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Abstract. Jones’ rely-guarantee framework (originally developed to en-
able reasoning about partial correctness) has been extended in several
works to additionally enable reasoning about deadlock freedom. However,
these frameworks were originally developed for the strong memory model
known as sequential consistency (SC). Under SC, all threads are assumed
to read from the most recent write to each shared location, which is too
strong for most modern multithreaded systems. In recent work, we have
shown that rules for rely-guarantee can be adapted to cope with weaker
causally consistent memory models (e.g., strong release-acquire), while
preserving most of its core rules. This framework is modular and can be
instantiated to different memory models. The only adaptation necessary
is at the level of atomic statements (reads and writes), which require
introduction of new assertions and associated proof rules that must be
proved sound with respect to the operational semantics of the memory
model at hand. In this paper, we show that it is possible to also fur-
ther extend the framework to cope with deadlock freedom under causal
consistency, taking inspiration from the aforementioned extensions to
rely-guarantee reasoning for SC. We exemplify our technique on a short
but challenging protocol for synchronising initialisation.

1 Introduction

Jones’ Rely-Guarantee (RG) framework [14] is a seminal technique for compo-
sitional proofs of shared-variable concurrent programs. It allows one to express
the semantics of a program using standard pre- and postconditions as well as
a rely condition (describing the assumptions about the program’s environment)
and a guarantee condition (which abstractly characterises the behaviour of the
program). The rely and guarantee conditions enable one to compose parallel
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components, replacing a global interference freedom check, as required by the
Owicki-Gries method [24], with rely/guarantee checks.

RG has been extensively studied over the years, e.g., through the lens of gen-
eralised abstract frameworks [8] and program algebras [22]; localised reasoning
techniques [11, 31]; applications to specific weak memory models [4, 5, 18, 26];
extensions with temporal logic specifications [12], etc. We study rely-guarantee
in the context of causally consistent memory models, which covers a large class
of weak memory models including SC, TSO, and fragments of C11. While some
works [4,5,26] have considered the use of standard (i.e., sequentially consistent)
rely-guarantee frameworks to capture the reorderings allowed by weak memory,
our point of departure is the parametric encoding in [18]. This encoding shows
that it is possible to reuse the generic decomposition rules of rely-guarantee [33]
unchanged across different memory models. This allows a verifier to focus on
assertions and proof rules for atomic commands such as reads and writes, which
comprises the only model-specific aspect of the framework.

The main contribution of this paper is a further extension of the parametric
RG framework [18] with additional techniques for reasoning about deadlock free-
dom. In particular, like Xu et al. [33], we assume that a program is specified by
a 5-tuple of the form (P,R, U,G, Q), where P and Q are the pre and postcondi-
tions, respectively, R and G are the rely and guarantee conditions, respectively,
and U is a so called run predicate used to ensure that the component in question
is able to take a step. This notion refines the per-component wait condition used
to ensure absence of deadlock developed by Stølen [30].4

The main mechanisms of our reasoning framework borrow from Xu et al. [33],
but we enable reasoning generically about (weak) memory models. As such, our
run predicate characterises deadlock in terms of the actions that the program
can take, as well as the actions of the underlying memory system. We also
develop a simpler rule for parallel composition, which reduces the complexity of
composing run predicates. We exemplify these techniques for the strong release-
acquire (SRA) memory model [16–18], though stress that it is possible to use
the framework to reason in other memory models too.
Overview. This paper is organised as follows. In §2, we motivate the approach
by presenting two simple examples executing on the SC and SRA memory mod-
els. §3 presents the generalised syntax and semantics of our approach, which is
parametric over a memory model, recapping our earlier work [18]. §4 presents
the extended generic rely-guarantee technique. §5 recaps the SRA memory model
and §6 presents a logic for SRA, which includes high-level assertions for memory
triples. We present an application of our reasoning framework in §7.

2 Motivating Examples

Weak memory models allow threads to read stale values of locations that are
older than the last value written for that location. The effects of weak mem-
4 We refer the reader to [33, pg 166] and [25] for details on the differences between

run and wait.
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{
x = y = 0 ∧ a = 1

}
Thread T1{
a = 1

}
1 : STORE(x, 1);{
x = 1

}
2 : a := LOAD(y){
x = 1

}

Thread T2{
true

}
3 : STORE(y, 1);{
y = 1

}
4 : b := LOAD(x){
y = 1 ∧
(a = 1 ∨ b = x)

}
{
a = 1 ∨ b = 1

}
Fig. 1. Store buffering in SC [20]

{
(Ti⋉[x = 0 ∧ y = 0]) ∧ a = 1

}
Thread T1{
T1⋉[y = 0] ; [y = 1]

}
1 : STORE(x, 1);{
T1⋉[y = 0] ; [y = 1]

}
2 : a := LOAD(y){
a ∈ {0, 1}

}

Thread T2{
T2⋉[x = 0] ; [x = 1]

}
3 : STORE(y, 1);{
T2⋉[x = 0] ; [x = 1]

}
4 : b := LOAD(x){
b ∈ {0, 1}

}{
a, b ∈ {0, 1}

}
Fig. 2. Store buffering in SRA can only estab-
lish a weaker postcondition

ory on partial correctness have been extensively studied, with many techniques
extending well-established frameworks such as Owicki-Gries [3, 6, 7, 20] and RG
reasoning [18] as well as different types of separation logics [15]. Loosely speaking,
these techniques assume a more general notion of a state (that describe how and
when threads can read stale values), and high-level assertions that characterise
such states. A natural question to consider how deadlock is affected by a weak
memory model. In particular, is it possible to compositionally prove deadlock
freedom under weak memory where threads may read stale values?

To make the remaining discussion more concrete, consider the programs in
Figures 1 to 4, which present the well-known store-buffering (SB) litmus test [2],
as well as a novel litmus test that we will refer to as store buffering with waits
(SBW).

2.1 Store Buffering

For the SB example, using the SRA memory model instead of SC changes the
properties that one can infer about the program. In particular, under SC (Fig. 1),
one can prove the postcondition5 a = 1 ∨ b = 1, but under SRA (Fig. 2), this is
not possible and only the weaker postcondition a, b ∈ {0, 1} holds.

The proof outline in Fig. 1 can be read as an RG derivation. (1) Thread T1
locally establishes its postcondition when starting from any state that satisfies
its precondition. Line 1 establishes x = 1 and line 2 preserves x = 1 since it only
reads from y and updates the local register a. (2) Thread T1 relies on the fact
that its used assertions are stable w.r.t. interference from its environment. We
formally capture this condition by a rely set R1 ≜ {a = 1, x = 1}. (3) Thread
T1 guarantees to its concurrent environment (i.e., T2) that its only interferences
are STORE(x, 1), a := LOAD(y). We formally capture this condition by a guaran-
tee set G1 ≜ {{true} T1 7→ STORE(x, 1), {x = 1} T1 7→ a := LOAD(y)}, where each
element is a command executed by a thread guarded by a precondition. (4) The
rely/guarantee assertions corresponding to T2 are similar. (5) To perform the
parallel composition, ⟨R1,G1⟩ and ⟨R2,G2⟩ must be non-interfering. This in-
volves showing that each R ∈ Ri is stable under each G ∈ Gj for i ̸= j. That
5 The proof outline taken from [20].
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is, if G = {P} τ 7→ c, we require the Hoare triple {P ∩ R} τ 7→ c {R} to hold.
For Fig. 2, these proof obligations are straightforward to discharge using Hoare’s
assignment axiom (and is trivial for i = 1 and j = 2 since load instructions leave
the memory unchanged).

