ¬⇣ with free variables x1, . . . , xr

Similarly to the closed formula case, ⇣ is a quantifier-free formula with free vari-
ables x1, . . . , xr and the claim holds from the induction hypothesis.
Step 5: ⇠ = ⇣1 _ ⇣2 without free variables

Similarly to the negation formula case, ⇣1, ⇣2 are closed, quantifier-free formulas
and the claim holds from the induction hypothesis.

Chapter 2. The Sum Logic (SL) 19

Step 6: ⇠ = ⇣1 _ ⇣2 with free variables x1, . . . , xr

Similarly to the closed formula case, and the claim holds from the induction hy-
pothesis.
Step 7: ⇠ = 8v.⇣ without free variables

Since ⇠ is a universal formula, we need to show that if A ✏ ⇠ then A0 ✏ ⇠ (but not
vice versa).

⇣ is a universally quantified formula with (at most) one free variable x. If A ✏ ⇠
then for every ↵ 2 A,

A ✏ ⇣[↵/x]
and in particular for any ↵ 2 A

0 (A.
⇣ is shorter than ⇠ and therefore the induction hypothesis holds:

A0 ✏ ⇣[↵/x]

for any ↵ 2 A
0, and therefore A0 ✏ ⇠.

Step 8: ⇠ = 8v.⇣ with free variables x1, . . . , xr

Let there be ↵1, . . . ,↵r 2 A
0. If

A ✏ ⇠[↵1/x1, . . . ,↵r/xr]

then for every ↵ 2 A,

A ✏ ⇣[↵/x,↵1/x1, . . . ,↵r/xr]

and in particular for every ↵ 2 A
0 (A. From the induction hypothesis for ⇣ we

get:
A0 ✏ ⇣[↵/x,↵1/x1, . . . ,↵r/xr]

which is true for any a 2 A
0, and therefore,

A0 ✏ ⇠[↵1/x1, . . . ,↵r/xr]

Q.E.D. Theorem 2.2.19.

Remark. An attempt to extend the proof above for a fragment of SL with two balance
functions falls apart in a few places, but most importantly Lemma 2.2.26 does not
hold between different balance functions. I.e. if we have two balance functions we
cannot be sure that 8x.b1(x)  s2 (or vice versa).

This lemma in central for constructing a smaller model (as part of the proof by
contradiction), and it is unclear how to adapt the proof for this extended fragment of
SL.

Moreover, the fact that the proof does not work when there are comparisons of
balances and unrelated sums is not accidental. We see in Section 2.3 that these
comparisons are essential for proving our undecidability result in SL.

However, we believe that some restricted fragment of SL with dual balances can
be decidable — e.g. if we disallow this kind of comparisons — and still be able to
express interesting properties and transitions that are beyond the scope of the single
function fragment. As we discuss in Section 4.2, the question is not only how to
prove decidability for a fragment, but also how to find a fragment that is surprisingly
interesting, albeit of restricted expressiveness.

Chapter 2. The Sum Logic (SL) 20

2.2.3 Presburger Reduction

Outline

For showing decidability of a fragment of SL, we describe a Turing reduction to pure
Presburger arithmetic. We start by defining a transformation ⌧(·) of formulas in SL
into formulas in Presburger arithmetic.

In addition, we define an auxiliary formula ⌘('), in order to set up some global
constraints on the Presburger model we are looking for. By relying on the properties
of distinctness and small models (as defined in the previous sub-sections) we get the
following result:

Theorem 2.2.28 (Presburger reduction). A Sum formula ' has a distinct, small Sum
model () '

0 , ⌧(') ^ ⌘(') has a Standard Model of Arithmetic.

Corollary 2.2.28.1. Let FRAG be some fragment of SL that holds the small model

property, with bound function (·). Therefore, FRAG is decidable.

Proof of Corollary 2.2.28.1. Let ' be some formula in FRAG. ' has a Sum model
() for some partition P of {a1, . . . , al}, ⌧P (') has a distinct Sum model.

All of the formulas ⌧P (') are in FRAG, therefore they have a distinct Sum model
() they have a distinct, small Sum model.

Combining with Theorem 2.2.28, we get that for any P , 'P = ⌧P (') has a distinct

Sum model () ⌧('P) ^ ⌘('P) has a model (in Presburger arithmetic).
We get the following decision procedure, using the Presburger arithmetic decision

procedure as an oracle:

• For each possible partition P of {a1, . . . , al} let 'P = ⌧P (').

• Check for each P if ⌧('P) ^ ⌘('P) has a model (using any decision procedure
for Presburger arithmetic).

• If any of the Presburger queries found a model, then for some partition P , the
formula 'P has a distinct Sum model, and therefore ' has Sum model.

• Otherwise, there is no distinct Sum model for any partition P , and therefore
there is no Sum model for '.

Remark. The decision procedure described requires Bl Presburger queries, where Bl

is Bell’s number for all possible partitions of a set of size l. This number is huge, even
for small values of l, but those queries can be done in parallel.

Defining the Transformations

The transformation of formulas from SL to PA works by explicitly writing out sums
as additions and universal quantifiers as conjunctions. Since we’re dealing with a
fragment of SL that has some bound function (·), we know that for given formula ',
there is a model with at most (|'|) elements of Address sort.

Moreover, we use ̃ , max {(|'|), l} as the upper bound (where l is the amount
of Address constants). Since we’re looking for distinct models, it is obvious that we
need at least l distinct elements.

For each balance function b
1
j we have ̃ constants b1,j , . . . , b̃,j .

Chapter 2. The Sum Logic (SL) 21

In addition we have ̃ indicator constants a1, . . . , a̃, to mark if an Address element
is "active". An inactive element has all zero balances, and is skipped over in universal
quantifiers.

Any Address constant ai or Address variable x is handled in two ways, depending
on the context they appear in:

• If they are compared, we replace the comparison with > or ?; we know statically
if the comparison holds, since the Address constants are distinct and every
universal quantifier is written out as a conjunction.

• Otherwise, they must be used in some balance function b
1
j , and then they are

substituted with the corresponding bi,j or bx,j (which will be determined once
the universal quantifiers are unrolled).

The integral constants c1, . . . , cn are simply copied over.
In summary:

Definition 2.2.29 (Corresponding Presburger vocabulary). Given the Sum vocabu-
lary ⌃l,m,n and a bound ̃ � l, we define the corresponding Presburger vocabulary as
⌃l,m,n

Pres(̃) = Pres(⌃l,m,n
, ̃) ,

�
a1, . . . , a̃, b1,1, . . . , b̃,m, c1, . . . , cn, 0, 1,+2

, <
2
�
.

Firstly, we define the simpler auxiliary formula ⌘(') in three parts:

Definition 2.2.30. We require that inactive Address elements have zero balances -

⌘1(') =
̂̃

i=1

2

4(ai ⇡ 0) !

0

@
m̂

j=1

bi,j ⇡ 0

1

A

3

5

Definition 2.2.31. And that elements referred by Address constants be active -

⌘2(') =
l̂

i=1

ai 6⇡ 0

Definition 2.2.32. Finally, we require that the active elements are a continuous
sequence starting at 1. Or, put differently, once an indicator is zero, all indicators
following it are also zero:

⌘3(') =
̂̃

i=1

"
ai ⇡ 0 !

̂̃

i0=i

ai0 ⇡ 0

!#

The complete auxiliary formula is then ⌘(') = ⌘1(') ^ ⌘2(') ^ ⌘3(').
In order to define ⌧('), we firstly define the transformation for terms, and then

build up the complete transformation, using several substitutions:

Definition 2.2.33. We define the terms transformation inductively, and we substitute
balances and Address terms (constants or variables) with placeholders (marked with
*), which are further substituted:

⌧0(t) ,

8
>>>><

>>>>:

a
⇤
i if t = ai

x
⇤ if t = x for some free variable

b1,j + · · ·+ b̃,j if t = sj

b
⇤
j (⌧0(t1)) if t = bj(t1) where t1 2 {ai, x}
⌧0(t1) + ⌧0(t2) if t = t1 + t2

Chapter 2. The Sum Logic (SL) 22

Definition 2.2.34. Next we define the transformation for formulas, replacing only
variable placeholders:

⌧1(⇠) ,

8
>>>><

>>>>:

⌧0(t1) ⇡ ⌧0(t2) if ⇠ = t1 ⇡ t2

⌧0(t1) < ⌧0(t2) if ⇠ = t1 < t2

¬⌧1(⇣) if ⇠ = ¬⇣
⌧1(⇣1) ^ ⌧1(⇣2) if ⇠ = ⇣1 ^ ⇣2V̃

i=1 (ai ⇡ 0 _ ⌧1(⇣)[a⇤i /x⇤]) if ⇠ = 8x.⇣

We can see that for any formula ⇠ containing arbitrary terms, ⌧1(⇠) only has a
⇤
i and

b
⇤
j placeholders (but no x

⇤ ones).

