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Abstract

An adaptive (n,m, s, t)-scheme is a deterministic scheme for encoding a vector X of m

bits with at most n ones by a vector Y of s bits, so that any bit of X can be determined
by t adaptive probes to Y . A non-adaptive (n,m, s, t)-scheme is defined analogously. The
study of such schemes arises in the investigation of the static membership problem in the
bitprobe model. Answering a question of Buhrman, Miltersen, Radhakrishnan and Venkatesh
[SICOMP 2002] we present adaptive (n, m, s, 2) schemes with s < m for all n satisfying
4n2 + 4n < m and adaptive (n,m, s, 2) schemes with s = o(m) for all n = o(log m). We
further show that there are adaptive (n,m, s, 3)-schemes with s = o(m) for all n = o(m),
settling a problem of Radhakrishnan, Raman and Rao [ESA 2001], and prove that there are
non-adaptive (n,m, s, 4)-schemes with s = o(m) for all n = o(m). Therefore, three adaptive
probes or four non-adaptive probes already suffice to obtain a significant saving in space
compared to the total length of the input vector. Lower bounds are discussed as well.

∗Schools of Mathematics and Computer Science, Raymond and Beverly Sackler Faculty of Exact Sciences,

Tel Aviv University, Tel Aviv, Israel and IAS, Princeton, NJ 08540, USA. Email: nogaa@tau.ac.il. Research

supported in part by a USA Israeli BSF grant, by a grant from the Israel Science Foundation and by the Ambrose

Monell Foundation.
†Department of Computer Science, the Weizmann Institute, Rehovot, Israel. Email:

uriel.feige@weizmann.ac.il.

0



1 Introduction

In the study of the static membership problem in the bitprobe model, discussed in [10], [7] and
[11], one needs to encode a vector X of m bits with at most n ones by a vector Y of s bits
such that any bit of X can be determined by t adaptive or non-adaptive probes to Y . Given
n,m, and t the objective is to minimize s. We consider here only deterministic algorithms with
a small number of adaptive or non-adaptive probes. An adaptive (n,m, s, t)-scheme is a scheme
for encoding a vector X of m bits with at most n ones by a vector Y of s bits, so that any bit of
X can be determined by t adaptive probes to Y . A non-adaptive (n,m, s, t)-scheme is defined
analogously.

One motivation for the problem is as follows. There is a small set Z of size n which is part
of a large universe X of size m. For example, Z may be the set of English words, and X may
be the set of all English character strings (up to a certain length). One needs to construct a
space efficient data structure Y (containing only s bits) such that any membership query can
be answered by inspecting at most t bit locations in the data structure. (In the example above,
Y may be thought of as a dictionary by which one can tell whether a given character string is
an English word or not.) The problem is static in the sense that there is no need to (efficiently)
support insertion or deletion operations to and from Z. In this context it is instructive to
consider the Bloom filter ([2], and see also a recent survey in [4]), which is a space-efficient data
structure that allows one to answer membership queries by inspecting a small number of bit
locations. It allows for efficient insertion operations, and in general requires less space than
the constructions described in the current paper. However, this improved space efficiency of
Bloom filters comes at the price of allowing false positives (though false positives are expected
to happen only infrequently), whereas in this paper it is required that all queries are answered
correctly. Other space efficient data structures that allow errors (with the frequency of errors
controlled by using randomness in the data structure) are described in [7].

For deterministic error-free algorithms, it is easy to see that with one probe no space can
be saved even if n = 1. That is, if an (n,m, s, 1) scheme exists for some m ≥ 2, n ≥ 1, then
s ≥ m. Indeed, assuming s < m, there are 1 ≤ i < j ≤ m so that in order to determine xi or xj

the algorithm probes the same bit of Y . As the two bits xi, xj can attain at least three possible
values when n ≥ 1, it is impossible to distinguish between them using only one bit.

For the case t = 1 of one probe, the scheme is, of course, always non-adaptive. For 2-probes,
there are already adaptive and non-adaptive schemes.

In [7] it is shown that with two non-adaptive probes, no space can be saved whenever n ≥ 2.
That is, if a non-adaptive (2, m, s, 2)-scheme exists, then s ≥ m. On the other hand, the authors
of [11] describe an adaptive (2,m, O(m2/3), 2)-scheme (improving a proof of existence of an
adaptive (2,m, O(m3/4), 2)-scheme given in [7]). Thus, if n = 2, then a second adaptive probe
can help to reduce the space below m. The authors of [7] mention that they do not know if any
space can be saved with two adaptive probes when n > 2. The following two results show that
indeed some space can be saved as long as n is not too large.

Theorem 1.1 For every m ≥ n there are adaptive (n,m, s, 2)-schemes with s ≤ m− m
2n+2 +2n.

Thus, s < m provided m > 4n2 + 4n.

We do not know whether space can be saved if m < 4n2. If n is smaller, however, more space
can be saved.
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Theorem 1.2 For n < log m there is an adaptive (n,m, s, 2)-scheme with

s ≤ O(
mn log[ log m

n ]
log m

).

Thus, s = o(m) whenever n = o(log m).

A general lower bound for the space in adaptive schemes is proved in [7]; it is shown that
if an adaptive (or non-adaptive) (n, m, s, t)-scheme exists, then s ≥ Ω(tn1−1/tm1/t). (The lower
bound quoted there is ntmΩ(1/t), but the proof gives the previous estimate, which implies the last
one only for n < m1−δ. The last estimate is, in fact, not valid for n close to m.) In particular,
for 2-adaptive probes the lower bound for the space is Ω(n1/2m1/2).

