
An Algebraic Theory for Shared-State Concurrency

Yotam Dvir 1 Ohad Kammar 2 Ori Lahav 1

1Tel Aviv University

2University of Edinburgh

The 20th Asian Symposium on Programming Languages and Systems

Yotam Dvir, Ohad Kammar, Ori Lahav (TAU, UoE) An Algebraic Theory for Shared-State Concurrency 20th APLAS (2022) 1 / 30

Goal
To fit [shared-state] concurrency semantics on equal footing

with other semantic models of computational effects

Method
Using the standard algebraic effects approach, in which we

define a denotational semantics

over a monad

representing an equational theory

Yotam Dvir, Ohad Kammar, Ori Lahav (TAU, UoE) An Algebraic Theory for Shared-State Concurrency 20th APLAS (2022) 2 / 30

Virtues of Algebraic Effects
What’s so good about this approach?

Compositionality As in any denotational semantics

Higher-order The language supports higher-order functions “out-of-the-box”

Uniformity General results / similar proof techniques

Modularity Combine equational theories, e.g. (global-state + yield) ⊕ non-determinism

Comparability Easy to compare different languages / semantics, e.g. Abadi & Plotkin

Abstraction Program behaviour analysis using the monad and the equations

Implementability Monads are ubiquitous in functional programming

Yotam Dvir, Ohad Kammar, Ori Lahav (TAU, UoE) An Algebraic Theory for Shared-State Concurrency 20th APLAS (2022) 3 / 30

Rundown
One slide summary of this talk
Programming Language – Standard operational-semantics
Higher-Order λx.M (Call-by-Value)
Shared-State: Assignment ∶=, Dereference ?, Interleaving concurrency ∥

Denotational Semantics
Standard Monadic [Moggi] [[NM]]γ B [[N]]γ ⟫= λf . [[M]]γ ⟫= f
Based on Traces [Brookes] ⟨(a b c

1 0 1), (a b c
1 0 1)⟩ ⟨(a b c

0 1 0), (a b c
1 1 0)⟩ 1 ∈ [[a ∶= c? ; a?]]

Algebraic Effects [Plotkin, Power, Hyland, Levy]:
(global-state + yield) ⊕ non-determinism [[a ∶= 1]] = Ua,1⟨⟩ ∨Ua,1Y⟨⟩
Ordered by non-determinism t ≤ t ∨ s

Theorem (Adequacy for shared-state)
[[M]] ≤ [[N]] Ô⇒ ∀C[−]. σ,C[M]↝∗ ρ,V Ô⇒ σ,C[N]↝∗ ρ,V

Yotam Dvir, Ohad Kammar, Ori Lahav (TAU, UoE) An Algebraic Theory for Shared-State Concurrency 20th APLAS (2022) 4 / 30

Section 1

Story Time

Yotam Dvir, Ohad Kammar, Ori Lahav (TAU, UoE) An Algebraic Theory for Shared-State Concurrency 20th APLAS (2022) 5 / 30

Contextual Equivalence

Programs a ∶= b? ; a ∶= c? and a ∶= c? execute identically

Fact
σ, a ∶= b? ; a ∶= c? ↝∗ ρ, V

⇕
σ, a ∶= c? ↝∗ ρ, V

Example
(a b c

1 0 1), a ∶= b? ; a ∶= c? ↝∗ (a b c
1 0 1), ⟨⟩

(a b c
1 0 1), a ∶= c? ↝∗ (a b c

1 0 1), ⟨⟩

Locs = {a,b, c} Vals = {0,1} e.g. (a b c
1 0 1) ∶ Locs→ Vals

Yotam Dvir, Ohad Kammar, Ori Lahav (TAU, UoE) An Algebraic Theory for Shared-State Concurrency 20th APLAS (2022) 6 / 30

Contextual Equivalence

Does this mean they are interchangeable?

For all program contexts C[−]?
σ, C[a ∶= b? ; a ∶= c?] ↝∗ ρ, V

⇕
σ, C[a ∶= c?] ↝∗ ρ, V

Example (Sequential Context)

(a b c
1 0 1), a ∶= b? ; a ∶= c? ; a? ↝∗ (a b c

1 0 1), 1
(a b c

1 0 1), a ∶= c? ; a? ↝∗ (a b c
1 0 1), 1

Locs = {a,b, c} Vals = {0,1} e.g. (a b c
1 0 1) ∶ Locs→ Vals

Yotam Dvir, Ohad Kammar, Ori Lahav (TAU, UoE) An Algebraic Theory for Shared-State Concurrency 20th APLAS (2022) 6 / 30

Contextual Equivalence

Does this mean they are interchangeable?