Definition 2.2.35. Now we define a substitution �1 that removes Address compar-
isons by evaluating them:

�1 , [>/(a⇤i ⇡ a
⇤
i)][?/(a⇤i ⇡ a

⇤
i0)]

where i, i
0 2 [1, ̃].

Note. We first replace comparisons where a
⇤
i ⇡ a

⇤
i , which is equivalent to true (>).

Then any remaining comparison must be where i 6= i
0, and therefore equivalent to

false (?).

Definition 2.2.36. Finally, we’re left with placeholders inside balance functions,
which we substitute by the corresponding balance constant:

�2 ,
⇥
bi,j/b

⇤
j (a

⇤
i)
⇤

where i 2 [1, ̃], j 2 [1,m].

Definition 2.2.37. The complete transformation is then:

⌧(') , ⌧1(')�1�2

Given the above definition, let us recall Theorem 2.2.28:

Theorem. A Sum formula ' has a distinct, small Sum model () '
0 , ⌧(')^⌘(')

has a model.

Proof of Theorem 2.2.28

We first define congruence between structures in Sum Logic and structures in the
corresponding Presburger vocabulary, and we prove a general theorem about them.
We use that congruence theorem to prove that a formula ' has a small, distinct Sum
model () '

0 has a Presburger model.
Part 1: Congruence Lemmas

Definition 2.2.38. Given a Sum vocabulary ⌃l,m,n, a bound ̃ � l and a formula '
over ⌃l,m,n. Two structures, A 2 STRUCT

⇥
⌃l,m,n

⇤
and A0 2 STRUCT

⇥
Pres(⌃l,m,n

, ̃)
⇤

are said to be congruent if the following conditions hold:

(1) A holds the Sum property.

(2) A0 satisfies ⌘(').

(3) z , |A|  ̃, and we write out A = {↵1, . . . ,↵z}.

(4) For any i 2 [1, l], aAi = ↵i.

Chapter 2. The Sum Logic (SL) 23

(5) For any j 2 [1,m], for any i 2 [1, z], bA0
i,j = b

A
j (↵i), and for any i > z, bA0

i,j = 0.

(6) For any i 2 [1, z], aA0
i > 0 and for any i > z, aA0

i = 0.

(7) A is distinct, and in particular l  z.

Lemma 2.2.39. Let A,A0 be two congruent structures for Sum vocabulary ⌃, bound
̃ and formula '. For any ground term t of sort Nat over ⌃,

I 0(⌧0(t)�2) = I(t)

Proof. We prove the lemma using structural induction over all possible ground terms:
Step 1.1: t = sj for any j 2 [1,m]

From Congruence Condition 2.2.38(1) A holds the sum property, and therefore:

I(sj) = s
A
j =

X

↵2A
b
A
j (↵) =

zX

i=1

b
A
j (↵i)

From Congruence Condition 2.2.38(5), for any i 2 [1, z], bA0
i,j = b

A
j (↵i), and for any

i 2 [z + 1, ̃], bA0
i,j = 0, therefore we can write the sum above as

I(sj) = · · · =
̃X

i=1

b
A0
i,j

From the definition of ⌧0 we get:

I 0(⌧0(sj)�2) = I 0([b1,j + · · ·+ b̃,j]�2) =
̃X

i=1

b
A0
i,j

Since we have no placeholders, �2 has no effect, and we get the same expression as for
I(t).
Step 1.2: t = bj(ai) where i 2 [1, l], j 2 [1,m]

From Congruence Condition 2.2.38(4), aAi = ↵i, and we get:

I(t) = b
A
j (↵i)

From the definition of ⌧0 and �2 we get:

⌧0(t)�2 =
⇥
b
⇤
j (a

⇤
i)
⇤
�2 = bi,j

And therefore, since A is distinct, i  l  z, and from Congruence Condi-
tion 2.2.38(5),

I 0(⌧0(t)�2) = I 0(bi,j) = b
A0
i,j = b

A
j (↵i)

Step 1.3: t = t1 + t2

Follows from the induction hypothesis for t1 and t2 (since + is interpreted in the
same way in A and A0).

Lemma 2.2.40. Let A,A0 be two congruent structures for Sum vocabulary ⌃, bound
̃ and formula '. For any term t with at most r free variables x1, . . . , xr, for any indices
i1, . . . , ir 2 [1, z], for any assignment � we define

�0 = �[↵i1/x1, . . . ,↵ir/xr]

Chapter 2. The Sum Logic (SL) 24

and the following holds:

I�0(t) = I 0�
⌧0(t)

⇥
a
⇤
i1/x

⇤
1, . . . , a

⇤
ir/x

⇤
r

⇤
�2
�

Proof. We prove the lemma using structural induction over all possible terms with
free variables:
Step 1.4: t = bj(x)

For any i 2 [1, z],
I�0(t) = I(bj)

�
�0(x)

�
= b

A
j (↵i)

By definition, ⌧0(t) = b
⇤
j (x

⇤), and therefore

I 0(⌧0(t)[a
⇤
i /x

⇤]�2) = I 0�
b
⇤
j (a

⇤
i)�2

�

= I 0(bi,j)

= b
A0
i,j

= b
A
j (↵i)

since i 2 [1, z].
Step 1.5: t = t1 + t2

Either t1 or t2 has free variables, and let us assume w.l.o.g. that t1 does. Therefore,
t2 is either a ground term, or also has free variables. If t2 has no free variables, the
substitution of free variables wouldn’t affect it.

In both cases, from the induction hypothesis and from Lemma 2.2.39, for any
i1, . . . , ir 2 [1, z],

I�0(tv) = I 0(⌧0(tv)
⇥
a
⇤
i1/x

⇤
1, . . . , a

⇤
ir/x

⇤
r

⇤
)

where v 2 {1, 2}, and we get desired equality for t as well.

Lemma 2.2.41. Let A,A0 be two congruent structures for Sum vocabulary ⌃, bound
̃ and formula '. Let ⇠ be a sub-formula of ', therefore:

1. If ⇠ is a closed formula, then A0 ✏ ⌧(⇠) () A ✏ ⇠.

2. If ⇠ is a formula with free variables x1, . . . , xr then for any i1, . . . , ir 2 [1, z]:

A0 ✏ ⌧1(⇠)
⇥
a
⇤
i1/x

⇤
1, . . . , a

⇤
ir/x

⇤
r

⇤
�1�2

() A ✏ ⇠[↵i1/x1, . . . ,↵ir/xr]

Proof. Let us separate into the following steps:
Step 1.6: ⇠ = t1 ⇡ t2 without free variables, where t1, t2 are of Address sort

Since t1, t2 are Addresses, there are two indices i1, i2 2 [1, l] such that t1 = ai1 , t2 =
ai2 . From Congruence Condition 2.2.38(7), A is distinct and therefore

A ✏ ⇠ () i1 = i2.

As for ⌧(⇠),

⌧(⇠) = (⌧0(t1) ⇡ ⌧0(t2))�1�2

=
�
a
⇤
i1 ⇡ a

⇤
i2

�
�1

=

⇢
> if i1 = i2

? otherwise

Chapter 2. The Sum Logic (SL) 25

Which means that A0 ✏ ⌧(⇠) () i1 = i2 () A ✏ ⇠.
Step 1.7: ⇠ = t1 ⇡ t2 without free variables, where t1, t2 are of sort Nat

In this case, �1 would not change the formula and we can apply �2 to each term:

⌧(⇠) = ⌧0(t1)�2 ⇡ ⌧0(t2)�2

Since t1, t2 are of sort Nat , from Lemma 2.2.39 we get that

A0 ✏ ⌧(⇠) () I 0(⌧0(t1)�2) = I 0(⌧0(t2)�2)

() I(t1) = I(t2) (Lemma 2.2.39)
() A ✏ t1 ⇡ t2 = ⇠

Step 1.8: ⇠ = t1 ⇡ t2 with free variables x1, . . . , xr, where t1, t2 are of Address sort
Let us first define � = [↵i1/x1, . . . ,↵ir/xr], �0 =

⇥
a
⇤
i1/x

⇤
1, . . . , a

⇤
ir/x

⇤
r

⇤
.

If t1, t2 both have free variables then we can write them as t1 = x1, t2 = x2 and
after substituting � we get that

⇠� = ↵i1 ⇡ ↵i2 .