For three adaptive (or non-adaptive) probes, the lower bound of [7] is Ω(n2/3m1/3). We
obtain a better lower bound for the non-adaptive case.

Theorem 1.3 If a non-adaptive (n, m, s, 3)-scheme exists and n ≥ 16 log m, then

s ≥ Ω(n1/2m1/2/ log1/2 m).

We show that with three adaptive probes, the space can be much smaller than m whenever n is
significantly smaller than m.

Theorem 1.4 For all n ≤ m, there are adaptive (n,m, s, 3)-schemes with s ≤ O(n1/3m2/3).
Thus, the space is o(m) whenever n = o(m).

Note that the trivial information theoretic lower bound gives that even if the algorithm is allowed
to read all the vector Y in order to recover any desired bit of X, then s must still be at least
log(

∑
i≤n

(
m
i

)
). Thus, if one hopes to achieve s = o(m), then n must be o(m) even if the number

of probes is unlimited. Remarkably, by Theorem 1.4 three adaptive probes already suffice to
achieve a saving of this type. This disproves a conjecture of [11].

A similar pattern of saving in space can be obtained by four non-adaptive probes.

Theorem 1.5 For all n ≤ m, there are non-adaptive (n,m, s, 4)-schemes with s ≤ O(n1/4m3/4).
Thus, s = o(m) provided n = o(m).

This improves (in two respects) a result of [7] asserting that 5 non-adaptive probes suffice to get
space s = o(m) whenever n = o(m1/3).

The rest of this paper is organized as follows. In Section i, for 2 ≤ i ≤ 4, we discuss schemes
with i probes. The final Section 5 contains some open problems, among them issues relating to
explicitly constructing the schemes guaranteed to exist by theorems 1.4 and 1.5. Throughout
the paper we make no attempt to optimize the absolute constants hidden in the O notation. To
simplify the presentation, we omit all floor and ceiling signs whenever these are not crucial. All
logarithms are in base 2, unless otherwise specified.

2 Two Probes

Proof of Theorem 1.1
For simplicity we assume that 2n + 2 divides m. The encoding is as follows.
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We arrange X in 2n + 2 consecutive columns, each of length m/(2n + 2). There must be
a pair of adjacent identical columns, so collapse them to one column, moving all subsequent
columns one location to the left. For each column (except for the first and last one), add one
bit that says whether it stayed in place or was shifted left.

To read a bit of X, first probe the corresponding column bit, and then use the answer to
decide which column to probe (at the appropriate bit location). 2

Proof of Theorem 1.2
Let G = (V, E) be a connected, d-regular bipartite graph on s vertices with 2m edges,

and girth g bigger than log s
log d = log s

log(4m/s) , where d is even. There are several known explicit
constructions of such graphs, see, for example, [9] and its references. (For simplicity we assume
that the number of edges is precisely 2m; if there is no construction with these precise parameters
there is no problem to take a subgraph of a slightly bigger graph instead). Let A = {1, 2, . . . , s/2}
and B = {s/2 + 1, . . . , s} denote the classes of vertices of G. By partitioning the edges incident
with each vertex of A into disjoint pairs we get a partition of all edges of G into m pairwise edge-
disjoint paths of length 2 whose centers lie in A. Fix such a partition into m paths P1, . . . , Pm.
For each i, 1 ≤ i ≤ m, denote the vertices of Pi by {ai, bi, ci}, where ai ∈ A and bi, ci ∈ B. Our
scheme encodes the vector X = (x1, x2, . . . , xm) by the vector Y = (y1, y2, . . . , ys) so that for
every i, the value of xi can be recovered by two adaptive probes to Y as follows: if yai = 0 then
xi = ybi , and if yai = 1, then xi = yci . Therefore, in order to determine the value of xi one first
probes yai , and depending on its value, proceeds to probe either ybi or yci . We claim that if the
girth g and the parameters n,m, s satisfy

g >
log s

log(4m/s)
≥ 16mn

s
(1)

then any vector X with at most n ones can be encoded in a way that supports the above decoding.
Observe, first, that the Boolean function f = f(z1, z2, z3) defined by f(z1, z2, z3) = zf(z1)+2 has
the property that given control of any two of its three input bits z1, z2, z3 enables one to control
the output. Indeed, if the desired output is b and the two given input bits are z2, z3, set
z2 = z3 = b, if the two given input bits are z1, z2 then set z1 = 0 and z2 = b and, symmetrically,
if the two given bits are z1, z3 set z1 = 1 and z3 = b. Note that in order to get b as an output
one never has to set any of the given bits among the two bits z2, z3 to 1− b.