For all program contexts C[−]?
σ, C[a ∶= b? ; a ∶= c?] ↝∗ ρ, V

⇕
σ, C[a ∶= c?] ↝∗ ρ, V

Example (Concurrent Context)

(a b c
1 0 1), a ∶= b? ; a ∶= c? ∥ a? ↝∗ (a b c

1 0 1), ⟨⟨⟩,0⟩
(a b c

1 0 1), a ∶= c? ∥ a? ��↝∗ (a b c
1 0 1), ⟨⟨⟩,0⟩

Locs = {a,b, c} Vals = {0,1} e.g. (a b c
1 0 1) ∶ Locs→ Vals

Yotam Dvir, Ohad Kammar, Ori Lahav (TAU, UoE) An Algebraic Theory for Shared-State Concurrency 20th APLAS (2022) 6 / 30

Global-State (Sequential) Denotational Semantics
[Plotkin, Power]

(LU-comm) Lℓ (v . Uℓ′,w xv) = Uℓ′,w Lℓ (v . xv) ℓ ≠ ℓ′

[[a ∶= b? ; a ∶= c?]] =Lb (v . Ua,v Lc (w . Ua,w ⟨⟩))
(LU-comm)Ð→ =Lb (v . Lc (w . Ua,v Ua,w ⟨⟩))

(UU-last)Ð→ =Lb (v . Lc (w . Ua,w ⟨⟩))
(L-noop)Ð→ =Lc (w . Ua,w ⟨⟩) = [[a ∶= c?]]

Fact (Adequacy for global-state [folklore])
[[M]] = [[N]] Ô⇒ ∀C[−]. σ,C[M]↝∗ ρ,V ⇐⇒ σ,C[N]↝∗ ρ,V

Thus a ∶= b? ; a ∶= c? and a ∶= c? are interchangeable
Compiler can optimize a ∶= b? ; a ∶= c?↠ a ∶= c? (or the other direction too)

Yotam Dvir, Ohad Kammar, Ori Lahav (TAU, UoE) An Algebraic Theory for Shared-State Concurrency 20th APLAS (2022) 7 / 30

Extends to Shared-State (Concurrency)?
[Hyland, Levy, Plotkin, Power] [[M ∥ N]] = ?

Add an operator (choice): ∨
Add axioms: Ua,v(t ∨ s) = Ua,v t ∨Ua,v s ; t ∨ s = s ∨ t ...
Define partial-order: t ≤ t ∨ s

Desired (Adequacy for shared-state)
[[M]] ≤ [[N]] Ô⇒ ∀C[−]. σ,C[M]↝∗ ρ,V Ô⇒ σ,C[N]↝∗ ρ,V

Justifies the opposite N↠M (no new results = no bugs)

Example (from before)

(a b c
1 0 1), a ∶= b? ; a ∶= c? ∥ a? ↝∗ (a b c

1 0 1), ⟨⟨⟩,0⟩
(a b c

1 0 1), a ∶= c? ∥ a? ��↝∗ (a b c
1 0 1), ⟨⟨⟩,0⟩

Contradicts [[a ∶= b? ; a ∶= c?]] ≤ [[a ∶= c?]] – Not adequate

Yotam Dvir, Ohad Kammar, Ori Lahav (TAU, UoE) An Algebraic Theory for Shared-State Concurrency 20th APLAS (2022) 8 / 30

What Should Change to Fix This?

[[a ∶= b? ; a ∶= c?]]
!
≠ [[a ∶= c?]]

Invalidate equations OR Change denotations

[[a ∶= b? ; a ∶= c?]] ≠ Lb (v . Ua,v Lc (w . Ua,w ⟨⟩))
= Lc (w . Ua,w ⟨⟩) ≠ [[a ∶= c?]]

get to keep global-state

Yotam Dvir, Ohad Kammar, Ori Lahav (TAU, UoE) An Algebraic Theory for Shared-State Concurrency 20th APLAS (2022) 9 / 30

Theory of Resumptions
[Hyland, Levy, Plotkin, Power]

[[a ∶= b? ; a ∶= c?]] ≠ Lb (v . Ua,v Lc (w . Ua,w ⟨⟩))
= Lc (w . Ua,w ⟨⟩) ≠ [[a ∶= c?]]

