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Example: Dekker's mutual exclusion

Initially, x =y = 0.

x = 1; y =1,
a:=y; b= x;
if (a = 0) then if (b =0) then
/* critical section */ /* critical section */
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Example: Dekker's mutual exclusion

Initially, x =y = 0.

x = 1; y =1,
a==y; /0 b:=x; /0
if (a = 0) then if (b =0) then
/* critical section */ /* critical section */
Is it safe?

Yes, if we assume sequential consistency (SC):

cpul| --- |CPUn
A
READ WRITE

Memory ‘
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Example: Dekker's mutual exclusion

Initially, x =y = 0.

x = 1; y =1,
a==y; /0 b:=x; /0
if (a = 0) then if (b =0) then
/* critical section */ /* critical section */
Is it safe? J

Yes, if we assume sequential consistency (SC):
CPUl‘ ‘CPUn

READT lWRITE T l
Memory

No existing hardware implements SC!
> SC is very expensive (memory ~100 times slower than CPU).

» SC does not scale to many processors.
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Example: Shared-memory concurrency in C++

int X, Y, a, b;

void threadl() {

X =1;
a=yY;

}

void thread2() {
Y =1;
b = X;

}

int main () {
int cnt = 0;

do {
X=0; Y =0;

thread first(threadl);
thread second(thread2);

first.join();
second.join();
cnt++;

} while (a =@ [| b !'= 0);

printf("%d\n",cnt);
return 0;
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Example: Shared-memory concurrency in C++

int X, Y, a, b;

void threadl() {

X =1;
a=yY;

}

void thread2() {
Y =1;
b = X;

}

If Dekker's mutual exclusion
is safe, this program will
not terminate

int main () {
int cnt = 0;

do {
X=0; Y =0;

thread first(threadl);
thread second(thread2);

first.join();
second.join();
cnt++;

—>} while (a =@ || b !'= 0);

printf("%d\n",cnt);
return 0;
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Weak memory models

We look for a substitute for SC:

Unambiguous specification
» What are the possible outcomes of a multithreaded program?

Typically called a weak memory model (WMM)
> Allows more behaviors than SC.

Amenable to formal reasoning
» Can prove theorems about the model.
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Weak memory models

We look for a substitute for SC:

Unambiguous specification
» What are the possible outcomes of a multithreaded program?

Typically called a weak memory model (WMM)
> Allows more behaviors than SC.

Amenable to formal reasoning

» Can prove theorems about the model.
But it is not easy to get right

» The Java memory model is flawed.

» The C/C++11 model is also flawed.
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The Problem of Programming Language
Concurrency Semantics

Mark Batty, Kayvan Memarian, Kyndylan Nienhuis, Jean Pichon-Pharabod,
and Peter Sewell

University of Cambridge

(“Disturbingly, 40+ years after the first reIaxed—memory\

hardware was introduced (the IBM 370/158MP), the
field still does not have a credible proposal for the
concurrency semantics of any general-purpose high-
level language that includes high performance shared-
memory concurrency primitives. This is a major open
\problem for programming language semantics.”

J

European Symposium on Programming (ESOP) 2015 J
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Plan for rest of the talk

1. Challenges for memory models
2. The C/C++11 memory model

3. The “out-of-thin-air” problem

o

. A solution: a promising semantics
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Challenge 1: Various hardware models

x86-TSO = AMD1  POWER :i:=:i: ARMv8 ARM
(2010) (2011) (2016)

il 52

7/38



Store buffering in x86-TSO

Initially, x =y = 0.

x:=1; y =1
a=y; /0 b:=x; /0
CcPU1 CPU2
lWRITE 1 l

READ

l WRITE-BACK

Memory
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Store buffering in x86-TSO

Initially, x =y = 0.