In our scheme, xi should be f(yai , ybi
, yci) for every i. Call a location i in X a 1-bit if

xi = 1. Call a location j in X intersecting if xj = 0 and the set {bj , cj} intersects the union
∪i:xi=1{bi, ci}. The encoding scheme will assign to each 1-bit and each intersecting bit xi two of
the three bits yai , ybi , yci , and this will be done so that no bit of Y will be assigned more than
once. This will enable us to determine the values of the assigned bits of Y in order to ensure that
each of the 1-bits and intersecting bits of X will indeed be recovered correctly by two adaptive
probes to Y . Moreover, as explained above, the only bits of Y that are set to 1 in this process
are some of the bits yi with i ∈ A and some of the bits yj with j ∈ ∪i:xi=1{bi, ci}. Setting all
remaining bits of Y to zero will now ensure that all bits of X can be recovered correctly. It
remains to show that we can assign two bits of Y as above to each of the 1-bits and intersecting
bits of X, as needed. By Hall’s Theorem, this is equivalent to showing that for every subset I

of locations of such bits, the cardinality of the union ∪i∈I{ai, bi, ci} is at least 2|I|.
By assumption, the number of 1-bits in X is at most n. Therefore, |∪i,xi=1 {bi, ci}| ≤ 2n and

hence the number of intersecting bits is at most (d− 1)2n. It follows that the sets I we have to
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consider are of cardinality at most 2nd. For each such set, the number of edges in the union of
all paths Pi for i ∈ I is exactly 2|I| ≤ 4nd = 16mn

s , which is smaller than the girth of the graph
G, by the assumption (1). Therefore, the subgraph consisting of all these edges is a forest, and
hence its number of vertices exceeds its number of edges, which is 2|I|. The desired result thus
follows by Hall’s Theorem. To complete the proof observe that the smallest s satisfying (1) is
indeed O(mn log[log m/n]

log m ). Note that the last quantity is O(m log f
f ), where f = log m

n , and thus
s = o(m) provided n = o(log m). 2

It is interesting to note that Theorem 6 in [11] asserts that under certain conditions (that
are satisfied by the schemes described therein), when n ≥ 3 then s ≥ m. Hence our two schemes
above show the advantage of deviating from these conditions.

3 Three Probes

3.1 The lower bound for three non-adaptive probes

There is a simple proof of a lower bound of s ≥ Ω(m1/3n2/3). Although this lower bound is not
very impressive, as Theorem 6 in [7] gives essentially the same bound for three adaptive probes,
we describe this proof, since our improved result starts with the same basic approach.

Any non-adaptive (n,m, s, 3)-scheme can be described by a collection of m triples of bits of
Y , together with m functions of these triples that give the bits of X. Given such a scheme,
choose at random n−1 out of the s bits of Y . Then (in expectation, and hence for some choice)
g ≥ m(n/s)3 of the triples are contained in them (up to a negligible error). If g ≥ n then Y

cannot encode X. Thus m(n
s )3 ≤ (1 + o(1))n, implying s ≥ Ω(m1/3n2/3), as claimed.

The above argument suggests the study of the following extremal problem for hypergraphs.
The notation is somewhat non-standard for hypergraphs, but is chosen so as to be consistent
with that of the probes model. Let H(s, n) be the maximum number of hyperedges that an s

vertex 3-uniform hypergraph can contain without including a set of g < n vertices that induces
more than g hyperedges. If m > H(s, n), then an m bit string with at most n ones cannot be
encoded by s bits in the nonadaptive three probe setting.

Note that for a random 3-uniform hypergraph (3-graph, for short) and n ≥ log s, we get
that H(s, n) = Ω(s2/n). This follows from a simple probabilistic argument, and the fact that
for m = cs2/n, with c a sufficiently small constant,

∑
g<n

(
s

g

)(
m

g + 1

)
(g/s)3g+3 < 1.

We also note that a closely related problem to that of determining or estimating H(s, n) has
been considered before, but for a very different choice of parameters dealing mainly with cases of
more vertices than edges in the forbidden substructure. See [1], [5], [6], [12], [13]. These results
and proof techniques do not seem useful here, and we need a different argument.

Our objective is to show that for n ≥ Ω(log s) the Ω(s2/n) lower bound is tight, up to a
logarithmic factor. Note that this is not the case for small values of n, in fact, for fixed n even
the probabilistic construction described above yields a better than Ω(s2) lower bound, namely
an Ω(s2+1/n) lower bound. In several cases one can give a better explicit bound. As a particular
example, H(s, 7) ≥ Ω(s5/2) as shown by the 3-uniform hypergraph obtained by taking 3 disjoint
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sets of vertices A, B,C, each of size s/3, taking the incidence graph F of the points and lines of
a projective plane on A and B, which is a graph with Ω(s3/2) edges and girth 6, and considering
the 3-graph consisting of all edges that are a union of an edge of the graph F with a vertex of
C.

We proceed with the proof of the upper bound for H(s, n). We need two simple lemmas for
(multi)-graphs (usual 2-graphs, possibly with multiple edges).

Lemma 3.1 Every graph with s vertices and more than 3s edges contains a set of k ≤ 4 log s

vertices which spans at least k + 1 edges.

Proof: It is well known that every graph with s vertices and at least 2s edges contains a cycle
of length at most 2 log s. Take such a cycle C1, omit its edges, and repeat. As long as there
are at least 2s edges remaining, we can find another cycle, thus the process terminates with
a collection of pairwise edge-disjoint cycles, each of length at most 2 log s, so that their total
length exceeds s. Thus two of the cycles share a common vertex, and their union provides the
required result. 2

Lemma 3.2 For s ≥ n ≥ 8 log s, any graph with s vertices and at least 3s + n/2 edges contains
a set of k ≤ n/2 vertices spanning at least k + n

8 log s edges.

Proof: Starting with an empty set of vertices X, apply Lemma 3.1 to find a set of vertices
K1 of k1 ≤ 4 log s vertices spanning at least k1 + 1 edges. Add those vertices to X, omit the
edges and apply Lemma 3.1 again to find another such set K2, add it to X and omit its edges.
Continuing in this manner n/(8 log s) steps we get the desired result. 2

We can now prove the following for 3-graphs, showing that for all s ≥ n ≥ 16 log s,

H(s, n) ≤ O(s2 log s/n).