Add an operator yield: Y
Add an axiom: Y(t ∨ s) = Yt ∨Ys
Define possible yield: Y?t B t ∨Yt (Y?t ≥ t)

[[a ∶= b? ; a ∶= c?]] = Lb (v . Y?Ua,v Y?Lc (w . Y?Ua,w Y?⟨⟩))
≥ Lb (v . Y?Ua,v Lc (w . Ua,w Y?⟨⟩))

. . . (like before) . . . = Lc (w . Y?Ua,w Y?⟨⟩) = [[a ∶= c?]]

a ∶= b? ; a ∶= c?↠ a ∶= c? justified by Adequacy

Yotam Dvir, Ohad Kammar, Ori Lahav (TAU, UoE) An Algebraic Theory for Shared-State Concurrency 20th APLAS (2022) 10 / 30

Lingering Questions

We should have [[a ∶= b? ; a ∶= c?]] ≠ [[a ∶= c?]] for adequacy

Still undefined: [[M ∥ N]] = ?

What about “pure” fragment, e.g. [[if M then N else N]] ?= [[M ; N]]

Yotam Dvir, Ohad Kammar, Ori Lahav (TAU, UoE) An Algebraic Theory for Shared-State Concurrency 20th APLAS (2022) 11 / 30

Section 2

The Algebraic-Effects Roadmap

Yotam Dvir, Ohad Kammar, Ori Lahav (TAU, UoE) An Algebraic Theory for Shared-State Concurrency 20th APLAS (2022) 12 / 30

1 Story Time

2 The Algebraic-Effects Roadmap
Equational Theory
Monadic Model
Denotations
Adequacy

3 Final Words...

Yotam Dvir, Ohad Kammar, Ori Lahav (TAU, UoE) An Algebraic Theory for Shared-State Concurrency 20th APLAS (2022) 13 / 30

Subsection 1

Equational Theory

Yotam Dvir, Ohad Kammar, Ori Lahav (TAU, UoE) An Algebraic Theory for Shared-State Concurrency 20th APLAS (2022) 14 / 30

Axioms – Global-State
[Plotkin, Power]

UL-det Uℓ,w Lℓ (v . xv) = Uℓ,w xw

UU-last Uℓ,v Uℓ,w x = Uℓ,w x

LU-noop Lℓ (v . Uℓ,v x) = x

LL-diag Lℓ (v . Lℓ (w . xv ,w)) = Lℓ (v . xv ,v)

UU-comm Uℓ,v Uℓ′,w x = Uℓ′,w Uℓ,v x ℓ ≠ ℓ′

LU-comm Lℓ (v . Uℓ′,w xv) = Uℓ′,w Lℓ (v . xv) ℓ ≠ ℓ′

LL-comm Lℓ (v . Lℓ′ (w . xv ,w)) = Lℓ′ (w . Lℓ (v . xv ,w)) ℓ ≠ ℓ′

Yotam Dvir, Ohad Kammar, Ori Lahav (TAU, UoE) An Algebraic Theory for Shared-State Concurrency 20th APLAS (2022) 15 / 30

Axioms – Non-Determinism and Yield
[Hyland, Levy, Plotkin, Power]

ND-return ⋁ı<1 x = x

ND-epi ⋁ȷ<β xȷ = ⋁ı<α xφı φ ∶ α↠ β

ND-join ⋁ı<α⋁ȷ<βı
xı,ȷ = ⋁ȷ<∑ı<α βı

xφȷ φ ∶ ∑ı<α βı ↔∐ı<α βı

ND-L ⋁ı<α Lℓ (v . xv ,ı) = Lℓ (v . ⋁ı<α xv ,ı)

ND-U ⋁ı<α Uℓ,v xı = Uℓ,v ⋁ı<α xı

ND-Y ⋁ı<α Yxı = Y⋁ı<α xı

Yotam Dvir, Ohad Kammar, Ori Lahav (TAU, UoE) An Algebraic Theory for Shared-State Concurrency 20th APLAS (2022) 16 / 30

