
Hyperproperty-Preserving Register Specifications
Yoav Ben Shimon #

Tel Aviv University, Israel

Ori Lahav #

Tel Aviv University, Israel

Sharon Shoham #

Tel Aviv University, Israel

Abstract
Reasoning about hyperproperties of concurrent implementations, such as the guarantees these
implementations provide to randomized client programs, has been a long-standing challenge. Standard
linearizability enables the use of atomic specifications for reasoning about standard properties, but
not about hyperproperties. A stronger correctness criterion, called strong linearizability, enables
such reasoning, but is rarely achievable, leaving various useful implementations with no means for
reasoning about their hyperproperties. In this paper, we focus on registers and devise non-atomic
specifications that capture a wide-range of well-studied register implementations and enable reasoning
about their hyperproperties. First, we consider the class of write strong-linearizable implementations,
a recently proposed useful weakening of strong linearizability, which allows more implementations,
such as the well-studied single-writer ABD distributed implementation. We introduce a simple shared-
memory register specification that can be used for reasoning about hyperproperties of programs
that use write strongly-linearizable implementations. Second, we introduce a new linearizability
class, which we call decisive linearizability, that is weaker than write strong-linearizability and
includes multi-writer ABD, and develop a second shared-memory register specification for reasoning
about hyperproperties of programs that use register implementations of this class. These results
shed light on the hyperproperties guaranteed when simulating shared memory in a crash-resilient
message-passing system.

2012 ACM Subject Classification Theory of computation → Concurrency; Theory of computation
→ Program specifications; Theory of computation→ Distributed algorithms; Theory of computation
→ Concurrent algorithms

Keywords and phrases Hyperproperties, Concurrent objects, Distributed objects, Linearizability,
Strong linearizability, Simulation

Digital Object Identifier 10.4230/LIPIcs.DISC.2024.1

Related Version An extended version of the paper is available at [21].

Funding This work is supported by the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme (grant agreement no. [759102-SVIS]
and 851811) and the Israel Science Foundation (grant number 2117/23 and 814/22).

1 Introduction

Linearizability [17] is a widely accepted correctness criterion for concurrent and distributed
implementations of objects, allowing clients of an object to pretend that they use an atomic
abstraction thereof, whose behaviors are much easier to understand [13]. The observational
refinement between a linearizable implementation and its atomic specification is, however,
restricted to reasoning about reachability of ‘bad’ states. Dealing with more intricate proper-
ties, such as the ability of an adversary to control the probability distribution of the results
of an object’s methods, reveals that a linearizable implementation may manifest behaviors
exceeding those permissible by the atomic specification [14]. In the terminology of [3],

© Yoav Ben Shimon, Ori Lahav, Sharon Shoham;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Distributed Computing (DISC 2024).
Editor: Dan Alistarh; Article No. 1; pp. 1:1–1:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:yoavbenshimon@gmail.com
https://orcid.org/0000-0002-8893-8874
mailto:orilahav@tau.ac.il
https://orcid.org/0000-0003-4305-6998
mailto:sharon.shoham@gmail.com
https://orcid.org/0000-0002-7226-3526
https://doi.org/10.4230/LIPIcs.DISC.2024.1
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


1:2 Hyperproperty-Preserving Register Specifications

linearizability ensures preservation of safety properties but fails to maintain hyperproperties,
which are properties of sets of executions, rather than individual executions. These properties
allow one to express security guarantees, such as noninterference, as well as probability
distributions on program outcomes [9].

The preservation of hyperproperties of concurrent implementations, a.k.a. strong observa-
tional refinement, necessitates a more strict connection between the implementation and its
atomic specification, known as strong linearizability [14], which is equivalent to (a certain
form of) forward simulation between the implementation and the atomic specification [3, 12].
Many implementations are, however, known to be non-strongly linearizable, leaving us with
no means to reason about hyperproperties of programs that use these implementations by
assuming simpler abstractions. In particular, the well-studied ABD implementation, which
shows how shared memory can be simulated in a crash-tolerant message-passing system [2],
is not strongly linearizable, and, in fact, a strongly linearizable implementation with similar
guarantees does not exist [5].

Focusing on registers and observing that strong linearizability is hardly achievable,
Hadzilacos et al. [15] recently proposed a weakening of strong linearizability, called write
strong-linearizability, which captures more implementations. This includes single-writer ABD,
and, in fact, as shown in [15], every linearizable implementation of a single-writer register.
We are left, however, with substantial gaps: how should one reason about hyperproperties of
programs that use write strongly-linearizable register implementations? and what can be
said about existing non-strongly-linearizable implementations of multi-writer registers?

The current work aims to address these gaps. Inspired by Attiya and Enea [3], who
propose to reason about hyperproperties of programs that use non-strongly-linearizable
implementations by using simpler (albeit non-atomic) implementations related to them by
strong observational refinement, we present a simple (but necessarily not atomic) specification
of a shared multi-writer register, which we call WSR (for “Write Strong Register”) that can
be used for reasoning about hyperproperties of programs that use any write strongly-
linearizable implementation (including single-writer ABD). To do so, we prove that every
write strongly-linearizable implementation has a forward simulation to WSR, and utilize the
correspondence between forward simulation and strong observational refinement (preservation
of hyperproperties). Moreover, since write strong-linearizability is downward closed w.r.t.
forward simulation and WSR is write strongly-linearizable, one can also prove write strong-
linearizability for a given implementation by establishing a forward simulation to WSR, which
may be more amenable to automatic/machine-assisted proofs than a direct proof. Drawing
an analogy to complexity theory, we refer to WSR as a complete implementation for the class
of write strongly-linearizable register implementations: WSR is write strongly-linearizable and
every write strongly-linearizable implementation has a forward simulation to WSR.

As for multi-writer registers, we present a second specification of a shared register
that is ‘complete’ for a family of implementations that admit a weakening of write strong-
linearizability, which we call decisive linearizability. In particular, we show that multi-writer
ABD [19] belongs to this family. Thus, the complete implementation, which we call DR (for
“Decisive Register”), enables reasoning about hyperproperties of programs that use ABD via
a simpler shared-memory specification. (We also use DR to demonstrate that multi-writer
ABD is decisively linearizable by showing a forward simulation to DR.) Intuitively speaking,
unlike strong linearizability and write strong-linearizability, decisive linearizability gradually
commits on the relative order of operations in the sequential history, rather than on the
exact position of operations in that history.



Y. Ben Shimon et al. 1:3

write(1);
write(2);
a← coin();

b← read();

Program P1

write(1);
a← coin();
barrier();

write(2);
barrier();
b← read();

Program P2

write(1);
barrier();
a← coin();

write(2);
barrier();
b← read();

Program P3

T1 =
{

|w1 | |w2 | 1
|r 1| ,

|w1 | |w2 | 2
|r 2|

}
T2 =

{
|w1 | 1

|w2 | |r 1| ,
|w1 | 2

|w2 | |r 2|

}
T3 =

{
|w1 | 1

|w2 | |r 1| ,
|w1 | 2

|w2 | |r 2|

}
Figure 1 Client programs (upper part) and corresponding trace sets (lower part) that, if an

adversary can generate them, violate the hyperproperty “a = b with probability 1
2 ”

Outline. The rest of this paper is structured as follows. In §2 we make the introductory
discussion more concrete by outlining several examples. In §3 we provide the necessary
preliminaries for our formal development. In §4 we introduce and study the notion of a
complete implementation for a given linearizability class. In §5 we present the complete
implementation for write strong-linearizability. In §6 we define decisive linearizability and
present a complete implementation for this class. We discuss related work and conclude in
§7. In Appendix A we provide proof sketches for several lemmas and theorems. The full
version of this paper [21] provides full proofs.

2 Motivating Examples: A Tale of Four Registers

This section demonstrates certain intricacies arising when examining hyperproperties of client
programs using (linearizable) implementations of concurrent registers. The specifications we
develop in the next sections are based on the observations arising from these examples. We
keep the discussion informal, deferring the formal treatment to the next sections.