Therefore, A ✏ ⇠� () i1 = i2.
As for A0, we get

⌧1(⇠)��1�2 = (x⇤1 ⇡ x
⇤
2)�

0
�1�2

=
�
a
⇤
i1 ⇡ a

⇤
i2

�
�1�2

=
�
a
⇤
i1 ⇡ a

⇤
i2

�
�1

=

⇢
> if i1 = i2

? otherwise

And we get that A0 ✏ ⌧1(⇠)�0�1�2 () i1 = i2 () A ✏ ⇠�.
Step 1.9: ⇠ = t1 ⇡ t2 with free variables x1, . . . , xr, where t1, t2 are of sort Nat

Similarly to the case above, we define � = [↵i1/x1, . . . ,↵ir/xr], �0 =
⇥
a
⇤
i1/x

⇤
1, . . . , a

⇤
ir/x

⇤
r

⇤
.

For any assignment �, we define
�0 = ��

Since t1, t2 are of sort Nat , �1 has no effect, and from Lemma 2.2.40,

A0 ✏ ⌧1(⇠)�0�1�2
() A0 ✏ [⌧0(t1) ⇡ ⌧0(t2)]�

0
�2

() I 0(⌧0(t1)�
0
�2) = I 0(⌧0(t2)�

0
�2)

() I�0(t1�) = I�0(t2�) (Lemma 2.2.40)
() A ✏ ⇠�

Chapter 2. The Sum Logic (SL) 26

Step 1.10: ⇠ = ¬⇣ without free variables
Follows from the induction hypothesis for ⇣:

A0 ✏ ⌧(⇠) () A0 ✏ ¬⌧(⇣)
() A0 2 ⌧(⇣)
() A 2 ⇣
() A ✏ ¬⇣
() A ✏ ⇠

Step 1.11: ⇠ = ¬⇣ with free variables x1, . . . , xr

Follows from the induction hypothesis for ⇣, for any i1, . . . , ir 2 [1, z]:

A0 ✏ ⌧1(¬⇣)
⇥
a
⇤
i1/x

⇤
1, . . . , a

⇤
ir/x

⇤
r

⇤
�1�2

() A0 ✏ ¬⌧1(⇣)
⇥
a
⇤
i1/x

⇤
1, . . . , a

⇤
ir/x

⇤
r

⇤
�1�2

() A0 2 ⌧1(⇣)
⇥
a
⇤
i1/x

⇤
1, . . . , a

⇤
ir/x

⇤
r

⇤
�1�2

() A 2 ⇣[↵i1/x1, . . . ,↵ir/xr] (Induction hypothesis)
() A ✏ ¬⇣[↵i1/x1, . . . ,↵ir/xr]

() A ✏ ⇠[↵i1/x1, . . . ,↵ir/xr]

Step 1.12: ⇠ = ⇣1 _ ⇣2 without free variables
Follows from the induction hypothesis for ⇣1 and ⇣2:

A0 ✏ ⌧(⇠) () A0 ✏ ⌧(⇣1) _ ⌧(⇣2)
() A0 ✏ ⌧(⇣1) or A0 ✏ ⌧(⇣2)
() A ✏ ⇣1 or A ✏ ⇣2
() A ✏ ⇣1 _ ⇣2
() A ✏ ⇠

Step 1.13: ⇠ = ⇣1 _ ⇣2 with free variables x1, . . . , xr

Follows from the induction hypothesis for ⇣1 and ⇣2, similar to the no free variables
case above, since ⌧1(⇣1 _ ⇣2) = ⌧1(⇣1) _ ⌧1(⇣2).
Step 1.14: ⇠ = 8x.⇣ without free variables

Since a
A0
i = 0 () i > z we get the following:

A0 ✏ ⌧(⇠) () A0 ✏
̂̃

i=1

(ai ⇡ 0 _ ⌧1(⇣)[a⇤i /x⇤])�1�2

() A0 ✏
ẑ

i=1

⌧1(⇣)[a
⇤
i /x

⇤]�1�2

() A0 ✏ ⌧1(⇣)[a⇤i /x⇤]�1�2 for all i 2 [1, z]

() A ✏ ⇣[↵i/x] for all i 2 [1, z] (Induction hypothesis for ⇣)
() A ✏ 8x.⇣ = ⇠ (The set A is covered by ↵1, . . . ,↵z)

Step 1.15: ⇠ = 8x.⇣ with free variables x1, . . . , xr

Similar to the case above, using the induction hypothesis for ⇣ as a formula with
free variables x, x1, . . . , xr.

Chapter 2. The Sum Logic (SL) 27

Part 2: Proof of Theorem 2.2.28 ()): If ' has a distinct, small Sum model,

then '
0
has a model

Let there be a distinct, small Sum model for ':

A =
�
A, a

A
1 , . . . , a

A
l , b

A
1 , . . . , b

A
m, c

A
1 , . . . , c

A
n , s

A
1 , . . . , s

A
m

�
.

We can represent its Addresses set as A = {↵1, . . . ,↵z} where z = |A|, and for
every i 2 [1, l], aAi = ↵i since A is distinct. Combined with the fact that A is small
we know that z  ̃.

We define A0 the model for '0 as follows:

A0 =
⇣
a
A0
1 , . . . , a

A0
̃ , b

A0
1,1, . . . , b

A0
̃,m, c

A0
1 , . . . , c

A0
n

⌘

where the indicators are
a
A0
i =

⇢
1 if i  z

0 otherwise ;

the balances are
b
A0
i,j =

⇢
b
A
j (↵i) if i  z

0 otherwise ;

and the natural constants are c
A0
k = c

A
k .

Claim 2.2.42. The structure A0 satisfies ⌘(').

Proof. We show that A0 satisfies ⌘1('), ⌘2(') and ⌘3('):
Step 2.1: A0 satisfies ⌘1(')

We need to show that for each i 2 [1, ̃],

A0 ✏

2

4(ai ⇡ 0) !

0

@
n̂

j=1

bi,j ⇡ 0

1

A

3

5.

I.e. for each i 2 [1, ̃] and j 2 [1,m], if aA0
i = 0, then b

A0
i,j = 0.

By definition, aA0
i = 0 () i > z, in which case, for any j 2 [1,m], bA0

i,j = 0, as
required.
Step 2.2: A0 satisfies ⌘2(')

We need to show that for each i 2 [1, l],

A0 ✏ ai 6⇡ 0,

i.e. a
A0
i 6= 0.

Since A is a distinct model, it has at least l addresses: l  z. By definition, for
any i 2 [1, z], aA0

i = 1 > 0, in particular for any i 2 [1, l] ✓ [1, z].
Step 2.3: A0 satisfies ⌘3(')

We need to show that for each i 2 [1, ̃], if aA0
i = 0, then for any i

0
> i, aA0

i0 = 0.
Let there be some index i such that a

A0
i = 0, therefore, by definition, i > z. For

any i
0
> i it also holds that i

0
> z and therefore a

A0
i0 = 0.

Claim 2.2.43. The structure A0 satisfies ⌧(').

Proof. We show that A and A0 are congruent, and since A ✏ ', from Lemma 2.2.41,
A0 ✏ ⌧('):

Chapter 2. The Sum Logic (SL) 28

1. A is a Sum model of ', therefore it holds the Sum property.

2. A0 satisfies ⌘(') from Claim 2.2.42.

3. z = |A|  ̃ as explained above.

4. For any i 2 [1, l], aAi = ↵i by definition.

5. By construction of A0, for any j 2 [1,m], i 2 [1, z], bA0
i,j = b

A
j (↵i) and for any

i > z, bA0
i,j = 0.

6. By construction of A0, for any i 2 [1, z], aA0
i = 1 > 0, and for any i > z, aA0

i = 0.

7. A is given to be distinct.

Corollary 2.2.43.1. The structure A0 is a model for '0 = ⌧(') ^ ⌘(').

Part 3: Proof of Theorem 2.2.28 ((): If '
0

has a model, then ' has a

distinct, small Sum model

Let A0 =
⇣
a
A0
1 , . . . , a

A0
̃ , b

A0
1,1, . . . , b

A0
̃,m, c

A0
1 , . . . , c

A0
n

⌘
be a model for '0. Since A0 ✏

⌘3('), we know that there exists some maximal index z  ̃ such that a
A0
z 6= 0 and

for any i > z, aA0
i = 0. Since A0 ✏ ⌘1(') we know that z � l.

We construct a model A for ' as follows:

A =
�
A, a

A
1 , . . . , a

A
l , b

A
1 , . . . , b

A
m, c

A
1 , . . . , c

A
n , s

A
1 , . . . , s

A
m

�

where the Addresses set is
A = [1, z];

the Address constants are
a
A
i = i

for any i 2 [1, l]; the balances are

b
A
j (i) = b

A0
i,j

for any i 2 A, j 2 [1,m]; the natural constants are c
A
k = c

A0
k and the sums are defined

as
s
A
j =

X

↵2A
b
A
j (↵).