=4

> x = 1; >y =1;
a=y; /0 b:=x; /0
crul CPU 2
lWRITE 1 l
READ | | ]

l WRITE-BACK

x 0

y—0
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Store buffering in x86-TSO

Initially, x =y = 0.

x =1 >y =1
»a=y; /0 b:=x; /0
cpruUl CPU2
lWRITE ‘ l
FHx =1 -
READ

l WRITE-BACK

x 0

y—0
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Store buffering in x86-TSO

Initially, x =y = 0.

x:=1; y =1
»a=y; /0 » b:=x; /0
CcrpU1 CPU 2
lWRITE ‘ l
Hx:=1 —Hy: =1
READ

l WRITE-BACK

x 0

y—0
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Store buffering in x86-TSO

Initially, x =y = 0.

x:=1; y =1
fence; fence;
a=y; /0 b:=x; /0
CcpU1l CPU 2
lWRITE l
Hx:=1 —y:=1
READ
lWRITE—BACK l

‘ x 0 y—0
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Load buffering in ARM

Initially, x = y = 0.

a=x; /1
y =1

=y; /1

ty ty

ty

ty ty

ty

Memory
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Load buffering in ARM
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Load buffering in ARM

Initially, x = y = 0.

a=x; /1

b:=y; /1
y =1; X = b;

[+—
]
[+—

|
(VI N
X =

|

>
||

ty ty ty

ty H

Memory
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Load buffering in ARM

Initially, x = y = 0.

a=x; /1

b:=y; /1
y =1; X = b;

ty ty ty ty
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Load buffering in ARM

Initially, x = y = 0.

x 1= b;

ty ty ty ty

ty H

Memory
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Challenge 2: Compilers stir the pot

Initially, x =y = 0.

a:.:=Xx;
_ 1| b=y /1
= c:=x; /0
X forbidden under SC

x =1;
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Challenge 2: Compilers stir the pot

Initially, x = y = 0.

& w,

— 1 ai= X, compiler 1 a:=x;
x : 1i b:=y; /1 optimization X : 1i b:=y; /1
y:=1; ci=x: /0 — y =1 c—m )0
X forbidden under SC v/ allowed under SC
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Challenge 3: Transformations do not suffice

Program transformations fail short to explain some weak behaviors:

Message passing (MP)

x = 1;
y:=1

a=y;, /1
b=x: /0

Independent reads of independent writes (IRIW)

x; /1
=y; /0

c=y, /1
d=x; /0

x =1;

o L

‘y:zl;

ARM-weak
a=x; /1 o o
xo— 1, Hy.—x,//l x:=y, /1
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Overview

ST

WMM desiderata

1.

2.

Formal and comprehensive

Not too weak
(good for programmers)

Not too strong
(good for hardware)

Admits optimizations
(good for compilers)
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The C11 memory model

» Introduced by the ISO C/C++ 2011 standards.

» Defines the semantics of concurrent memory accesses.



The C11 memory model: Atomics

Two types of accesses

Ordinary A .
(Non-Atomic) tomic
Welcome to the

R re errors
aces are expert mode
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The C11 memory model: Atomics

Two types of accesses

Ordinary A .
(Non-Atomic) tomic
Welcome to the

Races are errors
expert mode

DRF (data race freedom) guarantee

no data races . only
under SC SC behaviors
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A spectrum of access modes

memory_order_seq_cst

(sc)

full memory fence

/\

memory_order_release memory_order_acquire
write (rel) read (acq)
no fence (x86); lwsync (PPC) no fence (x86); isync (PPC)

— =

memory_order_relaxed
(rlx)

no fence

Non-atomic (na)

no fence, races are errors

+ Explicit primitives for fences
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C11:

a declarative memory model

Declarative semantics abstracts away from implementation details.

a program ~ a set of directed graphs (called: execution graphs)

The memory model defines what executions are consistent.

The semantics of a program is the set of its consistent executions.

C/C++11 also has catch-fire semantics (i.e., forbidden data
races).
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Execution graphs

Store buffering (SB)

x=y=0
X =rix 1 Y =rix 1
a:=ynx || b= X
WxO0 Wy O WxO0 Wy O
Wrix X 1 wrlxy 1 Wrix x 1 wrlxy 1
erxy 0 erxX O R-rlxy 1 erxX 1

Relations
» Program order, po

» Reads-from, rf
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C/C++11 formal model [Vafeiadis & Narayan OOPSLA'13]