Figure 1 (upper part) presents three programs, in which two threads read and write from
a shared register, and invoke a method coin() that returns 1 or 2 uniformly at random.
Programs P2 and P3 also employ a synchronization method barrier() that ensures the
threads wait for each other before executing the rest of the code. Given that the underlying
register implementation is linearizable, one can analyze standard properties of a single
(finite) trace (e.g., the final values of the variables) of these programs by considering an
atomic register (ATR in Fig. 2) [13]. In technical terms, one says that every linearizable
implementation observationally refines the atomic register, and that the atomic register
provides a specification (a.k.a. reference implementation) for any linearizable implementation.

However, as observed by Golab et al. [14], the atomic register cannot be used for analyzing
properties of sets of program traces, a.k.a. hyperproperties, which cannot be deduced from a
single program trace. For investigating hyperproperties, one considers the sets of program
traces that can be generated by an adversary that controls the scheduling and the steps of the
implementation. (By program trace we mean the sequence of actions performed by the client
where the object’s implementation internal actions are invisible.) Specifically, we consider
the standard strong adversary that sees the whole execution so far and makes choices that
depend on previous coin-toss results.

For instance, for the programs above, we may aim to verify that under any adversarial
scheduling the probability that a = b at the end of execution is exactly 1

2 , which indicates

DISC 2024



1:4 Hyperproperty-Preserving Register Specifications

Atomic (ATR)
Method read()

out ← X;
return out;

Method write(v)
X ← v;
return;

Double load (DLR)
Method read()

out1 ← X;
out2 ← X;
if * then return out1;
else return out2;

Method write(v)
X ← v;
return;

Try-not-to-store (TNSR)
Method read()

out ← X;
return out;

Method write(v)
a1 ← X;
a2 ← X;
if * then

if a1 ̸= a2 then return;
X ← v;
return;

ABD implementation for N processes (ABDN )
Shared Variables: A set Broadcasts of query/update messages and a mapping Replies from

messages to their replies.
Local Variables: Process p stores the most recent value it observed, vp, and its timestamp, tsp.
Timestamps are pairs ts = ⟨t, p⟩ with t ∈ N ordered lexicographically (assuming an arbitrary order

on process id’s). max{⟨v1, ts1⟩, ... ,⟨vn, tsn⟩} retrieves the timestamped value ⟨vi, tsi⟩ with the
maximum timestamp.

Method read()
⟨v, ts⟩ ←query();
update(v, ts);
return v;

Method write(v)
⟨_, ⟨t, _⟩⟩ ←query();
update(v, ⟨t + 1, my_process_id()⟩);
return;

Function update(v, ts)
broadcast m = update(v, ts);
wait until |Replies(m)| > N/2;
return;

Function query()
broadcast m = query;
wait until |Replies(m)| > N/2;
Q←pick Q ⊆ Replies(m) s.t. |Q| > N/2;
return max Q;

Background activity by process p:
when m ∈ Broadcasts received

if m = query then
reply ⟨vp, tsp⟩ to m;

if m = update(v, ts) then
⟨vp, tsp⟩ ← max{⟨v, ts⟩, ⟨vp, tsp⟩};
reply “ack” to m;

Figure 2 Four register implementations

that the adversary cannot leak the coin-toss result from one thread to another.1 With an
atomic register, this property holds in all three programs. For instance, in programs P1 and
P3, if the adversary performs the atomic read() before the coin is tossed, it cannot force a
correlation between the coin and the read value; and by the time the coin is tossed, there is
only one possible value that can be read.

Next, we demonstrate that this does not mean that other linearizable implementations
guarantee this hyperproperty. To this end, we depict below each program in Fig. 1 a set of
traces that forces a = b with probability 1, and to show that the hyperproperty of a program
is violated for certain implementations, we describe an adversary that generates this set.

We consider three linearizable register implementations, in addition to the atomic register
(ATR) discussed above, presented in Figure 2: a “double load” implementation (DLR), a
“try-not-to-store” implementation (TNSR), and the well-studied ABD implementation. Like
ATR, DLR and TNSR are shared-memory implementations, using a single primitive (atomic)
shared memory cell X initialized to 0 (all other variables are local). We refer to the accesses
to X as loads/stores, and to the methods of the register as reads/writes. In contrast, ABD is
a register implementation in a crash-resilient message passing system, originally proposed

1 By adding conditional loops in the programs, one can correlate the probability that a = b with the
probability that the program diverges, and thus concentrate on asking whether an adversary can force
non-termination, as considered in some previous work [15, 6].



Y. Ben Shimon et al. 1:5

to demonstrate that such a system can emulate a shared memory [2]. We present the
multi-writer version of ABD from [19].

DLR. This implementation loads twice and non-deterministically picks which value to return
(using if *). Using DLR, in P1 the adversary can generate T1 by ensuring this particular
interleaving of the two threads, and moreover: execute the first load in the read method after
1 is stored to X, so that out1 = 1; execute the second load after 2 is stored to X, so that
out2 = 2; and resolve the non-deterministic choice only after the coin is tossed ensuring that
out1 is returned if the coin result is 1, and out2 is returned if the coin result is 2. (Recall
that the adversary controls object-implementation-internal steps, including non-deterministic
choices.) However, it is easy to see that for programs P2 and P3, the hyperproperty holds
when DLR is used. Indeed, without a read concurrently executed with a write, DLR behaves
just like ATR.

TNSR. This implementation tries to avoid some stores by recognizing that if the value is
concurrently altered during a write operation, then that operation does not have to actually
store as it may pretend it was overrun by the concurrent write. With this implementation,
the hyperproperty holds for P1. Indeed, without two concurrently executed writes, TNSR
behaves just like ATR. However, using TNSR, in P2 the adversary can generate T2 by ensuring
that the first load in write(2) reads 0 (the initial value), then execute write(1) atomically
and have the second load in write(2) read 1. Then, if the coin result is 1, the adversary
makes write(2) skip writing its value (it can do so since the two loaded values are not
equal). Otherwise, if the coin result is 2, write(2) stores its value. Finally, it is easy to see
that for P3 the hyperproperty holds with TNSR. Indeed, after both threads reach the barrier,
only one value can be returned by the read method, since at this point in the execution,
both write methods are completed.

ABD. This implementation uses timestamps to order the written values (breaking ties using
some predetermined order on the process identifiers). Each process maintains the most recent
timestamped value it observed. For reading, a process broadcasts a query, waits for replies
from a quorum (majority) of processes, and returns the value with the largest timestamp,
but only after broadcasting this timestamped value and receiving acknowledgments from
a quorum of processes. In turn, for writing value v a process broadcasts a query, waits for
replies from a quorum of processes, broadcasts v with timestamp larger than all replies, and
waits for a quorum of acknowledgments. Note that in ABD, processes are also constantly
active as “servers”: (i) replying to queries with their current timestamped values, and (ii)
acknowledging new written values after (possibly) updating their current timestamped values.

Using ABD, the hyperproperty is violated for P1 and P2. For the violation we need to
have at least three processes, two of them running the code of the program, and the others
are used as servers that reply to messages and participate in quorums. (ABD2 is degenerate
since a quorum must consist of all processes.) Essentially, ABD≥3 allows both the behaviors
exposed by DLR and the behaviors exposed by TNSR. However, the actual adversaries for
ABD≥3 are more complicated than the ones for DLR and TNSR due to the absence of a global
centralized memory cell that values are stored in and loaded from.

We describe adversaries that generate T1 for P1 and T2 for P2:

For P1, the adversary lets the reader invoke a query and lets the writer complete the
execution of write(1) by choosing a quorum of processes that acknowledge the new
value. Next, the adversary lets all the processes in the quorum reply to the query of
the reader reporting value 1. Then, the adversary lets the writer execute write(2),
again obtaining a quorum of processes that are aware of the new value, where this time

DISC 2024



1:6 Hyperproperty-Preserving Register Specifications

ATR DLR TNSR ABD≥3

P1 ✓ ✗ ✓ ✗

P2 ✓ ✓ ✗ ✗

P3 ✓ ✓ ✓ ✓

For each program and register implementation,
✓ indicates that the hyperproperty “a = b with
probability 1

2 ” holds under any adversary, and ✗

indicates the hyperproperty is refuted by some
adversary.