Lemma 3.3 Suppose s ≥ n ≥ 16 log s. Then any 3-graph H with s vertices and m ≥ 11s2 log s
n

edges contains a set of g < n vertices with at least g + 1 edges.

Proof: Let U be a set of n
9 log s vertices chosen by the following greedy iterative procedure.

Initially all hyperedges are not marked and U is empty. In every step add to U the vertex
contained in the largest number of unmarked hyperedges of H (breaking ties arbitrarily), and
mark these hyperedges. The total number of hyperedges marked in the process of selecting U

is at least roughly 3|U |
s m = mn

3s log s (up to a multiplicative term of (1 + O( |U |s )) that tends to 1
as s grows). This can be seen by observing that the fraction of unmarked hyperedges is at most(

s−|U |
s

)3
≤ 1− 3|U |

s + 3|U |2
s2 , which would be an upper bound on their fraction had U been chosen

randomly. Let G be the (multi)-graph on the set of vertices of H whose edges are all edges of
the form e − {u} where e is a marked hyperedge of H and u ∈ U is the vertex who caused e

to be marked. Then G has s vertices and at least mn
3s log s edges. If this exceeds 3.5s ≥ 3s + n/2

then, by Lemma 3.2, there is a set W of k ≤ n/2 vertices of G which spans at least k + n
8 log s

edges of G. The union U ∪W thus contains g ≤ k+ n
9 log s < n vertices and at least k+ n

8 log s > g

edges. 2

Note that the proof also provides a deterministic efficient algorithm for finding, given a 3-
graph with s vertices and at least 11s2 log s/n edges, a set of at most n edges whose characteristic
vectors are not linearly independent.
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Proof of Theorem 1.3. If a non-adaptive (n,m, s, 3) scheme exists then m ≤ H(s, n), as
explained in the beginning of this subsection. Therefore, by Lemma 3.3, m ≤ O(s2 log s/n),
supplying the desired lower bound for s. 2

3.2 A scheme with 3 adaptive probes

In this subsection we prove Theorem 1.4. The scheme is a natural extension of the one for two
probes, described in the previous section. Each bit of X here will be recovered by probing two
bits of Y in order to select one of four possible bits of Y . Let F (z1, z2, . . . , z6) be the Boolean
function of 6 input bits defined by F (z1, z2, . . . , z6) = z3+2z2+z1 . It is to check the following.

Claim 3.4 For any set I ⊂ {1, 2, . . . , 6} of cardinality 4, and for any value b ∈ {0, 1}, one can
set the values of the bits zi for i ∈ I so that for any values of the bits zi, i ∈ {1, 2, . . . , 6} − I,
F (z1, z2, . . . , z6) = b. Moreover, this can be done by assigning all bits in the set I ∩ {3, 4, 5, 6}
the value b.

Indeed, if I = {3, 4, 5, 6} then we set z3 = z4 = z5 = z6 = b. If I contains both numbers 1, 2
then it also contains an additional number (in fact, two additional numbers). Let the smallest
among them be 3+2w2 +w1 where w1, w2 ∈ {0, 1}, and set z1 = w1, z2 = w2 and z3+2w2+w1 = b.
If I contains only one of the numbers 1, 2, say 1, then it also contains either the two numbers
z3, z5 or the two numbers z4, z6. In the first case set z1 = 0 and z3 = z5 = b, and in the second
z1 = 1 and z4 = z6 = b. The case I ∩ {1, 2} = {2} is symmetric. This proves the claim.

For each bit xi of X our scheme will have six locations in Y , that is, a set Ai of six numbers
ai1 < ai2 < . . . < ai6, where ai1, ai2 ∈ A = {1, 2, . . . , s/3} and ai3, . . . , ai6 ∈ B = {s/3+1, . . . , s}.
The encoding will ensure that for each i, xi = F (yai1 , yai2 , . . . , yai6). In order to enable such an
encoding, the sets Ai will have to satisfy a certain expansion property. The existence of such
sets is proved in the next lemma.

Lemma 3.5 There exists an absolute constant c so that for every m ≥ n, s and d that satisfy
s ≥ cm2/3n1/3, 6m = ds there is a bipartite (multi)-graph G with the following properties.
(i) The classes of vertices of G are U and W = A ∪ B, where |U | = m, |A| = s/3, |B| = 2s/3
and A ∩B = ∅.
(ii) Every vertex u ∈ U has exactly 2 neighbors in A and exactly 4 neighbors in B, and the
degree if every vertex of W is exactly d.
(iii) Every set R ⊂ U satisfying |R| ≤ 4nd = 24mn/s has more than 4|R| neighbors in W .

Proof: The proof is probabilistic, applying (a slight variant of) the configuration model de-
scribed, for example, in [3]. Let U ′, A′, B′ be disjoint sets of sizes |U ′| = 6m, |A′| = sd/3, |B′| =
2sd/3, and suppose that U ′ is partitioned into m groups, each of size 6, A′ is partitioned into s/3
groups, each of size d, and B′ is partitioned into 2s/3 groups, each of size d. Let π be a random
perfect matching M between the elements of U ′ and those of W ′ = A′ ∪ B′, chosen uniformly
among all (2m)!(4m)! matchings that match the 2m members of U ′ consisting of the first two
elements of each group with the members of A′ and the remaining 4m members of U ′ with those
of B′. The graph G is obtained by collapsing each group into a single vertex, thus getting a
bipartite graph with classes of vertices U and W = A ∪ B. Each matching edge u′w′, with
u′ ∈ U ′ and w′ ∈ W ′ = A′ ∪ B′ becomes an edge uw of G, where u is the vertex corresponding
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to the group containing u′, and w is the vertex corresponding to the group containing w′. Thus
|U | = m, W is the disjoint union of A and B where |A| = s/3 and |B| = 2s/3, the degree
of every vertex of U is 6, and that of every vertex of W = A ∪ B is d. Therefore, G satisfies
properties (i) and (ii). Note that it may well have parallel edges.