This exact technique also applies to the SRA program in Fig. 2 but applied to
assertions over the weak-memory state (see [3,6,7,18,32]). To understand the dif-
ferences between Fig. 1 and Fig. 2, one must first develop a basic understanding
of the SRA semantics.

Following [18], in SRA, every memory state records sequences of store map-
pings (from shared variables to values) that each thread may observe. For ex-
ample, assuming all variables are initialised to 0, if T1 executed its code until
completion before T2 even started (so under SC the memory state is the store
{x 7→ 1, y 7→ 0}), we may reach the SRA state in which T1’s potential consists of
a single store {x 7→ 1, y 7→ 0}, the value of the register a is 0, and T2’s potential
is the sequence of stores: ⟨{x 7→ 0, y 7→ 0}, {x 7→ 1, y 7→ 0}⟩, which captures the
stores that T2 may observe in the order it may observe them. Note that even
though the second store {x 7→ 1, y 7→ 0} is visible to T2, it is not forced to read
from this store, and may read the value 0 for x by reading from the first store.
This allows the program to terminate with a = b = 0, which is not possible
under SC.

To capture the above informal reasoning in a Hoare logic, we have designed
a new form of assertion capturing the possible locally observable sequences of
stores, rather than a single global store, which can be seen as a restricted frag-
ment of linear temporal logic. The proof outline using these assertions is given
in Fig. 2. In particular, [x = 1] is satisfied by all store sequences in which every
store maps x to 1, whereas [y ̸= 1] ; [x = 1] is satisfied by all store sequences that
can be split into a (possibly empty) prefix whose value for y is not 1 followed
by a (possibly empty) suffix whose value for x is 1. Assertions of the form τ⋉I
state that the potential of thread τ includes only store sequences that satisfy I.

The first assertion in T1 is implied by the initial condition since τ⋉I implies
τ⋉I ; J . Local correctness of the precondition of line 2 holds because the store
does not modify the free variable y in P ≜ T1⋉ [y = 0]; [y = 1]. This enables
us to establish the postcondition a ∈ {0, 1} of line 2 since the precondition P
indicates that T1 may read either 0 or 1 for y. As in SC memory, we must also
check interference freedom of the assertions. The only relevant assertion is the
precondition of line 1 (and line 2), and this is straightforward to establish using
the Wr-other rule from Fig. 10 (which we will discuss in subsequent sections).

2.2 Store Buffering with Waits

We extend our earlier work [18] and introduce an await statement, AWAIT(x = e),
to synchronise concurrent threads. Within AWAIT(x = e), we assume x is a shared
location that is used in the guard condition, x = e. The await statement causes
the executing thread to block until it can read a value for x so that x = e
evaluates to true.
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{
true

}
Thread T1{
true

}
1 : STORE(x, 1);{
x = 1

}
2 : AWAIT(y = 1){
x = 1

}
s
y = 1 ∨
x ̸= 1

{

Thread T2{
true

}
3 : STORE(y, 1);{
y = 1

}
4 : AWAIT(x = 1){
y = 1

}
s
x = 1 ∨
y ̸= 1

{

{
true

}q
true

y

Fig. 3. Store buffering with waits in SC

{
true

}
Thread T1{
true

}
1 : STORE(x, 1);{
x ↓ 1

}
2 : AWAIT(y = 1){
x ↓ 1

}
s
y ↓ 1 ∨
x ̸ ↓ 1

{

Thread T2{
true

}
3 : STORE(y, 1);{
y ↓ 1

}
4 : AWAIT(x = 1){
y ↓ 1

}
s
x ↓ 1 ∨
y ̸ ↓ 1

{

{
true

}q
true

y

Fig. 4. Store buffering with waits in SRA

Here, we consider SBW, executing under SC (Fig. 3) and SRA (Fig. 4). SBW
trivially guarantees the postcondition true. Additionally, following Xu et al [33],
we introduce a run predicate, denoted by

q
U

y
, that describe the states in which

the program is free from deadlock. In both Figures 3 and 4 the run predicate
true indicates that the programs overall are deadlock free.

Note that unlike Xu et al [33], our treatment is generic over memory models.
Thus, our semantics of run predicates take into account weak memory effects. In
particular, we capture the fact that all weak memory models comprise “internal
steps” that model propagation of writes between threads. That is, in every state
in which the run predicate holds, the program must be able to execute a program
statement possibly after a finite number of propagation steps. This relaxed notion
of deadlock freedom is required for weak memory since writes executed by a
thread are not immediately visible to other threads. For example, consider a
thread that is waiting on a lock that is held by another thread. After the thread
holding the lock releases it, other threads will only be notified that the lock is
free after this information is propagated via internal steps.

It turns out that in our generalised model, proof rules for decomposing
deadlock-freedom arguments similar to Xu et al [33] continue to apply. We de-
velop a simpler (and more general) rule for parallel composition. In particular,
the overall run predicate of the concurrent program, U , is the union of run pred-
icates U1 and U2, provided that both Q1 ∩ U1 ⊆ U2 and Q2 ∩ U2 ⊆ U1 hold,
where Qi is the postcondition of thread Ti.

We now describe the construction of the run predicate of thread T1 in Fig. 3.
First, the run predicates of lines 1 and 2 are true and y = 1, respectively.
These generate RG judgements comprising run predicates of the form U ∨ ¬P ,
where U and P are the run predicate and the precondition of each line. For
lines 1 and 2, these are true and y = 1 ∨ x ̸= 1, respectively. Finally, we have a
rule of consequence that allows run predicates to be weakened (allowing the run
predicate of line 1 to be replaced by y = 1∨x ̸= 1), and a sequential composition
rule that allows judgements with the same run predicate to be composed, leading
to the overall predicate y = 1 ∨ x ̸= 1 for thread T1.