We show that A,A0 are congruent:

1. By construction, A holds the Sum property.

2. It is given that A0 satisfies ⌘(').

3. We define A to be the set [1, z], and therefore |A|  ̃.

4. a
A
i = ↵i as defined above.

5. By construction, for any j 2 [1.m], i 2 [1, z], b
A
j (↵i) = b

A0
i,j and z was chosen

such that for any i > z, bA0
i,j = 0.

6. z was chosen such that for any i 2 [1, z], aA0
i > 0 and for any i > z, aA0

i = 0.

Chapter 2. The Sum Logic (SL) 29

7. A is distinct by construction.

Given that A0 ✏ '0, we know in particular that A0 ✏ ⌧('), and from Lemma 2.2.41,
A ✏ ' as a many-sorted, first-order formula. Since A holds the Sum property, A ✏SL '.
In addition, by construction |A| = z  ̃. Therefore, A is a distinct, small Sum model
for '.

Q.E.D. Theorem 2.2.28.

2.3 Undecidable Sum Logics

We show how to encode the halting problem of a 2-counter machine using SL with 3
balance functions, thereby proving that it is an undecidable logic.

Let there be some 2-counter machine, whose transitions are encoded with the
formula ⇡(c1, c2, p, c01, c

0
2, p

0) with 6 free variables: 2 for each register, including the
program counter (pc).

We assume w.l.o.g. that all three counters are strictly within the naturals, exclud-
ing 0. This allows us to use a zero balance as a special separating marker.

In addition, we assume that the program counter is 1 at the start of the execution,
and that there exists a single halting statement at line H (where H is some known
natural constant). I.e. the 2-counter machine halts if and only if the pc is equal to
H.

2.3.1 Outline

We have 4 Address elements for each time-step, 3 of them hold one register each, and
one is used to separate between each group of Address (see Figure 2.1, Table 2.2). We
have 3 uninterpreted functions from Address to Nat ("balances"):

1. c: Cardinality function, used to force size constraints. We set its value for all
addresses to be 1, and therefore the amount of addresses is sc.

2. l: Labeling function, to order the time-steps. We choose one element to have
a maximal value of sc � 1, and ensure that l is injective. This means that the
values of l are [0, sc � 1].

3. g: General purpose function, which holds either one of the registers, or zero to
mark the Address element as a separating one.

Each group representing a time-step is 4 Address elements, ordered as follows:

1. First, a separating Address element x (where g(x) is 0).

2. Then, the two general-purpose counters.

3. Lastly, the program counter.

In addition we have 2 Address constants, a0 and a1 which represent the program
counter value at the start and end of the execution. The element a1 also holds the
maximal value of l — that is, l(a1)+1 ⇡ sc — and a0 holds the fourth-minimal value,
since each group has four elements, and the pc is last.

Chapter 2. The Sum Logic (SL) 30

0

0

1

g(·)

l(·)
c(·)

c1 at #0

1

1

g(·)

l(·)
c(·)

c2 at #0

2

1

g(·)

l(·)
c(·)

a0

pc = 1

3

1

g(·)

l(·)
c(·)

Initial State (Time-step #0)

x1

0

4i

1

g(·)

l(·)
c(·)

x2

c1 at #i

4i+ 1

1

g(·)

l(·)
c(·)

x3

c2 at #i

4i+ 2

1

g(·)

l(·)
c(·)

x4

pc at #i

4i+ 3

1

g(·)

l(·)
c(·)

Time-step #i

x5

0

4i+ 4

1

g(·)

l(·)
c(·)

x6

c1 at #(i+ 1)

4i+ 5

1

g(·)

l(·)
c(·)

x7

c2 at #(i+ 1)

4i+ 6

1

g(·)

l(·)
c(·)

x8

pc

4i+ 7

1

g(·)

l(·)
c(·)

Time-step #(i+ 1)

0

sc � 4

1

g(·)

l(·)
c(·)

c1 at #n

sc � 3

1

g(·)

l(·)
c(·)

c2 at #n

sc � 2

1

g(·)

l(·)
c(·)

a1

pc = H

sc � 1

1

g(·)

l(·)
c(·)

Final State (Time-step #n = sc
4 � 1)

Figure 2.1: Transition System of a 2-Counter Machine in SL
Each � represents an Address, doubled vertices are separators.

Chapter 2. The Sum Logic (SL) 31

Address l(Address) c(Address) g(Address)

T
im

e-
st

ep
#

0

8
>>>>>>>>>><

>>>>>>>>>>:

0 1 0

1 1 c1 at #0

2 1 c2 at #0

a0 3 1 pc at #0 = 1

...
...

...
...

T
im

e-
st

ep
#
i

8
>>>>>>>>>><

>>>>>>>>>>:

x1 4i 1 0

x2 4i+ 1 1 c1 at #i

x3 4i+ 2 1 c2 at #i

x4 4i+ 3 1 pc at #i

T
im

e-
st

ep
#
(i
+

1)

8
>>>>>>>>>><

>>>>>>>>>>:

x5 4i+ 4 1 0

x6 4i+ 5 1 c1 at #(i+ 1)

x7 4i+ 6 1 c2 at #(i+ 1)

x8 4i+ 7 1 pc at #(i+ 1)

...
...

...
...

T
im

e-
st

ep
#
n
=

s
c 4
�

1

8
>>>>>>>>>><

>>>>>>>>>>:

sc � 4 1 0

sc � 3 1 c1 at #n

sc � 2 1 c2 at #n

a1 sc � 1 1 pc at #n = H

Table 2.2: Transition System of a 2-Counter Machine, Array View

Chapter 2. The Sum Logic (SL) 32

2.3.2 Formalization

• Labeling is injective:

'1 = 8x, y.(l(x) ⇡ l(y)) ! (x ⇡ y)

• The Address constant that represents the program counter value of the last
time-step has the maximal labeling:

'2 = 8x.l(x)  l(a1)

• The Address constant that represents the program counter value of the first
time-step has the fourth labeling:

'3 = l(a0) ⇡ 3

• The first and last values of the program counter are 1 and H respectively:

'4 = g(a0) ⇡ 1 ^ g(a1) ⇡ H

• Cardinality constraints; there are as many Address elements as the labeling of
the last Address constant (a1) + 1:

'5 = (sc ⇡ l(a1) + 1) ^ 8x.(c(x) ⇡ 1)

• Encoding the transitions of the 2-counter machine - for every 8 Address elements,
if they represent two sequential time-steps, then the formula for the transitions
of the 2-counter machine must be true for the registers they hold:

'6 = 8x1, . . . , x8.(x1, . . . , x8 represent two sequential time-steps)
! ⇡(g(x2), g(x3), g(x4), g(x6), g(x7), g(x8))

Representing sequential time-steps means having sequential labeling, and start-
ing with one zero-valued Address element, continuing with 3 non-zero elements:

– Sequential:
l(x2) ⇡ l(x1) + 1 ^ · · · ^ l(x8) ⇡ l(x7) + 1

– Time-steps:

g(x1) ⇡ 0 ^ g(x2) > 0 ^ g(x3) > 0 ^ g(x4) > 0

and
g(x5) ⇡ 0 ^ g(x6) > 0 ^ g(x7) > 0 ^ g(x8) > 0

Combining all of the formulas above, we get that ' = '1 ^ · · ·^'6 is satisfiable ()
the two-counter machine halts within a finite amount of time-steps (and the exact
amount would be given by sc

4).
Since the halting problem for 2-counter machines is undecidable, SL (with 3 un-

interpreted functions and their associated sums) is also undecidable.
Remark. It is interesting to note that the only use of associated sums in the above
formalization is for expressing the size of the set of Address elements.

Chapter 2. The Sum Logic (SL) 33

The uninterpreted function c(·) is always 1 — 8x.c(x) ⇡ 1 — and its sum sc is
thus simply the amount of addresses.

This gives the following corollary: we can encode the halting problem for 2-counter
machines in an almost identical way, using an extension of Presburger arithmetic with
two uninterpreted functions (for l(·) and g(·)), and a size operation (which would
replace c(·)).

34

Chapter 3

Theory of Explicit Coins for
Implicit Summations (ECIS)

3.1 Syntax & Semantics

In essence, ECIS is a theory of two-sorted, first-order logic, with uninterpreted rela-
tions. We represent the verification problem as m markets where money is represented
by discrete Coin elements, and similarly to SL, we have Address elements that hold
those Coin elements.

3.1.1 Syntax

Definition 3.1.1 (ECIS vocabulary). A vocabulary

⌃l,m =
�
a1, . . . , al, I

1
1 , . . . , I

1
m, H

2
1 , . . . , H

2
m

�

where

1. We have in mind two sorts: Address and Coin.

2. The constants a1, . . . , al are of Address sort.

3. I
1
1 , . . . , I

1
m ("is-active") are predicates of Coin sort, marking each element as

active in a specific market.

