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Goal
To fit [shared-state] concurrency semantics on equal footing

with other semantic models of computational effects

Method
Using the standard algebraic effects approach, in which we

define a denotational semantics

over a monad

representing an equational theory
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Virtues of Algebraic Effects
What’s so good about this approach?

Compositionality As in any denotational semantics

Higher-order The language supports higher-order functions “out-of-the-box”

Uniformity General results / similar proof techniques

Modularity Combine equational theories, e.g. (global-state + yield) ⊕ non-determinism

Comparability Easy to compare different languages / semantics, e.g. Abadi & Plotkin

Abstraction Program behaviour analysis using the monad and the equations

Implementability Monads are ubiquitous in functional programming
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Rundown
One slide summary of this talk
Programming Language – Standard operational-semantics
Higher-Order λx.M (Call-by-Value)
Shared-State: Assignment ∶=, Dereference ?, Interleaving concurrency ∥

Denotational Semantics
Standard Monadic [Moggi] [[NM]]γ B [[N]]γ ⟫= λf . [[M]]γ ⟫= f
Based on Traces [Brookes] ⟨( a b c

1 0 1 ), ( a b c
1 0 1 )⟩ ⟨( a b c

0 1 0 ), ( a b c
1 1 0 )⟩ 1 ∈ [[a ∶= c? ; a?]]

Algebraic Effects [Plotkin, Power, Hyland, Levy]:
(global-state + yield) ⊕ non-determinism [[a ∶= 1]] = Ua,1⟨⟩ ∨Ua,1Y⟨⟩
Ordered by non-determinism t ≤ t ∨ s

Theorem (Adequacy for shared-state)
[[M]] ≤ [[N]] Ô⇒ ∀C[−]. σ,C[M]↝∗ ρ,V Ô⇒ σ,C[N]↝∗ ρ,V
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Section 1

Story Time
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Contextual Equivalence

Programs a ∶= b? ; a ∶= c? and a ∶= c? execute identically

Fact
σ, a ∶= b? ; a ∶= c? ↝∗ ρ, V

⇕
σ, a ∶= c? ↝∗ ρ, V

Example
( a b c

1 0 1 ), a ∶= b? ; a ∶= c? ↝∗ ( a b c
1 0 1 ), ⟨⟩

( a b c
1 0 1 ), a ∶= c? ↝∗ ( a b c

1 0 1 ), ⟨⟩

Locs = {a,b, c} Vals = {0,1} e.g. ( a b c
1 0 1 ) ∶ Locs→ Vals
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Contextual Equivalence

Does this mean they are interchangeable?

For all program contexts C[−]?
σ, C[a ∶= b? ; a ∶= c?] ↝∗ ρ, V

⇕
σ, C[a ∶= c?] ↝∗ ρ, V

Example (Sequential Context)

( a b c
1 0 1 ), a ∶= b? ; a ∶= c? ; a? ↝∗ ( a b c

1 0 1 ), 1
( a b c

1 0 1 ), a ∶= c? ; a? ↝∗ ( a b c
1 0 1 ), 1

Locs = {a,b, c} Vals = {0,1} e.g. ( a b c
1 0 1 ) ∶ Locs→ Vals
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Contextual Equivalence

Does this mean they are interchangeable?

For all program contexts C[−]?
σ, C[a ∶= b? ; a ∶= c?] ↝∗ ρ, V

⇕
σ, C[a ∶= c?] ↝∗ ρ, V

Example (Concurrent Context)

( a b c
1 0 1 ), a ∶= b? ; a ∶= c? ∥ a? ↝∗ ( a b c

1 0 1 ), ⟨⟨⟩,0⟩
( a b c

1 0 1 ), a ∶= c? ∥ a? ��↝∗ ( a b c
1 0 1 ), ⟨⟨⟩,0⟩

Locs = {a,b, c} Vals = {0,1} e.g. ( a b c
1 0 1 ) ∶ Locs→ Vals
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Global-State (Sequential) Denotational Semantics
[Plotkin, Power]