Figure 3 Summary of examples

the adversary picks a quorum that includes at least one process that is not part of the
previous quorum, and therefore has not yet replied to the reader’s query (this is where at
least three processes are needed). This process also replies to the reader’s query, but with
value 2. At this time, the query message of the reader has pending replies from a quorum
in which all replies include value 1, and from one additional process that is already aware
of the more recent value 2. However, the adversary postpones the delivery of the replies
until after the coin toss, at which time it picks the replies to match the coin value: if
the coin value is 1, the replies from the homogeneous quorum where all replies include
value 1 are delivered; otherwise the replies from the all but of one of the processes in the
aforementioned quorum are delivered together with the reply of the additional process
that includes value 2, thus forming a (heterogeneous) quorum whose most recent value is
2. Accordingly, the reader returns a value that is equal to the coin value.
For P2, the adversary starts by invoking a query during write(2) and making a quorum
of processes send replies to the query (with the initial value) before write(1) is initiated
in the left process. The adversary then lets the left process execute up to the barrier,
at which point at least one reply with the value 1 is sent to the right process’s query by
a process that is aware of the left process’s update. The adversary then performs the
delivery of the replies to the query in write(2) according to the coin value. If the coin
result is 2, the adversary delivers a quorum of replies that includes the reply sent when
the left process reached the barrier, causing the right process to be aware of the most
recent timestamp of the left process, such that the right process updates the value 2 with
a larger timestamp. On the other hand, if the coin result is 1, the adversary delivers only
the replies sent before write(1), whose timestamp is outdated, causing the right process
to choose a timestamp for the new value 2 that is at a tie with the timestamp attached
by the left process to the value 1. Assuming the id of the left process has precedence,
the tie is resolved to its timestamp, making 1 appear to be the most recent value. This
determines the result of the subsequent read to be equal to the coin result.

Finally, the hyperproperty holds when ABD is used in P3. To see this, suppose, w.l.o.g., that
the timestamp assigned to 2 is larger than the one of 1. Then, after the two writes complete,
in every quorum there is at least one process that knows about the value 2, and a reader
that queries after this point can only read 2.

Figure 3 summarizes the above observations. In particular, the hyperproperty holds in
P3 for all four implementations. Nevertheless, as we show later in Example 6.2, it can be
still violated by some linearizable implementations.

To capture differences between linearizable implementations, such as the ones shown in
the above examples, [3] introduced strong observational refinement as a refinement relation
between an implementation and a specification that preserves hyperproperties. Then, while
ATR, DLR, TNSR, and ABD can be shown to be observationally equivalent (i.e., observationally
refine each other), as we demonstrated above, they are not strongly observational equivalent.
In particular, none of the relatively simple shared-memory implementations in Fig. 2 can



Y. Ben Shimon et al. 1:7

be used as a specification of ABD when hyperproperties are considered, as ABD is not a
strong observational refinement of any of them. (This is unfortunate, since, as we have seen,
reasoning about the sets of program traces generated when ABD is used is much more involved
than with the other implementations.) We also note that each of the implementations
admits a different linearizability criterion: ATR is strongly linearizable [14], DLR is write
strongly-linearizable [15], while TNSR and ABD are neither.

In the rest of the paper we propose hyperproperty-preserving specifications for classes
of linearizable register implementations, including ABD. Such specifications can drastically
simplify verification of hyperproperties of client programs using these implementations, a
task which is typically challenging, especially when complex implementations are considered,
since it requires reasoning about all possible adversaries.

3 Preliminaries

We start with general notations, continue to our modeling of objects, implementations, and
programs (§3.1), and finally recap the formal notions of preservation of hyperproperties via
strong observational refinement (§3.2).

Sequences. For a finite alphabet Σ, we denote by Σ∗ the set of all (finite) sequences over
Σ. The length of a sequence s is denoted by |s|. We write s[k] for the symbol at position
1 ≤ k ≤ |s| in s. We write σ ∈ s if s[k] = σ for some 1 ≤ k ≤ |s|. We use “·” for the
concatenation of sequences. We often identify symbols with sequences of length 1 or their
singletons (e.g., in expressions like s ·σ). The restriction of a sequence s w.r.t. a set Γ, denoted
by s|Γ, is the longest subsequence of s that consists only of symbols in Γ. This notation is
extended to sets by S|Γ ≜ {s|Γ | s ∈ S}. We write s1 ⪯S s2 when s1 is a subsequence of s2,
and s1 ⪯P s2 when s1 is a prefix of s2.
Labeled Transition Systems. A labeled transition system (LTS, for short) is a tuple A =
⟨Q, Σ, q0, T ⟩, where Q is a set of states, Σ is a (possibly infinite) alphabet (whose elements
are called transition labels), q0 ∈ Q is an initial state, and T ⊆ Q × Σ × Q is a set of
transitions. We denote by A.Q, A.Σ, A.q0, and A.T the components of an LTS A. We write

σ−→A for the relation {⟨q, q′⟩ | ⟨q, σ, q′⟩ ∈ A.T}. An execution e of A is a (possibly empty)
finite sequence of transitions in A.T such that the first transition starts in q0 and each other
transition continues from the target of the previous transition. An execution e induces a
trace ρ ∈ A.Σ∗, where ρ[i] is given by the label of e[i] for every 1 ≤ i ≤ |e|. We denote
by E(A) and traces(A) the set of all executions of A and the set of all traces induced by
executions of A (respectively). Note that we only consider finite executions and traces.
Forward Simulations. Given LTSs A and A# and a set Γ ⊆ A.Σ ∩ A#.Σ, a relation
R ⊆ A.Q × A#.Q is a Γ-forward simulation from A to A# if (i) ⟨A.q0, A#.q0⟩ ∈ R; and
(ii) if q σ−→A q′ and ⟨q, q#⟩ ∈ R, then there exist q#′ ∈ A#.Q and ρ ∈ A#.Σ∗ such that
q# ρ[1]−−→A# ...

ρ[|ρ|]−−−→A# q#′, ρ|Γ = σ|Γ, and ⟨q′, q#′⟩ ∈ R. We write A ⊑Γ
F A# when such

relation exists.

3.1 Objects, Implementations, and Programs
We review standard notions that are needed for our formal results. We assume a set Tid of
thread identifiers and an infinite set Id of action identifiers.

Objects. An object is a pair O = ⟨M, Val⟩, where M is a set of method names and Val is a set
of values. An object O is associated with actions divided into invocations i = inv⟨m, v, p, k⟩ ∈

DISC 2024



1:8 Hyperproperty-Preserving Register Specifications

I(O) and responses r = res⟨m, v, p, k⟩ ∈ R(O), where m ∈ M, v ∈ Val ∪ {⊥}, p ∈ Tid, and
k ∈ Id. We let IR(O) ≜ I(O) ∪ R(O).
Histories. A history h of an object O is a finite sequence over IR(O). A history h is sequential
if it alternates between invocations and responses (starting with an invocation), such that
every consecutive i, r in h have the same method and thread identifiers, and a unique action
identifier across h. A history h is well-formed if its restriction to actions of each p ∈ Tid,
denoted by h|p, is sequential. An invocation i ∈ h is pending if there is no response in h

with the same thread and action identifiers. Otherwise, i is complete. These notions are
also applied on operations o, which are either single invocations o = i or pairs of matching
invocation and response o = ⟨i, r⟩. We let completed(h) denote the subsequence of h consisting
of actions that are a part of completed operations.
Real-time Order. The real time order induced by a well-formed history h, denoted by <h,
is the partial order on operations defined by o1 <h o2 iff o1’s response appears in h before
o2’s invocation.
Specifications. A specification of O is a prefix-closed set of sequential histories of O.
Registers. A register object is given by Reg = ⟨{read, write},N⟩. Its specification, denoted
by SpecReg, is defined as usual, assuming that 0 is the initial register value.
Object Implementations. We assume a set IInt of labels for implementation internal actions
and define an implementation I of an object O to be an LTS over the alphabet IR(O) ∪ IInt.
We assume that the history induced by every execution e of I, denoted by h(e), is a well-
formed history. The pseudo-code presented in specific implementations in the paper is easily
translatable to formal LTSs, whose executions represent executions generated by the methods’
code when they are repeatedly and concurrently invoked with arbitrary arguments.
Client Programs. We assume a set PInt of labels for client internal actions (disjoint from
IInt) and define a client program P for an object O as an LTS over the alphabet IR(O)∪PInt.
A program P and implementation I are linked by taking “interface parallel composition”,
denoted by P [I]. The resulting LTS interleaves the steps of P and I while forcing the two
LTSs to synchronize on labels from IR(O). The defining property of P [I] is given by:

▶ Proposition 3.1. ρ ∈ traces(P [I]) iff ρ|I.Σ ∈ traces(I) and ρ|P.Σ ∈ traces(P ).