4. H
2
1 , . . . , H

2
m ("has-coin") are binary relations between Address and Coin, which

mark whether some Address element is the owner of some Coin element.

For each j 2 [1,m], we call the pair
⇣
I
1
j , H

2
j

⌘
the j

th
market. We almost always

consider the case where m = 2, where we have a "before" market and "after" market
(in relation to some transition).

Notation. When the cardinalities of the vocabulary are clear from context, we simply
denote it as ⌃.
Remark. The reason we use a "has-coin" relation, instead of a function from Coin

to Address is that we want to make sure to stay inside the EPR fragment of ECIS,
whenever possible, so we avoid uninterpreted functions. In addition, inactive coins
should not be able to denote an Address element as their "owner".

3.1.2 Semantics

Definition 3.1.2. Let ⌃ be an ECIS vocabulary. A two-sorted structure A = (D, I) 2
STRUCT[⌃] is a tuple

A =
�
A,C, a

A
1 , . . . , a

A
l , I

A
1 , . . . , I

A
m, H

A
1 , . . . , H

A
m

�

Chapter 3. Theory of Explicit Coins for Implicit Summations (ECIS) 35

where A = D(Address) and C = D(Coin) are some sets; a
A
i = I(ai) 2 A; I

A
j =

I(Ij) ✓ C; and H
A
j = I(Hj) ✓ A⇥ C.

Remark. In quantifiers we usually omit the sort markers, with the convention that
Address quantifiers use variables x, x

0
, x1, etc. and Coin quantifiers use variables

c, c
0
, c1, etc.

Definition 3.1.3. Let ' be a sentence over an ECIS vocabulary ⌃. An ECIS model
for ' is an ECIS structure A 2 STRUCT[⌃] such that A ✏ '.

3.1.3 Axioms

When verifying programs using ECIS we want to maintain several axioms that ensure
the encoding in ECIS indeed represents Address elements with balances. For this, we
have the following three formulas, for each market j 2 [1,m]:

1. Only active Coin elements can be owned:

 j,1 , 8c.[(9x.Hj(x, c)) ! Ij(c)] (3.1 "Active Coins")

2. Every active Coin element is owned by some Address element:

 j,2 , 8c.[Ij(c) ! 9x.Hj(x, c)] (3.2 "At Least")

3. Every active Coin element is owned by at most one Address element:

 j,3 ,8c.8x1, x2. (3.3 "At Most")
[(Hj(x1, c) ^Hj(x2, c)) ! x1 ⇡ x2]

Remark. Though a more straight-forward formulation of these axioms would have used
only one or two formulas — specifically merging Axioms 3.2 "At Least" and 3.3 "At
Most" into one — we prefer this formulation. The simpler, multiple formulas are
easier for solvers to handle, and thus make it more likely that verification finishes
within a reasonable time-frame.

The entire axiomatic requirement for market j is then j , j,1^ j, 2^ j, 3 and
we get the following theorem:

Theorem 3.1.4. Let ⌃ = ⌃l,m be an ECIS vocabulary, and let A 2 STRUCT[⌃] be
some structure of ⌃. For any market j 2 [1,m]:

A ✏ j)
��IAj
�� =

X

↵2A

���c 2 C | (a, c) 2 H
A
j

 ��

I.e., j exactly encodes the condition that the amount of the active Coin elements
equals to the sum of the amount of Coin elements that belong to each Address element.

Proof of Theorem 3.1.4

Let A be some model that holds Axioms 3.1 "Active Coins", 3.2 "At Least" and 3.3 "At
Most".

First, we define 3 sets of errors that can occur within a model:

Definition 3.1.5. Inactivity errors, where an inactive Coin is owned by some Address:

E
A
inactive ,

�
� 2 C | � /2 I

A
j ^ 9↵ 2 A.(↵, �) 2 H

A
j

Chapter 3. Theory of Explicit Coins for Implicit Summations (ECIS) 36

Definition 3.1.6. Dangling errors, where an active Coin is not owned by any Address:

E
A
dangling ,

�
� 2 I

A
j | 8↵ 2 A.(↵, �) /2 H

A
j

Definition 3.1.7. Double-owned errors, where a Coin is owned by more than one
Address:

E
A
doubled ,

�
� 2 C | 9↵ 6= �.(↵, �), (�, �) 2 H

A
j

Now we can define the total amount of errors:

Definition 3.1.8. Total amount of errors:

e
A ,

��EA
inactive

��+
��EA

dangling
��+
��EA

doubled
��

Finally, we define the sets of owned Coins:

Definition 3.1.9. Let ↵ 2 A be some Address:

S
A
j,↵ ,

�
� 2 C | (↵, �) 2 H

A
j

We need to prove that ��IAj
�� =

X

↵2A

��SA
j,↵

�� ,

for which we need the following lemmas:

Lemma 3.1.10. If eA = 0, then

I
A
j =

[

↵2A
S
A
j,↵

Proof. We will show bidirectional inclusion:
Let there be some � 2 I

A
j . Since e

A = 0 we know that E
A
dangling = ;. Therefore,

there exists some ↵ 2 A such that (↵, �) 2 H
A
j and therefore � 2 S

A
j,↵.

Now, let there be some � 2
S

↵2A S
A
j,↵. This means that there exists some ↵ 2 A

such that � 2 S
A
j,↵, or put differently, (↵, �) 2 H

A
j . Since E

A
inactive = ; it must hold

that � 2 I
A
j .

Lemma 3.1.11. If eA = 0, then the sets
n
S
A
j,↵ | ↵ 2 A

o
are pairwise-disjoint.

Proof. Let there be two Addresses ↵,� 2 A. The set S
A
j,↵ \ S

A
j,� is exactly the set of

coins � such that (↵, �), (�, �) 2 H
A
j , and in particular

S
A
j,↵ \ S

A
j,� ✓ E

A
doubled

However, since e
A = 0 we know that E

A
doubled = ; and therefore sets S

A
j,↵, S

A
j,� are

disjoint.

Corollary 3.1.11.1. If eA = 0, then

��IAj
�� =

�����
[

↵2A
S
A
j,↵

����� =
X

↵2A

��SA
j,↵

��

Proof. From the previous lemmas we know that since e
A = 0, IAj =

S
↵2A S

A
j,↵ and

that the sets are disjoint. This corollary is therefore trivial.

Chapter 3. Theory of Explicit Coins for Implicit Summations (ECIS) 37

Lemma 3.1.12. If A holds Axiom 3.1 "Active Coins", then E
A
inactive = ;.

Proof. Axiom 3.1 "Active Coins" states that

8c.(9a.Hj(a, c)) ! Ij(c).

This formula is equivalent to

8c.8a.¬Hj(a, c) _ Ij(c).

Let us assume towards contradiction that there exists some � 2 E
A
inactive, therefore

there exists some Address ↵ such that (↵, c) 2 H
A
j but � /2 I

A
j .

This means that A 2 ¬Hj(a, c)_Ij(c)[↵/a, �/c], and therefore A 2 8c.8a.¬Hj(a, c)_
Ij(c), which means that A 2 Axiom 3.1 "Active Coins" — contradiction.

Lemma 3.1.13. If A holds Axiom 3.2 "At Least" then E
A
dangling = ;.

Proof. Axiom 3.2 "At Least" states that

8c.Ij(c) ! 9a.Hj(a, c).

Let us assume towards contradiction that E
A
dangling 6= ;, and let there be some

� 2 E
A
dangling. Therefore � 2 I

A
j but there exists no Address ↵ 2 A such that

(↵, �) 2 H
A
j . Therefore, A 2 Axiom 3.2 "At Least" — contradiction.

Lemma 3.1.14. If A holds Axiom 3.3 "At Most" then E
A
doubled = ;.

Proof. Axiom 3.3 "At Most" states that

8c.8a1, a2.(Ij(c) ^Hj(a1, c) ^Hj(a2, c)) ! a1 ⇡ a2,

or equivalently
8c.8a1, a2.¬Hj(a1, c) _ ¬Hj(a2, c) _ a1 ⇡ a2

Let us assume towards contradiction that E
A
doubled 6= ; and let � 2 E

A
doubled.

Therefore, there exist ↵ 6= � 2 A such that (↵, �), (�, �) 2 H
A
j . So we get:

1. A ✏ Hj(a1, c)[↵/a1, �/c].

2. A ✏ Hj(a2, c)[�/a2, �/c].

3. A 2 a1 ⇡ a2[↵/a1,�/a2].
Combined we get that there exist � 2 C,↵,� 2 A such that

A 2 ¬Hj(a1, c) _ ¬Hj(a2, c) _ a1 ⇡ a2[↵/a1,�/a2, �/c]

and therefore A 2 Axiom 3.3 "At Most" — contradiction.