[-] : CExp — P((res:Valu {1}, A: P(AName),lab : A — Act.sb : P(A x A), fst : A, Ist
[v] ' {(v, {a}.lab, B, a.a) | a € AName A lab(a) = skip}
[alloc()] ' {(¢, {a}.lab, 0, a.a) | a € AName A £ € Loc A lab(a) = A(£)}
[[v] := o] ' {(/. {a}.1ab. D, a.a) | a € AName A lab(a) = Wz (v, v')}
[[v]z] = {(v’. {a}.lab.®,a,a) | a € AName A v’ € Val A lab(a) = Rz (v, v')}
[CASx.y (v, v0.v,)] 2 {(v". {a}.1ab. 0. a.a) | a € AName A/ € Val A’ # v, Alab(a) = Ry (v.v')}
Y {{vo. {a}.1ab. 0, a, a) | a € AName A lab(a) = RMWx (v, o, )
{(L Au.laby.sby. fsty, st1) | (L. As.laby,sby. fst,, lst1) € [E1]}
- oy W A, 1aby Ulabs, sby U sbs U {(Ests, fots)}, foty, Ista) |
i1, Ars labysby, Sty Ist1) € [Ba] A (resz, As, labz, sba, fota, lsts) € [Ealor /2]]}
[repeat 12 end] %' {<w~ Wicrnv A Uicp 13be Ure vy sbs U { (st fsta), 1 Ssta) ) Sty st |
Vi. (res;, A;,lab;,sby, fst,, Ist;) € [E] A (i # N = res; = 0) A resy # 0}
{combine(resy, resz), Ay W Az W {afork, Ajoin }, 1ab1 U labz U {asoric = skip, Goin — skip}
sb1 U sbz U {(@rork, fst1), (arork, fst. I5t1, Gjoin), (Ist2, Gjoin) }, Gtork, join
(resy, Avsby, fsty. Ist1) € [E1] A (resz, A, sba, fity, lst2) € [F2] A aforic: @join € AName}

A))

[let = = By in E'z]] et

[£:11B2] = {

Figure 2. Semantics of closed program expr
Pac. hb(x, x)
Ve. totalorder({a € A | iswrite;(a)}, mo) A hb, € mo
totalorder({a € A | isSeqCst(a)}.sc) A hbseqcst © SC A MoOseqcst © SC
Vb, r(b) # L <= 3, a.iswrite,(a) A isread,(b) A hb(a, b)
Va,b. rf(b) = a == 3t,v. iswrite,,,(a) A isready., (b) A —hb(b, a)
Va,b. rf(b) = a A (mode(a) = na V mode(b) = na) = hb(a,b)
Va,b. rf(b) = a A isSeqCst(b) —

ons.

(IrreflexiveHB)
(ConsistentMO)
(ConsistentSC)
(ConsistentRFdom)
(ConsistentRF)

(ConsistentRFna)
isc(a, b) V misSeqCst(a) A (V. isc(x, b) = —hb(a, z))

(RestrSCReads)
Fa,b. hb(a.b) A mo(rf(b). rf(a)) Alocs(a) = locs(b) (CoherentRR)
Aa,b. hb(a,b) A mo(rf(b), a) A iswrite(a) A locs(a) = locs(b) (CoherentWR)
Aa,b. hb(a,b) A mo(b, rf(a)) A iswrite(b) A loes(a) = loes(b) (CoherentRW)
Va.

isrmw(a) A rf(a) # L == mo(rf(a).a) A fe. mo(rf(a), ¢) A mo(c. a)
Va.,b. 0. lab(a) = lab(b) = A() = a=1b
A 3X, vgia. lab(a) € {Wix (£, 0), RMWx (£, vora, v) }
IX, Unew- lab(a) € {Rx (¢, 0), RMWx (£, v,
sameThread(a, b) V isrmw(b)
{a} U {b | rsElem(a, b) A mo(a,b) A (Ve.

(AtomicRMW)
(ConsistentAlloc)
iswrite, (a) % Su. iswrite, , (a
)} ete.

where iswrite ()

isready ., (a)
rsElem (a. b)

rseq(a) mo(a,e) A mo(e, b) = rsElem(a, ¢))}
{(a.b) | mode(a) € {rel, rel_acq, sc} A mode(b) € {acq, rel_acq, sc} A rf(b) € rseq(a)}
(sb U sw)*

dor

sw
hb
hbe ' {(a.b) € hb | iswritec(a) A iswrite, (D)}

Xseacst 2 {(a,b) € X | isSeqCst(a) A isSeqCst(b)}

isc(a, b) 2 iswritejges(n) (@) A sc(a. b) A #

. sc(a,e) Ase(e, b) A iswriteigesn) ()