The situation in Fig. 4 is similar, but slightly more subtle. First, recall that
SRA states are sequences of stores that each thread can observe. The run pred-
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values v ∈ Val = {0, 1, ...} shared variables x, y ∈ Loc = {x, y, ...}
local registers r ∈ Reg = {a, b, ...} thread identifiers τ, π ∈ Tid = {T0, T1, ...}

e ::= r | v | e+ e | e = e | ¬e | e ∧ e | e ∨ e | ...

c ::= r := e | STORE(x, e) | r := LOAD(x) | AWAIT(x, (λr. e)) | ...
c̃ ::= c | ⟨c, r := e⟩
C ::= c̃ | SKIP | C ; C | IF e THEN C ELSE C | WHILE e DO C

Fig. 5. Program syntax

icates for such sequences are defined in terms of the last value of each location,
formalised by x ↓ v and x ̸ ↓ v, which hold iff the value of x in the last state of the
memory sequence is and is not v, respectively. One aspect of the SRA memory
model is that all threads agree on the last value of every variable, and hence,
unlike the assertions in Fig. 2, the last-value assertions can omit thread-specific
information. The pre- and postcondition of line 2 state that the last value of x
is 1, and their correctness can be proven correct using standard RG reasoning.
The run predicate for thread T1 is also similar to SB under SC, and states that
y ↓ 1 ∨ x ̸ ↓ 1, which is exactly a disjunction comprising the guard of the await
statement and the negation of the await statement’s precondition. Since the run
condition of the await is y ↓ 1, the run condition y ↓ 1∨x ̸ ↓ 1 can be established
using the com rule in Fig. 7.

3 Preliminaries: Syntax and Semantics

In this section we describe the underlying program language, leaving the shared-
memory semantics parametric.

Syntax. The syntax of programs, given in Fig. 5, is mostly standard, comprising
primitive (atomic) commands c and compound commands C. The non-standard
components are instrumented commands ⟨c, r := e⟩, which are meant to atomi-
cally execute a primitive command c and an assignment r := e. Such instructions
are needed to support auxiliary (a.k.a. ghost) variables in RG proofs. We ad-
ditionally include a blocking await statement AWAIT(x, λr. e), which waits until
the executing thread can read a value v of x such that e(r := v) (the expression
obtained by substituting v for r in e) evaluates to “true”. By the semantics of
AWAIT(x, λr. e) (see Fig. 6), the program is able to take a step if it can read a value
of x so that e evaluates to true. Otherwise, the program is blocked. Note that
by construction, AWAIT(x, λr. e) disallows await statements over more than one
shared location — this restriction is necessary to accommodate weak memory
semantics. We introduce syntactic sugar AWAIT(x = e) for AWAIT(x, λr. r = e).

To simplify the formalisation, we elide read-modify-write instructions, which
are used to implement atomic commands such as compare-and-swap and fetch-
and-add. The interested reader may wish to refer to our earlier work [18].

We also simplify the presentation by assuming top-level parallelism through-
out and model a program as a mapping from thread identifiers to commands.
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γ′ = γ[r 7→ γ(e)]

r := e≫ γ ε−→ γ′

l = W(x, γ(e))

STORE(x, e) ≫ γ l−→ γ

l = R(x, v) γ′ = γ[r 7→ v]

r := LOAD(x) ≫ γ l−→ γ′

c≫ γ
lε−→ γ′

v = γ′(e) γ′′ = γ′[r 7→ v]

⟨c, r := e⟩ ≫ γ
lε−→ γ′′

l = R(x, v) γ(e(r := v))

AWAIT(x, λr. e) ≫ γ l−→ γ

c̃≫ γ
lε−→ γ′

⟨c̃, γ⟩ lε−→ ⟨SKIP, γ′⟩

⟨C1, γ⟩ lε−→ ⟨C′
1, γ

′⟩

⟨C1 ; C2, γ⟩ lε−→ ⟨C′
1 ; C2, γ

′⟩ ⟨SKIP ; C2, γ⟩ ε−→ ⟨C2, γ⟩

⟨C, γ⟩ lε−→ ⟨C′, γ′⟩

⟨C0 ⊎ {τ 7→ C}, γ⟩ τ,lε−−→ ⟨C0 ⊎ {τ 7→ C′}, γ′⟩

Fig. 6. Small-step semantics of instrumented primitive commands c̃ ≫ γ
lε−→ γ′ (top);

commands ⟨C, γ⟩ lε−→ ⟨C′, γ′⟩ (middle); and programs ⟨C, γ⟩ τ,lε−−→ ⟨C′, γ′⟩ (bottom). The
semantics of IF and WHILE are elided and may be found in [18].

Thus, we write programs as sets of the form {τ1 7→ C1, ... ,τn 7→ Cn}. (Our ear-
lier work [18] allows dynamic thread creation but this creates additional formal
overhead that detracts from the main ideas within this paper.)
Program semantics. We provide small-step operational semantics to com-
mands that are independent of the memory system. The semantics of (instru-
mented) primitive commands, commands and programs are given in Fig. 6. To
connect this semantics to a given memory system, its steps are instrumented
with labels, which can be either a read label R(x, vR) or a write label W(x, vW),
where x ∈ Loc, vR, vW ∈ Val. We denote by Lab the set of all labels. In turn, in
program configurations we record the current register store γ : Reg → Val. Reg-
ister stores are extended to expressions as expected. We denote by Γ the set of
all register stores. Steps for commands take the form ⟨C, γ⟩ τ,lε−−→ ⟨C′, γ′⟩, where
C and C′ are programs, γ and γ′ are register stores, and ⟨τ : lε⟩ (with τ ∈ Tid
and lε ∈ Lab ∪ {ε}) is a command transition label.
Memory semantics. To give semantics to programs under a memory model,
we synchronise the transitions of a command C with a memory system. We leave
the memory system parametric, and assume that it is represented by a labeled
transition system (LTS) M with set of states denoted by M.Q, and steps denoted
by →M. The transition labels of general memory system M consist of non-silent
program transition labels (elements of Tid × Lab) and a (disjoint) set M.Θ of
internal memory actions, which is again left parametric (used, e.g., for memory-
internal propagation of values).

Example 1. The memory system that guarantees sequential consistency is de-
noted here by SC. This memory system simply tracks the most recent value
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written to each variable and has no internal transitions (SC.Θ = ∅). Formally,
it is defined by SC.Q ≜ Loc → Val and −→SC is given by:

l = R(x, vR) m(x) = vR

m
τ,l−−→SC m

l = W(x, vW) m′ = m[x 7→ vW]

m
τ,l−−→SC m

′

The composition of a program with a general memory system is defined next.