Subsection 2

Monadic Model

Yotam Dvir, Ohad Kammar, Ori Lahav (TAU, UoE) An Algebraic Theory for Shared-State Concurrency 20th APLAS (2022) 17 / 30

Traces – Interrupted Execution
[Brookes, Benton, Hoffman, Nigam]

a ∶= c? ∥ b ∶= 0 ; a?
⟨(a b c

1 0 1),(
a b c
1 0 1)⟩ ⟨(

a b c
0 1 1),(

a b c
0 1 1)⟩ ⟨(

a b c
0 1 1),(

a b c
1 1 1)⟩ÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐ→ ⟨⟨⟩,0⟩

(a b c
1 0 1), a ∶= c? ∥ b ∶= 0 ; a? ↝∗ (a b c

1 0 1), a ∶= 1 ∥ a?
≬

(a b c
0 1 1), a ∶= 1 ∥ a? ↝∗ (a b c

0 1 1), a ∶= 1 ∥ 0
≬

(a b c
0 1 1), a ∶= 1 ∥ 0 ↝∗ (a b c

1 1 1), ⟨⟨⟩,0⟩

TracesX B (ValsLocs ×ValsLocs)+ ⋅X

Example

⟨(a b c
1 0 1), (a b c

1 0 1)⟩ ⟨(a b c
0 1 1), (a b c

0 1 1)⟩ ⟨(a b c
0 1 1), (a b c

1 1 1)⟩ ⟨⟨⟩,0⟩ ∈ Traces (1 ×Vals)

Yotam Dvir, Ohad Kammar, Ori Lahav (TAU, UoE) An Algebraic Theory for Shared-State Concurrency 20th APLAS (2022) 18 / 30

Model Definition

T X B Pfin (TracesX) TracesX B (ValsLocs ×ValsLocs)+ ⋅X

x̃ B {⟨σ,σ⟩ x}

⋁̃ı<αPı B ⋃ı<α Pı

ỸP B {⟨σ,σ⟩ τ ∣ τ ∈ P}

L̃ℓ (v . Pv) B {⟨σ, ρ⟩ τ ∣ ⟨σ, ρ⟩ τ ∈ Pv , σℓ = v}

Ũℓ,v P B {⟨σ, ρ⟩ τ ∣ ⟨σ [ℓ↦ v], ρ⟩ τ ∈ P}

Theory of Resumptions axioms all hold, e.g. (UU-last): Ũℓ,v Ũℓ,w x̃ = ⋅ ⋅ ⋅ = Ũℓ,w x̃

Yotam Dvir, Ohad Kammar, Ori Lahav (TAU, UoE) An Algebraic Theory for Shared-State Concurrency 20th APLAS (2022) 19 / 30

Monad Definition

T X B ⟨T X , return,⟫=⟩ T X B Pfin (TracesX)

return x B x̃

P ⟫= f B {α ⟨σ, ς⟩ τ ∣ ∃ρ . α ⟨σ, ρ ⟩ x ∈ P ∧ ⟨ ρ , ς⟩ τ ∈ fx }

Theorem (Representation for shared-state)
The monad T is equivalent to the monad induced by Res.

Corollary (Soundness & Completeness)
t = s (in Res.) ⇐⇒ t̃ = s̃ (in Model)

Yotam Dvir, Ohad Kammar, Ori Lahav (TAU, UoE) An Algebraic Theory for Shared-State Concurrency 20th APLAS (2022) 20 / 30

Subsection 3

Denotations

Yotam Dvir, Ohad Kammar, Ori Lahav (TAU, UoE) An Algebraic Theory for Shared-State Concurrency 20th APLAS (2022) 21 / 30

Denotation

Γ ⊢M ∶ A [[M]] ∶ [[Γ]]→ T [[A]]

Example
⊢ a ∶= c? ∶ () x ∶ Loc ⊢ x? ∶ Val

[[a ∶= c?]] ∶ {∣∣}→ T 1 [[x?]] ∶ {∣x ∈ Locs∣}→ T Vals

Definition is entirely compositional:
denotation of prog. depends only on denotations of subparts

Yotam Dvir, Ohad Kammar, Ori Lahav (TAU, UoE) An Algebraic Theory for Shared-State Concurrency 20th APLAS (2022) 22 / 30