It remains to show that with positive probability, property (iii) holds. To do so, we bound
the probability that there is some r ≤ 24mn/s and a set R of r vertices in U that has at most
4r neighbors in W . For a fixed r, there are

(
m
r

)
possibilities to pick a set R of r vertices in U ,

and
(

s
4r

)
possibilities to pick a set of T of 4r vertices in W . Fix such two sets R and T . Let R′

denote the set of 6r members of U ′ that lie in the groups that form the vertices in R, and let
T ′ denote the set of 4rd members of W ′ that lie in the groups that form the vertices of T . The
probability that all neighbors of the vertices of R lie in T is the probability that the random
matching picked in the definition of G matched all 6r members of R′ to some 6r elements in T ′.
There are at most 4rd(4rd−1) . . . (4rd−6r+1) ways to match the members of R′ to 6r elements
of T ′. (This is an overcount, as some of these matchings may be impossible, since the matching
matches exactly two elements in every group of six to members of A′. Still, the above estimate
suffices for our purpose here.) The total number of choices for the matching edges containing
the elements of R′ is precisely

|A′|(|A′| − 1) · · · (|A′| − 2r + 1)|B′|(|B′| − 1) · · · (|B′| − 4r + 1)

=
sd

3
(
sd

3
− 1) · · · (sd

3
− 2r + 1)

2sd

3
(
2sd

3
− 1) · · · (2sd

3
− 4r + 1).

Thus, the probability that all members of R′ are matched to members of T ′ is at most the ratio
between these two quantities, which is at most

(
4rd

sd/3
)2r(

4rd

2sd/3
)4r = (c1r/s)6r,

for some absolute constant c1. It follows that the probability that there is some r ≤ 24mn/s

and a subset R ⊂ U of cardinality r with at most 4r neighbors is at most

24mn/s∑

r=1

(
m

r

)(
s

4r

)
(c1r/s)6r ≤

24mn/s∑

r=1

(c2
m

r
(
s

r
)4(

r

s
)6)r =

24mn/s∑

r=1

(c2
mr

s2
)r,

for some absolute constant c2. For r ≤ 24mn/s, the quantity c2
mr
s2 is smaller than 1/2, provided

s is at least cm2/3n1/3 for an appropriately chosen absolute constant c. Thus, for such an s,
the probability that (iii) does not hold is smaller than

∑24mn/s
r=1 (1/2)r < 1, and therefore there

exists a bipartite graph as needed. 2

Proof of Theorem 1.4: Given m ≥ n, let s = cm2/3n1/3 satisfy the assumptions of Lemma 3.5,
and put d = 6m/s. Let G be a bipartite multigraph with classes of vertices U = {u1, u2, . . . , um}
and W = A ∪B, where A = {1, 2, . . . , s/3} and B = {s/3 + 1, . . . , s}, satisfying the conclusions
of the lemma. For each i, 1 ≤ i ≤ m, let Ai be the set of neighbors of ui in W . Note that
if there are no parallel edges incident with ui, then Ai contains exactly 2 members of A and
4 of B. Otherwise, there is only one such parallel edge (by applying the condition (iii) with
|R| = 1). In this case add to Ai an arbitrary additional member of {1, 2, . . . , s} to ensure
that the modified set consists of exactly 2 members of A and 4 of B, and call this element

7



the exceptional member of Ai. We now show that the sets Ai enable us to encode any given
vector X = (x1, . . . , xm) with at most n ones by a vector Y , using the scheme described in
the paragraph preceding Lemma 3.5. As in the proof of Theorem 1.2, call a location i in the
vector X a 1-bit if xi = 1, and call a location j an intersecting bit if xj = 0 and the set of non-
exceptional positions among aj3, aj4, aj5, aj6 intersects the set of all non-exceptional elements
in ∪i:xi=1{ai3, ai4, ai5, ai6}. Since each number k ∈ B serves as a non-exceptional position of
exactly d = 6m/s sets, it follows that the number of intersecting bits is at most 4n(d − 1) and
hence the total number of 1-bits and intersecting bits is at most 4nd = 24mn/s. By Hall’s
Theorem and the properties of the graph G we can assign to each 1-bit or intersecting bit i four
non-exceptional positions in Ai, so that no position is assigned more than once. We can now
complete the encoding using the properties in Claim 3.4, by using the four assigned locations to
encode the 1-bits and intersecting bits, and by setting all other bits of Y to zero. This completes
the proof. 2

4 Four Probes

In this section we prove Theorem 1.5. The proof extends an approach of [7].

Definition 4.1 Let G be an r-uniform hypergraph in which every hyperedge is either labelled as
a 1-edge or a 0-edge, and let p, q be integers with 0 < q ≤ p < r. In the (p, q)-coloring problem,
one needs to color the vertices of the hypergraph by 1/0 such that every 1-edge has at least p

vertices colored 1, and every 0-edge has at least q vertices colored 0.