3.2 Hyperproperties Preservation via Strong Observational Refinement
A hyperproperty ϕ of a program P is a set of sets of the program’s traces (i.e., ϕ ⊆
P(traces(P ))). Such sets can capture probabilistic requirements, such as the one informally
described in §2, via suitable encodings of traces [9].

The hyperproperties that are satisfied by an object implementation, and accordingly,
strong observational refinement between implementations, are defined using deterministic
schedulers, which formalize the notion of a strong adversary [3].

Schedulers. Given a program P and an implementation I, a scheduler is a function S :
E(P [I])→ P(P [I].T). An execution e ∈ E(P [I]) is consistent with S if e[j] ∈ S(e[1] ··· e[j−1])
for every 1 ≤ j ≤ |e|. We denote by E(P [I], S) the set of executions of P [I] that are
consistent with S, and by traces(P [I], S) the traces of executions in E(P [I], S). A scheduler
is deterministic if for every e ∈ E(P [I]), either |S(e)| ≤ 1 or all transitions in S(e) are labeled
by actions in PInt.

▶ Remark 3.2. Attiya and Enea [3] restricted their attention to step-deterministic implemen-
tations in which a trace uniquely determines an execution (which includes the intermediate



Y. Ben Shimon et al. 1:9

states along the trace). We avoid this technical restriction, and thus use executions instead of
traces in the definitions of schedulers, as well as of linearizability criteria below. In particular,
we define schedulers as functions from executions to sets of transitions instead of functions
from traces to sets of labels. For step-deterministic implementations our definitions coincide
with those of [3].
Hyperproperty Satisfaction. An implementation I satisfies a hyperproperty ϕ of P , denoted
by I |=P ϕ, if traces(P [I], S)|P.Σ ∈ ϕ for every deterministic scheduler S.

▶ Example 3.3. For the client program P2 (represented as an LTS) and the set of traces T2
from Fig. 1, we have that DLR |=P2 P(traces(P2)) \ {T2}. This is because, as discussed in §2,
there exists no scheduler S such that traces(P2[DLR], S)|P.Σ = T2. ⌟

Strong Observational Refinement. An implementation I strongly observationally refines an
implementation I#, denoted by I ≤s I#, if I# |=P ϕ =⇒ I |=P ϕ for every program P and
hyperproperty ϕ of P . The following alternative characterization follows from the definition.

▶ Lemma 3.4. I ≤s I# iff for every program P and deterministic scheduler S, there exists
a deterministic scheduler S# such that traces(P [I], S)|P.Σ = traces(P [I#], S#)|P.Σ.

Attiya and Enea [3, Theorem 8] show that IR(O)-forward simulation between implementations
is equivalent to strong observational refinement. (Their result applies to finite traces as
we consider here; see [12] for a discussion on infinite traces.) We adapt this result to our
setting. In the sequel, for implementations I and I# of an object O, we write I ⊑F I# for
I ⊑IR(O)

F I#.

▶ Theorem 3.5. I ≤s I# iff I ⊑F I#.

▶ Example 3.6. It is easy to show that ATR ⊑F DLR, and we obtain that ATR ≤s DLR. Thus,
ATR |=P2 P(traces(P2)) \ {T2} follows from DLR |=P2 P(traces(P2)) \ {T2}. In addition, since
DLR ̸≤s ATR (see §2), we have DLR ̸⊑F ATR. Indeed, if a concurrent write is about to change
the value of X after a read of DLR performs its first load, ATR has no matching action: if it
performs its (single) load it will not be able to return the right value in case DLR returns the
value read in the second load; and similarly, if it waits, it will fail to return the same value if
DLR returns the value of the first load. ⌟

4 Complete Implementations for Linearizability Classes

Knowing that a given implementation is a member of a certain linearizability class is
only useful if it enables reasoning about programs that use that implementation without
understanding the implementation itself. For hyperproperties, such reasoning is made possible
if the implementation is known to strongly observationally refine a simpler implementation,
in which case the latter can be used instead of the actual implementation in the analysis. To
standardize the relation between linearizability classes and strong observational refinement,
we propose a definition of hard and complete implementations in analogy to hardness and
completeness w.r.t. complexity classes, where instead of reductions, we use simulations, which
ensure strong observational refinement:

▶ Definition 4.1. Let I be a class of implementations of an object O that is downward closed
w.r.t. forward simulation (i.e., I ∈ I whenever I ′ ∈ I and I ⊑F I ′). An implementation I#

of O is I-hard if I ⊑F I# for every I ∈ I. It is I-complete (or complete for I) if we also have
I# ∈ I.

DISC 2024



1:10 Hyperproperty-Preserving Register Specifications

In addition to allowing reasoning about hyperproperties of implementations in I, an
I-complete implementation I# also provides a sound and complete method to establish the
membership of an implementation I in I by showing that I ⊑F I#.

In the following we take I to be the set of implementations of some object that satisfy
certain linearizability criteria.

Linearizability. Consider first standard linearizability [17, 20]:

▶ Definition 4.2. A history s of an object O is a linearization of a history h of O, denoted
by h ⊑ s, if there exists a sequence of responses r̄ for some of the pending invocations in
h such that the following hold for h′ = completed(h · r̄): (i) h′|p = s|p for every p ∈ Tid;
and (ii) <h′ ⊆ <s. A history h of O is linearizable w.r.t. a specification Spec of O if it
has a linearization s ∈ Spec. An implementation I of O is linearizable w.r.t. Spec if h(e) is
linearizable w.r.t. Spec for every e ∈ E(I).

▶ Proposition 4.3. The class of linearizable implementations of an abject O w.r.t. a spec-
ification Spec is downward closed w.r.t. forward simulation, and there exists a complete
implementation for it.

Proof (sketch). Downward closedness follows from the fact that I ⊑F I ′ implies that
{h(e) | e ∈ E(I)} ⊆ {h(e) | e ∈ E(I ′)}. A complete implementation is the implementation
that tracks in its internal state the history h generated so far. When executing an invocation
or response, the action is added in the end of the current history. But, while invocations are
always enabled, a response r is only enabled when h · r is linearizable w.r.t. Spec. ◀

The (theoretical) construction in the above proof provides us with a complete implemen-
tation, which may help in streamlining and mechanizing linearizability arguments as forward
simulations (e.g., [18] utilized such implementation). However, since it directly encodes the
definition of the class, it is unhelpful for reasoning about hyperproperties of implementa-
tions. Thus, for the stronger classes considered below we are interested in identifying simple
complete implementations that are not based on history tracking.

Strong linearizability. Golab et al. [14] proposed a strengthening of linearizability, called
strong linearizability, and showed that it is necessary and sufficient for reasoning on probability
distributions of outcomes that a strong adversary can generate. Roughly speaking, while
linearizability allows one to choose the linearization order “after the fact” in view of the whole
execution, strong linearizability requires the linearization of implementation histories into
specification histories to be done online in a prefix-preserving manner, that is, by continuously
adding operations at the end of the linearized history.