Definition 1. The concurrent system induced by a memory system M, denoted
by M, is the LTS whose transition labels are the elements of (Tid×(Lab∪{ε}))⊎
M.Θ; states are triples of the form ⟨C, γ,m⟩ where C is a program, γ is a register
store, and m ∈ M.Q; and the transitions are “synchronised transitions” of the
program and the memory system, using labels to decide what to synchronise on.
These transitions are formalised by the following rules:

⟨C, γ⟩ τ,l−−→ ⟨C′, γ′⟩
l ∈ Lab m

τ,l−−→M m′

⟨C, γ,m⟩ τ,l−−→M ⟨C′, γ′,m′⟩
⟨C, γ⟩ τ,ε−−→ ⟨C′, γ′⟩

⟨C, γ,m⟩ τ,ε−−→M ⟨C′, γ′,m⟩

θ ∈ M.Θ

m θ−→M m′

⟨C, γ,m⟩ θ−→M ⟨C, γ,m′⟩

4 Generic Rely-Guarantee Reasoning

In this section, we present our generic RG framework. Rather than committing to
a specific assertion language, our reasoning principles apply at the semantic level,
using sets of states instead of syntactic assertions. The structure of proofs still
follows program structure, thereby retaining RG’s compositionality. By doing so,
we decouple the semantic insights of RG reasoning from a concrete syntax. Next,
we present proof rules serving as blueprints for memory-model specific proof
systems. An instantiation of this blueprint requires lifting the semantic principles
to syntactic ones. More specifically, it requires (1) a language with (a) concrete
assertions for specifying sets of states and (b) operators that match operations
on sets of states (like ∧ matches ∩); and (2) sound command specifications
(similar to Hoare triples) for primitive commands. Thus, for each instance of the
framework (for a specific memory system), one is left with the task of identifying
useful abstractions on states, as well as a suitable formalism for making the
generic semantic framework into a proof system.
RG judgements. We let M be an arbitrary memory system and ΣM ≜ Γ ×
M.Q. Properties of programs C are stated via RG judgements:

C satM (P,R, U,G, Q)

where P,Q,U ⊆ ΣM are the precondition, postcondition and run condition,
respectively, R ⊆ P(ΣM) is a set of relies, and G is a set of guarded commands
(the guarantees) in the style of [20]. Each guarded command takes the form
{G} τ 7→ c̃, where G ⊆ ΣM and c̃ is an (instrumented) primitive command.
Interpretation of RG judgements. RG judgements C satM (P,R, U,G, Q)
state that an execution of C starting from a state in P , under any concurrent
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context whose transitions preserve each of the sets of states in R, will never
block (deadlock) in states of U , will – when C terminates – end in a state in Q
and perform only transitions contained in G. To formally define this statement,
following the standard model for RG, these judgements are interpreted on com-
putations of programs. Computations arise from runs of the concurrent system
(see Def. 1) by abstracting away from concrete transition labels and including
arbitrary “environment transitions” representing steps of the concurrent context.
The transitions in a computation are divided into three sorts:

– Component transitions of the form ⟨C, γ,m⟩ −cmp−→ ⟨C′, γ′,m′⟩.
– Memory transitions, which correspond to internal memory steps (labeled

with θ ∈ M.Θ), of the form ⟨C, γ,m⟩ −mem−→ ⟨C, γ,m′⟩.
– Environment transitions of the form ⟨C, γ,m⟩ −env−→ ⟨C, γ′,m′⟩.

Note that memory transitions do not occur in the classical RG presentation
(since SC does not have internal memory actions).

A computation is a (potentially infinite) sequence

ξ = ⟨C0, γ0,m0⟩ −a1−→ ⟨C1, γ1,m1⟩ −a2−→ ...

with ai ∈ {cmp, env, mem}. We let ⟨Clast(ξ), γlast(ξ),mlast(ξ)⟩ denote its last element,
when ξ is finite. We say that ξ is a computation of a program C when C0 = C
and for every i ≥ 0:

– If ai = cmp, then ⟨Ci, γi,mi⟩
τ,lε−−→M ⟨Ci+1, γi+1,mi+1⟩ for some τ ∈ Tid and

lε ∈ Lab ∪ {ε}.
– If ai = mem, then ⟨Ci, γi,mi⟩ θ−→M ⟨Ci+1, γi+1,mi+1⟩ for some θ ∈ M.Θ.

We denote by Comp(C) the set of all computations of a program C.
In this paper (going beyond our previous work on RG reasoning for causally

consistent memory models [18]), we are specifically interested in proving absence
of deadlocks in computations.

Definition 2. A configuration ⟨C, γ,m⟩ is called deadlock when there is some
τ ∈ Tid such that C(τ) ̸= SKIP and there is no configuration Υ such that
⟨C, γ,m⟩ −mem−→∗

Υ −cmp−→.

A deadlock is thus a configuration in which there is at least one non-terminated
thread τ , but there are no possible component steps — neither in this state
nor after having executed a finite number of (internal) memory transitions. In
our programming language, deadlocks can only arise when threads reach await
statements. In SC, there are no internal memory transitions and deadlock simply
means that the await’s condition is not fulfilled in the current state. For weak
memory models, this is different. A thread τ might be blocked in some state
because it can just read a stale value for some shared variable x; however, it
might become unblocked once some memory model internal steps have occurred.
Such a situation occurs in the SBW example (Fig. 4):
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Example 2. Consider the await statement in thread T1 and a state in which the
store instruction STORE(y, 1) of thread T2 has already occurred. Thread T1 might
still see the (now stale) initial value for y (which is 0) and hence its AWAIT(y = 1)
is blocked. However, if after a number a memory internal steps the current value
of y becomes observable for T1 (and this is the case for the memory model SRA),
this will not be considered a deadlock in the memory model.

To define validity of RG judgements, we use the following definition.

Definition 3. Let ξ = ⟨C0, γ0,m0⟩ −a1−→ ⟨C1, γ1,m1⟩ −a2−→ ... be a computation,
and C satM (P,R, U,G, Q) an RG judgement.

– ξ admits precondition P if ⟨γ0,m0⟩ ∈ P .
– ξ admits rely R if ⟨γi,mi⟩ ∈ R ⇒ ⟨γi+1,mi+1⟩ ∈ R for every R ∈ R and
i ≥ 0 with ai+1 = env.

– ξ admits run condition U if when ξ is finite and ⟨γlast(ξ),mlast(ξ)⟩ ∈ U , then
⟨Clast(ξ), γlast(ξ),mlast(ξ)⟩ is not a deadlock.

– ξ admits guarantee G if for every i ≥ 0 with ai+1 = cmp and ⟨γi,mi⟩ ≠
⟨γi+1,mi+1⟩ there exists {P} τ 7→ c̃ ∈ G such that ⟨γi,mi⟩ ∈ P and for some
lε ∈ Lab ∪ {ε}, we have ⟨{τ 7→ c̃}, γi,mi⟩

τ,lε−−→M ⟨{τ 7→ SKIP}, γi+1,mi+1⟩.
– ξ admits postcondition Q if ⟨γlast(ξ),mlast(ξ)⟩ ∈ Q whenever ξ is finite and

Clast(ξ)(τ) = SKIP for every τ ∈ dom(Clast(ξ)).

We denote by Assume(P,R) the set of all computations that admit P and R,
and by Commit(U,G, Q) the set of all computations that admit U , G and Q.

Then, validity of a judgement is defined as

|= C satM (P,R, U,G, Q)
△⇔ Comp(C) ∩ Assume(P,R) ⊆ Commit(U,G, Q)

We say that a program C can deadlock from P under R if there is a computation
ξ ∈ Comp(C) ∩ Assume(P,R) that contains a deadlock, otherwise it is deadlock-
free relative to P and R.