The (p, q)-coloring problem is NP-hard. In particular, it generalizes the usual notion of two
coloring of uniform hypergraphs (set p = q = 1 and make two copies of every hyperedge, one
as a 1-edge and the other as a 0-edge). We provide sufficient conditions on the expansion of G

that ensure the existence of a (p, q)-coloring, regardless of which are the 1-edges and which are
the 0-edges.

Definition 4.2 We say that a hypergraph has expansion α if every set E of hyperedges spans
at least α|E| vertices.

The key to our non-adaptive (n,m, s, 4)-scheme is the following lemma, whose proof appears
in Section 4.1.

Lemma 4.1 Let G be an arbitrary 4-uniform hypergraph with s vertices and m hyperedges, for
which every set of 2n hyperedges induces a subhypergraph with expansion α ≥ 8/3. Then for
any choice of at most n hyperedges, labelling the chosen hyperedges as 1-edges and the remaining
hyperedges as 0-edges, the resulting labelled hypergraph has a legal (3, 2)-coloring. Moreover,
such a coloring can be found in polynomial time.

Given a hypergraph G as in Lemma 4.1 we obtain a non-adaptive (n,m, s, 4)-scheme as
follows. Every bit xi of the encoded vector X = {x1, . . . , xm} is associated with a hyperedge Ei.
Every bit yj of the encoding vector Y = {y1, . . . , ys} is associated with a vertex vj . To decode
the value of a bit xi, probe the four bits of Y that correspond to the vertices in the respective
hyperedge Ei. If

∑
vj∈Ei

yj ≥ 3 then xi = 1, and if
∑

vj∈Ei
yj ≤ 2 then xi = 0. If follows that
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an encoding of X is precisely a legal (3, 2)-coloring of G. Such a legal coloring is needed only
when the number of ones in X is at most n, and Lemma 4.1 provides a sufficient condition for
such a legal coloring to exist.

Lemma 4.2 (with a choice of δ ≤ 1/3) implies that hypergraphs G with expansion properties
as needed in Lemma 4.1 exist with parameters as stated by Theorem 1.5. Note that Lemma 4.2
is stated in terms of bipartite graphs, but these bipartite graphs can naturally be viewed as
4-uniform hypergraphs with W as the set of vertices of the hypergraph and U as the set of
hyperedges.

Lemma 4.2 There exists an absolute constant c > 0, so that for every δ > 0 and every m > n

and s that satisfy s ≥ cm1/(1+δ)nδ/(1+δ) there is a bipartite graph G with classes of vertices U

and W and the following properties.
(i) |U | = m and |W | = s.
(ii) Every vertex of U has degree 4.
(iii) Every set R of r ≤ 2n vertices of U has more than (3− δ)r neighbors in W .

Proof: The proof is probabilistic, and is simpler than that of Lemma 3.5 as here there are
no constraints on the degrees of the vertices of W . Let U and W be disjoint sets with |U | =
m, |W | = s, and let G be the random graph obtained by picking, for each vertex u ∈ U randomly
and independently, a set Au ⊂ W of four distinct neighbors, where all 4-sets are taken with equal
probability. Clearly G satisfies conditions (i) and (ii), and it remains to show that it satisfies
(iii) with positive probability. The expected number of sets R that violate (iii) is at most

∑

1≤r≤2n

(
m

r

)(
s

b(3− δ)rc
)

[

(b(3−δ)rc
4

)
(
s
4

) ]r ≤
∑

1≤r≤2n

[
em

r
(

es

(3− δ)r
)3−δ(

(3− δ)r
s

)4]r

≤
∑

1≤r≤2n

[c1
ms3−δr4

r4−δs4
]r =

∑

1≤r≤2n

[c1
mrδ

s1+δ
]r

≤
∑

1≤r≤2n

[c2
mnδ

s1+δ
]r,

where c1, c2 > 0 are absolute constants. If s ≥ c3m
1/(1+δ)nδ/(1+δ) for an appropriately chosen c3

(as a function of c2), the term in the brackets is smaller than 1/2 and hence the sum is smaller
than 1, showing that with positive probability there are no sets R violating condition (iii). 2

As explained above, the combination of Lemmas 4.1 and 4.2 proves Theorem 1.5. Hence it
remains to prove Lemma 4.1, which is the topic of the following section.

4.1 Expansion implies coloring of hypergraphs

The notion of (p, q)-coloring corresponds to an encoding scheme whenever p + q > r. Then a
legal (p, q)-coloring uniquely determines which are the 1-edges and which are the 0-edges. The
non-adaptive (n,m, s, 5)-scheme of [7] may be viewed as based on (3, 3)-colorings of 5-uniform
hypergraphs. When r is odd and p = q = r+1

2 , then an expansion of α ≥ p = q is a best possible
sufficient condition for a (p, q)-coloring. (By Hall’s condition, there is a matching that matches
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r+1
2 vertices to every hyperedge, and these vertices can be colored by the color preferred by the

hyper-edge. Tightness is demonstrated by the following example. There are n 1-edges each with
one unshared vertex, n 0-edges each with one unshared vertex, and n(r − 1) additional vertices
shared by the 1-edges and 0-edges. Adding one 0-edge that contains r+1

2 of the unshared vertices
associated with 1-edges and r−1

2 additional fresh vertices, there is no legal (p, q)-coloring.) We
shall be interested in the case that r is even, namely, r = 4, p = 1 + r/2 = 3 and q = r/2 = 2.
As above, Hall’s condition implies that an expansion of α = 3 suffices in order to guarantee a
(3, 2) coloring. We show that a smaller expansion also suffices.