Combining all of the above, since A holds Axioms 3.1 "Active Coins", 3.2 "At
Least" and 3.3 "At Most" then e

A = 0+0+ 0 = 0 and therefore
���IAj
��� =

P
↵2A

���SA
j,↵

���.

Q.E.D. Theorem 3.1.4.
Remark. It is important to note that although SL and ECIS encode similar higher-
order settings, in ECIS we can express much less about that setting. Whereas in
SL the balances were explicit and reified in the uninterpreted functions, in ECIS the
balances are an emergent phenomenon, described implicitly by the "has-coin" relation.
In fact, we see in Section 3.3 that when the balances become tangible in ECIS, we
have the same undecidability issues as in SL.

Chapter 3. Theory of Explicit Coins for Implicit Summations (ECIS) 38

3.2 Encoding in a Limited Fragment of ECIS

The EPR fragment of ECIS is naturally decidable, since it is a special case of EPR in
many-sorted logic, without function symbols. The interesting question is therefore how
expressible this fragment is (since decidability is trivial). We see that some interesting
properties and transactions can still be described in this limited logic. This is inspired
by a similar process used in [10].

3.2.1 Axioms in ECIS \ EPR

All quantifier alternations in Axioms 3.1 "Active Coins", 3.2 "At Least" and 3.3 "At
Most" are between different sorts, and always "8 Coin 9 Address". Therefore the
formulas are in EPR, since no cycles in the sort dependency graph are possible.

3.2.2 Transitions in ECIS \ EPR

For each transition we assume to have two markets, a "before" unmarked market
I(·), H(·, ·) and an "after" primed market I

0(·), H 0(·, ·). In the ECIS formulation,
each transition is concerned with a single coin, instead of a uint parameter that
denotes the amount of tokens that change hands.

The transitions’ formulas are written as transition(x1, . . . , xr) where r is the
arity of the transition and x1, . . . , xr are free variables of the Address sort. Coin

elements affected by a transition are usually existentially quantified over since they
are not thought of as arguments to the transition. However, they can be expressed as
arguments just as well. In which case, we have transition(x1, . . . , xr, c1, . . . , cr̃).

transferFrom(x1, x2) Transition

This transition encodes a transfer of a single Coin element from x1 to x2, if x1 holds
at least one element (otherwise, the final state should be identical to the initial state).

This is encoded by the conjunction of the following 4 formulas:

1. Arguments must be distinct:

'1 = x1 6⇡ x2

2. No Coin element changes its activity:

'2 = 8c.
�
I(c) $ I

0(c)
�

3. If x1 holds no Coin elements, nothing happens:

'3 = (¬9c.H(x1, c)) ! 8c.8x.
�
H(x, c) $ H

0(x, c)
�

4. Finally, if x1 holds some Coin element, then some element that previously be-
longed to x1 will now belong to x2 and no other coin will change hands:

Chapter 3. Theory of Explicit Coins for Implicit Summations (ECIS) 39

'4=
⇣
9c.H(x1, c)

⌘

! 9c.

H(x1, c) ^ ¬H 0(x1, c) ^H

0(x2, c)

^

8x0.8c0.
✓⇣

c
0 6⇡ c _ (x0 6⇡ x1 ^ x

0 6⇡ x2)
⌘

!
⇣
H(x0, c0) $ H

0(x0, c0)
⌘◆!

throw(x1) and catch(x2) Transitions

This is an alternative way to express a transfer of a Coin element, in two steps. We
require 3 markets in order to encode the complete transition: An initial state (I,H),
an intermediary state (I 0, H 0) and a final state (I 00, H 00). The intermediary state does
not hold the axioms of the theory, but as long as the initial state is valid, the final
state will be as well.

The throw transition is encoded as a conjunction of the following formulas:

1. No Coin element changes its activity:

'1,1 = 8c.
�
I(c) $ I

0(c)
�

2. If x1 has a Coin element, it frees up some element it holds, and no other element
is affected:

'1,2=
⇣
9c.H(x1, c)

⌘

! 9c.

H(x1, c) ^ ¬H 0(x1, c)

^

8x0.8c0.
✓⇣

c
0 6⇡ c _ x

0 6⇡ x1

⌘

!
⇣
H(x0, c0) $ H

0(x0, c0)
⌘◆!

The catch transition is encoded as a conjunction of the following formulas:

1. No Coin element changes its activity:

'2,1 = 8c.
�
I
0(c) $ I

00(c)
�

2. If there is a free Coin element "up in the air", then x2 will take it (and no other
element is affected):

Chapter 3. Theory of Explicit Coins for Implicit Summations (ECIS) 40

'2,2=
⇣
9c.(I 0(c) ^ 8x.¬H 0(x, c))

⌘

! 9c.

I
0(c) ^ (8x.¬H 0(x, c)) ^H

00(x2, c)

^

8x0.8c0.
✓⇣

c
0 6⇡ c _ x

0 6⇡ x2

⌘

!
⇣
H

0(x0, c0) $ H
00(x0, c0)

⌘◆!

Note. In this formulation, there is no need for x1 and x2 to be distinct. I.e. a single
Address element can throw and catch a coin. In which case I,H and I

00
, H

00 will be
identical.

transfer(x, c) Transition

A single Coin c is minted (becomes active) and put into Address a. This transition is
encoded by the conjunction of the following addresses:

1. The Coin element was previously inactive, and will activated:

'1 = ¬I(c) ^ I
0(c)

2. The coin is now owned by x:

'2 = H(x, c)

3. Nothing else is changed:

'3 = 8x0.8c0.
⇣
(x0 6⇡ a _ c

0 6⇡ c)

!
�
I(c0) $ I

0(c0)
^

H(x0, c0) $ H
0(x0, c0)

�⌘

burn(c) Transition

A single Coin element c is removed from circulation (and taken out of the Address

element that holds it). This is the reverse of transfer(x, c), and though it is not part
of the ERC-20 Token Standard interface, it is presented here for completeness. It is
encoded by the conjunction of the following formulas:

1. The Coin was previously active, and is now deactivated:

'1 = I(c) ^ ¬I 0(c)

2. The Coin no longer belongs to any Address:

'2 = 8x.¬H 0(x, c)

Chapter 3. Theory of Explicit Coins for Implicit Summations (ECIS) 41

3. Nothing else changes:

'3 = 8x0.8c0.
⇣
(c0 6⇡ c)

!
�
I(c0) $ I

0(c0)
^

H(x0, c0) $ H
0(x0, c0)

�⌘

3.3 Undecidabiliy Result in ECIS

In this section we show that by extending ECIS with Nat sort, uninterpreted functions
(of sort Coin ! Nat , and (Address, Coin) ! Nat), addition, and ordering over Nat ,
we can encode for each market j 2 [1,m] its size sj and for each Address a, its balance
bj(a).

We denote this extension as ECIS [Nat, and we note that we have no quantifiers
over Nat .

By Theorem 3.1.4, any model A that holds Axioms 3.1 "Active Coins", 3.2 "At
Least" and 3.3 "At Most" for market j, also holds the Sum property for it, i.e.

s
A
j =

X

↵2A
b
A
j (↵)

without requiring it semantically of the model.
Once we have the sj constants and the b

1
j functions, the same encoding of the

halting problem of 2-counter machines as in Section 2.3 can be expressed in ECIS;
hence, ECIS [Nat is undecidable (for 3 markets or more).

3.3.1 General Idea

The theme of this encoding is that we order coins in a successive sequence, starting
with 0, and therefore the amount of coins can be expressed as one over the "place"
of the last coin. We encode this type of ordering for each market (i.e. we order all of
the active coins within it), and for each address in each market (we order its owned
coins).

3.3.2 Encoding Ordering

Global Ordering

First, we need m ordering functions from Coin to Nat . These allow us to count the
active Coin elements in each market. We add an uninterpreted function gj : Coin !
Nat for each j 2 [1,m].

We require the following:

1. The range of gj for active Coin elements is continuous; i.e. every coin is either
the last one, or it has a coin that directly follows it:

8c.
✓
Ij(c)

!
⇣�

8c0.(Ij(c0) ! gj(c0)  gj(c))
�W

�
9c0.Ij(c0) ^ gj(c0) ⇡ gj(c) + 1

�⌘◆
(3.4 "Global Continuous")

Chapter 3. Theory of Explicit Coins for Implicit Summations (ECIS) 42

2. The function gj is 1:1 for active Coin elements:

8c1, c2.[(Ij(c1) ^ Ij(c2) ^ c1 6⇡ c2) ! (gj(c1) 6⇡ gj(c2))]
(3.5 "Global Injective")

3. If there is at least one active Coin element, then some active element is mapped
to 0 (which is the minimal possible mapping):

(9c.Ij(c)) ! 9c.(Ij(c) ^ gj(c) ⇡ 0) (3.6 "Global Zero")

Per-Address, "Local" Ordering

Next we need another m ordering functions, which take a pair of (Address,Coin) and
give the order of that Coin, within that Address space (if the Address holds that
Coin). We add an interpreted function lj : (Address,Coin) ! Nat for each j 2 [1,m].