Denotation
Γ ⊢M ∶ A [[M]] ∶ [[Γ]]→ T [[A]]

Definition is entirely compositional:
denotation of prog. depends only on denotations of subparts

(1/3) Standard part, including higher-order (based on [Moggi]):

[[x]]γ B returnγx

[[let x =M in N]]γ B [[M]]γ ⟫= λy . [[N]] (γ [x↦ y])

[[⟨M,N⟩]]γ B [[M]]γ ⟫= λx . [[N]]γ ⟫= λy . return ⟨x , y⟩

⋮

[[if M then N else N]] = [[M ; N]]

Yotam Dvir, Ohad Kammar, Ori Lahav (TAU, UoE) An Algebraic Theory for Shared-State Concurrency 20th APLAS (2022) 22 / 30

Denotation

Γ ⊢M ∶ A [[M]] ∶ [[Γ]]→ T [[A]]

Definition is entirely compositional:
denotation of prog. depends only on denotations of subparts

(2/3) State access part:

[[M?]]γ B [[M]]γ ⟫= λℓ. L̃ℓ (v . Ỹ? return v)

[[M ∶=N]]γ B [[M]]γ ⟫= λℓ. [[N]]γ ⟫= λv . Ũℓ,v Ỹ? return ⟨⟩

[[a ∶= b? ; a ∶= c?]] ≠ [[a ∶= c?]]

Yotam Dvir, Ohad Kammar, Ori Lahav (TAU, UoE) An Algebraic Theory for Shared-State Concurrency 20th APLAS (2022) 22 / 30

Denotation
Γ ⊢M ∶ A [[M]] ∶ [[Γ]]→ T [[A]]

Definition is entirely compositional:
denotation of prog. depends only on denotations of subparts

(3/3) Concurrency part (based on [Brookes]):

[[M ∥ N]]γ B [[M]]γ ∣∣∣ [[N]]γ
(∣∣∣) ∶ T X × T Y → T (X ×Y)

P ∣∣∣Q B {ω ∣ ∃τ ∈ P, π ∈ Q. τ ∣∣ πÔ⇒ ω}

Here ω is obtained by Interleaving transitions from τ and π

and sometimes Mumbling them: ⟨σ, ρ ⟩ ⟨ ρ , ς⟩↦ ⟨σ, ς⟩

Formally τ ∣∣ πÔ⇒ ω is defined by...

Yotam Dvir, Ohad Kammar, Ori Lahav (TAU, UoE) An Algebraic Theory for Shared-State Concurrency 20th APLAS (2022) 22 / 30

Syntactic Synchronization

τ ∣∣ πÔ⇒ ω

⟨σ, ρ⟩ x ∣∣ ⟨ρ, ς⟩βy Ô⇒ ⟨σ, ς⟩β ⟨x , y⟩
(Var-Left)

τ ∣∣ πÔ⇒ ω

⟨σ, ρ⟩ τ ∣∣ πÔ⇒ ⟨σ, ρ⟩ω
(Brk-Left)

τ ∣∣ πÔ⇒ ⟨ρ, ς⟩ω

⟨σ, ρ⟩ τ ∣∣ πÔ⇒ ⟨σ, ς⟩ω
(Seq-Left)

Symmetrically: (Var-Right) (Brk-Right) (Seq-Right)

P ∣∣∣Q B {ω ∣ ∃τ ∈ P, π ∈ Q. τ ∣∣ πÔ⇒ ω}

Var Interleave no more

Brk Interleave without mumbling

Seq Interleave with mumbling

Yotam Dvir, Ohad Kammar, Ori Lahav (TAU, UoE) An Algebraic Theory for Shared-State Concurrency 20th APLAS (2022) 23 / 30

Subsection 4

Adequacy

Yotam Dvir, Ohad Kammar, Ori Lahav (TAU, UoE) An Algebraic Theory for Shared-State Concurrency 20th APLAS (2022) 24 / 30

Adequacy

For Γ ⊢M ∶ A and Γ ⊢ N ∶ A

Let [[M]] ≤ [[N]] denote ∀γ ∈ [[Γ]]. [[M]]γ ⊆ [[N]]γ

Theorem (Adequacy for shared-state)
[[M]] ≤ [[N]] Ô⇒ ∀C[−]. σ,C[M]↝∗ ρ,V Ô⇒ σ,C[N]↝∗ ρ,V