▶ Definition 4.4. A linearization mapping for an implementation I of an object O w.r.t. a
specification Spec of O is a function L : E(I)→ Spec such that h(e) ⊑ L(e) for every e ∈ E(I).
An implementation I of O is strongly linearizable w.r.t. a specification Spec of O if there is a
linearization mapping L for I w.r.t. Spec such that L(e1) ⪯P L(e2) whenever e1 ⪯P e2.

Since we aim to also capture non-deterministic implementations (and do not assume step-
determinism), our linearizations apply on executions rather than traces (see also Remark 3.2).

▶ Example 4.5. From the register implementations presented in §2, only ATR is strongly
linearizable. We use the histories associated with the set T1 from Fig. 1 to show that DLR
and ABD are not strongly linearizable. Consider the following history h, its two possible



Y. Ben Shimon et al. 1:11

extensions h1 and h2, and its possible linearizations s1, s2, s3:

h = |w1 | |w2 |
|r h1 = |w1 | |w2 |

|r 1| h2 = |w1 | |w2 |
|r 2|

s1 = |w1 | |r 1| |w2 |
s2 = |w1 | |w2 | |r 2|
s3 = |w1 | |w2 |

Unlike ATR (and TNSR), both DLR and ABD have a single execution e that induces h and
can be extended into two alternative executions that induce h1 and h2. Then, L(e) can
be s1, s2, or s3, but any choice at this stage is doomed to fail: (i) s1 fails if the execution
continues to generate h2; (ii) s2 fails if the execution continues to generate h1; and (iii) s3
fails if the execution continues to generate h1 since we are only allowed to extend the current
linearization by adding operations at its end. The history of the common prefix of the traces
in T2 from Fig. 1 can be similarly used to show that TNSR is not strongly linearizable. ⌟

Attiya and Enea [3] show that the class of strongly linearizable implementations is down-
ward closed w.r.t. forward simulation, and that every strongly linearizable implementation
strongly observationally refines the atomic implementation (e.g., ATR for registers). Together
with Thm. 3.5, this result is restated as follows:

▶ Theorem 4.6. The atomic implementation for specification Spec of an object O is complete
for the class of strongly linearizable implementations of O w.r.t. Spec.

Additional linearizability classes. We observe that downward-closedness w.r.t. simulation,
as well as the existence of a complete implementation, generalize to a range of linearizability
classes beyond linearizability and strong linearizability mentioned above. These linearizability
classes are parameterized by a preorder that must hold between the linearizations of an
execution and its extensions. Formally, given a preorder R (i.e., reflexive and transitive
relation) on sequences, the class IR(O, Spec) consists of all implementations I of O for which
there exists a linearization mapping L : E(I)→ Spec such that ⟨L(e1), L(e2)⟩ ∈ R whenever
e1 ⪯P e2. The class of all linearizable implementations of O w.r.t. Spec is obtained by taking
R = Spec × Spec, whereas for all strongly linearizable implementations we take R =⪯P.
Other classes defined in the rest of this paper are also instances of this definition.

▶ Lemma 4.7. For every preorder R on sequences, the class IR(O, Spec) is downward closed
w.r.t. forward simulation, and there exists a complete implementation for it.

The complete implementation for IR(O, Spec) is constructed similarly to the one in
the proof of Prop. 4.3 (which is a special case), except that here the state also tracks a
linearization of the history so far, and ensures in each transition that the linearizations in
the pre-state and post-state are related by R.

Similarly to the construction in Prop. 4.3, the generic construction in Lemma 4.7 is not
helpful for reasoning about hyperproperties. In contrast, Thm. 4.6 proposes a simple and
useful complete implementation for strong linearizability. In the remainder of the paper we
seek useful complete implementations for other linearizability classes of interest.

5 Complete Implementation for Write Strong Linearizability

Focusing on registers and identifying that useful register implementations are not strongly
linearizable, Hadzilacos et al. [15] have recently proposed a weakening of strong linearizability,
called write strong-linearizability, and showed that every linearizable single writer register
implementation, including single-writer ABD, is write strongly-linearizable. However, they do

DISC 2024



1:12 Hyperproperty-Preserving Register Specifications

not provide a specification for write strong-linearizability that plays the role that the atomic
register implementation plays for strong linearizability.

Write strong-linearizability weakens the prefix-preservation requirement of strong lineariz-
ability by applying it only to writes, thus allowing reads to be linearized offline, and freely
“move around” when more operations are added. For the formal definition, we let s|write

denote the restriction of s ∈ SpecReg to write operations.

▶ Definition 5.1. Let I be a register implementation. A linearization mapping L : E(I)→
SpecReg is write strong if L(e1)|write ⪯P L(e2)|write whenever e1 ⪯P e2. We say that I is write
strongly-linearizable if there exists a write strong linearization mapping L : E(I)→ SpecReg.

▶ Example 5.2. From the implementations in §2, ATR and DLR are write strongly-linearizable.
(For DLR, for h from Example 4.5, we can pick s3, and later on, when the read returns, pick
either s1, by adding a read in the middle, or s2 according to the returned value.) We use
the histories associated with the set T2 from Fig. 1 to show that TNSR and ABD are not write
strongly-linearizable. (For ABD this also follows from the general result in [8].) Consider the
following history h, its two possible extensions h1 and h2, and its possible linearizations
s1, s2, s3:

h = |w1 |
|w2 h1 = |w1 |

|w2 | |r 2| h2 = |w1 |
|w2 | |r 1|

s1 = |w1 | |w2 |
s2 = |w2 | |w1 |
s3 = |w1 |

Unlike ATR and DLR, both TNSR and ABD have a single execution e that induces h and can be
extended into two alternative executions that induce h1 or h2. Then, L(e) can be s1, s2, or
s3, but any choice at this stage is doomed to fail: (i) s1 fails if the execution continues to
generate h2 since no extension of s1 linearizes h2; (ii) s2 fails if the execution continues to
generate h1 since no extension of s2 linearizes h1; and (iii) s3 fails if the execution continues
to generate h2 since no extension of s3, where write operations are only added after the write
operation in s3, linearizes h1. ⌟

We denote by Iws the class of write strongly-linearizable register implementations. By
Lemma 4.7 (with R ordering histories using the prefix relation on the restriction to writes),
Iws is downward-closed w.r.t. simulation, and the notion of a complete implementation is
well-defined. Algorithm 1 presents our proposed complete implementation for this class. Its
construction is inspired by a specification given by Attiya and Enea [3, §6] for capturing the
hyperproperties of a specific snapshot implementation [1]. It is a generalization of DLR from
§2, where instead of loading twice, the reader repeatedly loads from X as long as new values
are observed, and non-deterministically decides which value to return.
▶ Remark 5.3. One can define a sequence {Ik}∞

k=1 of implementations, all with atomic write,
and read that non-deterministically picks between k-loads (so ATR = I1 and DLR = I2). It
can be shown that all of these implementations are write strongly-linearizable, but for every
k, Ik+1 does not strongly observationally refine Ik. The WSR implementation is what one gets
“at the limit” of this sequence, and every Ik trivially strongly observationally refines WSR.

▶ Theorem 5.4. WSR is complete for the class of write strongly-linearizable register imple-
mentations.

As a consequence of Thm. 5.4, we obtain that single-writer ABD strongly observationally
refines WSR, and so we can use WSR to argue about the hyperproperties of client programs
that use single-writer ABD.



Y. Ben Shimon et al. 1:13

Algorithm 1 WSR: A complete implementation for write strongly-linearizable registers
Shared Variables: the current value X.
Multi-assignments are executed atomically.
Method read()
V ← {X};
do
⟨Vprev,V⟩ ← ⟨V,V ∪ {X}⟩;

while V ≠ Vprev;
out ← pick v ∈ V;
return out;

Method write(v)
X ← v;
return;

6 Complete Implementation for Decisive Linearizability

In this section we identify a novel linearizability criterion, which we call decisive linearizability.
Then, we present a complete implementation for the corresponding class of register implemen-
tations, which can serve as a hyperproperty-preserving specification for any implementation in
the class. Using this implementation, we show that multi-writer ABD is decisively linearizable,
and that decisive linearizability (for registers) is weaker than write strong-linearizability.