We require the following:

1. The range of lj for owned Coin elements is continuous:

8x.8c.
✓
Hj(x, c)

!
⇣�

8c0.(Hj(x, c0) ! lj(x, c0)  lj(x, c))
�W

�
9c0.Ij(c0) ^ lj(x, c0) ⇡ lj(x, c) + 1

�⌘◆

(3.7 "Per-Address Continuous")

2. The function lj is 1:1 for owned Coin elements:

8x.8c1, c2.
✓⇣

Hj(x, c1) ^Hj(x, c2) ^ c1 6⇡ c2

⌘

!
⇣
lj(x, c1) 6⇡ lj(x, c2)

⌘◆ (3.8 "Per-Address Injective")

3. If the Address element owns at least one Coin element, then some owned element
is mapped to 0 (which is the minimal possible mapping):

8x.[(9c.Hj(x, c)) ! 9c.Hj(c) ^ lj(x, c) ⇡ 0] (3.9 "Per-Address Zero")

3.3.3 Encoding Market Size

Once we have the ordering of the Coin elements, and we know that for active Coin

elements the range is exactly
h
0,maxc2IAj

n
g
A
j (c)

oi
, we can encode the size of the

market as the successor of the last Coin element (or 0, when there are no elements):
✓
9c.
⇣
Ij(c)

^
�
8c0.[Ij(c0) ! gj(c0)  gj(c)]

�

^sj ⇡ gj(c) + 1
⌘◆

W✓
sj ⇡ 0 ^ 8c.[¬Ij(c)]

◆
(3.10 "Market Size")

Chapter 3. Theory of Explicit Coins for Implicit Summations (ECIS) 43

3.3.4 Encoding Balances

In a similar way, we can encode the balance of each Address element in each market
as the successor of the last owned Coin element (again, or 0 when there are none):

8x.
 ✓

9c.
⇣
Hj(x, c)

^
�
8c0.[Hj(x, c0) ! lj(x, c0)  lj(x, c)]

�

^bj(x) ⇡ gj(c) + 1
⌘◆

W✓
bj(x) ⇡ 0 ^ 8c.[¬Hj(x, c)]

◆!
(3.11 "Balance")

3.3.5 Expressing SL using ECIS [Nat

Using the axioms defined in the previous sections, we can express any formula in SL.
Moreover, there’s no need to semantically require that models hold the Sum property
— the conjunction of Axioms 3.1 "Active Coins", 3.2 "At Least" and 3.3 "At Most"
ensures that for any model A, if sAj = |Ij | and b

A
j (↵) =

���
n
� 2 C | (↵, �) 2 H

A
j

o���, then
it must hold that

s
A
j =

X

↵2A
b
A
j (↵)

from Theorem 3.1.4. We will prove that indeed if A holds Axioms 3.4 "Global Continu-
ous", 3.5 "Global Injective", 3.6 "Global Zero" and 3.10 "Market Size", then s

A
j = |Ij |.

The proof for bAj (↵) — given Axioms 3.7 "Per-Address Continuous", 3.8 "Per-Address
Injective", 3.9 "Per-Address Zero" and 3.11 "Balance" — is identical, and therefore
omitted.

Lemma 3.3.1. Let A be a structure for ECIS vocabulary ⌃l,m, and let j be some
market such of size n =

���IAj
��� > 0.

If A holds Axioms 3.4 "Global Continuous", 3.5 "Global Injective" and 3.6 "Global
Zero", then

max
�2Ij

�
g
A(�)

= n� 1.

Proof. Let us denote the co-domain of gAj when projected on I
A
j as S:

S ,
�
g
A
j (�) | � 2 I

A
j

.

We will prove that S = [0, n� 1], and in particular maxS = n� 1.
Since

���IAj
��� > 0 we know that there’s some coin � 2 Ij such that g

A
j (�) = 0,

according to Axiom 3.6 "Global Zero":

(9c.Ij(c)) ! (9c.Ij(c) ^ gj(c) ⇡ 0).

This means that 0 2 S.
Since A ✏ Axiom 3.5 "Global Injective", there are no two elements �1 6= �2 2 I

A
j

such that g
A
j (�1) = g

A
j (�2). I.e. |S| =

���IAj
��� = n.

Lastly, there can be no gap S. Let assume towards contradiction that there exist
some elements x, y 2 S such that y > x + 1 and x + 1 /2 S. Let �1, �2 2 I

A
j be the

Chapter 3. Theory of Explicit Coins for Implicit Summations (ECIS) 44

sources of x and y respectively:

g
A
j (�1) = x, g

A(�2) = y.

A holds Axiom 3.4 "Global Continuous", and in particular

A ✏ Ij(c) !
��
8c0.Ij(c0) ! gj(c

0)  gj(c)
�
_
�
9c0.Ij(c0) ^ gj(c

0) ⇡ gj(c) + 1
��
[�1/c].

Since �1 2 Ij , it must be that

A ✏
��
8c0.Ij(c0) ! gj(c

0)  gj(c)
�
_
�
9c0.Ij(c0) ^ gj(c

0) ⇡ gj(c) + 1
��
[�1/c].

We know that for �2 2 Ij , gAj (�2) = y > x = g
A
j (�1), and therefore

A 2 Ij(c
0) ! gj(c

0)  gj(c)
⇥
�1/c, �2/c

0⇤
.

So it must be the case that

A ✏
�
9c0.Ij(c0) ^ gj(c

0) ⇡ gj(c) + 1
�
[�1/c]

and there must be some �3 such that

A ✏ Ij(c
0) ^ gj(c

0) ⇡ gj(c) + 1
⇥
�1/c, �3/c

0⇤

I.e. �3 2 I
A
j and g

A
j (�3) = g

A
j (�1)+1 — contradicting our assumption that x+1 /2 S.

Combining all of the above, we get that S has no gaps, contains 0, and is of size
n — meaning it must be that S = [0, n� 1], as required.

Theorem 3.3.2. Let A be a structure for ECIS vocabulary ⌃l,m, and let j be some
market such of size n =

���IAj
���.

If A holds Axioms 3.4 "Global Continuous", 3.5 "Global Injective", 3.6 "Global
Zero" and 3.10 "Market Size", then s

A
j = n.

Proof of Theorem 3.3.2

Let us consider the following two cases:
Case 1 : n = 0

We know that
���IAj
��� = 0, and therefore, for any � 2 C, � /2 I

A
j , meaning

A 2 9c.Ij(c).

Since A holds Axiom 3.10 "Market Size", it must be that

A ✏ sj ⇡ 0 ^ 8c.¬Ij(c).

In particular, sAj = 0 = n, as required.
Case 2 : n > 0

In a similar fashion, we can conclude that

A ✏ 9c.
�
Ij(c) ^

�
8c0.
�
Ij(c

0) ! gj(c
0)  gj(c)

��
^ sj ⇡ gj(c) + 1

�
,

since
A 2 sj ⇡ 0 ^ 8c.¬Ij(c).

Chapter 3. Theory of Explicit Coins for Implicit Summations (ECIS) 45

Let there be some � 2 C such that

A ✏ Ij(c) ^
�
8c0.
�
Ij(c

0) ! gj(c
0)  gj(c)

��
^ sj ⇡ gj(c) + 1[�/c]

and it must be that g
A(�) is maximal among I

A
j .

From Lemma 3.3.1, we know that gA(�) = n�1, and therefore s
A
j = n�1+1 = n,

as required.

Q.E.D. Theorem 3.3.2.

46

Chapter 4

Conclusions

In this thesis we have presented two approaches to reason about unbounded sums in
first-order logic, with the specific goal of formally verifying the correctness of programs
written with the ERC-20 Token Standard interface. Using two complementary vari-
ants of first-order logic we have shown different ways to express sums, and to maintain
invariants concerning them.

The first variant is Sum Logic (SL), a syntactic and semantic extension to Pres-
burger arithmetic, that adds uninterpreted "balance" functions, and associated "sum"
constants. We have proven that for fragments of SL that hold the small model prop-

erty (as defined in Section 2.2), it is possible to reduce formulas of SL back into pure
Presburger arithmetic, and by that we have outlined a decision procedure for SL.

We have proven that for a simple fragment of SL this small model property holds,
and the structure of the proof encourages us to believe that other fragments might
hold this property as well.