The following proposition states that, to guarantee deadlock freedom, it is
sufficient to prove validity of a judgement under the weakest possible run pred-
icate and postcondition.

Proposition 1. A program C is deadlock-free relative to P and R if there exists
a guarantee G such that C satM (P,R, Σ,G, Σ).

Command specifications. Our proof rules build on command specifications,
which specify pre- and postconditions as well as run conditions for primitive
commands for a memory system M.

Definition 4. A command specification for a memory system M is a tuple of
the form {P} τ 7→ c̃ {Q}JUK, where P,Q,U ⊆ ΣM, τ ∈ Tid, and c̃ is an instru-
mented primitive command. A command specification for M is valid, denoted
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skip
{τ 7→ SKIP} satM
(P, {P}, Σ, ∅, P )

com
M ⊨ {P} τ 7→ c̃ {Q}JUK

{τ 7→ c̃} satM
(P, {P,Q}, (Σ \ P ) ∪ U, {{P} τ 7→ c̃}, Q)

seq

{τ 7→ C1} satM (P,R, U,G, R)
{τ 7→ C2} satM (R,R, U,G, Q)

{τ 7→ C1 ; C2} satM (P,R, U,G, Q)
consq

{τ 7→ C} satM (P ′,R′, U ′,G′, Q′)
P ⊆ P ′ R ≤ R′ U ⊆ U ′

G′ ≤ G Q′ ⊆ Q

{τ 7→ C} satM (P,R, U,G, Q)

par

{τ1 7→ C1} satM (P1,R1, U1,G1, Q1) {τ2 7→ C2} satM (P2,R2, U2,G2, Q2)
P ⊆ P1 ∩ P2 Q1 ∩Q2 ⊆ Q ⟨R1,G1⟩ and ⟨R2,G2⟩ are non-interfering

Q1 ∩ U1 ⊆ U2 Q2 ∩ U2 ⊆ U1

{τ1 7→ C1} ⊎ {τ2 7→ C2} satM (P,R1 ∪R2 ∪ {P,Q}, U1 ∪ U2,G1 ∪ G2, Q)

Fig. 7. Generic sequential RG proof rules (letting JeK = {⟨γ,m⟩ | γ(e) = true})

by M ⊨ {P} τ 7→ c̃ {Q}JUK, when the following progress condition holds for
every ⟨γ,m⟩ ∈ U and some configuration Υ :

∃m′.m
θ1...θn−1−−−−−−→M m′ ∧ ⟨τ 7→ c̃, γ,m′⟩ τ,lε−−→M Υ

for some θ1, ... , θn−1 ∈ M.Θ, n ≥ 1, and some lε ∈ Lab ∪ {ε}, and the following
safety condition holds for every ⟨γ,m⟩ ∈ P , γ′ ∈ Γ and m′ ∈ M.Q, if

⟨{τ 7→ c̃}, γ,m⟩ τ,lε−−→M ⟨{τ 7→ SKIP}, γ′,m′⟩

for some lε ∈ Lab ∪ {ε}, then ⟨γ′,m′⟩ ∈ Q.

Example 3. For the memory system SC introduced in Ex. 1, we have, e.g., com-
mand specifications of the form SC ⊨ {e(r := x)} τ 7→ r := LOAD(x) {e}JtrueK
(where e(r := x) is the expression e with all occurrences of r replaced by x) and
SC ⊨ {P} AWAIT(x, λr. e) {P}Je(r := x)K.

RG proof rules. We aim at proof rules for deriving valid RG judgements.
Figure 7 lists (semantic) proof rules based on externally provided command
specifications. These rules mostly follow RG reasoning for sequential consistency
(as of [33]). Again, proof rules for IF and WHILE are elided.

Two rules (com and par) are of specific importance for reasoning about
deadlocks. Rule com builds on command specifications and transfers pre- and
postconditions in a command specification to the RG judgement. The run condi-
tion in this judgement states the computations of τ 7→ c̃ neither block in states in
which the precondition is not satisfied (because such states will not be reached in
computations starting with P ) nor in states of the run condition in the command
specification.

Rule par for parallel composition combines judgements for two components
when their relies and guarantees are non-interfering. Intuitively speaking, this
means that each of the assertions that each thread relied on for establishing
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its proof is preserved when applying any of the assignments collected in the
guarantee set of the other thread. An example of non-interfering rely-guarantee
pairs is given in step (5) in §2. Formally, non-interference is defined as follows:

Definition 5. Rely-guarantee pairs ⟨R1,G1⟩ and ⟨R2,G2⟩ are non-interfering if
M ⊨ {R ∩ P} τ 7→ c̃ {R}JfalseK holds for every R ∈ R1 and {P} τ 7→ c̃ ∈ G2,
and similarly for every R ∈ R2 and {P} τ 7→ c̃ ∈ G1.

The condition on run predicates within rule par slightly deviates from [33]6.
Given that components Ci (i ∈ {1, 2}) do not block in states of Ui, we can deduce
U1∪U2 as run condition for the parallel composition when we furthermore ensure
Q1 ∩U1 ⊆ U2 and Q2 ∩U2 ⊆ U1. This can intuitively be understood as ensuring
that neither component blocks in states of U1 ∪ U2: First of all, in a state in U1

C1 does not block (and dually, in a state in U2, C2 does not block). Now consider
a state in U1 in which C1 has already terminated. In this case it has established
its postcondition Q1 which together with U1 implies the state to be in U2 (and
hence C2 to not block). The dual argument applies to states in U2.

Example 4. We exemplify rule Par on SBW (Fig. 3). Let Ci be the program
of thread Ti and C : Ti 7→ Ci, i ∈ {1, 2}. We employ the following guarantee
conditions:

G1 ≜ {{true}T1 7→ STORE(x, 1), {x = 1}T1 7→ AWAIT(y = 1)}
G2 ≜ {{true}T2 7→ STORE(y, 1), {y = 1}T2 7→ AWAIT(x = 1)}

The RG judgements for T1 and T2 are derivable using rules of Fig. 7 and command
specifications as of Ex. 3:

T1 7→ C1 satSC (true, {true, x = 1}, y = 1 ∨ x ̸= 1,G1, x = 1)

T2 7→ C2 satSC (true, {true, y = 1}, x = 1 ∨ y ̸= 1,G2, y = 1)

Combining these using rule Par we get:

C satSC (true, {true, x = 1, y = 1}, true,G1 ∪ G2, true)

which proves deadlock freedom of the parallel composition relative to the pre-
condition true and the rely {true, x = 1, y = 1}.