Proof via standard logical relations (higher-order “out-of-the-box”)

Reward
Justify transformation N↠M without simulation (∀C[−])

Yotam Dvir, Ohad Kammar, Ori Lahav (TAU, UoE) An Algebraic Theory for Shared-State Concurrency 20th APLAS (2022) 25 / 30

Transformations
Standard transformations
e.g. if M1 then (M2 ; N)else (M3 ; N) ≅ (if M1 then M2 else M3) ; N

Proof by monad laws (same proof as with other effects!)

Redundant Access Eliminations
e.g. ℓ ∶= v ; ℓ?↠ ℓ ∶= v ; v

Proof by mundane algebra:

Uℓ,v Y?Lℓ (w . Y?w) ≥Uℓ,v Y?v

Laws of parallelism
e.g. M ∥ N↠ ⟨M,N⟩

Proof by analysis of interleaving:

P ∣∣∣Q ⊇ P ⟫= λx . Q ⟫= λy . return ⟨x , y⟩

Redundant Read Introduction is not supported (don’t have full abstraction)

e.g. ⟨⟩↠ ℓ? ; ⟨⟩ not a consequence: ⟨̃⟩ /⊇ L̃ℓ (v . Ỹ?⟨̃⟩) (“counting issue”)

Yotam Dvir, Ohad Kammar, Ori Lahav (TAU, UoE) An Algebraic Theory for Shared-State Concurrency 20th APLAS (2022) 26 / 30

Section 3

Final Words...

Yotam Dvir, Ohad Kammar, Ori Lahav (TAU, UoE) An Algebraic Theory for Shared-State Concurrency 20th APLAS (2022) 27 / 30

Very Partial Related Work Timeline

1996 Brookes
Imperative Language
Denotation: Set of Traces

2002 Plotkin, Power
Alg. Effects & Global-State

2006 Hyland, Levy, Plotkin, Power
Non-Determinism & Resumptions (Yield)

2010 Abadi, Plotkin
Imperative Language
Cooperative Async. Threads
Algebraic Effects (different semantics)

2016 Benton, Hofmann, Nigam
Functional Language
Monad (specified directly)

2022: Our contribution
Standard approach, definitions and proofs

Transformations justified algebraically

Finite model

Yotam Dvir, Ohad Kammar, Ori Lahav (TAU, UoE) An Algebraic Theory for Shared-State Concurrency 20th APLAS (2022) 28 / 30

Extensions / Features?

Weak Memory

Type-and-Effect System

Atomic Constructs

Recursion

...

Yotam Dvir, Ohad Kammar, Ori Lahav (TAU, UoE) An Algebraic Theory for Shared-State Concurrency 20th APLAS (2022) 29 / 30

Rundown
One slide summary of this talk
Programming Language – Standard operational-semantics
Higher-Order λx.M (Call-by-Value)
Shared-State: Assignment ∶=, Dereference ?, Interleaving concurrency ∥

Denotational Semantics
Standard Monadic [Moggi] [[NM]]γ B [[N]]γ ⟫= λf . [[M]]γ ⟫= f
Based on Traces [Brookes] ⟨(a b c

1 0 1), (a b c
1 0 1)⟩ ⟨(a b c

0 1 0), (a b c
1 1 0)⟩ 1 ∈ [[a ∶= c? ; a?]]

Algebraic Effects [Plotkin, Power, Hyland, Levy]:
(global-state + yield) ⊕ non-determinism [[a ∶= 1]] = Ua,1⟨⟩ ∨Ua,1Y⟨⟩
Ordered by non-determinism t ≤ t ∨ s

Theorem (Adequacy for shared-state)
[[M]] ≤ [[N]] Ô⇒ ∀C[−]. σ,C[M]↝∗ ρ,V Ô⇒ σ,C[N]↝∗ ρ,V

Yotam Dvir, Ohad Kammar, Ori Lahav (TAU, UoE) An Algebraic Theory for Shared-State Concurrency 20th APLAS (2022) 30 / 30

	Story Time
	The Algebraic-Effects Roadmap
	Equational Theory
	Monadic Model
	Denotations
	Adequacy

	Final Words...