(LU-comm) Lℓ (v . Uℓ′,w xv) = Uℓ′,w Lℓ (v . xv) ℓ ≠ ℓ′

[[a ∶= b? ; a ∶= c?]] =Lb (v . Ua,v Lc (w . Ua,w ⟨⟩))
(LU-comm)Ð→ =Lb (v . Lc (w . Ua,v Ua,w ⟨⟩))

(UU-last)Ð→ =Lb (v . Lc (w . Ua,w ⟨⟩))
(L-noop)Ð→ =Lc (w . Ua,w ⟨⟩) = [[a ∶= c?]]

Fact (Adequacy for global-state [folklore])
[[M]] = [[N]] Ô⇒ ∀C[−]. σ,C[M]↝∗ ρ,V ⇐⇒ σ,C[N]↝∗ ρ,V

Thus a ∶= b? ; a ∶= c? and a ∶= c? are interchangeable
Compiler can optimize a ∶= b? ; a ∶= c?↠ a ∶= c? (or the other direction too)
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Extends to Shared-State (Concurrency)?
[Hyland, Levy, Plotkin, Power] [[M ∥ N]] = ?

Add an operator (choice): ∨
Add axioms: Ua,v(t ∨ s) = Ua,v t ∨Ua,v s ; t ∨ s = s ∨ t ...
Define partial-order: t ≤ t ∨ s

Desired (Adequacy for shared-state)
[[M]] ≤ [[N]] Ô⇒ ∀C[−]. σ,C[M]↝∗ ρ,V Ô⇒ σ,C[N]↝∗ ρ,V

Justifies the opposite N↠M (no new results = no bugs)

Example (from before)

( a b c
1 0 1 ), a ∶= b? ; a ∶= c? ∥ a? ↝∗ ( a b c

1 0 1 ), ⟨⟨⟩,0⟩
( a b c

1 0 1 ), a ∶= c? ∥ a? ��↝∗ ( a b c
1 0 1 ), ⟨⟨⟩,0⟩

Contradicts [[a ∶= b? ; a ∶= c?]] ≤ [[a ∶= c?]] – Not adequate
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What Should Change to Fix This?

[[a ∶= b? ; a ∶= c?]]
!
≠ [[a ∶= c?]]

Invalidate equations OR Change denotations

[[a ∶= b? ; a ∶= c?]] ≠ Lb (v . Ua,v Lc (w . Ua,w ⟨⟩))
= Lc (w . Ua,w ⟨⟩) ≠ [[a ∶= c?]]

get to keep global-state
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Theory of Resumptions
[Hyland, Levy, Plotkin, Power]

[[a ∶= b? ; a ∶= c?]] ≠ Lb (v . Ua,v Lc (w . Ua,w ⟨⟩))
= Lc (w . Ua,w ⟨⟩) ≠ [[a ∶= c?]]

Add an operator yield: Y
Add an axiom: Y(t ∨ s) = Yt ∨Ys
Define possible yield: Y?t B t ∨Yt (Y?t ≥ t)

[[a ∶= b? ; a ∶= c?]] = Lb (v . Y?Ua,v Y?Lc (w . Y?Ua,w Y?⟨⟩))
≥ Lb (v . Y?Ua,v Lc (w . Ua,w Y?⟨⟩))

. . . (like before) . . . = Lc (w . Y?Ua,w Y?⟨⟩) = [[a ∶= c?]]

a ∶= b? ; a ∶= c?↠ a ∶= c? justified by Adequacy
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Lingering Questions

We should have [[a ∶= b? ; a ∶= c?]] ≠ [[a ∶= c?]] for adequacy

Still undefined: [[M ∥ N]] = ?