Theorem 4.3 Every 4-uniform hypergraph G with expansion α = 8/3 is (3, 2)-colorable, and
8/3 is the smallest possible value of α that guarantees a (3, 2)-coloring.

The following infinite family of examples proves the second part of Theorem 4.3, namely, that
an expansion of 8/3 is necessary in order to guarantee (3, 2)-coloring of 4-uniform hypergraphs.
Let k be arbitrarily large. Let there be 4k disjoint 1-edges, numbered 0 to 4k − 1. Cover 8k of
their vertices by 2k disjoint 0-edges as follows. 0-edge i for 0 ≤ i ≤ k − 1 contains one vertex
from each of the 1-edges 4i, 4i+1, 4i+2, 4i+3. 0-edge k + i contains one (different) vertex from
1-edges 4i + 2, 4i + 3, 4i + 4, 4i + 5 (where addition is performed modulo 2k). Observe that this
gives 6k edges, 16k vertices, and expansion 8/3. Every legal (3, 2)-coloring must color 4k of the
shared vertices by the color 0, and hence all remaining vertices by the color 1. Now, add one
more 0-edge spanning three of the unshared vertices (say, belonging to 1-edges k, 2k and 3k),
and one more fresh vertex. The expansion drops to 8/3−O(1/k), and the resulting hypergraph
is not (3, 2)-colorable.

The more interesting part of the proof of Theorem 4.3 is to show that an expansion of
8/3 suffices. Similar to the case of odd r, a straightforward matching argument shows that an
expansion of α = 3 suffices. As a warmup towards our main result, we now show that any value
of α > 14/5 suffices. Our proof is based on the following trivial algorithm. Initially, all vertices
are uncolored and all edges are active. In every step of the algorithm, either (at least) one
uncolored vertex gets colored, or (at least) one active edge becomes legally colored and drops
out of the set of active edges. Let us explain these basic steps in more details. A vertex becomes
colored 1 if there is no active 0-edge that contains it. Likewise, a vertex becomes colored 0 if
there is no active 1-edge that contains it. (If some vertex is not in any active edge, it can be
colored arbitrarily.) Observe that for an active edge, all its vertices are either uncolored, or
colored to a value favorable to that edge. An active 1-edge drops out of the the set of active
edges at the first point in time when three of its vertices are colored 1. Likewise, an active
0-edge drops out of the the set of active edges at the first point in time when two of its vertices
are colored 0.

It remains to show that eventually, the set of active edges becomes empty. To show this,
we show that as long as some active edge exists, the algorithm can make progress (color some
vertices and drop an active edge). Consider an arbitrary intermediate step of the algorithm,
with the set of active 1-edges remaining being CA and the set of active 0-edges remaining being
BA. Some vertices belong both to edges in BA and to edges in CA. These vertices are uncolored
at this point. Every other vertex is either previously colored, or may be colored at this point: if
it only belongs to CA it is colored 1, if it only belongs to BA it is colored 0. We show that after
completing this coloring operation, necessarily at least one active edge becomes legally colored
and can drop from the active set.
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Let m′ denote the number of vertices in BA∪CA. If no edge from BA has two colored vertices
then m′ ≤ 4|CA|+ |BA|. If no edge from CA has three colored vertices, then m′ ≤ 2|CA|+4|BA|.
Adding twice the first inequality with three times the second inequality we obtain that 5m′ ≤
14|BA ∪ CA|. This contradicts the expansion property. Hence some active edge must have
sufficiently many colored vertices, and it can drop out of the active set.

In summary, the trivial algorithm that only colors vertices that are not under contention
and drops legally colored edges, necessarily produces a legal (3, 2)-coloring whenever α > 14/5.

A value of α > 14/5 is necessary for the trivial algorithm. For example, when |CA| = 3 and
|BA| = 2, there may be 6 vertices belonging only to CA (and colored 1), 2 vertices belonging
to BA (and colored 0), and 6 shared vertices, for a total of 14 vertices. The trivial algorithm
cannot make any progress at this point. We now wish to show that a value of α = 8/3 also
suffices. For this, we shall use a more sophisticated coloring algorithm.

Definition 4.3 For a set E of edges, a preliminary coloring is defined as follows. Consider
the subhypergraph induced on E (dropping all other hyperedges and vertices). Color vertices
that appear only in 0-edges by 0, and set the demand of every 0-edge in E to be q minus the
number of vertices in that 0-edge already colored 0. Color vertices that appear only in 1-edges
by 1, and set the demands of the 1-edges in E to p minus the number of vertices in that 1-edge
already colored 1. The set E is admissible if none of its edges is legally colored by this process.
A hypergraph satisfies the counting condition if for every choice of admissible E, following the
respective preliminary coloring, the number of remaining (uncolored) vertices is at least as large
as the sum of demands of the edges.

Lemma 4.4 Every 4-uniform hypergraph with expansion α ≥ 8/3 satisfies the counting condi-
tion.