As usual, our proof calculus also includes a rule of consequence consq to
be able to strengthen or weaken assertions in RG judgements. Due to the non-
standard form of relies and guarantees, we need a specific condition on them,
different from subset inclusion. For relies R,R′ and guarantees G,G′ we employ
the notation

R ≤ R′ iff ∀R′ ∈ R′, σ ∈ R′, σ′ ∈ Σ. (∀R ∈ R. σ ∈ R⇒ σ′ ∈ R) ⇒ σ′ ∈ R′

G′ ≤ G iff ∀{P ′} π 7→ c̃ ∈ G′.∃P. P ′ ⊆ P ∧ {P} π 7→ c̃ ∈ G

to express that relies can be strengthened and guarantees weakened. As an ex-
ample for relies, we get (formulated in terms of SC-like assertions) {x > 2} ≰
{(x > 2) ∧ (x < 5)} and {y = 1, x > 2} ≤ {(y = 1) ∧ (x > 2)}. Note that both
relations are reflexive.
6 The form in [33] can be derived from our rule.
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Soundness. To establish soundness of the above system we need an additional
requirement regarding the internal memory transitions (for SC this closure vac-
uously holds as there are no such transitions). We require all relies in R to be
stable under internal memory transitions, i.e. for R ∈ R we require

∀γ,m,m′, θ ∈ M.Θ.m θ−→M m′ ⇒ (⟨γ,m⟩ ∈ R⇒ ⟨γ,m′⟩ ∈ R) (mem)

This condition is needed since the memory system can non-deterministically
take its internal steps, and the component’s proof has to be stable under such
steps. With this requirement, we are able to establish soundness. We write ⊢
C satM (P,R, U,G, Q) for provability of a judgement using the semantic rules
presented above.

Theorem 1 (Soundness).
⊢ C satM (P,R, U,G, Q) implies ⊨ C satM (P,R, U,G, Q).

5 Potential-based Memory System for SRA

We recap the potential-based semantics for Strong Release-Acquire (SRA) as far
as necessary for understanding our RG logic (in §6) and the specific aspect of
reasoning about deadlock freedom. Our semantics is based on the one in [18]
which in turn builds on [16, 17], with certain adaptations to make it better
suited for Hoare-style reasoning. Note that for simplicity we do not consider
read-modify-write instructions here.

In weak memory models, threads typically have different views of the shared
memory. In SRA, we refer to a memory snapshot that a thread may observe as
a potential store:

Definition 6. A potential store is a function δ : Loc → Val × Tid. We write
val(δ(x)) and tid(δ(x)) to retrieve the different components of δ(x).

Having δ(x) = ⟨v, τ⟩ allows a thread to read the value v from x (and fur-
ther ascribes that this read reads from a write performed by thread τ , which is
technically needed to properly characterise the SRA model).

Notation 7 Lists over an alphabet A are written as L = a1 · ... · an where
a1, ... ,an ∈ A. We also use · to concatenate lists, and write L[i] for the i’th
element of L and |L| for the length of L.

Potential stores are collected in potential store lists: A (potential) store list
L ∈ L is a finite sequence of potential stores ascribing a possible sequence of
stores that a thread can observe, in the order it will observe them. SRA states
(SRA.Q) consist of potential mappings from threads to sets of store lists.

Definition 8. A potential D is a non-empty set of potential store lists. A po-
tential mapping is a function D : Tid ⇀ P(L) \ {∅} that maps thread iden-
tifiers to potentials such that all lists agree on the very final potential store
(i.e., L1[|L1|] = L2[|L2|] for every L1 ∈ D(τ1), L2 ∈ D(τ2), τ1, τ2 ∈ Tid).
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write

∀L′ ∈ D′(τ). ∃L ∈ D(τ). L′ = L[x 7→ ⟨vW, τ⟩]
∀π ∈ dom(D) \ {τ}, L′ ∈ D′(π). ∃L0, L1.

L0 · L1 ∈ D(π) ∧ L1 ∈ D(τ) ∧
L′ = L0 · L1[x 7→ ⟨vW, τ⟩]

D τ,W(x,vW)−−−−−→SRA D′
read

∃π.∀L ∈ D(τ).
val(L[1](x)) = vR ∧
tid(L[1](x)) = π

D τ,R(x,vR)−−−−−→SRA D

lose
D′ ⊑ D

D ε−→SRA D′ dup
D ⪯ D′

D ε−→SRA D′

Fig. 8. Semantics of SRA, defining δ[x 7→ ⟨v, τ⟩](y) = ⟨v, τ⟩ if y = x and δ(y) else,
pointwise lifted to lists

These potential mappings are “lossy” meaning that potential stores can be
arbitrarily dropped. In particular, dropping the first store in a list enables reading
from the second. This is formally done by transitioning from a state D to a
“smaller” state D′ as defined next.

Definition 9. The (overloaded) partial order ⊑ is defined as follows:

1. on potential store lists: L′ ⊑ L if L′ is a nonempty subsequence of L and L′

and L agree on the final store (i.e., L′[|L′|] = L[|L|]);
2. on potentials: D′ ⊑ D if ∀L′ ∈ D′. ∃L ∈ D. L′ ⊑ L;
3. on potential mappings: D′ ⊑ D if D′(τ) ⊑ D(τ) for every τ ∈ dom(D).

We also define L ⪯ L′ if L′ is obtained from L by duplication of some stores
(e.g., δ1 · δ2 · δ3 ⪯ δ1 · δ2 · δ2 · δ3). This is lifted to potential mappings as expected.

Figure 8 defines the transitions of SRA. The lose and dup steps account for
losing and duplication in potentials. Note that these are both internal memory
transitions. Rule read details read steps: reading has to take place on the first
potential store of the lists, and to this end all lists of the reading thread τ have
to contain the same first element. Most of the complexity is left for the write
step. It updates to the new written value for the writer thread τ . Additionally,
for every other thread, it updates a suffix (L1) of the store list with the new
value. To guarantee causal consistency this updated suffix cannot be arbitrary:
it has to be in the potential of the writer thread (L1 ∈ D(τ)).

Example 5. Consider again the SB litmus test of Fig. 2 and store lists

L =

[
x 7→ ⟨1, T1⟩
y 7→ ⟨0, T0⟩

]
·
[
x 7→ ⟨1, T1⟩
y 7→ ⟨1, T2⟩

]
L′ =

[
x 7→ ⟨1, T1⟩
y 7→ ⟨1, T2⟩

]
.

Thread T1 might have a potential L after the execution of both store instruc-
tions, and can now read y to be 0, i.e., L −T1,R(y,0)−−−−−→SRA L is possible. Another
possible step is to take lose next changing the list to L′ from which a transition
L′ −T1,R(y,1)−−−−−→SRA L′ is possible.
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extended expressions E ::= e | x | E + E | ¬E | E ∧ E | ...
interval assertions I ::= [E] | I ; I | I ∧ I | I ∨ I
assertions φ,ψ ::= τ⋉I | e | x ↓ λr. e | φ ∧ φ | φ ∨ φ

Fig. 9. Assertions of PiccoloDF

6 Program Logic

For the instantiation of our RG framework to SRA, we next (1) introduce the
assertions of our logic PiccoloDF and (2) specify command specifications for
PiccoloDF. PiccoloDF extends our prior logic, Piccolo [18] with a new assertion
x ↓ λr. e for describing the last value of a location x.