What about “pure” fragment, e.g. [[if M then N else N ]] ?= [[M ; N]]
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Section 2

The Algebraic-Effects Roadmap
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1 Story Time

2 The Algebraic-Effects Roadmap
Equational Theory
Monadic Model
Denotations
Adequacy

3 Final Words...
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Subsection 1

Equational Theory
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Axioms – Global-State
[Plotkin, Power]

UL-det Uℓ,w Lℓ (v . xv) = Uℓ,w xw

UU-last Uℓ,v Uℓ,w x = Uℓ,w x

LU-noop Lℓ (v . Uℓ,v x) = x

LL-diag Lℓ (v . Lℓ (w . xv ,w)) = Lℓ (v . xv ,v)

UU-comm Uℓ,v Uℓ′,w x = Uℓ′,w Uℓ,v x ℓ ≠ ℓ′

LU-comm Lℓ (v . Uℓ′,w xv) = Uℓ′,w Lℓ (v . xv) ℓ ≠ ℓ′

LL-comm Lℓ (v . Lℓ′ (w . xv ,w)) = Lℓ′ (w . Lℓ (v . xv ,w)) ℓ ≠ ℓ′
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Axioms – Non-Determinism and Yield
[Hyland, Levy, Plotkin, Power]

ND-return ⋁ı<1 x = x

ND-epi ⋁ȷ<β xȷ = ⋁ı<α xφı φ ∶ α↠ β

ND-join ⋁ı<α⋁ȷ<βı
xı,ȷ = ⋁ȷ<∑ı<α βı

xφȷ φ ∶ ∑ı<α βı ↔∐ı<α βı

ND-L ⋁ı<α Lℓ (v . xv ,ı) = Lℓ (v . ⋁ı<α xv ,ı)

ND-U ⋁ı<α Uℓ,v xı = Uℓ,v ⋁ı<α xı

ND-Y ⋁ı<α Yxı = Y⋁ı<α xı
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Subsection 2

Monadic Model
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Traces – Interrupted Execution
[Brookes, Benton, Hoffman, Nigam]

a ∶= c? ∥ b ∶= 0 ; a?
⟨( a b c

1 0 1 ),(
a b c
1 0 1 )⟩ ⟨(

a b c
0 1 1 ),(

a b c
0 1 1 )⟩ ⟨(

a b c
0 1 1 ),(

a b c
1 1 1 )⟩ÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐ→ ⟨⟨⟩,0⟩

( a b c
1 0 1 ), a ∶= c? ∥ b ∶= 0 ; a? ↝∗ ( a b c

1 0 1 ), a ∶= 1 ∥ a?
≬

( a b c
0 1 1 ), a ∶= 1 ∥ a? ↝∗ ( a b c

0 1 1 ), a ∶= 1 ∥ 0
≬

( a b c
0 1 1 ), a ∶= 1 ∥ 0 ↝∗ ( a b c

1 1 1 ), ⟨⟨⟩,0⟩

TracesX B (ValsLocs ×ValsLocs)+ ⋅X

Example

⟨( a b c
1 0 1 ), ( a b c

1 0 1 )⟩ ⟨( a b c
0 1 1 ), ( a b c

0 1 1 )⟩ ⟨( a b c
0 1 1 ), ( a b c

1 1 1 )⟩ ⟨⟨⟩,0⟩ ∈ Traces (1 ×Vals)
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Model Definition

T X B Pfin (TracesX) TracesX B (ValsLocs ×ValsLocs)+ ⋅X

x̃ B {⟨σ,σ⟩ x}

⋁̃ı<αPı B ⋃ı<α Pı

ỸP B {⟨σ,σ⟩ τ ∣ τ ∈ P}

L̃ℓ (v . Pv) B {⟨σ, ρ⟩ τ ∣ ⟨σ, ρ⟩ τ ∈ Pv , σℓ = v}

Ũℓ,v P B {⟨σ, ρ⟩ τ ∣ ⟨σ [ℓ↦ v], ρ⟩ τ ∈ P}

Theory of Resumptions axioms all hold, e.g. (UU-last): Ũℓ,v Ũℓ,w x̃ = ⋅ ⋅ ⋅ = Ũℓ,w x̃
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Monad Definition