Proof: Consider an arbitrary admissible set E of hyperedges and perform the preliminary
coloring. Let Ci (for i = 0, 1, 2) denote the number of 1-edges with i precolored vertices, and let
Bi (for i = 0, 1) denote the number of 0-edges with i precolored vertices. Let m denote the total
number of vertices spanned by E, and let m2 denote the number of vertices that are members
of both 0-edges and 1-edges in E. Then we have that m2 ≤ 4B0 + 3B1 (because every vertex
counted in m2 must belong to some 0-edge and not be precolored). Assume now for the sake of
contradiction that the counting condition does not hold. Then m2 < 3C0 +2C1 +C2 +2B0 +B1.
Adding twice this last inequality to the former inequality and dividing by three we get m2 <

2C0 + 4
3C1 + 2

3C2 + 8
3B0 + 5

3B1. Now

m ≤ C1 + 2C2 + B1 + m2 < 2C0 +
7
3
C1 +

8
3
C2 +

8
3
B0 +

8
3
B1 ≤ 8

3
|E|

which contradicts the expansion property. 2

The value of α = 8/3 in the lemma is best possible, as can be seen by the example following
the statement of Theorem 4.3. Note also that if E is not required to be admissible, no expansion
below α = 3 suffices in order to obtain the counting condition. Consider the following example
with k + 2(k + 1) + 3k vertices. There are k + 1 1-edges, each having two unshared vertices
(contributing the term 2(k+1)), and k 0-edges each having three unshared vertices (contributing
the term 3k). The other vertices in the above hyperedges are taken from a pool of k shared
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vertices. The 0-edges can be legally colored by their unshared vertices, and hence E is not
admissible. The 1-edges have a demand of k + 1 on the k shared vertices, so the counting
condition does not hold. (This of course does not mean that the demand cannot be met.)

Lemma 4.5 Every hypergraph satisfying the counting condition is (p, q)-colorable.

Proof: Perform the trivial greedy algorithm until no progress can be made. At this point,
the counting condition implies that the number of uncolored vertices is at least as large as the
demand of the remaining edges. If this is true also for every subset of remaining edges and their
vertices, then Hall’s theorem implies that vertices can be matched to edges such that every edge
has at least as many vertices as its demand. Every edge can color the vertices matched to it
by its preferred color, meeting all demands and obtaining a (p, q)-coloring. Hence it remains to
consider the case that some set of edges contains fewer vertices than the sum of the demands of
its members. Consider a maximal set E′ of such edges, and let E” be the remaining edges not
in E′. Observe that the counting condition implies that E” is nonempty. Moreover, using only
vertices not in E′, the set E” and the remaining vertices satisfy Hall’s condition with respect
to the demand of E” (otherwise E′ is not maximal). It follows that the demand of E” can be
satisfied without coloring any of the uncolored vertices in E′. Thereafter, the counting condition
is violated, implying that at least one of the uncolored vertices (in E′) is demanded either only
by 1-edges or only by 0-edges. Hence the trivial greedy algorithm can be resumed and make
progress.

Alternating as above between the trivial greedy algorithm and a matching algorithm, at no
point in time is there an unsatisfied edge with a vertex colored differently than its demand, and
progress can be made as long as there are uncolored vertices. Hence eventually, one obtains a
legal (p, q)-coloring. 2

The combination of Lemmas 4.4 and 4.5 completes the proof of Theorem 4.3. The proof
of Theorem 4.3 is algorithmic, because the algorithm in the proof of Lemma 4.5 can be run in
polynomial time, using flow techniques (details omitted). We can now prove Lemma 4.1.
Proof: We start by applying the trivial algorithm. We claim that at the point when the trivial
algorithm cannot make any progress, at most n active 0-edges remain. Let BA be the set of
active 0-edges that remain, and let CA be the set of active 1-edges that remain, and assume for
the sake of contradiction that |BA| > n. Consider an arbitrary subset B′

A ⊂ BA with |B′
A| = n.

Observe that CA contains at most 4|CA| distinct vertices. No edge in B′
A has two vertices (or

more) not in CA, because otherwise it cannot be active. Hence the total number of vertices in
B′

A ∪CA is at most 4|CA|+ n ≤ 5
2 |B′

A ∪CA| (the last inequality follows because CA ≤ n). This
contradicts the expansion conditions of the corollary (observe that |B′

A ∪ CA| ≤ 2n).
Once the set of active 0-edges drops to n, the total number of active edges is at most 2n,

and the partial coloring has the property that for every active edge, none of its vertices is col-
ored to a color different than the edge’s demand. At this point Theorem 4.3 applies, and the
(3, 2)-coloring can be completed. The whole coloring algorithm runs in polynomial time, by the
discussion preceding this proof. 2

A straightforward modification to the proof of Lemma 4.1 shows that if all sets of at most
3n hyperedges have expansion 8/3, then a legal (3, 2)-coloring exists also if the chosen n edges
are 0-edges and the remaining edges are 1-edges.
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5 Open problems

• The proofs of Theorems 1.1 and 1.2 are by explicit constructions of the corresponding
schemes, but those of Theorems 1.4 and 1.5 rely on the existence of strong expanders
proved by probabilistic arguments. The known constructions of explicit lossless expanders
(see [8]) can provide some explicit versions of these schemes, but the number of probes will
increase significantly (though will stay constant for the appropriate range of parameters
n,m and s.)

• There are still rather substantial gaps between the upper and lower bounds for the mini-
mum required space in most cases considered here; it will be nice to get tighter estimates.
It particular, it will be interesting to decide if there are adaptive (n,m, s, 2)-schemes with
s < m for n >

√
m/2, and to identify the behavior of the largest n = n(m) so that there

are adaptive (n, m, s, 2)-schemes with s = o(m).
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