Figure 3. Axioms satisfied by consistent C11 executions, Consistent(A. lab, sb, rf, mo. sc)
W) —=a: R | e WE2) mra: W) | e: W(e1) —=a
i

PR a5 b means a = rf(b)
0 " T~ el oo me
d:W(0,2) —b:R(£,2) b R4, 2) bW 2) a I» b means mo(a,b)
violates CoherentRR violates CoherentWR violates CoherentRW @ ~=»b means hb(a,b)
Figure 4. Sample

Violating

(Batty etal. 2011).
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Basic ingredients of execution graph consistency

1. SC-per-location (a.k.a. coherence)
2. Release/acquire synchronization

3. Global conditions on SC accesses
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Basic ingredients of execution graph consistency

1. [SC—per—Iocation (a-k.a. coherence)}

2. Release/acquire synchronization

3. Global conditions on SC accesses
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SC-per-location

Definition (Declarative definition of SC)

G is SC-consistent if there exists a relation sc s.t. the following hold:
> sc is a total order on the events of G.

> If poUrf C sc.

v

If (a, b) € rf then there does not exist ¢ € Wy c(a) such that
(a,c) € sc and (c, b) € sc.

Definition (SC-per-location)
G is satisfies SC-per-location if for every location x, there exists a
relation scy s.t. the following hold:

> sc, is a total order on the events of G that access x.
> If poUrf C scy.

> If (a, b) € rf then there does not exist ¢ € W, such that

(a,c) € scy and (c, b) € scy.
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SC-per-location: Example

Wx 0
rlxX 1 rlXX 2
x=0
X 1=yix 14 x =rlx 2 l >< l
a = Xrix b= Xrlx Rrix X 2 Rrix X 1

program order
- -

reads from

inconsistent!
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Release/acquire synchronization
SC-per-location is often too weak:

> It does not support the message passing idiom:

Wx0 WyO0
Message passing (MP) v/»)&\
Wy 42 Rx1
y = 42; a=x; /1
x:=1; b:=y; /0 l / l
Wx 1 Ry O

» We cannot even implement locks:

S| ey
i z ; a=x; /1
() unlock();
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Synchronization in C/C++11 through examples

<
|

int y
int x

= 42; | if(x

1;

¥

0;

03

== 1){
print(y);
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Synchronization in C/C++11 through examples

int y
int x
if(x

42,
1;

3

0;

03

== 1){
print(y);
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Synchronization in C/C++11 through examples

e int y = 0;
int x 0;
y = 42; || if(x == 1){
x = 1¢||ee print(y);
b
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Synchronization in C/C++11 through examples

e int y = 0; e int y = 0;

int x = 0; atomic<int> x = 0;
y = 42; || if{x == 1){ y = 42; || if(xp1x == DA
x =1 race print(y); X =r1x 1; print(y);

b X
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Synchronization in C/C++11 through examples

e int y = 0; e int y = 0;

int x = 0; atomic<int> x = 0;
y = 42; || if(x == 1){ y = 423 if (xp1x == 1){
x =1 race print(y); X =r1x 1; print(y);

3
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Synchronization in C/C++11 through examples

0 int y

= 0; e int y =0
int x = 0; atomic<int> x = 0;
y = == 1){ y = 425 | if (xp1x == D1
X = print(y); X =r1x 1; print(y);

o int y = 0;
atomic<int> x = 0;
y = if (xaeq == 1A
X = 1 print(y);
}
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Synchronization in C/C++11 through examples

“' int y

= 0; ‘E’ int y = 0;
int x = 0; atomic<int> x = 0;
y = == 1){ y = 425 | if (xp1x == D1
X = print(y); X =r1x 1; print(y);

“’ int y = 0;

atomic<int> x = 0;
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Synchronization in C/C++11 through examples

0 int y

= 0; Q int y = 0;
int x = 0; atomic<int> x = 0;
y = == 1){ y = 425 | if (xp1x == D1
X = print(y); X =r1x 1; print(y);

o int y = 0;

atomic<int> x = 0;
y = 42; rfi‘f Xacqg == 1){
% =

“rel sw prlnt (y) 5
}
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Synchronization in C/C++11 through examples

e int y = 0;
int x = 0;
y = 42; || if(x == 1){

race print (y) ;
}

o int y = 0;

atomic<int> x = 0;
y = 42; || if(Xacq == DA

X :rel sw prlnt (y) ’
}

Q int y = 0;
atomic<int> x = 0;