▶ Definition 6.1. Let I be an implementation of an object O and Spec be a specification of
O. A linearization mapping L : E(I)→ Spec is decisive if L(e1) ⪯S L(e2) whenever e1 ⪯P e2.
We say that I is decisively linearizable w.r.t. Spec if there there exists a decisive linearization
mapping L : E(I)→ Spec.

Decisive linearizability, like strong and write strong-linearizability, requires the lineariza-
tion process to be “online”. Nevertheless, unlike strong and write strong-linearizability, it
does not require that the sequences of linearizations produced in this process are increasing
“at the end”, thus allowing operations to be added to the linearized history possibly before
operations that are already included in the linearized history. The only requirement of
decisive linearizability is that this process maintains the relative order of already linearized
operations: once the order between o1 and o2 has been decided, it cannot be reverted.

▶ Example 6.2. All implementations in §2 are decisively linearizable: ATR and DLR are
already write strongly-linearizable (which is a stronger condition, as we show below) and
for TNSR and ABD, which are not write strongly-linearizable, this will be proven later in
the section. To illustrate how a suitable linearization mapping can be obtained for these
implementations, we revisit the histories h and its extensions h1 and h2 from Example 5.2.
To linearize h, we can pick s3; later on, if the execution continues according to h1, we append
w2 to the linearization, and if the execution continues to h2, we add w2 to the linearization
before w1—note that decisive linearizability allows this; finally, when the read returns we
add it immediately after the corresponding write.

For a “non-example”, we use the histories associated with the set T3 from Fig. 1 to show
that the complete implementation for the class of linearizable registers (see Prop. 4.3) is not
decisively linearizable. Consider the following history h, its two possible extensions h1 and
h2, and its possible linearizations s1 and s2:

h = |w1 |
|w2 | h1 = |w1 | |r 1|

|w2 | h2 = |w1 | |r 2|
|w2 |

s1 = |w1 | |w2 |
s2 = |w2 | |w1 |

Recall that in the complete implementation for standard linearizability, an execution e that
induces h can be extended both to an execution e1 that induces h1 and to an execution
e2 that induces h2. (In particular, this means that an adversary for P3 from Fig. 1 can

DISC 2024



1:14 Hyperproperty-Preserving Register Specifications

Algorithm 2 DR: A complete implementation for decisively linearizable registers
Shared Variables: the current value X, the current version number Ver , and a lock flag L.
await B do C blocks until the condition B is met, at which point the evaluation of B and the

body C are atomically executed. Multi-assignments and atomic blocks are executed atomically.
Method read()

await L = 0 do ⟨s,V⟩ ← ⟨Ver , {X}⟩;
do

atomic
Vprev ← V;
if Ver ≥ s then V ← V ∪ {X};

while V ≠ Vprev;
out ← pick v ∈ V;
return out;

Method write(v)
await L = 0 do s← Ver ;
if * then

await L = 0 do ⟨X, Ver⟩ ← ⟨v, Ver + 1⟩;
else

await L = 0 ∧Ver > s do
⟨L, tmp, X, Ver⟩ ← ⟨1, X, v, Ver − 1⟩;

⟨L, X, Ver⟩ ← ⟨0, tmp, Ver + 1⟩;
return;

decide between these options after the coin toss, refuting the hyperproperty discussed in §2,
which is satisfied when each of ATR, DLR, TNSR, ABD and in fact any decisively linearizable
implementation is used.) If L(e) = s1 then the linearization of e1 must reorder the writes in
s1, violating decisiveness. Similarly, if L(e) = s2, then the linearization of e2 must reorder
the writes in s2, violating decisiveness. Thus, no decisive linearization mapping exists. ⌟

By Lemma 4.7 (with R being the subsequence relation), the class of decisively linearizable
implementations is downward-closed w.r.t. simulation and a complete implementation exists
for it, for any object. Next, we present a complete implementation for the class of decisively
linearizable register implementations. We note that while Definition 6.1 is not specific
to registers (unlike Definition 5.1) and Lemma 4.7 applies to any object, the complete
implementation we present is only for register implementations. We denote by Id the class
of all decisively linearizable register implementations. The complete implementation, DR, is
presented in Algorithm 2.

DR stores the current value in X and a corresponding version number in Ver . Reads use
repeated loads similarly to WSR, but add loaded values to V only when their version number
is not older than the version number when the read started (stored in s). The return value
is picked non-deterministically from V.

Writes are based on the idea used in TNSR, allowing stores to non-deterministically choose
to be overwritten by a concurrent write, with two important differences. First, new stores by
concurrent writes are identified based on version number (Ver > s) rather than values (to
avoid data dependencies). Second, even if a write chooses to be overwritten, the store to X

is not skipped but momentarily executed with a lower version number, to allow concurrent
reads to observe it. This is done by a step that temporarily decreases Ver and stores the
input value to X, followed by a step that restores Ver and X to their newer values. The two
steps are not executed atomically, letting concurrent reads to load the intermediate value.
Importantly, a lock L is used to prevent concurrent methods from setting their start version
number (s) to a temporary version number, and from updating Ver based on a temporary
version number.

To simplify the presentation, the pseudo-code is written such that a write makes the
non-deterministic choice whether to be overwritten or not before it determines that it can
indeed be overwritten. As a result, the execution may get stuck. This does not affect
linearizability, and this behavior is impossible in our formulation of DR as an LTS.

▶ Example 6.3. Allowing concurrent reads to observe “overwritten” writes is crucial for
capturing all behaviors of decisively linearizable implementations such as multi-writer ABD.
Consider the program P4 and set of traces T4 in Fig. 4. The program P4 extends P2 from



Y. Ben Shimon et al. 1:15

write(1);
a← coin();
barrier();

write(2);
barrier();
b← read();

c← read();
barrier();

T4 =


|w1| 2
|w2 | |r2|
|r 2|

,

|w1| 1
|w2 | |r1|
|r 2|


Figure 4 A program P4 and a set T4 of traces of the program

Fig. 1 with another thread, and T4 is similar to T2 except that the additional thread observes
the value 2 written by the middle thread, even when this value ends up being overwritten.
Recall that T2 can be generated by an adversary for both TNSR and ABD. For TNSR, this
leverages the ability of the adversary to postpone the decision whether to store 2 or not
until after the coin toss. In contrast, T4 is not possible for TNSR, since in the trace where the
middle thread reads 1, it must be the case that TNSR chose to overwrite 2 and as a result
has never stored 2 to X, preventing concurrent threads from loading the value before it is
overwritten. (DR does perform a store in such a case, allowing T4.) Unlike TNSR, ABD allows
this behavior: The adversary acts on the left and middle processes similarly to the adversary
for P2 that generates T2 described in §2, with the added right process sending an additional
query when write(2) does so, immediately receiving replies with the initial value from a set
of process that excludes the middle process and is one-short from a quorum. Then, when
write(2) sends its update, it also replies to the right process with the timestamp it chose.
Regardless of the chosen timestamp, it is larger than the initial timestamp, causing the right
process to return the value 2. ⌟

▶ Theorem 6.4. DR is complete for the class of decisively linearizable register implementations.

While not immediate from the definitions, a corollary of Theorems 5.4 and 6.4, together
with the observation that WSR ⊑F DR, is that every write strongly-linearizable implementation
is also decisively linearizable. That is, decisive linearizability is indeed weaker than write
strong-linearizability.

Having constructed a complete implementation, we now leverage it to show that other
implementations are decisively linearizable: all we need to do is prove that they are simulated
by DR. For example, TNSR is trivially simulated by DR, and is therefore decisively linearizable.
We show that the same holds for multi-writer ABD.

▶ Theorem 6.5. ABD ⊑F DR.

▶ Corollary 6.6. ABD is decisively linearizable.

Thus, DR provides a shared-memory specification for multi-writer ABD that enables
reasoning about its hyperproperties.