T X B ⟨T X , return,⟫=⟩ T X B Pfin (TracesX)

return x B x̃

P ⟫= f B {α ⟨σ, ς⟩ τ ∣ ∃ρ . α ⟨σ, ρ ⟩ x ∈ P ∧ ⟨ ρ , ς⟩ τ ∈ fx }

Theorem (Representation for shared-state)
The monad T is equivalent to the monad induced by Res.

Corollary (Soundness & Completeness)
t = s (in Res.) ⇐⇒ t̃ = s̃ (in Model)
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Subsection 3

Denotations
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Denotation

Γ ⊢M ∶ A [[M]] ∶ [[Γ ]]→ T [[A]]

Example
⊢ a ∶= c? ∶ () x ∶ Loc ⊢ x? ∶ Val

[[a ∶= c?]] ∶ {∣∣}→ T 1 [[x?]] ∶ {∣x ∈ Locs∣}→ T Vals

Definition is entirely compositional:
denotation of prog. depends only on denotations of subparts
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Denotation
Γ ⊢M ∶ A [[M]] ∶ [[Γ ]]→ T [[A]]

Definition is entirely compositional:
denotation of prog. depends only on denotations of subparts

(1/3) Standard part, including higher-order (based on [Moggi]):

[[x]]γ B returnγx

[[let x =M in N]]γ B [[M]]γ ⟫= λy . [[N]] (γ [x↦ y])

[[⟨M,N⟩]]γ B [[M]]γ ⟫= λx . [[N]]γ ⟫= λy . return ⟨x , y⟩

⋮

[[if M then N else N ]] = [[M ; N]]
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Denotation

Γ ⊢M ∶ A [[M]] ∶ [[Γ ]]→ T [[A]]

Definition is entirely compositional:
denotation of prog. depends only on denotations of subparts

(2/3) State access part:

[[M?]]γ B [[M]]γ ⟫= λℓ. L̃ℓ (v . Ỹ? return v)

[[M ∶=N]]γ B [[M]]γ ⟫= λℓ. [[N]]γ ⟫= λv . Ũℓ,v Ỹ? return ⟨⟩

[[a ∶= b? ; a ∶= c?]] ≠ [[a ∶= c?]]
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Denotation
Γ ⊢M ∶ A [[M]] ∶ [[Γ ]]→ T [[A]]

Definition is entirely compositional:
denotation of prog. depends only on denotations of subparts

(3/3) Concurrency part (based on [Brookes]):

[[M ∥ N]]γ B [[M]]γ ∣∣∣ [[N]]γ
(∣∣∣) ∶ T X × T Y → T (X ×Y )

P ∣∣∣Q B {ω ∣ ∃τ ∈ P, π ∈ Q. τ ∣∣ πÔ⇒ ω}

Here ω is obtained by Interleaving transitions from τ and π

and sometimes Mumbling them: ⟨σ, ρ ⟩ ⟨ ρ , ς⟩↦ ⟨σ, ς⟩

Formally τ ∣∣ πÔ⇒ ω is defined by...
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Syntactic Synchronization

τ ∣∣ πÔ⇒ ω

⟨σ, ρ⟩ x ∣∣ ⟨ρ, ς⟩βy Ô⇒ ⟨σ, ς⟩β ⟨x , y⟩
(Var-Left)

τ ∣∣ πÔ⇒ ω

⟨σ, ρ⟩ τ ∣∣ πÔ⇒ ⟨σ, ρ⟩ω
(Brk-Left)

τ ∣∣ πÔ⇒ ⟨ρ, ς⟩ω

⟨σ, ρ⟩ τ ∣∣ πÔ⇒ ⟨σ, ς⟩ω
(Seq-Left)