425 if (xp1x == DA
X =y 1; print(y);

<
Il

o int y = 0;

atomic<int> x = 0;

y = 42; if (xr1x == DA
fence,q; fenceacq;
X =15 1; print(y);
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Synchronization in C/C++11 through examples

“" int y = 0;
int x = 0;
y = 42; || if(x == 1){

race print (y) ;
}

‘a’ int y = 0;

atomic<int> x = 0;
y = 42; || if(Xacq == DA

X :rel sw prlnt (y) ’
}

‘E’ int y = 0;
atomic<int> x = 0;

425 if (xp1x == DA
X =y 1; print(y);

<
Il

‘u’ int y = 0;

atomic<int> x = 0;

fence,g;
print(y);
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Synchronization in C/C++11 through examples

e int y = 0;
int x = 0;
y = 42; || if(x == 1){

race print (y) ;
}

o int y = 0;

atomic<int> x = 0;
y = 42; || if(Xacq == DA

X :rel sw prlnt (y) ’
}

Q int y = 0;
atomic<int> x = 0;

425 if (xp1x == DA
X =y 1; print(y);

<
Il

o int y = 0;

atomic<int> x = 0;

y = 42; | if (e == DA
fence e ; fenceacq 5
X =nx I print(y);
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The “happens-before” relation

Definition (happens-before)

a: WRel b: R Acq
0@ rf hb hb

a—»p a—-bph a—ph b—>cC
hb hb hb
a—»ph a—»b a—-»C

> hb should be acyclic. Ux0 Wy O
» The SC-per-location X Y

orders should contain hb. /,)&\

Wrix y 42 Racgx 1

» Using acquire CAS'’s and l h>< l

release writes, we can
. Wrer X 1 Rrix y 0
implement locks.
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SC accesses and fences

Store buffer

x:=1; y =1
a=y;, /0 | b:=x; /0

How to guarantee only SC behaviors (i.e., a=1V b=1)?

% o= Il y = i X i=r1x 1; Y i=ri1x 1;
oser T > fenceg; fenceg.;
a = Ysc, 0= e

a = Yrix; b := Xr1x;
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SC semantics

v

Perhaps surprisingly, the semantics of SC atomics is the most
complicated part of the model.

v

C/C++11 provides too strong semantics (a correctness problem!)

a = Xacq, /1 L . L i C = Yacq; /1
bi=ye; /0 || X7 Ll ymse i) g Xse; /0
» In addition, its semantics for SC fences is too weak.
3= Xacq; /1 C = Yacq; /1
fence-sc; X =re1 1; || ¥ :=re1 1l; || fence-sc;
b:= Yacq /0 d:= Xacq /0
>

Recently, the standard committee fixed the specification following:
[Repairing Sequential Consistency in C/C++11  PLDI'17]
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C/C++11 is too weak

non-atomic [ C release/acquire [ st
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C/C++11 is too weak

non-atomic [ C release/acquire [ st

Load-buffering

b=y, /1
X = b;

a=x; /1
y =1;

C/C++11 allows this behavior
because POWER & ARM allow it!
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C/C++11 is too weak

non-atomic [ C release/acquire [ st

Load-buffering

a=x; /1 b=y, /1 [x=y=0]
y =1 X = b; / \
C/C++11 allows this behavior Rx 1 Ry 1
because POWER & ARM allow it! l l
Wyl Wx 1

program order
_—
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C/C++11 is too weak

non-atomic [ C release/acquire [ st

Load-buffering

a=x; /1 b:=y; /1 [x =y =0]
y =1 X = b; / \
C/C++11 allows this behavior Rx 1 Ry 1
because POWER & ARM allow it! l >< l
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program order
_—
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—_—
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C/C++11 is too weak

non-atomic [ C release/acquire [ st

Load-buffering

a=x; /1 b:=y; /1 [x=y=0]
y =1 X = b; / \

C/C++11 allows this behavior Rx 1 Ry 1

because POWER & ARM allow it!