However, we have shown that for fragments of SL with at least 3 uninterpreted
functions — or any extension to Presburger arithmetic with 2 functions and a size
operation — we are able to encode the halting problem of a 2-counter machine. Since
this problem is undecidable, there can be no decision procedure for systematically
checking the satisfiability of formulas in this fragment. This gives us an upper-bound
on the decidability of SL fragments.

The second variant we discussed is Explicit Coins for Implicit Summations (ECIS),
a theory of two-sorted, first-order logic, which encodes balances as a relation between
owners (of sort Address) to tokens (of sort Coin). We have described axioms that
ensure the integrity of the state, and preserve the relation between sums and balances.

We have shown that even when we only consider EPR formulas in ECIS, some
non-trivial expressiveness is maintained, and at the very least, we are able to encode
the safety properties, as well as a discretized version of the transitions in the ERC-20
Token Standard.

But we reached a similar undecidability result in ECIS, when we extended the
logic enough to express the balances as integers, and not just as an opaque relation
between two (non-numeric) sorts. Since the axioms indeed maintain the higher-order
state, we are in fact no less expressive than SL, which is undecidable in some scenarios,
as we have proven.

In summary, we have seen that some programs can be verified using either of these
approaches, but for others the resulting formulas would not be amenable to existing
automated reasoning tools, and may well be undecidable in any logical encoding.

4.1 Related Work

We do not aim to provide a comprehensible summary of all results relating to first-
order reasoning about sums (and aggregates in general) or formal verification of smart

Chapter 4. Conclusions 47

contracts, but we focus on selected works that are closely related to the themes ex-
plored in this thesis.

Most closely related is [11], a recent master’s thesis that touches on many of the
same subjects as this thesis, but focuses more on the relation between the higher-order
and the first-order setting, and does not deal with semantic extension such as we have
in SL.

A recent work in using formal methods to verify smart contracts is ZEUS [12],
which uses symbolic model checking to analyze contracts written in Solidity (with
the ERC-20 Token Standard interface). The approach there aims to ensure generic
properties, not necessarily related to the semantics of the program. This differs from
this work, which specifically aims to verify safety properties relating to the semantics
of balances and sums in ERC-20.

A similar but different approach is manually proving safety properties of such
programs. This was done in [13], using Isabella [14]. This is in contrast to this work,
which uses automatic techniques.

Another prominent work on combining aggregates with Presburger arithmeic was
BAPA [15], which adds sets to first-order logic and devises a decision procedure for it.
However, it does not handle uninterpreted functions directly, and requires the removal
of them, which is impossible in the cases discussed here, since the semantics of the
program are expressed by the "balance" functions.

Further research into BAPA was done in [16], which provides decision procedures
for two-variable logics with counting and quantifier-free multisets with cardinality
constraints (among others). Both of these are done via a reduction to BAPA, but
does not cover quite the same use cases as we did in this thesis. Specifically sums and
richer logics than two-variable.

4.2 Future Research

There are still various interesting directions for future research. It is clear that there
exists a wide gap between our decidability and undecidability results. In particular,
the decidability of a fragment of SL with 2 sets of uninterpreted functions and sums
is important, since this is usually how we encode transition systems.

Since the most expressive fragment of SL with dual balances may be too expressive
for decidability, the challenge for future work in this direction might be finding a
fragment that is somewhat restricted, decidable, but surprisingly apt for encoding
real-world programs.

Another idea is extending the sum constants to a general-purpose summation
operation. The reduction to Presburger suggests that this might be possible in some
cases, as long as the small model property is preserved. This gives us a much more
powerful framework, that can express complex transitions and verification conditions,
even when limited in other ways. E.g. a single "balance" function that is summed over
with two different expressions that represent the state before and after a transition.

Finally, we would also like to tighten our undecidability result, and see what is
the bare minimum required to encode the halting problem of a 2-counter machine —
or in general, any undecidable problem — in a variant of first-order logic with sums.
We believe it is possible to shave off some expressiveness and still be able to encode
problems which are undecidable in nature.

48

References

[1] C. A. R. Hoare. An axiomatic basis for computer programming. Commun. ACM,
12(10):576–580, 1969.

[2] Leonid Libkin. Logics with counting. In Elements of Finite Model Theory, pages
141–161. Springer, 2004.

[3] Jouko A. Väänänen. Generalized quantifiers. Bull. EATCS, 62, 1997.

[4] Kousha Etessami. Counting quantifiers, successor relations, and logarithmic
space. J. Comput. Syst. Sci., 54(3):400–411, 1997.

[5] Fabian Vogelsteller and Vitalik Buterin. EIP-20: ERC-20 token standard. In
Ethereum Improvement Proposals, no. 20. 2015. Available: https://eips.
ethereum.org/EIPS/eip-20.

[6] Frank P. Ramsey. On a problem in formal logic. In Proceedings of the London

Mathematical Society, volume 30, pages 264–286, 1930.

[7] Peter G Hinman. Fundamentals of mathematical logic. CRC Press, 2005.

[8] Mojżesz Presburger. Über die vollständigkeit eines gewissen systems der arith-
metik ganzer zahlen, in welchem die addition als einzige operation hervortritt.
Comptes Rendus du I congrès de Mathématiciens des Pays Slaves, pages 92–101,
1929.

[9] Marvin Minsky. Computation: Finite and Infinite Machines, pages 255–258.
Prentice Hall, 1967.

[10] Oded Padon, Giuliano Losa, Mooly Sagiv, and Sharon Shoham. Paxos made
EPR: Decidable reasoning about distributed protocols. 1(OOPSLA), 2017.

[11] Sophie Rain. First-order reasoning with aggregates. Master’s thesis, TU Wien,
2020.

[12] Sukrit Kalra, Seep Goel, Mohan Dhawan, and Subodh Sharma. ZEUS: analyz-
ing safety of smart contracts. In 25th Annual Network and Distributed System

Security Symposium, NDSS 2018, San Diego, California, USA, February 18-21,

2018. The Internet Society, 2018.

[13] Yoichi Hirai. Defining the ethereum virtual machine for interactive theorem
provers. In Michael Brenner, Kurt Rohloff, Joseph Bonneau, Andrew Miller,
Peter Y.A. Ryan, Vanessa Teague, Andrea Bracciali, Massimiliano Sala, Fed-
erico Pintore, and Markus Jakobsson, editors, Financial Cryptography and Data

Security, pages 520–535, Cham, 2017. Springer International Publishing.

[14] Tobias Nipkow. Interactive proof: Introduction to isabelle/hol. In Tobias Nipkow,
Orna Grumberg, and Benedikt Hauptmann, editors, Software Safety and Security

- Tools for Analysis and Verification, volume 33 of NATO Science for Peace and

https://eips.ethereum.org/EIPS/eip-20
https://eips.ethereum.org/EIPS/eip-20

REFERENCES 49

Security Series - D: Information and Communication Security, pages 254–285.
IOS Press, 2012.

[15] Viktor Kuncak, Huu Hai Nguyen, and Martin C. Rinard. An algorithm for decid-
ing BAPA: boolean algebra with presburger arithmetic. In Robert Nieuwenhuis,
editor, Automated Deduction - CADE-20, 20th International Conference on Au-

tomated Deduction, Tallinn, Estonia, July 22-27, 2005, Proceedings, volume 3632
of Lecture Notes in Computer Science, pages 260–277. Springer, 2005.

[16] Ruzica Piskac. Decision Procedures for Program Synthesis and Verification. PhD
thesis, IIF, Lausanne, 2011.

	Abstract
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Overview
	Preliminaries
	Many-Sorted, First-Order Logic
	Presburger Arithmetic
	EPR in Many-Sorted Logic
	2-Counter Machines

	The Sum Logic (SL)
	Syntax & Semantics
	Syntax
	Semantics
	Encoding ERC-20 in SL

	A Decidable Fragment of SL
	Distinct Models
	Small Models
	Presburger Reduction
	Outline
	Defining the Transformations

	Undecidable Sum Logics
	Outline
	Formalization

	Theory of Explicit Coins for Implicit Summations (ECIS)
	Syntax & Semantics
	Syntax
	Semantics
	Axioms

	Encoding in a Limited Fragment of ECIS
	Axioms in ECIS EPR
	Transitions in ECIS EPR
	transferFrom(x1, x2) Transition
	throw(x1) and catch(x2) Transitions
	transfer(x,c) Transition
	burn(c) Transition

	Undecidabiliy Result in ECIS
	General Idea
	Encoding Ordering
	Global Ordering
	Per-Address, "Local" Ordering

	Encoding Market Size
	Encoding Balances
	Expressing SL using ECIS Nat

	Conclusions
	Related Work
	Future Research

	References