7 Related and Future Work

Since the observation that linearizability does not suffice for reasoning about randomized
client programs and the introduction of strong linearizability [14], many works have studied
(im)possibility of implementing strongly linearizable objects under different progress con-
ditions. Helmi et al. [16] showed that lock-free strongly linearizable multi-writer registers,
max registers, snapshots, and counters cannot be constructed from a single-writer registers.
Attiya et al. [5] and Chan et al. [8] adapted and extended these results for a fault-tolerant
message passing setting.

DISC 2024



1:16 Hyperproperty-Preserving Register Specifications

Attiya et al. [6] developed a methodology of making existing implementations proba-
bilistically close to strongly linearizable ones by repeating an effect-free preamble of every
method and picking uniformly at random which outcome to continue with. They introduced
a correctness condition called tail strong linearizability that ensures the effectiveness of
this construction. This criterion depends on the choice of the preamble and is thus not
comparable to decisive linearizability. Interestingly, the construction in [6] is not effective for
our complete implementations (WSR and DR).

The work of Hadzilacos et al. [15] is closer to our work in its aim to give up strong
linearizability, and study what existing implementations do provide. In addition to what we
have already discussed, [15, Algorithm 4] demonstrated a multi-writer register implementation
that is not write strongly-linearizable. This implementation is essentially a simplified version
of ABD, and using forward simulation to ABD, one can conclude that it is decisively linearizable.

As discussed in length, our work is heavily inspired by [3] that uncovered the corre-
spondence between strong observational refinement and simulation, and suggested the use
of non-atomic specifications for reasoning about non-strongly-linearizable implementations.
Derrick et al. [10] and Dongol et al. [12] identified a gap in the way [3] handle infinite
traces, and show that in that case, while simulation is still necessary for strong observational
refinement, only a stronger relation, called (weak) progressive forward simulation is sufficient.
We focus solely on finite traces, leaving infinite traces to future work.

Bouajjani et al. [7] used forward simulations to non-atomic reference implementations as
means to establish linearizability. In particular, they developed abstract stack and queue
specifications such that forward simulations to these specifications is necessary and sufficient
for establishing linearizability. In our terms, this gets close to complete implementations
for the class of linearizable stacks and queues, but, their results are, however, limited to
implementations that have explicit marking of linearization points (or so-called “commit
points”) in some of the methods. Their implementations are highly beneficial in simplify-
ing (and possibly automating) complex linearizability arguments, as the ones needed for
Herlihy&Wing Queue [17] and the Time-Stamped Stack [11].

Finally, we note that although we focused on registers, decisive linearizability is a
general correctness criterion. Investigating its applicability beyond registers is left for future
work. We believe that various implementations that are not strongly linearizable are still
decisively linearizable (but, there are known implementations that are not even decisively
linearizable, such as the Time-Stamped Stack [11], which allows concurrent complete push
operations to remain unordered until a later pop determines their order). Identifying complete
implementations for the class of decisively linearizable implementations of other objects is an
important (and challenging!) avenue for future work. It would also be interesting to study
(im)possibility for decisively linearizable implementations with different progress guarantees.

References
1 Yehuda Afek, Hagit Attiya, Danny Dolev, Eli Gafni, Michael Merritt, and Nir Shavit. Atomic

snapshots of shared memory. J. ACM, 40(4):873–890, 1993. doi:10.1145/153724.153741.
2 Hagit Attiya, Amotz Bar-Noy, and Danny Dolev. Sharing memory robustly in message-passing

systems. J. ACM, 42(1):124–142, 1995. doi:10.1145/200836.200869.
3 Hagit Attiya and Constantin Enea. Putting strong linearizability in context: Preserv-

ing hyperproperties in programs that use concurrent objects. In DISC, volume 146 of
LIPIcs, pages 2:1–2:17, Dagstuhl, Germany, 2019. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik. URL: https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.DISC.
2019.2, doi:10.4230/LIPIcs.DISC.2019.2.

https://doi.org/10.1145/153724.153741
https://doi.org/10.1145/200836.200869
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.DISC.2019.2
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.DISC.2019.2
https://doi.org/10.4230/LIPIcs.DISC.2019.2


Y. Ben Shimon et al. 1:17

4 Hagit Attiya and Constantin Enea. Putting strong linearizability in context: Preserving
hyperproperties in programs that use concurrent objects. CoRR, abs/1905.12063, 2019. URL:
http://arxiv.org/abs/1905.12063, arXiv:1905.12063.

5 Hagit Attiya, Constantin Enea, and Jennifer L. Welch. Impossibility of strongly-linearizable
message-passing objects via simulation by single-writer registers. In DISC, volume 209 of
LIPIcs, pages 7:1–7:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. URL:
https://doi.org/10.4230/LIPIcs.DISC.2021.7, doi:10.4230/LIPICS.DISC.2021.7.

6 Hagit Attiya, Constantin Enea, and Jennifer L. Welch. Blunting an adversary against
randomized concurrent programs with linearizable implementations. In PODC, pages 209–219.
ACM, 2022. doi:10.1145/3519270.3538446.

7 Ahmed Bouajjani, Michael Emmi, Constantin Enea, and Suha Orhun Mutluergil. Proving
linearizability using forward simulations. In CAV, volume 10427 of LNCS, pages 542–563.
Springer, 2017. doi:10.1007/978-3-319-63390-9\_28.

8 David Yu Cheng Chan, Vassos Hadzilacos, Xing Hu, and Sam Toueg. An impossibility result
on strong linearizability in message-passing systems. CoRR, abs/2108.01651, 2021. URL:
https://arxiv.org/abs/2108.01651, arXiv:2108.01651.

9 Michael R. Clarkson and Fred B. Schneider. Hyperproperties. J. Comput. Secur., 18(6):1157–
1210, 2010. doi:10.3233/JCS-2009-0393.

10 John Derrick, Simon Doherty, Brijesh Dongol, Gerhard Schellhorn, and Heike Wehrheim. Brief
announcement: On strong observational refinement and forward simulation. In DISC, volume
209 of LIPIcs, pages 55:1–55:4. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. URL:
https://doi.org/10.4230/LIPIcs.DISC.2021.55, doi:10.4230/LIPICS.DISC.2021.55.

11 Mike Dodds, Andreas Haas, and Christoph M. Kirsch. A scalable, correct time-stamped stack.
In POPL, pages 233–246. ACM, 2015. doi:10.1145/2676726.2676963.

12 Brijesh Dongol, Gerhard Schellhorn, and Heike Wehrheim. Weak progressive forward
simulation is necessary and sufficient for strong observational refinement. In CONCUR,
volume 243 of LIPIcs, pages 31:1–31:23. Schloss Dagstuhl - Leibniz-Zentrum für In-
formatik, 2022. URL: https://doi.org/10.4230/LIPIcs.CONCUR.2022.31, doi:10.4230/
LIPICS.CONCUR.2022.31.

13 Ivana Filipović, Peter O’Hearn, Noam Rinetzky, and Hongseok Yang. Abstraction for con-
current objects. Theoretical Computer Science, 411(51):4379–4398, 2010. URL: https:
//www.sciencedirect.com/science/article/pii/S0304397510005001.

14 Wojciech Golab, Lisa Higham, and Philipp Woelfel. Linearizable implementations do not
suffice for randomized distributed computation. In STOC, pages 373–382, New York, NY,
USA, 2011. ACM. doi:10.1145/1993636.1993687.

15 Vassos Hadzilacos, Xing Hu, and Sam Toueg. On register linearizability and termination. In
PODC, pages 521–531. ACM, 2021. doi:10.1145/3465084.3467925.

16 Maryam Helmi, Lisa Higham, and Philipp Woelfel. Strongly linearizable implementations:
possibilities and impossibilities. In PODC, pages 385–394. ACM, 2012. doi:10.1145/2332432.
2332508.

17 Maurice P. Herlihy and Jeannette M. Wing. Linearizability: A correctness condition for
concurrent objects. ACM Trans. Program. Lang. Syst., 12(3):463–492, July 1990. doi:
10.1145/78969.78972.

18 Prasad Jayanti, Siddhartha Jayanti, Ugur Yavuz, and Lizzie Hernandez. A universal, sound,
and complete forward reasoning technique for machine-verified proofs of linearizability. Proc.
ACM Program. Lang., 8(POPL), jan 2024. doi:10.1145/3632924.