Load-buffering 4+ data dependency l >< l
a=x; /1 b=y, /1 Wyl Wx 1
yi=a; X = b;

program order
C/C++11 a”OWS thlS behaVior. reads from
—_—

Values appear out-of-thin-air!
(no hardware/compiler exhibit this behavior)
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C/C++11 is too weak

non-atomic [ C release/acquire [ st

Load-buffering + control dependency

a=x; /1 b=y, /1 [x=y=0]
if (a=1) if (b=1)
y =1, x =1
Rx1 Ryl
C/C++11 allows this behavior.
The DRF guarantee is broken! l >< l
Wyl Wx 1

program order
_—

reads from
—_—
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The three examples have
the same execution graph!
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The hardware solution

Keep track of syntactic dependencies and forbid dependency cycles.

a=x; /1
=1

=y =0]

b:=y; /1
X = b; /\

Load-buffering 4+ data dependency Rx 1 Ry 1

a:=x; /1 b=y, /1 {,l><y:
y = a; x = b; A 4

Wyl Wx 1

program order
_

reads from
—_—

syntactic dependency
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The hardware solution

Keep track of syntactic dependencies and forbid dependency cycles.

Load-buffering

x=y=0
a=x; /1 b:=y; /1 [ ]
y =1 X = b; / \
Load-buffering 4+ data dependency R x Ry 1
a=x; /1 b=y, /1 {l><y:
y = a; x = b; A 4
y Wyl Wx 1
program order
a=x; /1 b=y, /1 rw
y:=a+1-a; x := b; syntactic dependency
This approach is not suitable for a programming language:
Compilers do not preserve syntactic dependencies. J
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The “out-of-thin-air” problem

» The C/C++11 model is too weak:

» Values might appear out-of-thin-air.
» The DRF guarantee is broken.

» A straightforward solution:

» Disallow po U rf cycles
» But, on weak hardware it carries a certain implementation cost.

» Solving the problem without changing the compilation
schemes will require a major revision of the standard.
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A ‘promising’ solution to OOTA

[Jeehoon Kang, Chung-Kil Hur, Ori Lahav, Viktor Vafeiadis, Derek Dreyer POPL’'17]

We propose a model that satisfies all WMM desiderata, and covers
nearly all features of C11.

> No “out-of-thin-air" values » Efficient h/w mappings
» DRF guarantees » Compiler optimizations J

Key idea: Start with an operational interleaving semantics, but
allow threads to promise to write in the future.



Simple operational semantics for C11's relaxed accesses

Store-buffering

X:y:
x=1 y=1

a=y; /0 b=x; /0
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Simple operational semantics for C11's relaxed accesses

Store-bufferin
2 ST T1’s view T>'s view
x=y=0 (x : 0@0)
> x=1; >y =1 Y 0 0 0 0

a=y; /0 b=x; /0

» Global memory is a pool of messages of the form
(location : value @ timestamp)

» Each thread maintains a thread-local view recording the last
observed timestamp for every location
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T1’s view T>'s view

Xx=y=0 (x : 0@0) X y %

o= “lo y =1 (y : 0©0) X 0 0 K

a=y; /0| »b=x; /0 (x:le1) s
> (y:1e1)

» Global memory is a pool of messages of the form
(location : value @ timestamp)

» Each thread maintains a thread-local view recording the last
observed timestamp for every location

32/38



Simple operational semantics for C11's relaxed accesses

Store-buffering

T1’s view T>'s view

Xx=y=0 (x : 0©0) X y %

o= “lo y =1 (y : 0©0) X 0 0 K

a=y; /0| b=x; /0 (x:le1) s
> > (y:101)

» Global memory is a pool of messages of the form
(location : value @ timestamp)

» Each thread maintains a thread-local view recording the last
observed timestamp for every location

32/38



Simple operational semantics for C11's relaxed accesses

Store-buffering

T1's view T,'s view

= = (x : 0@0) X y %

o= “lo y =1 (y : 0©0) X 0 0 K

a=y; /0| b=x; /0 (x:1e1) 7 1
> > (y:101)

Coherence Test

x=0
x = 1; X = 2;

a=x; /2 b=x; /1
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Simple operational semantics for C11's relaxed accesses

Store-buffering

T1's view T,'s view

== (x : 0@0) o Xy
x=1 y=1 (y:000) X o 0 X
a=y; /0 b=x; /0 {x:101) 1 1
> N (y:1e1)
Coherence Test Memory VI e T>'s view
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Simple operational semantics for C11's relaxed accesses