Syntax and semantics. Figure 9 gives the grammar of PiccoloDF. We base
it on extended expressions which—besides registers—can also involve locations.
Extended expressions E can hold on entire intervals of a store list (denoted
[E]). Store lists can be split into intervals satisfying different interval expressions
(I1 ; ... ; In) using the “;” operator (called “chop”). In turn, τ⋉I means that all
store lists in τ ’s potential satisfy I. In addition to the logic proposed in [18], we
employ the assertion x ↓ λr. e to describe properties about the last value of a
shared variable x. Since all threads agree on the very last potential store, this
assertion is not thread specific. For an assertion φ, we let fv(φ) ⊆ Reg∪Loc∪Tid
be the set of registers, locations and thread identifiers occurring in φ.

Example 6. Consider again the store buffering litmus test SB (Fig. 2). We would
like to express that T1 can potentially see both values of y, 0 and 1, and that
it observes these in some order, namely 0 before 1. This can be specified as
T1⋉[y = 0] ; [y = 1]. Note that both intervals can also be empty, i.e., the formula
also describes states in which T1 can only observe y to be 0 or only to be 1.
In SBW (Fig. 4) we are just interested in the last values of shared locations
(to see whether await instructions are blocked) and specify this, for instance, as
x ↓ λr. r = 1 (denoted x ↓ 1).

An assertion φ describes a set of register stores coupled with SRA states:

Definition 10. Let γ be a register store, δ a potential store, L a store list, and D
a potential mapping. We let JeK⟨γ,δ⟩ = γ(e) and JxK⟨γ,δ⟩ = δ(x). The extension of
this notation to any extended expression E is standard. The validity of assertions
in ⟨γ,D⟩, denoted by ⟨γ,D⟩ |= φ, is defined as follows:
1. ⟨γ, L⟩ |= [E] if JEK⟨γ,δ⟩ = true for every δ ∈ L.
2. ⟨γ, L⟩ |= I1 ; I2 if ⟨γ, L1⟩ |= I1 and ⟨γ, L2⟩ |= I2 for some (possibly empty)
L1 and L2 such that L = L1 · L2.

3. ⟨γ, L⟩ |= I1 ∧ I2 if ⟨γ, L⟩ |= I1 and ⟨γ, L⟩ |= I2 (similarly for ∨).
4. ⟨γ,D⟩ |= τ⋉I if ⟨γ, L⟩ |= I for every L ∈ D(τ).
5. ⟨γ,D⟩ |= e if γ(e) = true.
6. ⟨γ,D⟩ |= x ↓ λr. e if Je(r := x)K⟨γ,L[|L|]⟩ = true for all τ ∈ Tid, L ∈ D(τ).
7. ⟨γ,D⟩ |= φ1 ∧ φ2 if ⟨γ,D⟩ |= φ1 and ⟨γ,D⟩ |= φ2 (similarly for ∨).
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Assumption Pre Command Post Run Reference{
φ(r := e)

}
τ 7→ r := e

{
φ
}

JtrueK Subst-asgn
x /∈ fv(φ)

{
φ
}

τ 7→ STORE(x, e)
{
φ
}

JtrueK Stable-wr
r /∈ fv(φ)

{
φ
}
τ 7→ r := LOAD(x)

{
φ
}

JtrueK Stable-ld{
true

}
τ 7→ STORE(x, e)

{
τ⋉[x = e]

}
JtrueK Wr-own{

π⋉I
}

τ 7→ STORE(x, e)
{
π⋉I ; [x = e]

}
JtrueK Wr-other{

φ
}
τ 7→ AWAIT(x, λr. e)

{
φ
}

Jx ↓ λr. eK Await
u ̸= v

{
τ⋉[x = u]

}
τ 7→ AWAIT(x = v)

{
false

}
Jx ↓ λr. eK Await-block

Fig. 10. PiccoloDF axioms for (instrumented) commands, assuming τ ̸= π

Note that with ∧ and ∨ as well as negation on expressions,7 the logic provides
the operators on sets of states necessary for an instantiation of our RG frame-
work. Further, the requirements from SRA states guarantee certain properties
for threads τ, π ∈ Tid:
– For φ1 = τ⋉[Eτ

1 ] ; ... ; [E
τ
n] and φ2 = π⋉[Eπ

1 ] ; ... ; [E
π
m]: if Eτ

i ∧ Eπ
j ⇒ false

for all 1 ≤ i ≤ n and 1 ≤ j ≤ m, then φ1 ∧φ2 ⇒ false (follows from the fact
that all lists in potentials are non-empty and agree on the last store).

– If ⟨γ,D⟩ |= τ⋉[e(r := x)], then we also get ⟨γ,D⟩ |= x ↓ λr. e.
All assertions are preserved by the step lose (as well as the second memory

model internal step dup). This stability is required by our RG framework (con-
dition (mem))8. Stability is achieved here because negations occur on the level
of (simple) expressions only (e.g., we cannot have ¬(τ⋉[x = v]), meaning that
τ must have a store in its potential whose value for x is not v, which would not
be stable under lose).

Proposition 2. If ⟨γ,D⟩ |= φ and D ε−→SRA D′, then ⟨γ,D′⟩ |= φ.

Axioms. Assertions in PiccoloDF describe sets of states, thus can be used to
formulate axioms (cf. [13]) of the RG proof system. Figure 10 gives the axioms
for the different primitive instructions.

Example 7. We employ the axioms to show some proof steps for SBW (Fig. 4),
namely the derivation of an RG judgement for thread T1. First, for the store
instruction we employ axiom Wr-own and obtain

{true} T1 7→ STORE(x, 1) {T1⋉[x = 1]} JtrueK .

Next we employ rule com of Figure 7 and the rule of consequence (using
(a) T1⋉[x = 1] implies x ↓ 1 for the post condition and (b) x ̸ ↓ 1∨ y ↓ 1 implies
true for the run condition) and obtain the RG judgement:

7 Negation just occurs on the level of simple expressions e which is sufficient for cal-
culating P \ JeK required in rules if and while.

8 Such stability requirements are also common to other reasoning techniques for weak
memory models, e.g. [9].
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T1 7→ STORE(x, 1) sat SRA

(true, {true, x ↓ 1}, x ̸ ↓ 1 ∨ y ↓ 1, {{true}T1 7→ STORE(x, 1)}, x ↓ 1).
Note that, formally, x ̸ ↓ 1 is shorthand for x ↓ (λr. r ̸= 1). Using axiom Await,
we obtain the command specification

{x ↓ 1} T1 7→ AWAIT(y = 1) {x ↓ 1} Jy ↓ 1K .

Again lifting this to RG judgements using rule Com, we obtain
T1 7→ AWAIT(y = 1) sat SRA

(x ↓ 1, {x ↓ 1}, (x ̸ ↓ 1) ∨ (y ↓ 1), {{x ↓ 1}T1 7→ AWAIT(y = 1)}, x ↓ 1) .
Next using the rule for sequential composition Seq, we get a judgement for the
entire program of thread T1 which has a run condition J(x ̸ ↓ 1) ∨ (y ↓ 1)K.