19 Nancy A. Lynch and Alexander A. Shvartsman. Robust emulation of shared memory using
dynamic quorum-acknowledged broadcasts. In FTCS, pages 272–281. IEEE Computer Society,
1997. doi:10.1109/FTCS.1997.614100.

20 Gal Sela, Maurice Herlihy, and Erez Petrank. Brief announcement: Linearizability: A typo.
In PODC, pages 561–564, New York, NY, USA, 2021. ACM. doi:10.1145/3465084.3467944.

DISC 2024

http://arxiv.org/abs/1905.12063
https://arxiv.org/abs/1905.12063
https://doi.org/10.4230/LIPIcs.DISC.2021.7
https://doi.org/10.4230/LIPICS.DISC.2021.7
https://doi.org/10.1145/3519270.3538446
https://doi.org/10.1007/978-3-319-63390-9_28
https://arxiv.org/abs/2108.01651
https://arxiv.org/abs/2108.01651
https://doi.org/10.3233/JCS-2009-0393
https://doi.org/10.4230/LIPIcs.DISC.2021.55
https://doi.org/10.4230/LIPICS.DISC.2021.55
https://doi.org/10.1145/2676726.2676963
https://doi.org/10.4230/LIPIcs.CONCUR.2022.31
https://doi.org/10.4230/LIPICS.CONCUR.2022.31
https://doi.org/10.4230/LIPICS.CONCUR.2022.31
https://www.sciencedirect.com/science/article/pii/S0304397510005001
https://www.sciencedirect.com/science/article/pii/S0304397510005001
https://doi.org/10.1145/1993636.1993687
https://doi.org/10.1145/3465084.3467925
https://doi.org/10.1145/2332432.2332508
https://doi.org/10.1145/2332432.2332508
https://doi.org/10.1145/78969.78972
https://doi.org/10.1145/78969.78972
https://doi.org/10.1145/3632924
https://doi.org/10.1109/FTCS.1997.614100
https://doi.org/10.1145/3465084.3467944


1:18 Hyperproperty-Preserving Register Specifications

21 Yoav Ben Shimon, Ori Lahav, and Sharon Shoham. Hyperproperty-preserving register
specifications (extended version), 2024. URL: https://arxiv.org/abs/2408.11015, arXiv:
2408.11015, doi:10.48550/arXiv.2408.11015.

A Proof Sketches

Proof (sketch) of Lemma 4.7. For downward closure, we observe that I ⊑F I ′ implies that
there exists a mapping π : E(I) → E(I ′) such that h(e) = h(π(e)) for every e ∈ E(I), and
π(e1) ⪯P π(e2) whenever e1 ⪯P e2. Then, given a suitable linearization mapping L for I ′,
the composition L ◦ π is a suitable linearization mapping for I.

A complete implementation for IR(O, Spec) is similar to the complete implementation
for the class of all linearizable implementations presented in the proof of Prop. 4.3, except
that in addition to tracking in its internal state the history h it has observed so far, it also
tracks a linearization s of h. When executing an invocation or response α, the linearization
is non-deterministically updated to a linearization s′ of h · α such that ⟨s, s′⟩ ∈ R. If such s′

does not exist, the α step is not enabled. This construction generalizes the implementation
in [4, Appendix C] which uses the same set of states but only allows to append actions to
the linearization. ◀

Proof (sketch) of Theorem 5.4. To show that WSR ∈ Iws, we construct a linearization
mapping L : E(WSR) → SpecReg by assigning “linearization points”: Write operations that
have already stored their values in X are linearized to the transition where they stored this
value, and reads that picked a value to return are linearized to the transition where they
first loaded that value. Other pending operations are not included in the linearization.

Hardness is much more challenging. Given a write strongly-linearizable implementation I,
we begin by instrumenting the state of I with a ghost variable that tracks the full execution
performed so far. Then, given an execution e and a transition t, we compare L(e) and L(e · t),
where L is the given write strong-linearization mapping for I. A naive attempt to show
I ⊑F WSR would execute a store in WSR at the time the corresponding write operation w is
added to the linearization. This fails since w might be added to linearization immediately
after all previous writes have been linearized, which can be before w takes effect, and
performing the store of WSR at that step will not allow later reads (that are concurrent with
w) to load earlier values.

To overcome this, we prove the existence of a so-called lazy linearization mapping.
Informally, this mapping adds operations to the linearization only when it must, e.g., when
an operation completes, or when a write is needed to justify a completed read. More
concretely, assuming arbitrary write strong-linearization mapping L, we prove the existence
of a write strong-linearization mapping L∗ : E(I) → SpecReg with the following additional
properties:

1. L∗(e) = L∗(e · t) for every e · t ∈ E(I) such that the transition t is not labeled with a
response.

2. For every e ∈ E(I) and operation o in L∗(e), if o is not completed in h(e), then it is a
write operation and it is not last in L∗(e).

3. L∗ is decisive.

Using L∗, the simulation works. Invocation and response transitions are simulated by an
identical invocation or response, where invocations of read operations also load the stored
value once. The stores in write operations are executed when the write operations are added

https://arxiv.org/abs/2408.11015
https://arxiv.org/abs/2408.11015
https://arxiv.org/abs/2408.11015
https://doi.org/10.48550/arXiv.2408.11015


Y. Ben Shimon et al. 1:19

to the lazy linearization, after which all pending reads that did not already load the stored
value load it.

The crux of the proof is to justify that when a completed read is added to the linearization,
the matching read in WSR has already loaded the value it needs to pick to match the return
value of that read. For this, it suffices to show that the value the read returns was written by
a write that either was rightmost in the linearizaton of the prefix of the execution up to the
transition that invoked the read, or was added to the linearization later (as these are exactly
the writes whose stores we load as described above). The properties of the lazy linearization
are used to establish this fact. ◀

Proof (sketch) of Theorem 6.4. For inclusion, DR ∈ Id, given an execution of DR we con-
struct a linearization that only includes writes that already stored their value in X and
reads that picked a value to return. This is similar to the linearization in the proof that
WSR ∈ Iws. However, the order in which the operations are linearized is more involved. We
begin by assigning to each operation we intend to include in the linearization a version
number: for a write operation it is the version number it wrote in the transition where it
stored its value into X, and for a read operation it is the version number in the pre-state
of the transition where it first loaded the value it later picked to return. Operations are
ordered based on version number, with ties broken based on the ordering induced by the
aforementioned transitions. The ordering between existing operations according to these
rules does not change when new operations are added, and so the mapping we get is decisive.
We can use the conditions guarding loads and “roll backs” to earlier version numbers to show
the ordering according to the above rules respects real time order.

For hardness, the proof closely follows the proof that WSR is Iws-hard. The main difference
is that when a write appears for the first time in a linearization, it might not appear to the
right of writes which already appeared earlier. We use the roll back mechanism to simulate
these writes, thus maintaining an invariant that X contains the value of the rightmost write
in the linearization. ◀

Proof (sketch) of Theorem 6.5. The simulation keeps track of when a pair of value v and
timestamp ts reaches a majority of other processes for the first time. This can happen due
to either a write distributing its newly written value or a read distributing its decided read
value. When this happens, we check whether ts is larger than the current maximal timestamp
that reached a majority of processes. If so, we perform in DR a store of v, attached to a new,
larger version number, and then load this value with all threads that are active in a read
method. Otherwise, we use the “overwritten value” path of DR: temporarily store v with a
lower version number, collect this value by concurrent readers that can see it, and finally
restore X to its latest value. ◀

DISC 2024


	1 Introduction
	2 Motivating Examples: A Tale of Four Registers
	3 Preliminaries
	3.1 Objects, Implementations, and Programs
	3.2 Hyperproperties Preservation via Strong Observational Refinement

	4 Complete Implementations for Linearizability Classes
	5 Complete Implementation for Write Strong Linearizability
	6 Complete Implementation for Decisive Linearizability
	7 Related and Future Work
	A Proof Sketches