Store-buffering

X=y= (x : 0@0)
x=1; y =1, <y:0@0>
a=y; /0 b=x; /0 (x:101)

> > (y:1e1)

Coherence Test

x = 1; > x = 2; (x :101)
»a=x; /2 b=x; /1

T1's view T,'s view

X Yy X Yy

X o 0 K

1 1
Ti's view T,'s view
—_— X

K 0

1
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Simple operational semantics for C11's relaxed accesses

Store-buffering
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Simple operational semantics for C11's relaxed accesses

Store-buffering

T1's view T,'s view

- (x : 0@0) o Xy
x=1 y=1 (y:000) X o 0 X
a=y; /0 b:X; /0 <XZ].@1> 1 1

> N (y:1e1)

Coherence Test Memory VI e T>'s view

x=0 (x : 0@0) x X
x =1, X =2 (x:1@1) 1 X
a=x; /2 b=x; /1 (x :202) 72< 2

| 2 | 2
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Promises

Load-buffering

a=x; /1
y =1;

» To model load-store reordering, we allow “promises”.

» At any point, a thread may promise to write a message in the
future, allowing other threads to read from the promised
message.
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Memory ) .

Load-buffering (x : 0@0) Ti's view  To's view
. Xy Xy
(y : 0@0) 0 oo
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Promises

Memory ) .
Load-buffering (x : 0@0) Ti's view  To's view
X y Xy
(y : 0@0) K R
(y:1@1) 1 11
(x:101)

o model load-store reordering, we allow “promi :
> T del load-st d llow “promises”

» At any point, a thread may promise to write a message in the
future, allowing other threads to read from the promised
message.
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Promises

Load-buffering

: 0©0> T1's view T>'s view

X y X y
XX XX
1 1 1 1

Must not admit the same
execution!
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Promises

Load-buffering

Key Idea
N > A thread can only promise if it can
perform the write anyway (even
without having made the promise)
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Certified promises

Thread-local certification

A thread can promise to write a message, if it can thread-locally
certify that its promise will be fulfilled.
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Certified promises

Thread-local certification

A thread can promise to write a message, if it can thread-locally
certify that its promise will be fulfilled.

Load-buffering Load buffering + fake dependency
a=x; /1 X v a=x; /1 Xy
y i=1; 7 y:=a+1l-a; —

T; may promise y :=1, since it is able to write y := 1 by itself.

Load buffering + dependency

T; may NOT promise y := 1, since
a=x; /1 it is not able to write y := 1 by itself.

y = a, X=)
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Quiz

Is this behavior possible?

x =1

a=x; /1 J
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Quiz

Is this behavior possible?

a=x; /1
x:=1;
No.

Suppose the thread promises x := 1. Then, once a := x reads 1,
the thread view is increased and so the promise cannot be fulfilled.
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Quiz

Is this behavior possible?

xi=y; J

a=x; /1

x = 1;

=
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Quiz

Is this behavior possible?

xi=y; J

Yes. And the ARM model allows it!

a=x; /1

x = 1;

=
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Quiz

Is this behavior possible?

a=x; /1

Yes. And the ARM model allows it!

This behavior can be also explained by sequentialization:

a=x; /1 H - /1
yi=x;

x:=1;

a:=x;
xX:=y, ~ x:=1
y =X

X:=y;
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The full model (POPL'17)

We have extended this basic idea to handle:
» Atomic updates (e.g., CAS, fetch-and-add)

Release/acquire fences and accesses

v

v

Release sequences
SC fences

Plain accesses

v

v

(C11's non-atomics & Java's normal accesses)

Results
» No “out-of-thin-air" values
» DRF guarantees
» Efficient h/w mappings (x86-TSO, Power, ARM)

» Compiler optimizations (incl. reorderings, eliminations)
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Summary

\
[ WMM ]
perereeneeeneaes A .

The challenges in designing a
WMM.

The C/C++11 model.

C/C++11 is broken:

» Most problems are
locally fixable.

» But ruling out OOTA
requires an entirely
different approach.

The promising model may be
the solution.
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Summary

The challenges in designing a
WMM.

The C/C++11 model.

C/C++11 is broken:

» Most problems are
locally fixable.

» But ruling out OOTA
requires an entirely
different approach.

The promising model may be
the solution.

Thank you!

http://wuw.cs.tau.ac.il/"orilahav/
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