In addition to the axioms above, we use two rules for load instructions. The
first rule loads a value from a single interval:

Ld-single
{τ⋉[(e ∧ E)(r := x)]} τ 7→ r := LOAD(x) {(e ∧ τ⋉[E])} JtrueK

The second rule is a shift rule for load instructions when several intervals
occur in the precondition:

Ld-shift
{τ⋉I} τ 7→ r := LOAD(x) {ψ} JtrueK

{τ⋉[(e ∧ E)(r := x)] ; I} τ 7→ r := LOAD(x) {(e ∧ τ⋉[E]; I) ∨ ψ} JtrueK

A load instruction reads from the first store in the lists, however, if the list
satisfying [(e ∧ E)(r := x)] in [(e ∧ E)(r := x)] ; I is empty, it reads from a
list satisfying I. The shift rule for LOAD puts this shifting to next stores into a
proof rule. Like the standard Hoare rule Subst-asgn, Ld-single and Ld-shift
employ backward substitution.

Example 8. We exemplify rules Ld-single and Ld-shift on a proof step of ex-
ample SB in Figure 2. Our objective is to derive a command specification for the
load instruction (number 2) in thread T1. Using rule Ld-single and weakening
of the postcondition, we get {T1⋉[y = 1]} T1 7→ a := LOAD(y) {a = 1} JtrueK.
We use this as the hypothesis for rule Ld-shift and another weakening of the
postcondition and obtain

{T1⋉[y = 1] ; [y = 1]} T1 7→ a := LOAD(y) {a = 0 ∨ a = 1} JtrueK

For instrumented primitive commands we employ the following rule:

Instr
{ψ0} τ 7→ c {ψ1} JφK {ψ1} τ 7→ r := e {ψ2} JtrueK

{ψ0} τ 7→ ⟨c, r := e⟩ {ψ2} JφK

Finally, it can be shown that all specifications derivable from axioms and
rules are valid command specifications.

Lemma 1. If ⊢PiccoloDF
{φ} τ 7→ α {ψ} JUK (i.e., a PiccoloDF command specifi-

cation is derivable) and Φ = {Γ | Γ |= φ}, Ψ = {Γ | Γ |= ψ} and U = {Γ | Γ |= U},
where Γ = ⟨γ,D⟩, then SRA ⊨ {Φ} τ 7→ α {Ψ}JUK.
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{
a1 = a2 = b1 = b2 = 0

}
Thread T1{
a1, b1 = 0, 0

}
1 : ⟨STORE(y, 0); a1 := 1⟩;{
(a2 = 1 ∨ T1⋉[y = 0]) ∧ a1, b1 = 1, 0

}
2 : ⟨STORE(x, 1); b1 := 1⟩;{
(a2 = 1 ∨ T1⋉[y = 0]) ∧ a1, b1 = 1, 1
∧ (b2 = 0 ∨ x ↓ 1 ∨ y ↓ 1)

}
3 : AWAIT(y = 1);{
a2 = 1 ∧ a1 = 1

}
4 : STORE(x, 1);{
x ↓ 1 ∧ a2 = 1

}
q
y ↓ 1 ∨ b1 = 0 ∨ (b2 = 1 ∧ x ↓ 0 ∧ y ↓ 0)

y

Thread T2{
a2, b2 = 0, 0

}
5 : ⟨STORE(x, 0); a2 := 1⟩;{
(a1 = 1 ∨ T2⋉[x = 0]) ∧ a2, b2 = 1, 0

}
6 : ⟨STORE(y, 1); b2 := 1⟩;{
(a1 = 1 ∨ T2⋉[x = 0]) ∧ a2, b2 = 1, 1
∧ (b1 = 0 ∨ y ↓ 1 ∨ x ↓ 1)

}
7 : AWAIT(x = 1);{
a1 = 1 ∧ a2 = 1

}
8 : STORE(y, 1);{
y ↓ 1 ∧ a1 = 1

}
q
x ↓ 1 ∨ b2 = 0 ∨ (b1 = 1 ∧ x ↓ 0 ∧ y ↓ 0)

y{
true

}q
true

y

Fig. 11. Initialisation protocol in SRA

7 Initialisation Protocol

Our main example is an initialisation protocol [10], which is a program that
aims to synchronise the initialisation of two parallel threads (see Fig. 11). The
protocol ensures that each thread only continues execution if it can be sure that
the other thread has executed its initialising code. Our protocol is that of Feijen
and van Gasteren [10] using two shared variables x and y for synchronisation.
Thread T1 sets y to 0 (ensuring that it will wait at line 3). Additionally it sets x
to 1 both immediately before and after the await to stop the other thread (T2)
waiting. Thread T2 is symmetric.

The proof outline, as given in Fig. 11 requires the introduction of two auxil-
iary variables in each thread. Auxiliary variable a1 is used to record that thread
T1 has completed its execution, and b1 is used to record whether T1 is waiting
to execute its await statement. Under SRA, the proof outline aims to establish
two main properties.

1. When both threads are waiting to execute their await statement, one of the
guards of the two threads becomes enabled (preconditions b2 = 0∨x ↓ 1∨y ↓
1 and b1 = 0∨ y ↓ 1∨ x ↓ 1 together with preconditions b1 = b2 = 1 of lines
3 and 7).

2. When one of the threads has terminated, the guard of the other thread must
eventually become enabled (postconditions x ↓ 1 and y ↓ 1 of lines 4 and 8,
respectively).

The remaining of the assertions are introduced to support these properties.
The overall run predicate of each thread Ti is taken as a predicate that

ensures that the guard of the only blocking (await) statement becomes true,
disjoined with a condition that implies the negation of its precondition. It is
straightforward to show that the disjunction of the two run predicates in the
two threads evaluates to true.
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8 Conclusions and Related Work

We have shown that Jones’ rely/guarantee technique can be extended to address
deadlock freedom under a family of weak memory models. We have focussed on
SRA, but similar techniques apply for variants of causal consistency, such as
WRA from [17] and LRA from [29], as well as to other memory models with
operational semantics. It is also possible to extend similar techniques for Owicki-
Gries reasoning for weak memory models developed in prior works [6, 7, 32].

Recent works have examined notions of fairness and liveness for weak mem-
ory models. Lahav et al. [19] introduces a notion of memory fairness which is
required in addition to scheduler fairness to ensure writes are propagated to
other threads. Oberhauser et al. [23] apply model checking techniques to de-
tect liveness violations in weak memory synchronisation algorithms. Abdulla et
al. [1] study a different notion of fairness, and describe how verification under
such assumptions can be rephrased as a reachability problem. It is interesting to
extend the RG paradigm to consider other progress properties besides deadlock
freedom, like, e.g., [21, 27, 28] do assuming SC. Another line for future work is
the automation of the reasoning in our proposed logic.
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