Symmetrically: (Var-Right) (Brk-Right) (Seq-Right)

P ∣∣∣Q B {ω ∣ ∃τ ∈ P, π ∈ Q. τ ∣∣ πÔ⇒ ω}

Var Interleave no more

Brk Interleave without mumbling

Seq Interleave with mumbling
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Subsection 4

Adequacy

Yotam Dvir, Ohad Kammar, Ori Lahav (TAU, UoE) An Algebraic Theory for Shared-State Concurrency 20th APLAS (2022) 24 / 30



Adequacy

For Γ ⊢M ∶ A and Γ ⊢ N ∶ A

Let [[M]] ≤ [[N]] denote ∀γ ∈ [[Γ ]]. [[M]]γ ⊆ [[N]]γ

Theorem (Adequacy for shared-state)
[[M]] ≤ [[N]] Ô⇒ ∀C[−]. σ,C[M]↝∗ ρ,V Ô⇒ σ,C[N]↝∗ ρ,V

Proof via standard logical relations (higher-order “out-of-the-box”)

Reward
Justify transformation N↠M without simulation (∀C[−])
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Transformations
Standard transformations
e.g. if M1 then (M2 ; N)else (M3 ; N) ≅ (if M1 then M2 else M3 ) ; N

Proof by monad laws (same proof as with other effects!)

Redundant Access Eliminations
e.g. ℓ ∶= v ; ℓ?↠ ℓ ∶= v ; v

Proof by mundane algebra:

Uℓ,v Y?Lℓ (w . Y?w) ≥Uℓ,v Y?v

Laws of parallelism
e.g. M ∥ N↠ ⟨M,N⟩

Proof by analysis of interleaving:

P ∣∣∣Q ⊇ P ⟫= λx . Q ⟫= λy . return ⟨x , y⟩

Redundant Read Introduction is not supported (don’t have full abstraction)

e.g. ⟨⟩↠ ℓ? ; ⟨⟩ not a consequence: ⟨̃⟩ /⊇ L̃ℓ (v . Ỹ?⟨̃⟩) (“counting issue”)
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Section 3

Final Words...
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Very Partial Related Work Timeline

1996 Brookes
Imperative Language
Denotation: Set of Traces

2002 Plotkin, Power
Alg. Effects & Global-State

2006 Hyland, Levy, Plotkin, Power
Non-Determinism & Resumptions (Yield)

2010 Abadi, Plotkin
Imperative Language
Cooperative Async. Threads
Algebraic Effects (different semantics)

2016 Benton, Hofmann, Nigam
Functional Language
Monad (specified directly)

2022: Our contribution
Standard approach, definitions and proofs

Transformations justified algebraically

Finite model
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Extensions / Features?

Weak Memory

Type-and-Effect System

Atomic Constructs

Recursion

...
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Rundown
One slide summary of this talk
Programming Language – Standard operational-semantics
Higher-Order λx.M (Call-by-Value)
Shared-State: Assignment ∶=, Dereference ?, Interleaving concurrency ∥

Denotational Semantics
Standard Monadic [Moggi] [[NM]]γ B [[N]]γ ⟫= λf . [[M]]γ ⟫= f
Based on Traces [Brookes] ⟨( a b c

1 0 1 ), ( a b c
1 0 1 )⟩ ⟨( a b c

0 1 0 ), ( a b c
1 1 0 )⟩ 1 ∈ [[a ∶= c? ; a?]]

Algebraic Effects [Plotkin, Power, Hyland, Levy]:
(global-state + yield) ⊕ non-determinism [[a ∶= 1]] = Ua,1⟨⟩ ∨Ua,1Y⟨⟩
Ordered by non-determinism t ≤ t ∨ s

Theorem (Adequacy for shared-state)
[[M]] ≤ [[N]] Ô⇒ ∀C[−]. σ,C[M]↝∗ ρ,V Ô⇒ σ,C[N]↝∗ ρ,V
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